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Abstract

We propose a numerical method for solving the full Navier-Stokes-Fourier system describing
the evolution of a general compressible, viscous, and heat conducting fluid. The use a finite
volume method for approximating the continuity equation as well as the thermal energy balance,
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1 Introduction

In continuum mechanics, the state of a compressible, viscous and heat conducting fluid is charac-
terized by the principal macroscopic fields: the mass density o = o(t, ), the absolute temperature
¥ = 9¥(t, z), and the velocity u = u(t, x), depending on the time ¢ € (0,T) and the reference spatial
position z in the physical domain 0 C R3. The time evolution of these quantities is governed by the
Navier-Stokes-Fourier system:

0o + div,(pu) = 0, (1.1)
0i(ou) + div,(ou ® u) + Vyp(e,¥) = div,S(V,u), (1.2)
: : B . Ip(o, V) ..
¢y [0i(00) + div,(edu)] + div,.q(d, V,9) = S(V,u) : Vou — 19leva, (1.3)

where p = p(p,?) denotes the pressure, S(V,u) is the viscous stress tensor, ¢, the specific heat at
constant volume, and q(¢, V,9) the heat flux. Note that the effect of external mechanical and heat
forces is omitted for the sake of simplicity.

1.1 Constitutive relations

For the system to be thermodynamically consistent, certain constitutive restrictions must be imposed
on the thermodynamic functions. Given the complexity of the problem, we focus on the simplest



possible situation still tractable by the available theoretical tools. Specifically, we suppose that:
e The specific heat at constant volume ¢, is a positive constant.

e The internal energy e(p,?) can be written in the form
e(0,9) = ¢,V + P(o).
Moreover, we suppose that the pressure takes the specific form
p(0,Y) = ap” +bo+ 0V, a,b>0, v> 3, (1.4)

therefore the specific internal energy reads

e(0,9) = ¢,0 + fyilg'y + bolog(p), ¢, > 0. (1.5)

e The fluid is linearly viscous, with S determined by Newton’s rheological law
2
S(Vyu) =p <Vl,u + Viu— 3divl,u]l> + ndiv,ul, >0, n >0, (1.6)
with constant viscosity coefficients p and 1. Accordingly, we may write

1
div,S(V,u) = pAu + AV, div,u, A = e +n>0. (1.7)

e The heat flux q obeys Fourier’s law
9
A= k()0 = —V,K(0), K(¥) = / k() dz, (1.8)
0

where the heat conductivity coefficient k is a continuously differentiable function of the tem-
perature satisfying

k=r(0), K(1+9?) < k() <E1+9?), &>0. (1.9)

The specific form of the constitutive relations (1.4 - 1.9) is inspired by similar hypotheses intro-
duced in [14]. In particular, the assumption v > 3 is optimal in view of the available analytical
methods, see [14, Chapter 6].



1.2 Boundary conditions

We adopt the standard no-slip hypothesis
ulpn =0 (1.10)
for the velocity accompanied with the no-flux boundary condition
q(V, VyU) - nfoq = 0, (1.11)

meaning, in particular, that the fluid is both mechanically and energetically autonomous.

1.3 Weak formulation
The problem (1.1 - 1.3), (1.10), (1.11) is supplemented by the initial conditions

Q(O, ) = Qo, 19(07 ) = 790, U(O, ) = U, 0¢ > O, 190 > 01in ﬁ (]_]_2)
We adopt the following weak formulation introduced in [14, Chapter 4]:

Definition 1.1 We say that a trio of functions [0,9,u] is a weak solution to the problem (1.1 -
1.3), (1.10 - 1.12) in (0,T) x Q if:

0 € L™(0,T; L7(Q)), ¥ € L*(0,T; L°(Q)), u € L*(0, T; Wy*(Q; R?)), (1.13)
ou € L=(0,T; L31(Q; R?)), o9 € L=(0,T; L'(Q)); (1.14)

0>0, 9>0 a.a in (0,T) x Q; (1.15)

/ / 00yp + ou - ngo dx dt = / 00(0 (1.16)

for any ¢ € C>=([0,T) x Q);

T
/0 /Q [gu cOp+ou®u: Voo~ plo, 19)divxg0} dz dt (1.17)

T
= / / [uvmu : Ve + Adiv,u divxgo} dz dt —/ ooug - (0, ) dzx
0 Ja )
for any p € C([0,T) x Q; R?);

