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1 Fluids in motion

The objective of this series of lectures is to present the recent development
of the mathematical theory of complete fluids. Here, complete means ca-
pable to incorporate the basic physical principles, in particular the First,
Second (and Third) laws of thermodynamics, in a correct and integral way
into the mathematical model. We remain at the platform of classical con-
tinuum mechanics, where the fluid motion is described in term of observable
macroscopic quantities: the mass density, the (absolute) temperature, and
the (bulk) velocity.

The adequate mathematical model(s) is typically represented by a system
of partial differential equations of evolutionary type, meaning there is a dis-
tinguished variable called time, and denoted ¢t henceforth. The state-of-the
art highlighted in these lecture notes can be characterized as follows:
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e Most of the systems arising in continuum fluid mechanics are non-linear
and as such are either not known to posses or even fail to posses classical
solutions, at least if the time interval is large and/or the data are not
a small perturbation of an equilibrium state.

e [t is possible to develop a mathematical theory of weak or variational
solutions that are defined globally in time and for any physically rele-
vant data. These weak solutions, however, are in general not unique in
their class; several admissible criteria based on the underlying physical
principles have been proposed to remedy this drawback.

e In general, the problems of stability and convergence of numerical
schemes are easier to handle in the framework of weak solutions liv-
ing in the natural function spaces.

e There is a lot of interesting mathematical issues the understanding of
which may ba effectively used in the real world applications.

1.1 Introduction

Continuum mechanics describes a fluid in motion in terms of numerical val-
ues of macroscopic quantities - fields or state variables- depending on the
time ¢ and the spatial position z. Here we adopt the Fulerian description,
where the coordinate frame is attached to the physical domain 2 occupied
by the fluid. The fields are interrelated through a system of field equations
- balance laws - reflecting the underlying physical principles of conservation
or balance of mass, momentum, energy as well as other quantities as the
case may be. The material properties of a specific fluid are characterized by
constitutive relations. The interaction of the fluid with the outer world is
specified through boundary conditions.

1.2 State variables

We suppose that the state of a fluid at any instant ¢ is characterized by
its mass density o = o(t,z) and the absolute temperature ¥ = 9(t,x). The
motion is described by means of the velocity field u = u(t, z). Accordingly,
the fluid moves along streamlines - the spatial curves X = X(t) solving

d
—X = u(t, X).
dt u(7 )



As is well known, the velocity field u must enjoy certain regularity properties
for this non-linear system to be well-posed. Typically, one requires u to be
Lipschitz with respect to the spatial variable X, otherwise the streamlines
may not be uniquely determined by their initial position and the original
idea of continuous motion breaks down. Unfortunately, however, a rigorous
verification of this property for most of the fluid systems we shall discuss
remains a largely open problem.

1.3 Conservation/balance laws

The conservation/balance laws in continuum mechanics are usually written
in a general differential form

Od(t, x) + div, F(t, z) = s(t, ). (1)

A conservation/balance law reflects the underlying physical principle relating
the changes of a volume density of a physical quantity d to its flux F and a
possible source term s as the case may be. In the Eulerian coordinate system,
the flux F consists of a convective (conservative) component du, and, at least
for certain physical quantities, a diffusive (dissipative) part proportional to
spatial derivatives of d.

It is useful to pause here to see how (1) can be derived from certain
elementary observations under the hypothetical assumption of smoothness
of all quantities in question. Comparing the total amount of the physical
quantity d in a spatial volume B evaluated at two times t; < t; we obtain

/B [d(ts, 2) —d(t1, 2)] /t/ (t,2)-n dS, dt+/ /s(t,x) dz dt,

2)

where n is the outer normal vector to the boundary 0B. Letting t; — t5 and
applying Gauss-Green theorem we get (1).

As a matter of fact, it is rather (2) than (1) that reflects the underlying

physical principles. We may also write an “approximation” of (2) in the form

/Bd(HAAti—d(t) d$z_/6)BF(t)-nde—l—/BS(t) da

that should be satisfied for any “small” At¢, B that is reminiscent of certain
numerical schemes. Formula (2) is also a suitable starting point to build up
the theory of weak solutions based on the concept of distributional deriva-
tives.




1.3.1 Equation of continuity, mass conservation

A mathematical formulation of the physical principle of mass conservation
reads
dro(t, z) + div, (o(t, x)u(t, z)) = 0. (3)

The mass flux is purely convective and the source term is absent in (3).

1.3.2 Momentum equation, Newton’s second law

The time evolution of the momentum pu is governed by the system of equa-
tions

Or(o(t, x)u(t, z)) + div, (o(t, v)u(t,z) @ u(t,x)) = div,T(¢, z) + o(t, z)f (¢, z),

(4)
where T denotes the Cauchy stress to be determined below, and f is the
volume density of the external forces acting on the fluid.

1.3.3 Energy balance, First law of thermodynamics

Taking the scalar product of (4) with u and using (3) we easily deduce the
kinetic energy balance

o (Letoe ) + i, (LauPue )

= div,(T - u(t,z)) — T(¢t,z) : Vyu(t,z) + of - u(t, x).

Even in the absence of the external forces, the right-hand side does not
vanish, and, accordingly, the kinetic energy is not conserved, unless T = 0.

To enforce the First law of thermodynamics, we write the volume density
of the total energy of the fluid in the form

1
E = —olul* + oe
2
that consists of the kinetic component plul* and the internal energy oge.
In accordance with our choice of the state variables, the (specific) internal

energy e = e(p,¥) is a function of the density o and the temperature 9.
A mathematical formulation of the First law of thermodynamics reads:

Oy BQ[UF + Q@] (t,x) + div, (Bg|ul2 + Qe] (t,z)u(t, x)) (5)
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+div,q(t,x) — div,(T(¢, z) - u(t, x))
= o(t,z)f(t,x) -u(t,z) + o(t,x)Q(t, x),

where q denotes the diffusive part of the internal energy flux and Q the
volume density of the external heat sources.

