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Preliminaries

@ —0 <a<b< oo, X isaBanach space,
@ f:[a,b] = X is on [a,b], if
f(s+):= Iin31+f(7)ex forsea,b), f(t—):= Iint1 f(r)eX forte(a,b],

@ ATf(s)=f(s+)—f(s), A~f(t)=f(t) —f(t—), Af(t)=F(t+) —f(t—).
@ G=G(][a,b],X) is the space of functions f:[a,b]— X regulated on [a, b].
(G is a Banach space with respect to the norm ||f|l.c= sup ||f(t)]])-
t € [a,b]

e regulated functions are uniform limits of finite step functions,
e regulated functions have at most countably many points of
discontinuity.

@ BV =BV ([a,b],X)= {f: [a,b] — X: var f < oo} is the space of functions
with on [a, b].
@ f:[a,b]—>X isa , if there is a division of [a, b]

A=< <ar<...<am=Db
such that f is constant on every (oj-1,¢j), j=1,2,...,m.

S =S([a,b],X) isthe on [a,b].



Semi-variation

@ D={D={a=ap<a1<...<am=Db}} is the set of of [a, b].
@ L(X) is the Banach space of linear bounded mappings X — X.
@ For F:Ja,b] — L(X) and D={agp,a1,...,am} €D put
m
V(F.D) =sup{ | 3 [F(ay) ~F(oj-) xjHX x5 € X, Ixlx<t}.
j=1
Then SVP(F)= supV(F,D) is the of F on [a,b] and
DeD
SV =SV ([a, b], L(X)) is the set of F: [a, b]— L(X) with SV2(F )<oo.
® [IFligy=IF@lLp+SVaF =
@ For g:[a,b]—» X and D ={ag,a1,...,am} €D put
m
V(9,0) = sup { || 3" Fi[ale) — g(es-)] | :F e LX) o<1}
j=1

and SV2(g)= supV(g,D).
DeD

SV =SV([a,b], X) is the set of g:[a, b]— X with Svg(g)<oo.
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Definition of Kurzweil-Stieltjes integral

@ G={6[ab]—(0,1)} are on [a,b].

° P:{P:(Dvg)ﬂ D:{a:a0<al< e <Oém:b}, §:(£l7' ©og Em)G[&, b]m7 €J € [aj*lvaj]}
are of [a, b].

@ P=(D,£)EP is if [oj_1,04] C (§ —6(§),§ +6(§)) forallj.

@ For F:[a,b]—L(X),g:[a,b] = X, P =(D,&) P define

S(FAQ,P) =Y F(§)[g(ey) —a(ey—1)].
j=1

for each e > 0 there is a gauge § € G such that

I:/:Fd[g] — ‘S(FAg,P)—I‘<s

/CCFd[g]:O.

for every ¢ — fine tagged division P.
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= [ d[Flg < ‘S(AFg,P)—I‘<e

for every ¢ — fine tagged division P.




Definition of Kurzweil-Stieltjes integral

@ RSCKS, X=R = KS=PS.

@ KS-integral has usual linear properties and it is additive function of
intervals.

@ F:[a,b] - L(X) and g:[a,b] — X areregulated —

b b
/ Fd[g] and / d[F]g exist whenever
a a

one of the functions F, g is a finite step function.

b b
@ FeSV and / d[F]g exists — ‘/ d[F]nggsvab(F)ngnoo.
a a

b b
@ geSV and / d[F]g exists — H/ d[F]gHX§2HF||OOSVab(g).
a a

[ atal], <25v2F) gl

a

b
@ FeSV and / F d[g] exists — ‘
a

b b
@ gcSV and / F d[g] exists — H/ Fd[g]HXSHFHOOSVab(g).
a

a



Definition of Kurzweil-Stieltjes integral
b

@ F(t)=CeL(X),g:[a,b] > X = / Fd[g] =CJg(b) —g(a)]-
a

b
@ F:[a,b] - LX), gt)=ceX = / Fd[g] =0.
@ g:[a,b] — X semi-regulated, 7€ [a,b], and F(t)=x(.p(t)C for some C €L(X)
b
— [ Fdlal=clab) - ()

F(r=x) pro x<r,
n pro x =7

and (D,¢)= ({ag,a1,...,am}, (€1,&2,...,&m)) is &-fine.  Then

Let 46(x) =
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Integration of finite step functions

b
@ F(t)=Cel(X),g:[ab] — X :>/ Fdlg] = c[g(b) — g(a)].

b
@ F:[ab]l—>L(X),g(t)=ceX = / Fd[g]=0.

@ g:[a,b] — X semi-regulated, C €L(X), T €[a,b], =

b b
/a Xtr/C dg] = Cg(b) — Cg(r), / X(r1C dg] = Cg(b) — Cg(r+).

b b
/X[a,v—]c d[g] = Cg(r+) —Cg(a), /xla,f)c d[g] =Cg(r—)—Cg(a).