/ / Cy gﬁ@tgo—l—gﬁu ngo> (ﬁ)Ago} dz dt (1.18)

5



T T
—l—/ / [/L|un‘2 + )\ldivxuﬂ(p dx dt —/ / ovdivyup dz dt < / cr00%0p(0, ) dz
0o Ja 0o Jo Q
for any o € C=([0,T) x Q), ¢ >0, Vo -n|gq = 0, where

oK () = oK (9); (1.19)

1
/ [QluP + c,00 +
Q|2

<

a 1@” + bglog(g)] (1,-) dz (1.20)

a

1
§Q0|uo|2 + ¢y 0000 + 1 04 + boo 10%(90)] do

for a.a. 7€ (0,7T).

The key idea behind the present weak formulation is replacing one equation - the thermal energy
balance (1.3) - by the two inequalities, specifically (1.18) supplemented with the total energy balance
(1.20). It can be shown that the resulting concept of weak solution complies with the obligatory
compatibility principle, namely, any weak solution in the sense of Definition 1.1 that enjoys the
necessary smoothness is a classical solution of (1.1 - 1.3). Moreover, conditional regularity as well
as the weak-strong uniqueness property were established in [13]. In particular, any weak solution in
the sense of Definition 1.1, emanating from regular initial data and belonging to the class

0,9 € L¥((0,T) x Q), u,div,u € L®((0,T) x Q)

is necessarily a regular solution of (1.1 - 1.3), see [13, Theorem 2.2]. The interested reader may
consult the monograph [14] for the relevant mathematical theory including a global-in-time existence
result for the Navier-Stokes-Fourier system in the class of weak solutions specified in Definition 1.1.

1.4 Numerical method

Our main goal in this paper is to propose a numerical method for solving the Navier-Stokes-Fourier
system (1.1 - 1.3) and to show its stability and convergence towards a weak solution specified in
Definition 1.1. To this end, we adapt the discontinuous Galerkin finite element scheme proposed by
Karlsen, Karper [19], [20] for the compressible Navier-Stokes system, combined with a finite volume
method to solve the thermal energy balance.

The time evolution of the system is approximated by the implicit time discretization scheme,
where the resulting stationary problems at each time steps are solved by means of a combination
of a finite volume - finite element scheme on a regular tetrahedral mesh. With our choice of the
no-slip boundary conditions (1.10), it is convenient to approximate the velocity field by means of the
finite elements of Crouzeix-Raviart type, while the convective terms are discretized by the standard

6



upwind scheme. In particular, we use the specific form of the upwind term in the momentum equa-
tion proposed by Karlsen, Karper [20] that is compatible with all the necessary steps for showing
compactness of the family of approximate solutions, cf. [21]. The thermal energy balance is ap-
proximated by a finite volume scheme, similar to those used by Eymard et al. [9], [11] for solving
non-linear degenerate reaction diffusion equations. Here, the proof of convergence of the method is
based on compactness of embeddings of the associated discrete Sobolev spaces and an adaptation of
a renormalization method proposed in [14, Chapter 6].
The key ideas of our approach can be summarized as follows:

e the specific discretization of the upwind term in the momentum method introduced in [20];

e adding artificial viscosity in the continuity method in the spirit of Eymard et al. [10] to enable
“by parts integration” in the convergence proof;

e renormalization of the thermal energy method and the “biting limit” passage following [14,
Chapter 6].

The paper is organized as follows. In Section 2, we introduce the necessary numerical frame-
work including the basic notation and several useful properties of the underlying function spaces.
The numerical scheme is introduced in Section 3, where we also state our main result concerning
convergence towards a weak solution of the Navier-Stokes-Fourier system proved in the remaining
part of the paper. In Section 4, we derive a renormalized version of the continuity and thermal
energy balance as well as the discrete version of the total energy balance. Section 5 is devoted to the
stability of the scheme, containing the uniform bounds necessary for the limit passage. In Section 6,
we discuss the problem of consistency of the method rewriting finally the numerical scheme in terms
of the standard weak formulation based on smooth test functions. Having established consistency,
we show convergence of the scheme by adapting the steps of [14, Chapter 7]. Here, similarly to the
existence theory, the key idea is the weak continuity property of the effective viscous flux discovered
by Lions [22], combined with the renormalization technique of [14] applied to the thermal energy
balance.