1.4 Constitutive relations for fluids

Fluids are characterized by Stokes’ law
T =S —pI, (6)

where S is the viscous stress tensor and p is a scalar quantity termed pressure.
Similarly to the specific energy e, the pressure p = p(p,?) is a function of
the state variables o, 9.

1.4.1 Entropy, Second law of thermodynamics

The Second law of thermodynamics postulates the existence of another ther-
modynamic function - entropy. We suppose that the specific entropy s =
s(0,1) is interrelated with the internal energy e and the pressure p by means
of Gibbs’ equation

1
UDs(o,V) = De(o,7) + p(o,¥)D <Q> , (7)
where D stands for the differential with respect to ¢ and v.

Internal energy equation In view of Stokes’ relation (6), the total energy
balance may be rewritten as the internal energy equation

Oi(0e(0,9)) + div,(oe(o,¥)u) + div,q =S : V,u — p(p,9)div,u,  (8)
or, equivalently, in the form of thermal energy balance

Ip(o,V)

0cy(0,7) (@19 +u- Vﬂ) +div,g=S:V,u— ngivxu, (9)
where we have introduced the specific heat at constant volume
de(o,)
J) = :
co(0,7) 50



Note that the passage from (8) to (9) uses the equation of continuity (3).
We say that p = (o,7), e(0,9) comply with thermodynamic stability, if

op(0,7)
do

de(p,V)
o

>0, c(0¥) = >0 (10)

for all o > 0, ¥ > 0, see [Bechtel et al(2005)Bechtel, Rooney, and Forest].

Entropy production Dividing the internal energy balance (8) on ¥, we
may use the equation of continuity (3) and Gibbs’ relation (7) to obtain the
entropy equation

: (ay _ 1 (.. _a-VuU) o
Oi(0s(0,9)) + div, (os(p, ¥)u) + div, (19) =3 (S - V,u 3 > + 799.

(11)

a:1<g;vmu—q'ﬁvm>zo (12)

The quantity

v

is termed entropy production rate and, in accordance with the Second law
of thermodynamics, is always non-negative. This may (and will) imply some
structural restrictions to be satisfied by the constitutive equations for S and
q discussed below.

2 Basic equations of fluid dynamics

In order to close the system of fluid dynamic equations, we need constitutive
equations for the viscous stress S and the internal energy flux q.

2.1 Euler system, ideal fluids

Ideal fluids are those for which S = 0, q = 0. The associated system of equa-
tions is usually called Euler system see e.g. [de Groot and Mazur(1984)]:

00 + div,(pu) = 0, (13)

Oi(ou) + div,(ou ® u) + V,p(p,v) =0, (14)



1 ) 1 .
0 | golul* + oee. )] + div, (o | Jolul* + ee(o,9) | u) +div. (ple)u) = 0,
(15)
where we have omitted, for the sake of simplicity, the effect of external sources
in (14), (15).

2.2 Navier-Stokes-Fourier system, viscous and heat con-
ducting fluids

Ideal fluids introduced in the previous section may and should be seen as
a hypothetical limit state of real fluids that are both viscous and heat con-
ducting. In such a case, the viscous stress S as well as the internal energy
flux q depend effectively on the velocity gradient V,u and the temperature
gradient V19, respectively.

2.2.1 Newtonian fluids

For Newtonian or linearly viscous fluids, the viscous stress tensor is a linear
function of the velocity gradient.

Newton’s law The viscous stress tensor S for a Newtonian fluid is given
by Newton’s rheological law

2
S(V,u) = p (Viu + Viu— 3divxu]1> + ndiv,ul, (16)

where the scalar quantities p and 7 are termed the shear and bulk viscosity
coefficient, respectively. In accordance with the Second law of thermody-
namics enforced through (12), 1 and 7 are non-negative and may depend on
the state variables g, ¥ as the case may be.

Fourier’s law Similarly to (16), the internal energy flux q of a linearly
viscous fluid is a linear function of V4 determined by Fourier’s law

q=—rV, 1, (17)

with the heat conductivity coefficient x > 0 that may depend on p and 9.



2.2.2 Navier-Stokes-Fourier system

In accordance with the previous discussion, the time evolution of a Newtonian
heat conducting fluid is determined by the Navier-Stokes-Fourier system:

0o + div,(ou) = 0, (18)
9i(ou) + div,(ou @ u) + V,p(o, ) (19)

= div, <p {qu +Viu— gdivxuﬂ] + ndivgcuH) ,
0cu(0,9) (000 + 1+ V) — div, (kY1) (20)

Ip(o, )
o

where, similarly to the Euler system (13 - 15), the effect of the external
sources has been omitted. We point out that equation (20) is formally equiv-
alent to the total energy balance (5), the internal energy balance (8) and even
to the entropy balance (11).

2
= (,u {Vzu + Viu — 3divzuﬂ] + ndivxuﬂ) :Vu—o div,u,

3 Boundary conditions

Fluids are usually confined to a bounded spatial domain €2, the unbounded
domains considered in certain mathematical models should be seen as an
idealization of large fluid domains in the real world. There is a large variety
of boundary behavior of both Eulerian and Navier-Stokes fluid determined by
its interaction with the real world. For definiteness, we consider a very simple
situation, where the kinematic boundary 02 is at rest and impermeable,
meaning

u - n|3Q =0 (21)

where the symbol n denotes the outer normal vector to 0f2.

