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Abstract

A stability result for the compressible Navier-Stokes system with transport
equation for entropy s is shown. The proof comes as an outcome of the isentropic
case and additional properties of the effective viscous flux. We deal with the
pressure term in the form ργes with adiabatic index γ > 3/2; therefore the
crucial renormalization method is restricted.
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1 Introduction

Our aim is to show a stability result for global solutions of the compressible Navier-
Stokes system supplemented by the transport equation for a scalar quantity (Theorem
3.1 and Corollary 3.3). Influence of this quantity on the pressure term is also considered.
Systems of this kind are limit models for the Navier-Stokes-Fourier system when the
thermal conduction coefficient is taken zero and the heating from viscous dissipation
can be neglected. Such models arise e.g. in meteorology, see [Kle04].

The considered system reads

∂tρ+ div(ρu) = 0 (1)

∂t(ρu) + div(ρu⊗ u)− µ4u− (µ+ λ)∇ divu +∇p(ρ, s) = ρf (2)

∂ts+∇s · u = 0, (3)

where ρ, s, are scalar unknown functions on Ω× (0, T ) and u : Ω× (0, T )→ R3.3 We
suppose Ω ⊆ R3 to be a bounded domain with Lipschitz boundary. We also suppose
homogeneous Dirichlet condition for u.4

We assume that µ > 0 and λ + 2/3µ > 0 (which is the widely used assumption)
and add the following constitutive relation for the pressure term

p(ρ, s) = ργT (s), (4)

where T is a continuous and possitive function. We also consider initial data ρ0, (ρu)0

and s0.
First result on stability of the system (1), (2) with the transport equation was

published by P.-L. Lions under rather non-physical assumption γ > 9/5, see Chapter
5 and Chapter 8 of [Lio98]. The result (for γ > 9/5) was then used by Bresch et al. in
[BDGL02] where is shown that the low Mach number limit for the considered system
is the compressible isentropic Navier-Stokes equation.

Existence of solutions for the compressible Navier-Stokes system with equation for
temperature of parabolic type and γ > 3/2 was provided by Feireisl, see e.g. [Fei04].
For γ < 9/5 no results have been published if the parabolic equation for temperature
is replaced by less regular transport equation for entropy.

We show a kind of stability result for solutions under mild assumtions on the se-
quence of densities. We apply schemes from [Lio98] and [Fei04]. The lack of space
regularity for density in case γ < 9/5 unables us to renormalize the continuity equa-
tion (1) using renormalization techniques including defect measures provided by [Fei01].
The main reason is that in the polytropic case (i. e. with non-constant entropy) the
pressure is not a monotone function of density but rather of ρ̃ = ρT (s)1/γ. We use in-
variance of the transport equation (Lemma 3.2) with respect to renormalization. This
gives two consequences - one can work with a more suitable form of the pressure term,
namely T (s) = 1/s, and one can combine the continuity equation for density and the
transport equation for entropy to conclude thee continuity equation for ρ̃. Then it is
possible to use techniques from [Fei04] to show convergence of the pressure term. How-
ever, we cannot provide strong convergence of either ρn or sn (only of ρ̃n). The main

3We use the classical terminology for unknown functions - density function for ρ, velocity vector
field for u and momentum vector field for ρu and entropy for s.

4In cases when Ω is the whole space or torus (with periodic boundary conditions on u) we can
adapt analogous techniques and obtain the same result.
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problem then lies in convergence of sn div un, which can be treated due to a generalized
form (Lemma 4.2) of so called effective viscous flux identity.

We specify the difference between this result and the result of Lions. In the
case γ > 9/5 it is possible to improve integrability of the limit density, namely
ρ ∈ L2((0, T );L2(Ω)). Under this condition one can renormalize the continuity equa-
tion for ρ without any other assumption. If γ is only greater then 3/2, the structure of
the momentum equation is needed5 to show that the continuity equation for ρ can be
renormalized. But as was already mentioned, this structure works for ρ̃ and not for ρ.

1.1 Weak formulation

We call a triplet

(ρ, s,u) ∈ L∞((0, T );Lγ(Ω))× ∩q≥1L
∞((0, T );Lq(Ω))× L2((0, T );W 1,2

0 (Ω))

a weak solution to (1), (2) and (3) satisfying homogeneous Dirichlet boundary condition
and initial conditions ρ0, (ρu)0 and s0 if

• equalities (1) and (3) are satisfied in the sense of distributions, i.e.∫ T

0

∫
Ω

ρ∂tϕ dx dt+

∫ T

0

∫
Ω

ρu∇ϕ dx dt = 0 (5)∫ T

0

∫
Ω

ρu∂tη dx dt+

∫ T

0

∫
Ω

ρu⊗ u∇η dx dt+

∫ T

0

∫
Ω

p(ρ, s) div η dx dt

−µ
∫ T

0

∫
Ω

∇u∇η dx dt−
∫ T

0

∫
Ω

(λ+ µ) divu div η dx dt =

∫
(0,T )×Ω

ρf dx dt

 (6)

∫ T

0

∫
Ω

s∂tϕ dx dt+

∫ T

0

∫
Ω

su∇ϕ dx dt−
∫ T

0

∫
Ω

s divuϕ dx dt = 0 (7)

for any ϕ ∈ D((0, T )×Ω) and η ∈ D((0, T )×Ω)3. Where D((0, T )×Ω) is the space
of C∞ functions with compact support in (0, T )× Ω.