2 Finite elements/volumes preliminaries

In this section, we collect the necessary apparatus of the numerical analysis. We tacitly assume the
reader to be fairly familiar with the techniques used in numerical analysis; we refer to standard texts
as Brezzi, Fortin [3] for details. The following convention will be used systematically in the text: For
two numerical quantities a, b, we shall write

a~bifa<ch, ¢>0aconstant, a ~bifa~band b~ a.
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Here, “constant” typically means a generic quantity independent of the size of the mesh and the time
step used in the numerical scheme as well as other parameters as the case may be.

2.1 Mesh

We suppose that the physical space is a polyhedral bounded domain 2 C R? that admits a tetrahedral
mesh Fj; the individual elements in the mesh will be denoted by E € Ej. Faces in the mesh are
denoted as I', whereas I'j, is the set of all faces. Moreover, the set of faces I' C 0€2 is denoted I'j, ext,
while 'y jnt = I'p, \ Ipext- The size ( diameter hg of its elements E in the mesh) is proportional to a
positive parameter h.

In addition, we require the mesh to be admissible in the sense of Eymard et al. [11, Definition
2.1]:

e For £, F € E;,, F # F, the intersection E N F' is either a vertex, or an edge, or a face I' € T'},.

e There is a family of control points {zp | xg € E, E € E}} such that the segment [z, zp| for
two adjacent elements E, F' of the mesh is perpendicular to their common face I"'. We denote
dp = |ZL’ E— X F|

e The mesh is shape regular in the sense that

. . . >
Eléléh FlcnafE dist[zg, '] ~ h. (2.1)

Remark 2.1 1) The above properties are satisfied, for instance, by the well-centered meshes dis-
cussed by Vanderzee et al. [23], [24], where the point g is simply the circumcenter of the tetrahedron
E.
2) The mesh described above is reqular in the sense of the classical finite volume literature, meaning
that there exists 0y > 0 such that
hg hr

h
inf ({i, EecE}U {}TL, BT =0ENoLN Thint}) > 0o, (2.2)

where hy is the diameter of the largest ball included in E.

Each face I' € ', is associated with a fixed normal vector n. On the other hand, we write I'g
whenever the face 'y C OF is considered as a part of the boundary of the element E. In such a
case, the normal vector to I'g is always the outer normal vector with respect to F.

For a function g, continuous on each element E, we denote

: _ . _ 1 _
gr = Jm g(-+0m), g7|r = lim g(-—on), [[g]lr = 9" =g A9} = 3 (g* +y9 ) : (2.3)



2.2 Piecewise constant finite elements

We introduce the space
Qu(Q) = {v € L*(Q) | | = ar € R}

of piecewise constant functions along with the associated orthogonal projection
1
7 () = Qu(e), Tlle = 17 [ vaz

we will occasionally denote

¢[v] = 0.
We recall Poincaré’s inequality
Hv — HgMHLq(Q) R ||Vl paursy, 1< g < oo for any v € WH(Q), (2.4)
together with Jensen’s inequality
HH?[U]HLLI(Q) R o)l zag), 1< g < oo for any v € LI(Q). (2.5)

In addition, we introduce another projection operator with the target space )5, namely
Iy : C(Q) — Qu(Q), I/[v]|r = v(zp).
It is easy to check that

Hv — Hf[U]H o) R h|| V4| oo (ure) for any Lipschitz . (2.6)

Lo
2.3 Crouzeix-Raviart finite elements
A differential operator D acting on the x—variable will be discretized as

Dyv|g = D(v|g) for any v differentiable on each element E € E,.

The Crouzeiz-Raviart finite element spaces (see Brezzi and Fortin [3], among others) are defined
as

Vi(Q) = {v c L*(Q) ‘ v|g = affine function, F € Ej, /[[v]] dS, =0 for any I' € Fh,int} . (2.7)
r

together with
Vio(2) = {v eV, ‘ / v dS, =0 for any I" € Fhﬁxt} . (2.8)
r

9



Next, we introduce the associated projection
Iy : WhP(Q) — Vi(Q),
/HZ[U] ds, = / vdS, forany I' € 'y, p > 1.
r r

We have,
/ div, I [u] w do = / divyu w dz for any w € Qx(92),
Q Q

Poincaré’s inequality,
lv =10, 0]l z2(0) ~ Pl Vil 209 for any v € Vi(Q),
along with the error estimates

Jo =110l g+ 29 (0 = T )

<

Lr(Q;R3)

for any v € W™P(Q), see Crouzeix and Raviart [6], and [21, Lemma 2.7].
Finally, we recall the well-known property of the Crouzeix-Raviart finite elements,

/ Vi - VoIl [p] do = / Vv - Ve da for all v € Vj,0(Q), ¢ € W,2(Q),
Q Q
see [21, Lemma 2.11] and the estimate for jumps in the Crouzeix-Raviart space,

> /FHUHQdS“” N h||v||§{‘1/h(9) for all v € V},0(2),

Iely int

see Gallouét et al. [17, Lemma 2.2].

