Dnešní terestrické ekosystémy jsou do značné míry produktem koevoluce rostlin a hmyzu, který představuje vůbec nejpočetnější a nejrozmanitější skupinu živočichů. Počátky tohoto vzájemného působení lze vysledovat stovky milionů let do minulosti, přičemž postupně docházelo k nárůstu jeho komplexity. Nejčastějšími doklady těchto složitých vztahů jsou fosilizované listy nebo jejich otisky, vykazující často specifické i nespecifické poškození, jako jsou miny nebo hálky, stopy po ovipozici, popřípadě nejrůznější typy okusů. Kvalitativní a kvantitativní analýza těchto stop má velký význam při studiu evolučních procesů v rámci výše uvedených skupin organismů. Detekované změny v dynamice trofických vztahů mezi hmyzem a jeho rostlinnými hostiteli pomáhají zpřesnit představu o vlivu měnícího se prostředí na okolní biotu, jakož i poskytují vodítko pro stanovování průběhu klimatických změn v čase.

Použitá a citovaná literatura:
Alvin K. L., Barnard P. D. W., Harris T. M., Hughes N. F., Wagner R. H., Wesley A. (1967) Gymnospermophyta. In: Harland, W. B. a kol. (eds.). The fossil record, London, Geology Society of London, str. 247–268
Ash S. (1997) Evidence of arthropod-plant interactions in the Upper Triassic of the southwestern United States. Lethaia 29: 237–248
Artabe A. E., Stevenson D. W. (1999) Fossil Cycadales of Argentina. Botanical Review 65: 219–238
Behrensmeyer A. K., Hook R. W. (1992) Paleoenvironmental context and taphonomicmodels. In: Behrensmeyer A. K., Damuth J. D., Di Michele W. A., Potts R., Sues H.-D., Wing S. L. (eds.). Terrestrial Ecosystems Through Time. Chicago, University Chicago Press, str. 15–136
Berry, E. W. 1923. Pathological conditions among fossil plants. In: Moodie, R. L. (ed.). Paleopathology: An introduction to the study of ancient evidences of disease. Urbana, Illinois, University of Illinois Press, str. 99–109
Berry E. W. (1934) A Lower Lance florule from Harding County, South Dakota. United States Geological Survey Professional Paper 185F: 127–133
Béthoux O., Galtier J., Nel A. (2004) Earliest evidence of insect endophytic ovoposition. Palaios 19: 408–413
Brauckmann C., Zessin W. (1989) Neue Meganeuridae aus dem Namurium von Hagen- Vorhalle (BDR) und die Phylogenie der Meganizoptera (Insecta, Odonata). Deutsche Entomologische Zeitschrift 36: 177–215
Cockerell T. D. A. (1908) Fossil insect from Florrisant, Colorado. Bulletin of the American Museum of Natural History 24: 59–69
Collinson M. E., Hooker J. J. (1991) Fossil evidence of interactions between plants and plant-eating mammals. Philosophical Transactions of the Royal Society of London (B) 333: 197–208
Cuevas-Reyes P., Quesada M., Hanson P., Dirzo R., Oyama K. (2004) Diversity of gall-inducing insects in a Mexican tropical dry forest: the importance of plant species richness, life-forms, host plant age and plant density. Journal of Ecology 92: 707–716
Cuevas-Reyes P., Quesada M., Oyama K. (2006) Abundance and Leaf Damage Caused by Gall-Inducing Insects in a Mexican Tropical Dry Forest. Biotropica 38: 107–115
Erwin D. M., Schick K. N. (2007) New miocene oak galls (Cynipini) and their bearing on the History of cynipid wasp in western North America. Journal of Paleontology 81: 568–580
Farrell B. D., Mitter C. (1994) Adaptive Radiation in Insect and Plants: Time and Opportunity. American Zoologist 34: 57–69
Genise J. F. (1995) Upper Cretaceous trace fossils in permineralized plant remains from Patagonia, Argentina. Ichnos 3: 287–299
Gorelick R. (2001) Did insect pollination increased seed plant diversity? Biological Journal of Linnean Society 74: 407–427
Grauvogel-Stamm L., Kelber K.-P. (1996) Plant-insect interactions and coevolution during the Triassic in western Europe. Paleontologica Lombarda (N.S.) 5: 5–23
Grimaldi D. A. (1999) The co-radiation of pollinating insects and angiosperms in the Cretaceous. Annals of the Missouri Botanical Garden 86: 373–406
Haddad N. M, Tilman D., Haarstad J., Ritchie M., Knops J. M. H. (2001) Contrasting effects of plant richness and composition on insect communities: a field experiment. American Naturalist 158: 17–35
Heie O. E. (1968) Pliocene aphids from Willerhausen (Homoptera, Aphidoidea). Beiheft der Berichte der Naturhistorischen Gesellschaft zu Hannover 6: 25–39
Hickey L. J., Hodges R. W. (1975) Lepidopteran leaf mine from the Early Eocene Wind River Formation of northeastern Wyoming. Science 189: 718–720
Hölldobler B., Wilson E. O. (1990) The ants. Cambridge, Oxford University Press, 732 str.