• quantities for which are the evolutionary equations prescribed satisfy

(ρ, ρu, s) ∈ C([0, T ];Lγω(Ω))× C([0, T ];Lm∞
ω (Ω))× ∩q≥1C([0, T ];Lq(Ω)ω)

and ρ(0) = ρ0, (ρu)(0) = (ρu)0, s(0) = s0.

We note that C([0, T ];Xω) is the space of continuous functions from [0, T ] to Banach
space X endowed with the weak topology.

2 A priori estimates

We assume in this section (ρ, s,u) to be a sufficiently smooth solution to (1), (2)
and (3) with smooth initial data. Then entropy is transported along characteristics
given by the flow

d

dt
X(t, x) = u(t,X(t, x)). (8)

5at least no result is known if the continuity equation in this case can be renormalized without the
momentum equation

3



As
d

dt
s(t,X(t, x)) = 0,

the entropy stays bounded by the initial condition for all t ∈ [0, T ]. By the same method
one can derive a priori non-negativity for the density ρ (when ρ0 is non-negative).

Next, we multiply the momentum equation by u and integrate both sides over Ω.
We obtain (respecting continuity equation for ρ and the boundary condition for u)

∂t

∫
Ω

1

2
ρ|u|2 + µ

∫
Ω

|∇u|2 + (λ+ µ)

∫
Ω

(div(u))2 −
∫

Ω

T (s)ργ div(u) =

∫
Ω

ρuf. (9)

Observe that under homogeneous Dirichlet boundary conditions for u we have . We
multiply (3) by ρB′(s) and use (1), where B is a smooth function, we obtain “renor-
malized” version of the equation, particularly

∂t(ρB(s)) + div(ρB(s)u) = 0. (10)

Put B(s) = T (s)1/γ and denote ρ̃ = B(s)ρ. We then derive estimates similar to the
isentropic case p = p(ρ) instead we deal with p = p(ρ̃). We test (10) by C ′(ρ̃) and
obtain

∂t(C(ρ̃)) + divC(ρ̃)u + (C ′(ρ̃)ρ̃− C(ρ̃)) divu = 0. (11)

We then put C(ρ̃) = ρ̃P (ρ̃) for

P (z) =

∫ z

1

qγ

q2
dq =

1

γ − 1
zγ−1 − 1 (12)

and realize that
(C ′(ρ̃)ρ̃− C(ρ̃)) divu = ρ̃γ divu.

Applying this equality to (9) we end with energy equality in form

∂t

∫
Ω

(
1

2
ρ|u|2 + ρ̃P (ρ̃)

)
+ µ

∫
Ω

|∇u|2 + (µ+ λ)

∫
Ω

(div(u))2 =

∫
Ω

ρuf (13)

from which can be deduced the following global in time estimates.

Claim 2.1. Let (ρ, s,u) be a smooth solution to (1)-(3) then

• s is bounded in L∞((0, T )× Ω),

• ρ̃ and ρ are bounded in L∞((0, T );Lγ(Ω)) and nonegative,

• u is bounded in L2((0, T );W 1,2
0 (Ω)),

• ρu is bounded in L∞((0, T );Lm∞(Ω)),

• ρu is bounded in L2((0, T );Lm2(Ω)),

where exponents m2 and m∞ are given through

m∞ =
2γ

γ + 1
,

m2 =
6γ

6 + γ
.
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3 Weak sequential stability and global existence

We state the main result on the stability of weak solutions. First observe that if s
is a solution of the transport equation and B a differentiable function then (at least
formally) B(s) is a solution of the same equation with initial condition B(s0). This
invariance with respect to renormalization gives us flexibility in the form of the pressure

term. We set ζ = (T−1(s))
1/γ

and observe that

p =

(
ρ

ζ

)γ
, ρ̃ =

ρ

ζ
. (14)

As T is positive, ζ has values in (1/C,C) for some C > 0 if and only if s is bounded.
As we will see later, the quantity ρ/ζ has more suitable form when passing to limit
than ρζ.