2.4 Convective terms, upwinds
The upwind operator Up[r,u] on a face I is defined as

Up[r,u] =r~[a-n]t +rF[a-n]",
where we have denoted

1
[]t = max{c, 0}, [c]” = min{c, 0}, ©:=opr = — / v dS,.
] Jr

~ h™ ”U”WW’(Q) ,m=1,2,1<p< oo,

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)

(2.14)

For r, F € Qn(Q), u € V,(Q), ¢ € C*(Q) arbitrary functions, we may use Green’s theorem to

compute

/rquzde— > /ruV F)dz = Z/ F)ru-ndS, +/ ¢)rdivpu dz. (2.15)

EcEy, EcEy,

10



Remark 2.2 Recalling our convention that when integrating over the element boundary OF, the
symbol n denotes always the outer normal vector, we have

g_|FE =9,

while g¥|r, is the value of a function g on the adjacent element. In particular,

S [url g s, == X 3 [ Uplrulg ds, (2.16)

I'el’y, EcE, TgCOFE

RS /FEg(r[ﬁ-n]wma-nr) ds,

E€E), TCOE
foranyr,g € Qn, u € Vpp.

Using formula (2.16), we may compute the first integral on the right-hand side of (2.15):

> /6E(¢—F)ru~n ds,

E€E),
"B a5 3 B Pl o)
= 3 [Uplnul(Fl ds.+ 3 [ oruen dso- B 5 [ PG rOfaen] ds

Plugging the resulting expression in (2.15) we obtain a universal formula which is the key ingredient
of the consistency proof for convective terms, namely

/Qru Vet dr = Z /FUP[Ta ul[[F]] dS, (2.17)
+E§3h FEzc:aE /FE(F —¢) [[r]] [@-n]” dS, + E%:;h /aE ¢r(u—u) -n+ /Q(F — ¢)rdivyu dz

for any r, F' € Qu(Q2), u € V,,0(Q), ¢ € CH(Q).
Finally, we recall the Poincaré type inequality

v = || Lage) ~ ch|| VU Lam), 1 < g < oo forany ve CHE), ' C IE, (2.18)

and report Jensen’s inequality

5ldS = /stxé /quzz/ 148, 1< , 2.19
[ las= 3 [ el > [ 1] [ Jofas, 1<g <00, (219)

T'coE Ir'cor

for any v € C(E), E € E},.

11



2.5 [P — L% and trace estimates for finite elements
The following estimates are easy to obtain by means of scaling arguments. To begin, we claim that

1 _
[0]| ooy ~ T1/a (||U||L4(E) + h||VxU||Lq(E;R3)) , 1< ¢ < oo for any v € CH(E), (2.20)

from which we readily deduce that

1

m”wHLq(E) for any 1 < g<oo, w € P, (2.21)

<
||w||Lq(aE) ~

where P, denotes the space of polynomials of order m.
In a similar way, we obtain

lwlsi) S BGD w1 < g <p< o0, we P, (2.22)
and, making use of the inequality
(Z a‘;’-’)l/p < (Z a?)l/q whenever p > g, (2.23)
we deduce the global version
|w||r) < ch?’(%_%)HwHLq(Q) 1 <q¢g<p<oo, forany wlg € P,(E), E € Ej,. (2.24)

Remark 2.3 For future use, we record a version of (2.22) and (2.24) for the functions of the time
variable t € (0,T), where the discretization is of order At, specifically,

1_1
]l oan = (A G ] paan 1< g < p < o0, (2.25)
and

1_1
wllrory < (A G ||| o 1 < g < p < 0. (2.26)

2.6 Discrete Sobolev spaces

We finish this introductory part by a short excursion in the theory of discrete analogues of the
classical Sobolev spaces. We introduce a discrete H'-(semi)norm

ol = 3 [ as,

Fth,int

12



for v € Qr(£2). We report the following estimates
<
lllzo@) ~ ol @ + Ivll2@), (2.27)

see Chainais-Hillairet, Droniou [4, Lemma 6.1],

2 < 2 2
L s st 120 =0 = O S (16 + el el ) (2:28)

for any compact K C §2 and any v € Q,(2), see Eymard, Gallouét, Herbin [8, Section5.