Chaney R. W., Mason H. L. (1930) A Pleistocene flora from Santa Cruz Island, California. Carnegie Institut of Washington Publications, Contributions to Paleontology I, 415: 1–24
Iannuzzi R., Labandeira C. C. (2008) The Oldest Record of External Foliage Feeding and the Expansion of Insect Folivory on Land. Annals of the Entomological Society of America 101: 79–94
Knor S., Prokop J., Kvaček Z., Janovský Z., Wappler T. (2012) Plant–arthropod associations from the Early Miocene of the Most Basin in North Bohemia – Palaeoecological and palaeoclimatological implications. Palaeogeography, Palaeoclimatology, Palaeoecology 321–322: 102–112
Knor S., Skuhravá M., Wappler T., Prokop J. (2013) Galls and gall makers on plant leaves from the lower Miocene (Burdigalian) of the Czech Republic: Systematic and palaeoecological implications. Review of Palaeobotany and Palynology 188: 38–51
Kvaček Z., Böhme M., Dvořák Z., Konzalová M., Mach K., Prokop J., Rajchl M. (2004) Early Miocene freshwater and swamp ecosystems of the Most Basin (northern Bohemia) with particular reference to the Bílina mine section. Journal of the Czech Geological Society 49: 1–40
Kvaček Z., Dvořák Z., Mach K., Sakala J. (2004) Třetihorní rostliny severočeské hnědouhelné pánve. Granit, Praha.
Konijnenburg-van Cittert J. H. A. van, Schmeissner S. (1999) Fossil insect eggs on Lower Jurassic plant remains from Bavaria (Germany). Palaeogeography, Palaeoclimatology, Palaeoecology 152: 215–223
Labandeira C. C. (2002) The history of associations between plants and animals. In: Herrera C. M., Pellmyr O. (eds.). Plant-Animal Interactions: An Evolutionary Approach. London, Blackwell, str. 26–74, 248–261
Labandeira C. C. (2006) The four Phases of Plant-Arthropod Associations in Deep Time. Geologica Acta 4: 409–438
Labandeira C. C., Kvaček J., Mostovski M. B. (2007) Pollination drops, pollen, and insect pollination of Mesozoic gymnosperms. Taxon 56: 663–695
Labandeira C. C., Phillips T. L. (1996) A late Carboniferous petiole gall and the origin of holometabolous insects. Proceedings of the National Academy of Sciences U.S.A. 93: 8470–8474
Larew H. G. (1992) Fossil galls. In: Shorthouse, J.D., Rohfritsch, O. (eds.). Biology of insect-induced galls. Oxford, Oxford University Press, str. 51–59
Mikuláš R., Dvořák Z., Pek I. (1998) Lamniporichnus vulgaris gen. et spec. nov.,traces of insect larvae in stone fruit of hackberry (Celtis) from the Miocene and Pleistocene of the Czech Republic. Journal of the Czech Geologic Society 43: 277–280
Michener C. D., Grimaldi D. A. (1988) The oldest fossil bee: apoid history, evolutionary stasis, and antiquity of social behavior. Proceedings of the National Academy of Sciences of the United States of America 85: 6424–6426
Möhn E. (1960) Eine neue Gallmücke aus der niederrheinischen Braunkohle. Secken bergiana Lethaea 41: 513–522
Nishida H., Hayashi N. (1996) Cretaceous coleopteran larva fed on a female fructification of extinct gymnosperm. Journal of Plant Research 109: 327–330
Norstog K. J., Nicholls T. J. (1997) The Biology of the Cycads. Ithaca, New York, Cornell University Press, 504 str.
