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THE BENJAMIN-BONA-MAHONY EQUATION

WITH DISSIPATIVE MEMORY

FILIPPO DELL’ORO, YOUCEF MAMMERI AND VITTORINO PATA

Abstract. We show that the nonlinear contraction semigroup generated by the Benjamin-
Bona-Mahony equation with dissipative memory

ut − utxx + ux −

∫

∞

0

g(s)uxx(t− s) ds+ upux = 0

is exponentially stable for every p ∈ N.

1. Introduction

This paper deals with the propagation of the one-directional small amplitude long waves in
shallow water. In the conservative context, such waves are described by the Korteweg-de
Vries (KdV) equation [16]

ut + uxxx + ux + uux = 0,

where u = u(x, t) : I×R
+ → R denotes the wave surface, I ⊂ R being a bounded interval.

In 1972, Benjamin, Bona and Mahony [4] proposed to replace the term uxxx by −utxx,
thus obtaining the regularized KdV equation (here called BBM equation)

ut − utxx + ux + uux = 0.

The equation above can be directly derived from Newton’s second law, in the same way
the KdV equation is obtained from the Euler one [18, 19]. In the dissipative context, the
BBM equation turns into

(1.1) ut − utxx − νuxx + ux + uux = 0, ν > 0,

or, more generally,

(1.2) ut − utxx − νuxx + (f(u))x = q

where f and q are a suitable nonlinear function and a time-independent forcing term,
respectively. Actually, it is a standard matter to prove that the initial value problem
associated to (1.2) with the Dirichlet boundary condition is globally well-posed in the
Sobolev space H1

0 (I). Hence, it generates a nonlinear solution semigroup S(t) on H1
0 (I)

defined by the action
u0 7→ S(t)u0 = u(t),

where u(t) is the unique solution at time t with initial datum u0 ∈ H1
0 (I). Concerning the

longtime dynamics, Wang and Yang [26, 28] proved the existence of a finite-dimensional
global attractor for S(t). Since the semigroup is not compact in H1

0 (I), the proof is based
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on the weak continuity of S(t) and energy methods inspired by Ghidaglia’s work (see e.g.
[10, 24, 25]). Other results can be found for instance in [3, 5, 13, 17, 24, 27] and references
therein.

Coming back to the homogeneous model (1.1), multiplying in L2(I) the equation by 2u
and exploiting the Dirichlet boundary condition, the (twice) energy

E(t) = ||S(t)u0||
2
H1(I)

is readily seen to satisfy the equality

d

dt
E(t) = −2ν||ux(t)||

2
L2(I).

Hence, in light of the Poincaré inequality and the Gronwall lemma, we deduce the expo-
nential stability

E(t) ≤ E(0)e−κt,

where κ is a strictly positive constant depending only on ν and the interval I. Note that,
in the conservative limit case ν = 0, the energy is preserved, namely E(t) = E(0). Many
other papers related with damped BBM equations with weaker dissipation are nowadays
present in the literature (see [1, 2, 6, 15]). Still, to the best of our knowledge, none of
them is dealing with dispersive equations with dissipative memory.

Motivated by the discussion above, our aim is to study the asymptotic behavior of the
integro-differential equation

(1.3) ut − utxx + ux −

∫ ∞

0

g(s)uxx(t− s) ds+ upux = 0

in the unknown u = u(x, t) : I × R → R, complemented with the Dirichlet boundary
condition

u|∂I = 0.

Here p ∈ N is a fixed constant (when p = 0 the model becomes linear), while g is a
bounded convex summable function on [0,∞) of total mass

∫ ∞

0

g(s) ds = 1

having the explicit form

g(s) =

∫ ∞

s

µ(y) dy,

where µ : R+ = (0,∞) → [0,∞), the so-called memory kernel, is a nonincreasing abso-
lutely continuous summable function of total mass

κ :=

∫ ∞

0

µ(s) ds = g(0) > 0.

Moreover, the function u is supposed to be known for all t ≤ 0. From the physical
viewpoint, equation (1.3) can be interpreted as a memory relaxation of the dissipative
BBM model (1.1) which, setting ν = 1, is formally recovered when p = 1 and the kernel
g collapses into the Dirac mass at zero. It is also worth noting that the memory term
provides a more realistic description of the Fick’s law. In particular, it prevents the infinite
propagation speed of regularization [8, 23]. In this work we prove that the nonlinear
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solution semigroup generated by (1.3), acting on a suitable Hilbert space accounting for
the presence of the memory, remains exponentially stable.