Theorem 3.1. Let (ρn,un, ζn) be a sequence of weak solutions to (1) - (3) with initial
data

(ρn,0, (ρu)n,0, ζn,0)→ (ρ0, (ρu)0, ζ0) strongly in Lγ × Lm∞ × L∞

satisfying energy inequality[∫
Ω

(
1

2
ρ|u|2 + ρ̃P (ρ̃)

)]T
0

+ µ

∫
Ω

|∇u|2 + (µ+ λ)

∫
Ω

(div(u))2 ≤
∫ T

0

∫
Ω

ρuf (15)

for P given by (12) and

1/C ≤ ess inf ζn ≤ ess sup ζn ≤ C.

Let the initial data converge strongly in corresponding norms and ρn ∈ L2(0, T ;L2).
Then there exists a subsequence (ρnk

,unk
, ζnk

) convergent weakly to a solution to (1)-(3)
with initial data (ρ0, (ρu)0, ζ0) and p given by (14).

Remark. We emphasize that we do not suppose ρn to be equibounded in L2((0, T )×(Ω))
because this bound is not given a priori (unless γ ≥ 2).6 This assumption provide renor-
malization of the continuity equation. We denote that the mostly used approximative
scheme (see [FNP01]) provides such regularity for ρn in the final approximative step.

Proof. (Theorem 3.1). Step 1 - strong convergence of the makeshift density.
We put ρ̃n = ρn/ζn and observe that p(ρ, ζ) = ρ̃γ. The function ρ̃ also satisfies the

continuity equation (see Lemma 4.1 - recall also that (ρn,un) can be extended from Ω
to the whole space by zero). Hence we use the well-known results for the isentropic
case (see [Fei04]) and obtain

ρ̃n → ρ̃ a. e. and also in C([0, T ];Lγ(Ω)). (16)

Step 2 - passing to the limit in the transport equation. From (16) we derive a weak
convergence of

ρn = ρ̃nζn ⇀ ρ̃ζ,

therefore ρ/ζ = ρ̃ and ργ/ζγ = ρ̃γ. Hence we satisfied the momentum equation.

6In the case γ > 9/5 we can improve the a priori regularity using appropriate test function to
obtain L2(L2) bound.
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The pair (ζn,un) solves the transport equation in the weak sense, so∫ T

0

∫
Ω

ζn∂tφ+

∫ T

0

∫
Ω

ζnun · ∇φ− ζn divunφ = 0 (17)

for any φ ∈ D(Ω). Passing to the limit in (17) we conclude that∫ T

0

∫
Ω

ζ∂tφ+

∫ T

0

∫
Ω

ζu · ∇φ− ζ divuφ = 0.

Next we use properties of the effective viscous flux (Lemma 4.2) and realize that for
any φ ∈ D([0, T ]) and η ∈ D(Ω):

lim
n→∞

∫ T

0

∫
R3

φη (ρ̃γn − (2µ+ λ) divun) ζn dx dt (18)

=

∫ T

0

∫
R3

φη (ρ̃γ − (2µ+ λ) divu) ζ dx dt

As ρ̃n converges strongly, one realizes that

ζ divu = ζ divu

and so (ζ,u) solves the transport equation in the weak sense. Weak continuity in
time of ρ, ρu, ζ and satisfaction of the initial conditions are standard for evolutionary
equations.

Remark. The proof did not provide strong (or pointwise) convergence of ζn or ρn. We
sketch the main obstructions which we cannot avoid. For any continuous B we can
renormalize equations for ζn and ζ. Then due to Lemma (4.2) we deduce that

∂t(B(ζ)−B(ζ))) + u · ∇(B(ζ)−B(ζ))).

in the weak sense. Therefore[∫
Ω

B(ζ)(s, x)−B(ζ)(s, x) dx

]t
0

= −
∫ t

0

∫
Ω

divu(s, x)
(
B(ζ)(s, x)−B(ζ)(s, x)

)
dx ds

but we cannot utilise Gronwall’s lemma, unless divu ∈ L∞((0, T ) × Ω).7 One may
also try to derive almost everywhere convergence of density. However, for γ < 9/5
it is more complex to renormalize the equation of continuity. Approach using defect
measures developed in [Fei01] demands compatible structure of the pressure term and is
straightforwardly applicable only in slight perturbations of the isentropic case p = p(ρ).

The following claim is a corollary of renormalization techniques - based on smooth-
ing of equations and Friedrich’s commutator lemma. For proof see e.g. Chapter 4 of
[Fei04].

7It is well known that the boundedness of divergence of the velocity field is one of the most
important open problems in the case of compressible models.
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Lemma 3.2. Let (ζ,u) ∈ (L∞((0, T ) × Ω) ∩ C([0, T ];Lqω) × L2((0, T );W 1,2(Ω)) be a
weak solution to (3) with ζ(0) = ζ0 ∈ L∞. Then for every B ∈ C(R) is (B(ζ),u) a
weak solution to (3) with B(ζ) ∈ C([0, T ];Lq(Ω)) and (B(ζ))(0) = B(ζ0).