Remark 2.4 As a matter of fact, validity of (2.28) can be extended to ) provided the latter complies
with certain geometric restrictions, for the case of convexr domain see Christiansen, Munthe-Kaas and
Owren [5].

Next, we may define a discrete H'—norm on space V} o(Q2) setting
lolidy o = /Q (IVol?) de. (2.29)

In view of future analysis, it seems convenient to have the functions in V}, ¢ defined on the whole
space R3, extending them by zero outside 2. Keeping this convention in mind, we have

<
HUHL6(Q) ~ ||U||H‘1/h(§2)7 (2.30)
and
[, o) = v = O do = (&2 + hlgl) lollzy, o (2.31)

for any v € V},0(Q2), see Gallouét et al. [17, Lemma 3.2].
The next assertion follows from (2.28), (2.31) and can be seen as a special case of the results in
[5, Proposition 5.67]:
Lemma 2.1 For any function v € V¢ there exists R} [v] € C°(Q) such that
Vo Ry Tlll2ursy ~ [0l @ 10 = By [olllz2insy = hllvllmy, o).
Similarly, for any g € Qu(Q) there is RY[g] € C=(Q) such that
I B2lal ey < iy, o0 19 — Bl cscmsy & Blgllny o)

for any compact K C €.

13



Remark 2.5 The regularizing operators R} [v], R,? [v] can be constructed with the help of the spatial
convolution with a reqularizing kernel applied to a suitable extension of the function v, see [5] for
details.  The compact set K at the left hand side of the second inequality in Lemma 2.1 can be
replaced by ) under the same geometric conditions on € as evoked in Remark 2.4, see again [5].

Finally, we claim the following result that can be proved exactly as [15, Theorem 10.7]:

Lemma 2.2 Let r > 0 be such that
O</wa:M, /r”deK.
Q Q

Then there exists a constant C' depending only on M and K but not on h such that
ol < COLE) (vl )+ [ 710l da).

for any v € Qr(£2).

3 Numerical scheme, main result

Having collected the necessary preliminary material, we are ready to introduce the numerical scheme
to solve the Navier-Stokes-Fourier system.

3.1 Numerical scheme

We start by approximating the initial data by their projections onto the space Qp(€2):
of = 12[ao), 9 = IZ[9y), uf = 12wy (3.1)

Introducing the discrete time derivative

we define successively the sequence of numerical solutions [of, 9%, uf]ps0, k = 1,2, .. .,

o, Uh € Qu(Q), uf € Vio(Q)

satisfying:

14



CONTINUITY METHOD

| Deché dw— 3= [ Ul uf] [[6]) S, + 11 3

I'el’y,

[llefigl as. =0 (32)

Pely ing
for all ¢ € Q,(Q2), with a parameter 0 < e < 1;

MOMENTUM METHOD

J, Detat) ¢ do— 52 | Uplofal ] - (9] s, (33)

+ /Q [V : Vag + Adivaubdivag] de - /Q p(ok, 95)divag dz

+01= S [lleil {uk} - (19]) dS. = 0

Ferh,int

for any ¢ € V3, 0(Q);

THERMAL ENERGY METHOD

/Dt "k ¢dz—ch/Up oy up] (o] dS. + > /d—lr[[Kﬁk

I'el’y,

[[¢]] dS.  (3.4)
TETpin T
— / ,u|thh|2 + A|div,uf| ] ¢ dr — / obIrdivyule do
for any ¢ € Qn(Q2).

Remark 3.1 The terms involving h'=¢, are needed for technical reasons explained in detail in Section
7.2.1. They are numerical counterparts of the artificial viscosity regularization used in [14, Chapter

7] and were introduced by Eymard et al. [10] to prove convergence of the momentum method. The
same approach was applied in [21].
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3.2 Main result

In order to state our main result, it is convenient to extend the numerical solution to be defined for
any t > 0. To this end, we set

on(t,...) =0y, Un(t,...) =00, uu(t,:) =u} for t <0,
on(t,”) = of, Ou(t,-) =05, wy(t,-) = uf for t € [kAL, (k+1)At), k=1,2,...,
and, accordingly, the discrete time derivative of a quantity v, reads

Uh(t) — Uh(t - At)

Dtvh(t7 ) = At

,t>0.