3.1 Slip vs. stick

While the impermeability condition (21) is sufficient for the description on
an inviscid fluid governed by the Euler system (13-15), an extra piece of
information is needed if the fluid is viscous.



3.1.1 No slip boundary conditions

A commonly accepted hypothesis asserts that a viscous fluid adheres com-
pletely to the boundary, meaning, in addition to (21), also the tangential
component of the velocity vanishes on 0€2. This can be written concisely in
the form of no-slip boundary condition

3.1.2 No stick, complete slip boundary conditions

In certain situations, e.g. for nanofluids, it was observed that the no-slip con-
dition (22) is no longer a relevant description of the fluid behavior. Instead,
one may postulate the no-stick or complete slip condition

(S . Il) X Il|3Q = 0. (23)

In other words, the tangential component of the normal (viscous) stress van-
ishes on 0f).

3.1.3 Navier’s slip

A compromise between (22) and (23) is Navier’s slip condition
[S - nan + Boulon =0, (24)

where (3 plays a role of a friction coefficient.

3.2 Boundary behavior of the temperature, heat flux

For heat conducting fluids, the boundary behavior must be specified. In
energetically insulated system, the heat flux vanishes in the normal direction
on 0,

—q- n|aQ = livggﬁ . n|aQ =0. (25)

Alternatively, we may prescribe the distribution of the temperature on
the boundary;,
P0oq = . (26)

Of course, there are many other possibilities of the boundary behavior of
including a combination of (25), (26) imposed on disjoint parts of 0.
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4 Well posedness, classical solutions

A system of evolutionary partial differential equations, supplemented with
suitable boundary conditions, is well posed provided it admits a unique solu-
tion for any admissible initial state. The initial state for the Navier-Stokes-
Fourier or complete Euler system is given by specifying the initial distribution
of the density, velocity, and temperature:

0(0,+) = 09, ¥(0,:) = o, u(0,-) =ug in Q. (27)

Alternatively, the initial momentum (pu)g, initial internal energy ey and/or
entropy so can be prescribed. In view of the physical background, the initial
data should obey certain admissibility conditions, in particular, the density
and (absolute) temperature should be strictly positive, the total initial energy
finite, among others.

4.1 Classical solvability

Given smooth and physically admissible initial data, the problems in fluid
dynamics are supposed to admit a unique classical (smooth) solutions. This
is true, however, only on a possibly short time interval [0, Tipax). If Tiax = 00
is in general an open question. Solutions of the (inviscid) Euler system (13 -
15) may develop discontinuities (shock waves) in a finite time no matter how
smooth and even small the initial data are, see [Smoller(1967), Chapter 15].
Regularity of solutions to the Navier-Stokes-Fourier system (18 - 20) in the
long run is a famous open problem, see [Fefferman(2006)], [Tao(2013)] for a
thorough discussion in the context of incompressible fluids.

4.2 Local in time existence

There are many results concerning local-in-time existence of smooth solutions
for both the Euler and the Navier-Stokes-Fourier system, for different choices
of spatial geometries, boundary conditions, classes of initial data etc.

4.2.1 Euler system - classical solutions

We state the result in the physically relevant domain - the whole Eucleidean
space R? - to avoid technicalities connected with the boundary behavior of
solutions, see [Benzoni-Gavage and Serre(2007), Chapter 13, Theorem 13.1.].
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Theorem 4.1 Let o > 0, J > 0 be given. Suppose that the pressure p =
p(0,9), e(0,9) are twice continuously differentiable functions satisfying Gibbs’
relation (7) and the thermodynamic stability condition (10) in an open set
U C (0,00)? containing [0,9]. Let the initial data 0o, ¥o, Uy be given such
that

[00(z), up(z)] belong to a compact subset of U for all x € R,

= 5
00 — 0,9 — 0 € WFH(R?), ug € WH(R3; R?) for some k > >

Then there exists a positive time T > 0 such that the Euler system (13 - 15)
admits a solution o, ¥, u unique in the class

0—10,9 =0 € C([0, T WF(R?)) n CH([0, T); WEH2(R?)),
u € C([0,T]; Wh2(R3; R*) n C*([0, T]; W12 (R, R?)).

Remark 4.1 The symbol W*2(R3) denotes the Sobolev space of functions
having (generalized) derivatives up to order k square integrable in R>.

4.2.2 Navier-Stokes-Fourier system - classical solutions

A short-time existence result for the Navier-Stokes-Fourier system (13 - 15),
endowed, for definiteness, with the boundary conditions (22), (25) may be
stated as follows, see [Valli(1982), Theorem A and Remark 3.3].

Theorem 4.2 Let Q C R? be a bounded domain of class C**V, v > 0.
Let the initial data 09,99 € W32(Q2), ug € W3(Q; R®) be given such that
[00(),ug(z)] belong to a compact subset of an open set U C (0,00)%, and
satisfying the compatibility conditions

Uglag =0, V0 -nlsq =0,

V.p(o, %)),

2
= le;E (M(Qo, 190) [V;EUO + V;uo - 3diVx110]I:| + T](Q(), ﬁo)divxllo]l> ’BQ'

Suppose that the pressure p = p(o,9), the specific heat at constant volume
co = ¢(0,7), as well as the transport coefficients p = u(o,9), n = n(o, ),
and k = k(p,V) are three-times continuously differentiable in U and satisfy

Ip(o, )
do

>0, ¢,(0,9) >0, pu(o,¥) >0, n(o,9) >0, x(o, ) >0
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for all [p,9] € U.