In order to explain the mathematical difficulties encountered in the analysis, we begin
to observe that, also at a linear level, the exponential stability of (1.3) is much harder
to prove than the one of (1.1). An enlightening example is provided by a comparison
between the classical heat equation

ut − uxx = 0

with the Dirichlet boundary condition and its memory relaxation, i.e. the Gurtin-Pipkin
equation [14]

ut −

∫ ∞

0

g(s)uxx(t− s) ds = 0.

In the first case, similarly to (1.1), the exponential stability is almost trivial, whereas the
exponential stability of the Gurtin-Pipkin model has been proved only in recent years [11].
In the nonlinear situation the picture is even worse. Indeed, although the asymptotic anal-
ysis of the one-dimensional reaction-diffusion equation is carried out under quite general
assumptions, the corresponding nonlinear Gurtin-Pipkin case suffers from serious draw-
backs, and requires the choice of specific memory kernels concentrated at zero [12]. For
the BBM equation the scenario is similar: while adding a further nonlinearity h(u) in (1.2)
does not cause any essential extra difficulty, the picture becomes much more involved when
dissipative memory is introduced. In particular, even showing exponential stability in the
homogeneous case (as we do in the present paper) is not at all an easy task. Concerning
the existence of the global attractor when further nonlinearities and/or source terms are
present, the techniques devised in this work do not apply and, at the moment, an answer
seems out of reach.

Plan of the paper. In the next Section 2 we introduce the functional setting and the
notation, while in Section 3 we establish the existence of the solution semigroup. The
final Sections 4 and 5 are devoted to the main result about exponential stability.

2. Functional Setting and Notation

In what follows, 〈·, ·〉 and ‖ · ‖ will denote the standard inner product and norm on the
Hilbert space L2(I). In order to simplify the calculation, we introduce the strictly positive
operators

A = −∂xx with D(A) = H2(I) ∩H1
0 (I) ⋐ L2(I)

and

B = I + A with D(B) = D(A).

The operator B commutes with A and the bilinear form

〈u, v〉1 = 〈B
1

2u,B
1

2 v〉

defines an equivalent inner product on the space H1
0 (I) with induced norm

‖u‖21 = ‖u‖2 + ‖ux‖
2,
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and we have the Poincaré inequality

(2.1)
λ1

1 + λ1

‖u‖21 ≤ ‖ux‖
2

where λ1 > 0 is the first eigenvalue of A. Finally, we consider the so-called memory space

M = L2
µ(R

+;H1
0 (I))

of square summable H1
0 -valued functions on R

+ with respect to the measure µ(s)ds,
endowed with the inner product

〈η, ξ〉M =

∫ ∞

0

µ(s)〈ηx(s), ξx(s)〉 ds.

The infinitesimal generator of the right-translation semigroup on M is the linear operator

Tη = −η′

with domain

D(T ) =
{

η ∈ M : η′ ∈ M, lim
s→0

‖ηx(s)‖ = 0
}

,

the prime standing for the weak derivative with respect to the internal variable s ∈ R
+.

Defining the nonnegative functional

Γ[η] = −

∫ ∞

0

µ′(s)‖ηx(s)‖
2 ds,

an integration by parts together with a limiting argument yield the equality (see [7, 21])

(2.2) 2〈Tη, η〉M = −Γ[η].

The phase space of our problem will be

H = H1
0 (I)×M

endowed with the norm

‖(u, η)‖2H = ‖u‖21 + ‖η‖2M.

3. The Contraction Semigroup

We translate the problem in the so-called history space framework of Dafermos [8]. To
this aim, introducing the auxiliary variable

η = ηt(x, s) =

∫ s

0

u(x, t− y) dy,

accounting for the integrated past history of u, we rewrite (1.3) as

But + ux +

∫ ∞

0

µ(s)Aη(s) ds+ upux = 0,(3.1)

ηt = Tη + u.(3.2)

By means of standard arguments based on a Galerkin approximation procedure, one can
show that system (3.1)-(3.2) above is well-posed in the phase space H. In particular,
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the solution continuously depends on the initial data. As a consequence, it generates a
strongly continuous solution semigroup

S(t) : H → H

defined by the action

z0 = (u0, η0) 7→ S(t)z0 = z(t),

where

z(t) = (u(t), ηt)

is the unique (weak) solution to (3.1)-(3.2) with initial datum z(0) = z0. Introducing
(twice) the energy at time t ≥ 0 corresponding to the initial datum z0 ∈ H as

E(t) = ‖S(t)z0‖
2
H,

we multiply (3.1) by 2u in L2(I) and (3.2) by 2η in M. Summing up, we obtain

d

dt
E + 2〈ux, u〉+ 2〈upux, u〉 = 2〈Tη, η〉M.