Our main result reads as follows:

Theorem 3.1 Let Q C R? be a bounded polyhedral domain admitting a tetrahedral mesh satis-
fying the hypotheses specified in Section 2.1 for any h > 0.  Let the assumptions (1.4—1.7) be
verified. Let [on, On, Uplnso be a family of numerical solutions constructed by means of the scheme

(8.1 - 8.4) such that
on >0, 9, >0 for all h > 0,

with
At =~ h.

Then, at least for a suitable subsequence,

on — 0 weakly-(*) in L>(0,T; L7(Q)) and strongly in L*((0,T) x Q),

9y, — 9 weakly in L*(0,T; L%(Q)),
u;, — u weakly in L*(0,T; L°(S; R?)), Viuy, — V,u weakly in L*((0,T) x €; R3*?),

where [o,Y,u] is a weak solution of the problem (1.1 - 1.3), (1.10 - 1.12) in (0,T) x  in the
sense of Definition 1.1.

The rest of the paper is devoted to the proof of Theorem 3.1. Note that the existence of the
numerical solutions [gp, 95, uy] can be shown by means of a fixed point argument similarly to [21].

16



4 Renormalization

Mimicking the principal steps of the existence theory developed in [14], we introduce renormalized
variants of the continuity method (3.2), the temperature method (3.4) as well as the total energy
balance (1.20).

4.1 Equation of continuity
Take b'(of)¢ as a test function in the continuity method:

/ngh_Qh V(o )d
B b(of) — bloy™") AL, ok — M\’
_/94 ; At ' +2b(§’]§)<hmh ) de

At kE k-1 2
- [ patehyo ao+ [ S (B8] o

for a certain £ € co{of ™", 0f}, where we have denoted

co{A, B} = [min{A, B}, max{A, B}].

Similarly, the upwind term can be handled as follows:

> /Up oy up] [[V'(0f)¢)] = - Z > / Uplof, ufb'(of)¢ dS,

X FéE/ o { o ) o] s,
R Bkl 4
£33 5 [ o (ve) - e fak - ni* as,
& @ >—bf<@ﬁ><@z>*> T
rer /Up Qh) Uh } a5 +EZE FZGE/ <Qh)gh)ﬁ‘n 45
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+ X % [ olp((e)") —vta ((ah) — o) —vieh)| k-] as,

EcE, TpCOFE

= 3 [ Uplbleh), uf] (9] 48, + [ & (b — ¥ (gh)ek) diviu; do

I'el'y,
1 1"k \ T k2~k _
152 S [ v ((eh) —eh) (o n) as.
E€E, T'gCOFE E

We thus obtain the renormalized continuity method:

| D)o dw— 3 [ Uplbieh),uf) [[6] a. + [ o (V(eh)eh —bleh)) diva dz (4.1)

T'el'y,

_ Aty ok QZ_QZ_I i 1—e " (—k k172
=[G (B ) ean S [ovuald s,
1 ; 5
-5 3 [ velnllenla; nl ds,

Tely ing

for any ¢ € Qn(€2), where

&k, € cof{o) ", 0f} on each element E € Ey, nk,, 7%, € co{o};, (0f)T} on each face I' € T'p .

4.2 Thermal energy balance

Similarly to the previous section, we use the quantities x'(9%)¢ as test functions in the thermal
energy method (3.4). After a bit tedious but straightforward manipulation summarized in Lemma
8.1 in Appendix, we arrive at the renormalized thermal energy method:

[ @) [ @)l as,
(4.2)

o [ Dy (ehx (@) 6 de—e, 3 [ Up(ehx(@h).uf) [i9]) dS, + 37

rery el ing

_ /Q (6 Vauf? + Aldivaul?) X' (95)6 de — /Q X (0% b9 divput ¢ da

A gk — k1) ? y y P
a5 [ (b (At) et TS [ xR (o) (k- n as,

E€E, TpCOE
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—he, S0 [llekl (x5 = X (95)9%) o] as,

Tely ing

for any ¢ € Q,(Q2), with
& € co{Oy 1 U}, 1y € cofdy, (O3) )

4.3 Total energy balance

The total energy balance is the sum of the kinetic and internal energy equations. In order to derive its
discrete counterpart, we take ¢ = uj} as test function in the momentum method (3.3), ¢ = —3|a;|?