Then there exists T > 0 such that the Navier-Stokes-Fourier system (13
- 15), supplemented with the boundary conditions (22), (25) admits a unique
solution in the class

0, ¥ € C([0, T]; W*2(Q)) N CH([0, T); W2()),
u € C([0, T); W**(Q; R) N C([0, T]; W**(; =Y)).

Remark 4.2 [t can be shown that any solution belonging to the class spec-
ified in Theorem 4.2 possess all the necessary derivatives and is therefore a
classical solution in the open set (0,7 x Q.

4.3 Classical solvability - conclusion

The systems of equations considered in mathematical fluid dynamics are
nonlinear and as such susceptible to develop singularities, either in the form
of steep gradients (shock waves) or concentrations (mass collapse). Such
phenomena have been rigorously verified for the inviscid Euler system. A
mathematical theory based on global-in-time solutions is beyond the reach
of the available mathematical methods and up-to-date knowledge, even for
the Navier-Stokes-Fourier system. On the other hand, these problems are
being solved numerically with continuously improving capacity of modern
computers. Some concept of solutions is therefore needed to perform a rig-
orous analysis of convergence of the numerical methods. The weak solutions
discussed in the next part offer such alternative.

5 Weak solutions

The idea of weak solutions is based on the concept of generalized derivatives
or distributions. Classical functions are replaced by their internal averages
or, more precisely

QR %/Qf% p € C(Q)

where the symbol C2°(Q) denotes the set of infinitely differentiable functions
with compact support in (). Differential operators D can be conveniently
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expresses by means of a formal by-parts integration:
Df~ = [ IDo. 0 € O2(Q).

Accordingly, any (locally) integrable function possesses derivatives of arbi-
trary order! The Sobolev spaces W*?2 used in the previous part are based on
distributional derivatives.

5.1 Euler system - weak solutions

We say that [o, 9, u] is a weak solution of the Euler system (13 - 15) in the
set (0,7) x Q if:

T
/ /Q(Qatgp +ou- V) dr dt =0 (28)
0
for any ¢ € C°((0,T) x Q);

T
/0 /Q (ou- 0o+ ou®@u: Ve + plo,9)divep) de dt =0 (29)

for any p € C°((0,T) x Q; R3);

/OT/Q (BQIUII2 + oe(e, 19)} Orp (30)

1
T [2@!11!2 +oe(0,9) + ple, 19)] u- ngo) dz dt =0

for any ¢ € C°((0,7) x ).
Note that the integral identities (28-30) are well defined as soon as all the
compositions of o, ¥, u with all nonlinearities are at least locally integrable.

5.1.1 Weak continuity, initial and/or boundary conditions

Functions that are merely (locally) integrable do not posses traces on lower-
dimensional structures in €2, in particular, it is not clear how to define the
initial and/or boundary conditions in the class of weak solutions. Fortu-
nately, the necessary piece of information is already encoded in the weak
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formulation. For example, if p is a weak solution of (28), we may take a
special test function p(t, z) = ¥ (t)p(x), v € C°(0,T), ¢ € C°(£2) to obtain

T
/ P (t) /Q o(t," )¢ dr dt = / / ou(t,-) - V,¢ dx dt,
0
from which we may deduce that the function
t— / )¢ dx admits an integrable generalized derivate in (0, 7T)

and as such can be represented, upon modification on a set of zero measure,
by an absolutely continuous function. Thus the initial conditions can be
interpreted in the sense of integral averages:

—QON/ ¢dx—>/go¢dxast—>0+ for any ¢ € C2°(2).

The anticipated weak continuity in time enables us to incorporate the
initial conditions in the weak formulation, replacing (28-29) by

/ / (00 + ou - V) da dt = / 00 (0 (31)
for any ¢ € C°([0,T) x Q);
T
/0 /Q (ou- 0o+ ou@u: Vo + plo,9)div,p) dz di (32)
= —/ OoUp - 90(0
Q

for any ¢ € C=([0,T) x Q; R3);
/ / ([ olu)? + oe(o, 19)} Dpp (33)
+ [ olul + oelo,9) + plo.0)] w- Vo) dr

1
=~ [ |5e0luol? + eoeloo, 90)| (0,) da

for any ¢ € C°([0,T) x ).

Boundary conditions, or at least the normal traces of the fluxes can be
interpreted in a similar way. We will discuss this issue in the context of the
Navier-Stokes-Fourier system.
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Remark 5.1 As a matter of fact, the weak formulation can be derived di-
rectly (without passing from classical to generalized derivatives) from the
underlying physical principles written in their natural integral form, see
[Feireisl and Novotny(2009), Chapter 1].

5.2 Navier-Stokes-Fourier system - weak solutions

In order to introduce a weak formulation of the Navier-Stokes-Fourier system,
we first rewrite the energy equation (20) in the conservative form

O(0e(p,v)) + div,(ee(o, V)u) — div, (kV 1)

2
= <u {qu +Viu— 3divxuﬂ] + ndivmuﬂ> : Veu — p(p,9)div,u.