Since, due to the boundary condition,

2〈ux, u〉+ 2〈upux, u〉 =

∫

I

d

dx
(u2(x)) dx+

2

p+ 2

∫

I

d

dx
(up+2(x)) dx = 0,

an exploitation of (2.2) provides the energy identity

(3.3)
d

dt
E + Γ[η] = 0.

In particular, since the functional Γ[η] is nonnegative, we have the control

(3.4) E(t) ≤ E(0),

meaning that S(t) is actually a contraction semigroup.

4. Exponential Stability

For the longterm analysis, the memory kernel µ is supposed to satisfy the additional
assumption (see [8])

(4.1) µ′(s) + δµ(s) ≤ 0

for some δ > 0 and almost every s ∈ R
+. Note that µ can be unbounded in a neighborhood

of zero.
The main result of the paper reads as follows.

Theorem 4.1. There exist a strictly positive constant ω, depending on µ and the length

of the interval |I|, and an increasing positive function Qp, depending besides on µ and |I|
also on p, such that

E(t) ≤ Qp(E(0))e−ωt.
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In order to prove Theorem 4.1, we need to introduce an auxiliary energy-type functional.
First, due to the possible singularity of µ at zero, we choose s⋆ > 0 such that

(4.2)

∫ s⋆

0

µ(s) ds ≤
κ

4
.

Then, defining the truncated kernel

ρ(s) = µ(s⋆)χ(0,s⋆](s) + µ(s)χ(s⋆,∞)(s),

for ε > 0 we consider the functional

Ψε(t) = −ε

∫ ∞

0

ρ(s)〈ux(t), η
t
x(s)〉 ds.

Since ρ(s) ≤ µ(s), it is easily seen that

(4.3) |Ψε(t)| ≤ αεE(t)

for every t ≥ 0, for some universal constant α = α(µ, |I|) > 0.

Lemma 4.2. There exist universal constants β, γ > 0, depending only on µ and |I| but
independent on p and the initial energy E(0), such that the inequality

(4.4)
d

dt
Ψε(t) +

εκ

4
‖ux(t)‖

2 ≤
δ

4
‖ηt‖2M + βεΓ[ηt]

holds for every t ≥ 0, whenever εE(0)p ≤ γ.

Proof. In what follows C ≥ 0 will denote a generic constant possibly depending on the
structural quantities of the problem but independent on p and the initial energy E(0).
We compute the time derivative of Ψε as

d

dt
Ψε = −ε

∫ ∞

0

ρ(s)〈utx, ηx(s)〉 ds− ε

∫ ∞

0

ρ(s)〈ux, ηtx(s)〉 ds

= ε

∫ ∞

0

ρ(s)〈B−1ux, Aη(s)〉 ds+ ε

∫ ∞

0

ρ(s)
(

∫ ∞

0

µ(σ)〈B−1Aη(σ), Aη(s)〉 dσ
)

ds

+ ε

∫ ∞

0

ρ(s)〈B−1(upux), Aη(s)〉 ds− ε

∫ ∞

0

ρ(s)〈ux, T ηx(s)〉 ds− ε‖ux‖
2

∫ ∞

0

ρ(s)ds.

Then appealing to (4.1) we estimate

ε

∫ ∞

0

ρ(s)〈B−1ux, Aη(s)〉 ds+ ε

∫ ∞

0

ρ(s)
(

∫ ∞

0

µ(σ)〈B−1Aη(σ), Aη(s)〉 dσ
)

ds(4.5)

≤ Cε
(

‖ux‖‖η‖M + ‖η‖2M
)

≤
κε

8
‖ux‖

2 + Cε‖η‖2M

≤
κε

8
‖ux‖

2 + CεΓ[η].

Moreover, using (4.2) and the equality ρ(s) = µ(s) for s ≥ s⋆, we have

−ε‖ux‖
2

∫ ∞

0

ρ(s) ds ≤ −ε‖ux‖
2

∫ ∞

s⋆

µ(s) ds ≤ −
3κε

4
‖ux‖

2.(4.6)
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Integrating by parts in s, we infer that

−ε

∫ ∞

0

ρ(s)〈ux, T ηx(s)〉 ds = −ε

∫ ∞

s⋆

µ′(s)〈ux, ηx(s)〉 ds

≤ ε‖ux‖
(

−

∫ ∞

s⋆

µ′(s)‖ηx(s)‖ ds
)

≤
κε

8
‖ux‖

2 + Cε
(

−

∫ ∞

s⋆

µ′(s)‖ηx(s)‖ ds
)2

.