Integration of finite step functions

b
@ F(t)=CelL(X),g:[ab] » X = /a Fd[g] =c[g(b) —g(a)].

b
@ F:[ab]—L(X),glt)=ceX —s / Fd[g] = 0.

@ g:[a,b] — X semi-regulated, C €L(X), T €[a,b], =
b

b
/aX[T,b]C d[g] = Cg(b) -Cg(r—), /aX(T,b]C d[g] = Cg(b) —Cog(7+).

b b
/a X[a,r]C d[g] = Cg(7+) —Cg(a), /a X[a,~)C d[g] = Cg(7—) —Cg(a).
Cg(a+)—-Cgy(a) for r=a,

b
[ xeic dlsl = { co(rt)~Car) for re(ab),
: Cg(b)—Cg(b-)] for 7=b,
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/a X[a,r]C d[g] = Cg(7+) —Cg(a), /a X[a,~)C d[g] = Cg(7—) —Cg(a).
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b
| ximc dlal = { ca(r+) ~Co(r-)] for re(ab),
: Cg(b)—Cg(b-)] for 7=b,

@ F:[ab]—L(X), XeX,T€[a,b] =
b b
| Fdlan® = [ Fdlan T =-F(nX,
a a

b b
[ Fdlpa= [ Fdlea¥= FOR
a a

—F(a)X for T=a,

b
/ Fd[xiX]=4 0 for 7€ (a,b),
@ F(b)X for r=b.



Existence of KS integrals

Schwabik

Let F:[a,b] — L(X) and g:[a,b] — X.

b
(i) Let FeSV, gk:[a,b]—X, / d[F]gk existsforall neN and gx = g on [a,b]. Then
a

b b b
/ d[F]g exists and / d[F]g = lim / d[F]ok-
a a k—oo Jq

b
(i) Let F €SV be semi-regulated and g € G. Then /d[F]g exists.
a

b b
(iii) Let F €SV be semi-regulated and g € BV. Then /Fd[g] and /d[F]g exist,
a a

thesum > A'F(r)Atg(r)— > A F(r)A~g(r) convergesin X and
a<t<b a<t<b

/:Fd[g]+/:d[F]g

=F(b)g(b)~F(a)g(a)~ >  ATF()ATgt)+ > ATF(t)A g().

a<t<b a<t<b
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Monteiro & Tvrdy
Let F:[a,b] — L(X) and g:[a,b] — X.

0}

(i)

(iii)

(iv)

If Fe€G, geG and at least one of them has a bounded semi-variation on [a, b],

b b
then both integrals / Fd[g] and / d[F]g existand
a a

/:Fd[gw/abd[ﬂg

=F(b)g(b)—F(a)g(a)— > ATF@)ATgt)+ > ATF(t)A g(t).
a<t<b a<t<b

If FEBV, gcG,

/abd[F]g

If geBV,F,eG for keN and Fy =F,

then < 2 vardF |g||co-

b
<varF|g/lc and ’/ Fd[g]
a

t t
then /d[Fk]g :;/ d[F]g.
a a
If FeBV,gceG for keN and gx =0,

then /;Fd[gk]::/;Fd[g].




Convergence theorems

ASSUME:

@ F,FceG for neN, geSV]a,b] is semi-regulated,
o Fk = F.

THEN : /;de[g]:;/atF d[g] on [a,b].

ASSUME:
@ FeSV, g,0¢€G for neN,
® o =g

THEN : /th[gk]:;/th[g]on [, b].

ASSUME:
@ F,FeG, g,0¢€BV for neN,
@ F=F, o=0
@ o :=sup{var®gy:neN} <co.

THEN : /tde[gk]:;/th[g] on [a, b].




t
Let Ae€BV. Put (Ax)(t):/ d[A]x for x€G and t € [a,b]. Then
a

|AX| < vard A[|x [l < var} [x[|gy for x €G,
ie. both A:G—BV and A:BV — BV are linear bounded operators.
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a
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ji—1 -1
b

g/ d[varg A] |ze(s)]  for D ={ag,2,...,am} €D[a,b] and £€N.
a

Hence
b
var (Azy) S/ d[varg A] |ze(s)| for £€N.
a

b
TOHAVE |Azgy —0 as £—0 / d[var A] |z¢(s)| — 0 as ¢ — 0.
a



BOUNDED CONVERGENCE THEOREM (for X = R)

() AsSUME:
@ FeBY, g,0¢€G for keN,
@  gk(t) —g(t) on [a,b],
@  |lok|leo <K < oo fork eN.

THEN : /bd[F]gw/blelg.
(i) ASSUME: :
@ (geBV, F,F€eG for KEN,
@ F(t) — F(t) on [a,b],
@ ||Fy]loo <K < oo fork eN.