Note that this is possible as long as p, e and ¢, = Jdye are interrelated through

(7).
Accordingly, the weak formulation of the Navier-Stokes-Fourier system
(18 - 20) reads as follows:

/ / (00ip + ou - V,p) do dt = / 20¢(0 (34)

for any p € C°([0,T) x Q);
T
/0 /Q (ou-0p+ou®@u: Voo + plo,0)div,p) do dt (35)

T 9 T
/ / L [qu +Via-— 3dikul[} : Ve do dt +/ / ndiv,udiv, e dr dt
o Jo Q

:—/Qouo 80

for any ¢ € C2([0,T) x Q; R%);
/0 /Q(ge(g, W)y + oe(p,P)u - V) dx dt—/o /Qﬁvxﬁ.vw dr di (36)
T 2
= —/ / (M {qu +Via— divxuﬂ] + ndivxu}l> . Veup do dt
0 Q 3

! 9)di v,
—/0 /Qp(g, )div,up dx dt—/ggoe(go, 0)(0,-) dz

for any ¢ € C2°([0,7) x Q). Similarly to the previous part, the weak formu-
lation already includes the satisfaction of the initial conditions.
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5.2.1 Boundary conditions

The reader will have noticed that in contrast with the Euler system, the
weak formulation of the Navier-Stokes-Fourier system included first deriva-
tives of the velocity u as well as the temperature 9. Anticipating that the
first derivatives are integrable functions, the fields u and 9 have well defined
traces on the boundary 052, see e.g. [Ziemer(1989), Chapter 3]. Thus we may
incorporate the Dirichlet type boundary conditions (22), (26) in the defini-
tion of the function spaces the solution belong to. In particular, the no-slip
condition (22) corresponds to the Sobolev space W, () od functions with
integrable first order derivatives in power p and vanishing on the boundary.
The boundary conditions of Neumann type like can be accommodated
in the weak formulation by extending the class of admissible test functions.
Thus for instance the no-flux condition (25) is enforced by postulating (36)
for any ¢ € C>([0,T) x Q). The complete slip (21), (23) requires u-n|sg = 0
and (35) to be satisfied for any ¢ € C>([0,T) x Q; R?), ¢ - n|sq = 0, etc.

5.3 A disturbing example

The class of weak solutions to a given problem is apparently much larger
than required by the classical theory. In other words, it might be easier to
establish existence but definitely more delicate to show uniqueness among all
possible weak solutions emanating form the same initial data. Indeed there
exist weak solutions to the (incompressible) variant of the Euler system that
can be obtained in a completely non-constructive way by a method recently
developed in [De Lellis and Székelyhidi(2010)]. Adapting this technique, we
may show a rather illustrative but at the same time disturbing example of
non-uniqueness in the context of fluid thermodynamics. To this end, consider
the so-called Euler-Fourier system

0o + div,(pu) = 0, (37)
O(ou) + div,(ou ® u) + V. (e9) = 0, (38)
; 0,0 + diva(t)] — AY = —pidivou. (39)

The system (37-39) is a special case of the Navier-Stokes-Fourier system with
p= oV, ¢, = %, iw=mn=0, x =1. Although a correct physical justification
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of an inviscid heat conducting fluid my be dubious, the system has been used
as a suitable approximation in certain models, see [Wilcox(1984)].

For the sake of simplicity, we consider the spatially periodic boundary
conditions, meaning the underlying spatial domain

Q=T = ([-1,1] !{—1;1})3

is the “flat” torus. We report the following result,
see [Chiodaroli et al(2014)Chiodaroli, Feireisl, and Kreml, Theorem 3.1].

Theorem 5.1 Let T > 0 be given. Let the initial data satisfy
00,9 € C*(T?), ue C*(T? R?), 00 >0, U9 >0 inT>

The the initial-value problem for the Euler-Fourier system (37-39) admits
infinitely many weak solutions in (0,T) x € belonging to the class

S C’Q([O,T] x Q), 0,0 € LP(0,T; LP(Q)), Viﬁ e LP(0,T; LP(%; R3X3))
for any 1 < p < o0,
u e Cweak([O,T}; LQ(Q; R3)) N LOO((O,T) % Q; R3>, divmu c OQ<[07T] % Q)

The conclusion of Theorem 5.1 reveals the main drawback of the mathe-
matical theory based on the concept of weak solutions, namely, the restric-
tions imposed by the problem upon the class of possible solutions are too
weak to ensure uniqueness. Apparently, the weak formulation must be aug-
mented by certain admissibility conditions dictated by physics to pick up the
relevant solution. On the other hand, the extra conditions should not be too
strong to prevent global-in-time existence. We will address this and related
issues in the remaining part of this chapter devoted to the mathematical
theory of the complete Navier-Stokes-Fourier system.

6 Mathematical theory of compressible, vis-
cous and heat conducting fluids
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We start by an alternative weak formulation of the Navier-Stokes-Fourier
system based on the Second law of thermodynamics. The theory accommo-
dates, in particular, the energetically closed systems, mechanically and ther-
mally insulated from the outer world. Accordingly, we focus on the boundary
conditions

u|39 = 0, V$19 : n|3Q = O, (40)
in particular the total energy E' is a constant of motion:
5 [ [3elu + octo.0)] ax =0 (a1)
— —olu =0.
dt Jo 12° e, v
We use (41), together with
0o + div,(ou) = 0, (42)
Oi(ou) + div,(ou ® u) + V,p(o, ) = div,S(V,u) (43)

and the entropy inequality

1

Oi(0s(0,9)) + div,(0s(o, ¥)u) + div, (g) > 5 (S(Vzu) Vou— q- V0

9

(44)
as a basis of a new weak formulation of the Navier-Stokes-Fourier system.
Similarly to the above, we take