Therefore, since
(

−

∫ ∞

s⋆

µ′(s)‖ηx(s)‖ ds
)2

≤

∫ ∞

s⋆

µ′(s) ds

∫ ∞

s⋆

µ′(s)‖ηx(s)‖
2 ds ≤ µ(s⋆)Γ[η],

we obtain

(4.7) −ε

∫ ∞

0

ρ(s)〈ux, T ηx(s)〉 ds ≤
κε

8
‖ux‖

2 + CεΓ[η].

Finally, exploiting the embedding H1(I) ⊂ L∞(I) and (3.4),

ε

∫ ∞

0

ρ(s)〈B−1(upux), Aη(s)〉 ds ≤ Cε‖upux‖‖η‖M ≤ Cε‖u‖p∞‖ux‖‖η‖M

≤ Cε‖u‖p1‖ux‖‖η‖M ≤ CεE(0)
p

2‖ux‖‖η‖M

≤
δ

4
‖η‖2M + Cε2E(0)p‖ux‖

2.

At this point, choosing ε > 0 such that

CεE(0)p ≤
κ

4
the inequality above turns into

(4.8) ε

∫ ∞

0

ρ(s)〈B−1(upux), Aη(s)〉 ds ≤
δ

4
‖η‖2M +

εκ

4
‖ux‖

2.

Collecting (4.5)-(4.8), the proof is finished. �

Remark 4.3. Observe that the constants α, β, γ can be explicitly calculated in terms of
the structural quantities of the problem, even in an optimal way.

We are now in a position to prove Theorem 4.1. First we consider the energy iden-
tity (3.3) which, in light of (4.1), yields

d

dt
E +

δ

2
‖η‖2M +

1

2
Γ[η] ≤ 0.

Next, setting
Λε(t) = E(t) + Ψε(t)

and taking the sum of (4.4) with the inequality above, we obtain the estimate (valid
whenever εE(0)p ≤ γ)

d

dt
Λε +

εκ

4
‖ux‖

2 +
δ

4
‖η‖2M +

(1

2
− βε

)

Γ[η] ≤ 0.
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Due to (2.1) and (4.3), it is apparent to see that fixing1

ε = min

{

1

2α
,
1

2β
,
δ

κ
,

γ

E(0)p

}

and calling

̟ =
κλ1

8(1 + λ1)
> 0,

the inequality
d

dt
Λε +̟εΛε ≤ 0

holds. Hence, applying the Gronwall lemma and (4.3) once more, we infer that

E(t) ≤ 4E(0)e−̟εt.

We now set

t0 =
log+(4E(0))

̟ε
.

Note that t0, besides on |I|, µ, α, β, γ, depends also on E(0) and the exponent p. However,
it is clear that for every t ≥ t0

E(t) ≤ 1,

hence, by the semigroup property,

E(t) = ‖S(t)z0‖
2
H = ‖S(t− t0)S(t0)z0‖

2
H ≤ 4eωt0e−ωt, ∀t ≥ t0

for some positive ω, which now is independent of p and E(0). On the other hand, in light
of (3.4),

E(t) ≤ E(0)eωt0e−ωt, ∀t < t0.

In summary, defining

Qp(E(0)) = max{4, E(0)}eωt0 ,

the conclusion follows. �

5. Further Remarks

I. Up to minor modifications, it is possible to allow the presence of (even infinitely many)
jumps in the memory kernel µ. Indeed, denoting with {sn}n≥1 the increasing sequence of
discontinuity points of µ and setting

µn = µ(s−n )− µ(s+n ) ≥ 0,

we still have the energy identity (3.3) with

Γ[η] = −

∫ ∞

0

µ′(s)‖ηx(s)‖
2 ds+

∑

n

µn‖ηx(sn)‖
2 ≥ 0.

In turn, the conclusions of Lemma 4.2 and Theorem 4.1 remain true (see e.g. [20]).

1If E(0) = 0 we can take any ε.
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II. Condition (4.1) can be relaxed: Theorem 4.1 holds even if the kernel µ fulfills for some
C ≥ 1 and δ > 0 the weaker assumption

(5.1) µ(t+ s) ≤ Ce−δtµ(s),

for every t ≥ 0 and almost every s ∈ R
+, provided that µ is not too flat (cf. [9, 20]).

III. In the linear case (i.e. when p = 0) exponential decay can be shown within optimal
assumptions on µ, by means of linear techniques (see [22]). In this situation, besides (5.1),
it is sufficient to assume that the kernel is not completely flat, namely, the set

D = {s ∈ R
+ : µ′(s) < 0}

has positive Lebesgue measure.
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