in the momentum method (3.2) and ¢ = 1 in the thermal energy method.
To begin, we claim that

/(zp(gﬁ,ﬁ’,i)divhu’,i dx—/ (u‘vhuh’ +)\‘d1vhuh’> dx

9 2
= / Qh + th) dlvhuh dz +/ Qzﬁkdlvhui dz _/Q (,u ‘thﬁ]‘ +A ‘divhui‘ ) dz,

where, in accordance with the renormalized continuity method (4.1),

| [ (eh)" +bek] diviuf dx = — [ D, l’y - (eh)" + o 108?(@’2)] dz

_; 2 Ab/l(nﬁ,h)[[@ZJ]Q\ﬁﬁ-ny ds,

Ferh,int
At oF — qu 2
_hl—a / b// dS . 7[)// h h d ’
FE%[DE ngh Qh Q ( ) ( At !

with b(r) = a/(y — 1)r7 + brlog(r).

Next, as a consequence of thermal energy method (3.4),

/ng;ﬁzdthuz dr — — / D, (Q ﬁk dz +/ (u\thZ]f + A ‘divhul]zf) dz.

Moreover, by the same token as in Lemma 8.1 (see also [21, Section 4]),

| Dileh) - dw— 30 [ Uplohaf. wi] - [faf]] ds,

1_‘h int

1 .
— [ Dichlak e+ 5 3 [ Uplohuf] (116 ) d

1—‘h int
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1 N At B —
=5 | bk de+ 55 [ oht [P

X (k) ) s,

E€E, 'gcoFE

and
W S [ [l k) ds. — 5 [l (1P as.] = o

Fh,int

Gathering formulas (4.3—4.7) we obtain the total energy balance
L2 k,ok a
Dt/ﬂ §Qh|uh + Cth'lslh —+ r
At
+7 o (b//( Zh)

1
-> > [ (o)t -n) (2 g,

EE€E, T'gCOFE

(eh)" +boh log(g'zi)] da

2
)dx

k k—112
h " %

At

o~k ~k—1

S s .

[\

—

+hTE Y / V' (g n) [[0h)]? dSm—; > /F V' (k) [[f])? [af - n]~ dS,

L€l ine 7 el int

where numbers £, 0k, , 77, are defined in (4.1). Consequently,
1, . a v
Dt/Q l2gi|uﬁ 2t c,0f0h + o (QZ) + boj log(gﬁ)] dx
12
o — o'

At
+7 0 (A At

+

SX S () e s S (g al)

Ec€E, TgCOFE

b
with A = min {a’yg“*_z + } > 0.
0>0 0
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5 Stability

In this section, we derive uniform bounds for the family [gs, 5, uplp>0 independent of the time step

At ~ h and the element size h.

5.1 Mass conservation, energy bounds

Taking ¢ = 1 in the continuity method (3.2) we obtain

/Qh dx—/ghdx—/godxforanyh>0

meaning the total mass is conserved by the scheme.
Next, the energy balance (4.9) yields

1 a
/Q [2Qh\uh’2 + coonUn + "] (o) + bon, 10g(@h>] (r,) da

<h

whence, in particular,

1

SUp,eo.1) Ve tn (T )l 2 (@) ~ 1,

<
Sup¢ o, | onn (7, )l L1 (0) ~ 1,

SupTG(O,T)H(Qh[logﬁh]Jr(Ta ')HLl(Q) S 1,
and
<
sup,eco.)llon(7, )lzv) ~ 1,

where the bounds are uniform for A — 0.
Finally, we record the bounds on the numerical dissipation:

Z/[Qh_gh ’+Qh ‘uh—ﬁ’}j 1” dz ~ 1,

k>0
=D SD Sl A PO TR R AT AR
E€E), TpCOE 2
and
> / / [, - | + 579) [[ga]]? dS, dt < 1.
Felh int
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(5.1)

(5.2)

(5.7)

(5.8)

(5.9)



5.2 Entropy bounds
The entropy bounds are obtained by taking x = log and ¢ = 1 in (4.2):

co [ Di(ehlos(0h) o>~ 30 [N (05 s, (5.10)

FEthl t

—l—/ ,u|thh|2 + A|div,uf| ) — dz — / ordiviyuf da

+A2t /(fﬁh) <W>2 dz
e D S () )

0o, S0 [llek]) Mog(wh)]] ds..

el int

where, in accordance with the renormalized continuity method (4.1),

/Qgﬁdivhuﬁ dz < —/QDt(gfl log(gi)) dz. (5.11)

In order to reveal the piece of information hidden in (5.10), we need the following technical lemma.