2
S(Veu) = p <qu +Via-— 3divxuﬂ> + ndivyul, q = —kV, 0. (45)

6.1 Finite energy weak solutions to the Navier-Stokes-
Fourier system

We shall say that a trio of functions p, ¥, u is a finite energy weak solution to
the Navier-Stokes-Fourier system (41-45), supplemented with the boundary
conditions (40) if:

o
0€ L=(0,T; L7(Q)), ¥ € L>(0,T; LY(Q)) N L*(0, T; W(Q))
for certain v > 1,q > 1,
0>0, 9>0aa. in (0,7) x Q,
u € L*0,T; Wy " (Q; R*)) for a certain r > 1;
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/ / (00 + ou - V) dx dt = / 20¢(0 (46)
for any ¢ € C°([0,T) x );
T
/0 /Q (ou- O+ ou®u: Voo +plo,9)divyp) do dt (47)
T
:/0 /QS(qu) : Ve do dt — /Q ooug - ¢(0,-) dz

for any ¢ € C°([0,T) x Q; R®);

T -V,
/ / (98(9, 0)Owp + 0s(p,0)u - Vo + M) dx dt (48)
0o Ja )

T r1 _ q- V.0
+/0 /(H?<S(V$u).vxu— 3 )(pdwdt

- /Q 205(00,90)¢(0, ) dz
for any p € C=°([0,T) x Q), ¢ > 0.

1 1
| [getaf+ ceto.)] (r.) do = [ |2 eoluol* + evelon: 00)] do (49
for a.a. 7 € (0,7).

The weak solutions satisfying (46-49) enjoy the important compatibil-
ity property, namely any weak solution that is sufficiently smooth satisfies
the classical formulation of the Navier-Stokes-Fourier system (18-20), see
[Feireisl and Novotny(2009), Chapter 2].

6.2 Global-in-time existence of finite energy weak so-
lutions

The weak formulation of the Navier-Stokes-Fourier system based on the in-
tegral identities (inequalities) (46-49) is mathematically tractable. Under
certain technical but still physically grounded restrictions imposed on the
constitutive relations, the problem admits global-in-time solution for any
finite energy initial data.
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6.2.1 Hypotheses, constitutive relations

We shall assume that the thermodynamics functions p = p(p, ), e = e(o, 9),
and s = s(p, ) are interrelated through Gibbs’ equation (7) and comply with
the hypothesis of thermodynamics stability (10). In addition, we suppose
that the internal energy e = e(p,v) and the pressure take the form

e(0, ) = eml0,9) + Qﬂ p(o,9) = puml0,9) + 4919 a>0, (50)

where e,,, p, represent molecular components augmented in (50) by radi-
ation, see [Feireisl and Novotny(2009), Chapter 1]. Moreover, p,, and e,
satisfies the monoatomic gas equation of state

pn(2,9) = Zenlo,0). 65

The relation (51) is compatible with Gibbs’ equation (7) provided
5 0 ' B 3 193/2 0
pm(0,09) = 9°/2P (193/2> ; whence e,,(p,9) = 5197P (193/2) ) (52)
In this setting, the hypothesis of thermodynamics stability (10) gives rise to
%P(Z) - P(2)Z
A

where, in addition, we require the specific heat at constant volume to be
uniformly bounded.

P(0)=0, P(Z)>0, 0< <cforany Z >0, (53)

Finally, by virtue of (53), the function Z — @ is non-increasing, and
we suppose
. P2
Jn 22— &

6.2.2 Hypotheses, transport coefficients

We suppose that the transport coefficients p = p(9), n = n(v¥), and kK =
k() appearing in (45) are effective functions of the absolute temperature,
specifically,

2
p(1+9% < p@) <pl+9%), |@(©9)] <cforall ¥ >0, s <a <1, p>0,

(55)
0 < u(d) <7(1+9°) for all ¥ > 0, (56)

and
E(1+9%) < k(W) <R +9%) for all ¥ > 0, k> 0. (57)
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6.2.3 Existence of finite energy weak solutions

We report the following result, see [Feireisl and Novotny(2009), Chapter 3,
Theorem 3.1]:

Theorem 6.1 Let Q C R? be a bounded domain of class C**V. Suppose that
the pressure p and the internal energy e are interrelated through (50-52),
where P € C[0,00) N C3(0,00) satisfies the structural hypotheses (53), (54).
Let the transport coefficients i, 1, Kk be continuously differentiable functions
of the temperature ¥ satisfying (55-57). Finally, let the initial data oq, Vo,
uy be given such that

00, Vo € L™(Q), 00 >0, ¥y >0 a.a. in Q,uy € L*(; R?). (58)

Then the Navier-Stokes-Fourier system (41-45), supplemented with the
boundary conditions (40) possesses a finite energy weak solution p,v,u in
(0,T) x 2 in the sense specified in (46-49). The weak solution belongs to the
class:

0>0 a.a in (0,T) x £,
(59)
0 € C([0,T]; LX) N L=(0,T; L3(Q)) N LA((0,T) x Q)

for a certain 3 > g;
¥ >0 a.a in (0,T) xQ, ¥ € L>0,T; L*()) N L*(0,T; WH*(Q2)), (60)
0?,log (V) € L*(0, T; WH2(Q)); (61)

ue L0, T; W3 (% R?)), A= 58 ou € Clearc(0,T; L4 RY)).  (62)

In the remaining part of this text, we will discuss various properties of the
finite energy weak solutions, the existence of which is guaranteed by Theorem
6.1. An alternative approach based on the internal energy formulation (34—
36) was proposed in [Feireisl(2004)]. Although mathematically less sophisti-
cated and physically limited by more restrictive constitutive relations than
in Theorem 6.1, the approach [Feireisl(2004)] proved to be convenient when
studying stability and convergence properties of certain numerical methods,
[Feireis] et al(2014a)Feireisl, Karper, and Novotny].
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The weak formulation of the Navier-Stokes-Fourier system based on the
complete energy balance has also been studied in the framework of weak
solutions. [Hoff and Jenssen(2004)] established global existence for radi-
ally symmetric data in R®. They also identified one of the main stum-
bling blocks in the analysis of the Navier-Stokes-Fourier system, namely
the (hypothetical) appearance of vacuum zones, where the density vanishes
and the classical understanding of the equations breaks down. More re-
cently, [Bresch and Desjardins(2006)], [Bresch and Desjardins(2007)] discov-
ered a new a priori bound on the density gradient leading to global-in-time
existence in the truly 3D—setting conditioned, unfortunately, by a very spe-
cific relation satisfied by the density dependent viscosity coefficients and a
rather unrealistic formula for the pressure that has to be infinite (negative)
for o — 0.