THEN : /:Fk d[g] —>/abF dfg]-

LEBESGUE INTEGRAL: Lebesgue Dominated Convergence Theorem
RIEMANN or STIELTJIES INTEGRAL: Arzela-Osgood Theorem.

Available proofs can not be extended to the abstract setting !!

Moreover, deep Arzela’s lemma is needed.



BOUNDED CONVERGENCE THEOREM

() ASSUME:
@ FeBY, g,g¢€G for keN,
@ g (t)—g(t) on [a,b],
@  |lgklleo <" < o fork €N.

men: ["alFiec- [ dFlg
(i) ASSUME:
@ (geBV, F,FyeG for keN,
@ F(t) — F(t) on [a,b],
@  ||Filloo < 5¢* < oo fork eN.

Teew: [ Fodg)— [ F gl

Let {{J;}:k€eN,jeUy} be the set of subintervals of [a, b] such that:
for each k €N, the set of indices Uy is finite, the intervals from {J;:j € Uc} are mutually

disjoint and
> Pkl >c>o.
€Uy
Then there exist sequences of indices {k;} and {j,} such that
je€Uy, for €N and () Jg,,j, #0.
LeN



DEFINITIONS

@ JCRisan if o,fel, a<p, a<x<pf = xeJ ({a}=]Ia).
@ Forintervals J C [a,b], setsD = {ag,a1,...,am} such that
<oy <---<am and o €J for j=0,1,...,m
are of J. is the set of all divisions of J.
@ Forf:J—-X =sup{V(f,D) : DeD(J)} Iisits variation over J,
vargf =varg f =0 forany c € [a,b].
@ Abounded subset E of Risan if it is a finite union of intervals.
For A C R, is the set of all elementary subsets of A.
@ Acollection of intervals {Jx:k =1,2,...,m},isa of E if
m
E= U Jk, while Jx UJy, is not an interval whenever k # ¢.
k=1
@ For f:[a,b] — X and an elementary subset E of [a, b] with a minimal decomposition
{I:k=1,...,m}, we define = ¢l vary, f.

Let c,d €[a,b], c <d. Then

@ vargg f= var‘ci f, vare q) f = I|m var —of= sup vart f,
’ ’ tele,d)

Q@ vargg f= I|m varc+5 f, varcq f= ||m varc+5 f= sup var{j f.
te(e,d]

@ |If f eBV((c,d),X) and f(c+), f(d—) exist,then f e BV ([c,d],X) and
vard f = var( oy f + |ATF(c)lIx + [|A~f(d)lIx-




KS integral over elementary sets

DEFINITION

Let F:[a,b] — L(X), g:[a,b] — X and let E € £([a, b]). Then we define

/Ed[Flg:/abd[Fl(gXE) and /EF d[g]:/ab(FXE)d[g]

provided the integrals on the right-hand sides exist.

|

Propositions
o Let Eq, Ex E(c/‘([z':\7 b]), E1NE, =0, F: [a, b] — L(X), g: [a, b] — X
and let the integrals/ d[F]g,j =1,2, exist. Then
E,

/EIUEZ"'[F]QJ‘ /E ‘”F]‘”/Ez d[Fg.

@ LetJ=(c,d) andlet f; d[F]g exists. Then

/., 1], < (e ) ( sup la)lx):
@ LetJ=]c,d), andlet ] d[F g and F(c—) exist. Then

diFlg| Var[cd F( sup llg(®)llx ) + [ATF(C)llx) llg(e)llx-
[c,d) telc,d)




Bounded Convergence Theorem

BOUNDED CONVERGENCE THEOREM

(i) ASSUME:
@ FeBV, gkeG for keN,
@ gk(t)— 0 on [a,b],

@ ||gklleo <K < o forkeN.

b
THEN : / d[F]gk — O.
a

Let {{Jk;j}:keN,jeUs} be the setof subintervals of

[, b] such that:
for each k e N, the set of indices Uy is finite, the intervals from {Ji j:j € Uc}
are mutually disjoint and

> kil >c>0.

j €Uk
Then there exist sequences of indices {k,} and {j;} such that

je€Uy, for £eN and (1) Jk,j, #0.



Bounded Convergence Theorem

Let {An} be a sequence of bounded subsets of [a,b] such that
Ani1 C A, and ﬂ A, = 0.

Put
an = sup{ m(E): E elementary subset of A, } for neN.

Then |lim a, = 0.
n—oo
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LEMMA

Let feBV([a,b],X) be continuous on [a,b] andlet {A,} be a sequence
of bounded subsets of [a,b] such that
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| A\

Put
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Let feBV([a,b],X) be continuouson [a,b] andlet {Ah} be a sequence of bounded
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