This invariance result for the week solution enlarges the class of possible forms of
the pressure term. The next theorem is a straigtforward corollary of Theorem 3.1 and
Lemma 3.2.

Corollary 3.3. Let T ∈ C(R) be a positive invertible function. Let (ρn, sn,un) be a
sequence of weak solutions to (1) - (3) with initial data

(ρn,0, (ρu)n,0, sn,0)→ (ρ0, (ρu)0, s0) strongly in Lγ × Lm∞ × L∞

and p = ργT (s) satisfying inequality[∫
Ω

(
1

2
ρ|u|2 + ρ̃P (ρ̃)

)]T
0

+ µ

∫
Ω

|∇u|2 + (µ+ λ)

∫
Ω

(div(u))2 ≤
∫ T

0

∫
Ω

ρuf (19)

for P given by (12), ρ̃ = ρT 1/γ(s) and sn uniformly bounded in L∞((0, T ) × Ω).
Let the correspondent initial data converge strongly in corresponding norms and ρn ∈
L2(0, T ;L2). Then there exists a weak solution to (1) - (3) with the limit initial data
and p = ργT (s).

4 Auxiliary lemmas

In this section we summarize additional claims which were used during the main
proof. The firts one is based on renormalization techniques famously presented in
[DL89].

Lemma 4.1. Let

(ρ,u) ∈ L2((0, T );L2(Rd))× L2((0, T );W 1,2(Rd))

be a weak solution to the continuity equation and

(ζ,u) ∈ L∞((0, T )× Rd)× L2((0, T );W 1,2(Rd))

a weak solution to a transport equation. Then (ρζ,u) is a weak solution to the continuity
equation.

Proof. Let η ∈ D(Rd) be a non-negative function with ‖η‖L1(Rd) = 1 and denote ηε = 1/
εnη(·/ε). We mollify both equations with respect to space variables by testing the weak
formulation for any y ∈ Rd by functions ηε(· − y). We obtain equations

∂t[ρ]ε + div([ρ]εu) = div([ρ]εu)− div([ρu]ε), (20)

∂t[ζ]ε + u · ∇[ζ]ε = u · ∇[ζ]ε − [u · ∇ζ]ε (21)

where [g]ε = g ∗ ηε. We then multiply (20) by [ζ]ε and with respect to (21) we get

∂t ([ρ]ε[ζ]ε) + div([ρ]ε[ζ]εu) (22)

= (div([ρ]εu)− div([ρu]ε)) [ζ]ε + (u · ∇[ζ]ε − [u · ∇ζ]ε) [ρ]ε.

The right hand side converges to zero in L1((0, T )×Rd) due to the well-known Friedrich’s
commutator lemma. The weak convergence of derivatives on the left-hand side is as-
sured by the strong convergence of the mollified functions.
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We recall the celebrated effective viscous flux identity, which can be postulated in
a slightly generalized form.

Lemma 4.2. Let (ρn,un, sn) be weak solutions to (1), (2) and (3) uniformly bounded
by a priori estimates and weakly convergent to (ρ,u, s). Let

• pn be uniformly bounded in Lr((0, T )×Ω) for some r > 1 and weakly convergent
to p,

• σn ⇀∗ σ in L∞((0, T ) × Ω) with ∂tσn + div(σnun) = κn for κn boudned in
L2((0, T );L2(Ω)).

Then after passing to a subsequence, if needed, we obtain

lim
n→∞

∫ T

0

∫
R3

φη (pn − (2µ+ λ) divun)σn dx dt (23)

=

∫ T

0

∫
R3

φη (p− (2µ+ λ) divu)σ dx dt

for any η ∈ D(Ω) and φ ∈ D((0, T )).

Remark. Broadly speaking, the sequence {pn− (2µ+λ) divun} behaves as L1 strongly
convergent if tested by a bounded solutions of (nonhomogeneous) continuity equation
with streamlines induced by un.

Remark. The proof of Lemma 4.2 follows from the proof for the known special case
σn = B(ρn) and

∂t(ρn) + div(B(ρn)un) = (B(ρ)−B′(ρ)ρ) div u

for a B bounded C1 function with compactly supported B′(t).
The only difference is the presence of κn. However,∫

R3

φηρnun∇4−1κn →
∫
R3

φηρu∇4−1κ

as ρnun converges in L∞([0, T ];L
2γ/(γ+1)
ω ) ↪→ L2([0, T ];W−1,2) and

∇4−1κn → ∇4−1κ in L2((0, T );W 1,2
0 )

because of linearity and degree of the operator ∇4−1. For more details see [Lio98] or
[Fei04]. A version of this theorem can be also found in [PS12].
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