The constraint represented by (46-49) may seem too weak to ensure, at
least formally, the well-posedness of the problem, meaning uniqueness and
possibly stability of solutions with respect to the initial data. Note, however,
that this issue remains largely open even for the seemingly simpler incom-
ressible Navier-Stokes system despite a concerted effort of generations of
excellent mathematicians, see [Fefferman(2006)]. Bellow, we provide an an-
swer to a less ambitious but still interesting question, namely the weak-strong
uniquness principle. This principle asserts that weak and strong solutions
emanating from the same initial data coincide as long as the latter exists. To
attack the problem, more thermodynamics is need encoded in the so-called
relative energy inequality and the resulting concept of dissipative solution
discussed in the next section.

7 Dissipative solutions

Motivated by the work of [Dafermos(1979)], we introduce a relative energy
functional associated to the Navier-Stokes-Fourier system. Here again, the
Second law of thermodynamics, enforced through Gibbs’ equation (9) and
the hypothesis of thermodynamics stability (10), will play a crucial role.

7.1 Ballistic free energy
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Following [Ericksen(1998)] we consider the so-called ballistic free energy func-
tional in the form

Ho(o,7) = oe(p,9) — Ops(p, 7).

The thermodynamic stability relation (10) gives rise to the following two
properties of the functions Hg:

0+— Hg(p, ©) is strictly convex, (63)

and
¥ — He(o,9) attains its global minimum at ¢ = . (64)

As observed by [Bechtel et al(2005)Bechtel, Rooney, and Forest], the above
properties are intimately related to stability of the equilibrium solutions to
the Navier-Stokes-Fourier system. As we shall see, (63), (64) contain the
necessary piece of information that will be used later in the proof of weak-
strong uniqueness.

7.2 Relative energy

The relative energy is defined as

5(9,19,ur,@,U)
(L up _OHe(r,®) .\ _
= [, (et UF + Halon) - 20 - 1) < Ha(r,6)) d

where 0,19,u is a weak solution to the Navier-Stokes-Fourier system, and
r,0, U is an arbitrary trio of functions satisfying the relevant compatibility
conditions. More precisely, we need

r>0, ©>0and Ulgpg =0 (65)

as soon as the no-slip conditions (40) for the velocity are imposed.
Given the coercivity properties of the ballistic free energy stated in (63),

(64), it is easy to see that & (g,ﬁ,u
tween [p, ¥, u] and [r, ©, U], meaning & (g,ﬂ,u
if [o,Y,u] = [r,©,U].

T, @,U) plays a role of “distance” be-
r, 0, U) > 0 vanishing only
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7.3 Relative energy inequality, dissipative solutions

The strength of the mathematical theory based on the weak solutions in
the setting (46-49) consists in the fact that it is possible to derive a func-
tional relation for & ( o, ¥, u’r, O, U) reminiscent of the Gronwall inequality.
Specifically, we report the following result:

£ (e

+// < S(9, V,u) Vu—qw’vwﬁ).vwﬁ> dx dt

t=1

r,0,U)] (66)

t=0

J
g/ /g(u—U)~VxU-(U—u) dz dt

+// ) = 5(r,0)) (U —u) - V,0 dz dt

+f /Qg atU+U-va)-(U—u) da dt
+ /0 /Q (8(9, V,u) : V,U — plo,9)div,U) da dt
_/O/Q (o(s(0.9) — 5(r,©))2,0 + o(s(0, 9) — 5(r,©))U - V,0) da dt
_/T/W-V O dx dt
0o Ja 0 ‘

+/OT/Q ((1 - f) 9p(r,0) — gu - Vap(r, @)) dz dt

for any finite energy weak solution of the Navier-Stokes-Fourier system (40—
45) and any trio of (smooth) test functions satisfying the compatibility
conditions (65), see [Feireisl and Novotny(2012), Section 3]. Motivated by
[Lions(1996)], where a similar definition is proposed for the incompressible
Euler system, we say that g, 9, uis a dissipative solution to the Navier-Stokes-
Fourier system (40-45) if (i) 0,9, u belong to the regularity class specified in
Theorem 6.1, (ii) 0,9, u satisfies the relative energy inequality (66) for any
trio r, ©, U of sufficiently smooth (for all integrals in (66) to be well defined)
test functions satisfying the compatibility conditions (65). As observed in
[Feireisl and Novotny(2012), Section 3], any finite energy weak solution of
the Navier-Stokes-Fourier system is a dissipative solution. The revers im-
plication is an interesting open problem. The concept as well as a relevant
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existence theory in the framework of dissipative solutions can be extended
to a vast class of physical spaces, including unbounded domains in R3, see
[Jesslé et al(2013)Jesslé, Jin, and Novotny].