Opler P. A. (1982) Fossil leaf-mines of Bucculatrix (Lyonetiidae) on Zelkova (Ulmaceae) from Florissant, Colorado. Journal of the Lepidopterists` Society 36: 145–147
Pott Ch., Labandeira C. C., Krings M., Kerp H. (2008). Fossil insect eggs and ovopositional damage on bennettitalean leaf cuticles from the carnian (Upper Triassic) of Austria. Journal of Paleontology 82: 778–789
Rasnitsyn A. P., Novokshonov V. G. (1997) On the morphology of Uralia maculata, (Insecta, Diaphanopterpidea) from the Early Permian (Kungurian) of Ural (Russia). Entomologica Scandinavica 28: 27–38
Ren D. (1998) Flower-associated Brachycera flies as a fossil evidence for Jurassic angiosperm origins. Science 280: 85–88
Rohdendorf B. B., Rasnitsyn A. P. (1980) Historical development of the class Insecta. Transactions of the Paleontological Institute 85: 1–270 (v ruštině)
Rozefelds A. C. (1988) Lepidoptera mines in Pachypteris leaves (Corystospermaceae, Pterydospermophyta) from the Upper Jurassic/Lower Cretaceous Battle Camp formation, North Queensland. Proceedings of the Royal Society of Queensland 99: 533–541
Scott A. C., Taylor T. N. (1983) Plant-animal interactions during the Upper Carboniferous. Botanical Review 49: 259–307
Scott A. C., Stephenson J., Chaloner W. G. (1992) Interactions and coevolution of plant and arthropods during the Paleozoic and Mesozoic. Philosophical Transactions of the Royal Society of London B 335: 129–165
Scott A. C., Stephenson J., Collinson, M. E. (1994) The fossil record of plant galls. In: Wiliams M. A. J. (ed.). Plant Galls: Organisms, Interactions, Populations. SystematicAssociation Special Publication 49: 447–470
Sharov A. G. (1973) Morphological features and mode of life of the Paleodictyoptera. In Bei-Benko, G. Y. (ed.). Readings in the Memory of Nikolaj Aleksadrovitch Kholodkovskij. Leningrad, Science Publishers, str. 49–63 (v ruštině)
Shear W. A., Kukalová-Peck J. (1990) The ecology of Paleozoic terrestrial arthropods: the fossil evidence. Canadian Journal of Zoology 68: 1807–1834
Steinbach G. (1967) Zur Hymenopterenfauna des Pleiozäns von Willerhausen/Westharz. Berichte der Naturhistorischen Gesselschaft zu Hannover 111: 95–102
Sun G., Dilcher D. L., Zheng S., Zhou Z. (1998) In Search of the First Flower: A Jurassic Angiosperm, Archaefructus, from Northeast China. Science 282: 1692–1695
Tiffney B. H. (1980) Fruits and seeds of the Brandon Lignite. V. Rutaceae. Journal of the Arnold Arboretum 61: 1–36
Waggoner B. M., Poteet M. F. (1996) Unusual oak leaf galls from the middle miocene of northwestern Nevada. Journal of Paleontology 70: 1080–1084
Wedmann S., Wappler T., Engel M. S. (2009) Direct and indirect fossil records of megachilid bees from the Paleogene of Central Europe (Hymenoptera: Megachilidae). Naturwissenschaften 96: 703–712
Wilf P. (2008) Insect-damaged fossil leaves record food web response to ancient climate change and extinction. New Phytologist 178: 486–502
Wilson E. O. (1987) The earliest known ants: an analysis of the Cretaceous species and aninference concerning their social organization. Paleobiology 13: 44–53

Contemporary terrestrial ecosystems are largely a product of the coevolution of plants and insects, which are the most prevalent and diverse group of animals. The origin of these interactions can be traced hundreds of millions of years back followed by a gradual increase in their complexity. The most common evidence of these complex relationships is represented by the fossilized leaves, often having specific and non-specific damage such as the mines, galls, traces of oviposition, or various types of feeding. Qualitative and quantitative analyses of these ichnofossils are of great importance with regard to the study of the evolutionary processes occurring among these groups of organisms. The detected changes in the dynamics of trophic relationships between insects and their host plants help to clarify ideas regarding the impact on the developing environment and organisms, and provide evidence for the recognition of trends in climate changes in the past.