7.4 Weak-strong uniqueness

The important feature of the dissipative solutions is that they comply with
the weak-strong uniqueness principle, for the proof see [Feireisl(2012), The-
orem 6.2}, and [Feireisl and Novotny(2012), Theorem 2.1]:

Theorem 7.1 In addition to the hypotheses of Theorem 6.1, suppose that

0 4a 9%
s(g,ﬁ)zS(W) +§3, with S(Z) — 0 as Z — oo. (67)
Let 0,9,u be a dissipative (weak) solution to the Navier-Stokes-Fourier sys-
tem in the set (0,T) x Q. Suppose that the Navier-Stokes-Fourier system
admits a strong solution @,ig,fl in the time interval (0,T), emanating from
the same initial data and belonging to the class

d,0, 0,0, Dy, O™, IMI, I e L2((0,T) x Q), m=0,1,2.

Then .
0=0, ¥=1, u=nu.

The extra hypothesis (67) reflects the Third law of thermodynamics and
can be possibly relaxed.

As we have seen in Theorem 4.2, the Navier-Stokes-Fourier system ad-
mits a local in time regular solution as soon as the initial data are regular.
In view of Theorem 7.1 we know that any weak solution coincides with this
strong solution as long as the latter exists. On the other hand, by virtue
of Theorem 6.1, the weak solutions exist globally in time and as such pro-
vide a possible alternative of extending the local smooth solution beyond its
existence interval. Whether or not strong solutions exist globally in time
is an interesting open question, for small data results in this direction see
[Matsumura and Nishida(1980)], [Matsumura and Nishida(1983)].
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7.4.1 Back to the Euler-Fourier system

At this moment, it is useful to go back to Theorem 5.1, where we pro-
duced an example of a system (Euler-Fourier) possessing infinitely many
weak solutions. We can introduce the relative energy and define the dis-
sipative solutions for the Euler-Fourier system (37-39), exactly as for the
Navier-Stokes-Fourier system. Moreover, it can be shown that the dissipa-
tive solutions of the Euler-Fourier system enjoy the property of weak-strong
uniqueness similarly to the solutions of the Navier-Stokes-Fourier system, see
[Chiodaroli et al(2014)Chiodaroli, Feireisl, and Kreml, Theorem 4.1]. How-
ever, one can still obtain the following result rather disturbing result, see
[Chiodaroli et al(2014)Chiodaroli, Feireisl, and Kreml, Theorem 4.2]:

Theorem 7.2 Under the hypotheses of Theorem 5.1, let T > 0 be given,
together with the initial data

00,99 € C3(T?3), 09 >0, U9 >0 inT>

Then there exists the initial velocity ug € L°>°(T3, R3) such that the cor-
responding initial-value problem for the Euler-Fourier system (37-39) admits
infinitely many weak solutions in (0,T) x € belonging to the class

S 02([0;T] X Q)7 o € LP(O7T; LP<Q))7 Viﬁ c LP([)’T; LP(Q; R3><3))
for any 1 <p < oo,
U € Cyear([0, T]; L2 (9 R?)) N L®°((0,T) x Q; R?), divyu € C*([0,T] x Q).

It is worth-noting that the conclusion of Theorem 7.2 does not con-
tradict the principle of weak-strong uniqueness as ug 4s not smooth. The
problem of “maximal” smoothness of such data is closely related to the so-
called Onsager’s conjecture that have been intensively studied in the context
of the incompressible Euler system, see [De Lellis and Székelyhidi(2013)],
[De Lellis and Székelyhidi(2014)].

8 Conditional regularity

A conditional regularity criterion is a condition which, if satisfied by a weak
solution to a given system, implies that the latter is regular. Similarly, such
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a condition may be applied to guarantee that a local (strong) solution can
be extended to a given time interval. The most celebrated conditional reg-
ularity criteria in the context of the incompressible Navier-Stokes and Eu-
ler systems are due to [Prodi(1959)], [Serrin(1962)], and, more recently by
[Beale et al(1984)Beale, Kato, and Majda], [Constantin and Fefferman(1993)].
Similar conditions were obtained also in the context of compressible barotropic
fluids and the full Navier-Stokes-Fourier system, the reader may consult
[Fan et al(2010)Fan, Jiang, and Ou], [Huang et al(2013)Huang, Li, and Wang],
[Sun et al(2011)Sun, Wang, and Zhang], [Wen and Zhu(2013)], and also the
references cited therein.

In view of the results of [Hoff(2002)], [Hoff and Santos(2008)], certain
discontinuities imposed through the initial data in the compressible Navier-
Stokes system propagate in time. In other words, unlike its incompress-
ible counterpart, the hyperbolic-parabolic compressible Navier-Stokes system
does not enjoy the smoothing property typical for purely parabolic equations.
Analogously, a solution of the full Navier-Stokes-Fourier system can be reg-
ular only if regularity is enforced by a proper choice of the initial data.

8.1 Conditional regularity via the relative energy

A possible approach to conditional regularity of weak solutions is to show
that:

e the problem admits local-in-time strong solution;
e the problem enjoys the weak-strong uniqueness property;
e show conditional regularity for the strong solution.

This procedure applied in the context of the finite-energy weak solutions
to the Navier-Stokes-Fourier system gives rise to the following result,
see [Feireisl et al(2014b)Feireisl, Novotny, and Sun, Theorem 2.1].

Theorem 8.1 Under the hypotheses of Theorem 7.1, let p,9,u be a finite
energy weak solution of the Navier-Stokes-Fourier system on the time interval
(0,T) belonging to the reqularity class specified in Theorem 6.1, emanating
from (regular) initial data satisfying the hypotheses of Theorem 4.2. Suppose,
i addition, that

ess sup |[Vpu(t, )| peo(oursxs) < 0.
te(0,7)
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Then o,9,u s a classical solution of the Navier-Stokes-Fourier system in
(0,7T) x .
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