Lemma 5.1 Let F' and G be two convex functions defined on an open interval I C R and such that
F'>0, G'"<0.

Then

1 ,(A+B\ ,/A+B ,
(F(B) - F)(GA) - 6(B) = - F (57 ¢ (52 ) (A= B)

forany A, B € 1.

Proof:
Without loss of generality, we may suppose A < B and set C' = AJ“TB. Since F' is non-decreasing
and convex, we have

F(B) — F(A) = F(B) — F(C) + F(C) — F(A) > F(B) — F(C) > F/(C)(B - C) = ;F’(C)(B —A),

R (5.12)
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and, similarly,

Q.E.D
Now, we first use the hypothesis (1.9) to deduce that
7 ( gk ky—1 L1 k ky—1
— [ IR IR0 S, < — [ K@ [05)7] dS.. (513
where ]
K(¥) =9+ §ﬁ3 — a convex function for ¥ > 0.
Consequently, we may apply Lemma 5.1 with F' = f((ﬁ), G = 97! to obtain
1
> [ < + {0n)) ) [l as, @<~ [*| S [ K )71 dS,| dt
FEFh int {19 } FEFh nt
in particular
/ 3 / 9) 1] dS.| dt.
Iely in I'el'n in
Next observe that we have a similar bound for log(¥;,), specifically,
1
Z / / Og og @) 44 < —/ Z / 9" 1] dS.| dt. (5.14)
rery, rely,

Indeed it is enough to observe that

A-B
log(A) — log(B) ~ forall 0 < B < A,
VAB
or, equivalently,
1
log(Z) + — ~ for all Z > 1.
(%) 77 VZ for

Now, the desired estimate follows by taking K (9) = ¢ in (5.13).
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The estimates (5.9), (5.14) control the h'~*-term in (5.10). Consequently, writing oylogd, =
on[log¥n|t + on[logdy]~, using (5.11) and the energy bounds (5.3 - 5.6), we deduce from (5.10),

S?p) llon log(94) (7, |21y ~ 1, (5.15)
T7€(0
T 1
/ / 19—|th;1|2 dx dt N 1, (516)
Z / S (5.17)
FEF
and 1
> / / Og (oWl 45, 41 2 1. (5.18)
FGF)“ t

Formulas (5.17-5.18) together with the evident inequality A*—B* ~ A—B+logA—logB,0 < B < A,

a € (0,1) imply
> [

Tel'y,

L 0<a<l. (5.19)

We also collect the bounds resulting from numerical dissipation:

Z/ (&) —o5 ) de 1, €, € co{wl ! k), (5.20)
k>0
and
LYY / / o) 20112 (on) " [@n - 1]~ dS, dt S 1, ng € co{dy, 91} (5.21)
E€E, TgCOFE

Finally, we apply Lemma 2.2 to deduce

98]l 20,1200 + 1 og(9n) || 220 z0()) ~ 1 (5.22)

by virtue of (2.27) and (5.1), (5.6), (5.15), (5.17), and (5.18).
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5.3 Temperature estimates

Our ultimate goal in this sections is to derive refined estimates for the family of approximate tem-
peratures. To this end, take x = (¥%)%, 0 < a < 1, together with the test function ¢ = 1, in the
renormalized thermal energy balance (4.2) to obtain

o Y / [(9)°71] dS. + ap / 90UV u? da dt (5.23)

Fth int

,lgk ,ﬁk:—l 2
+epa(l —a)— Z/ (&5n)" <Ath> dx
al=a) 3 5 [ b (00 ()" (k- ml s,

EeE, 'gCOFE

ey [ Dileh})) deta [ dhh)divin de+h e, (- a) S [1lok]) [(95)°]) as.

T'eln ine

Note that, as o < 1, the extra h!™°-term is small in view of (5.9), (5.19).
It follows from (5.6), (5.22) that

1

Qhﬁ,% is bounded in L*(0,T; L*(Q));

whence ]
‘/ on(9p)*divpuy, dw’ <c+ iau/ 991V u,|? do with some ¢ > 0.
Q Q

Also, by virtue of (5.4-5.6),

T
‘/ / Dy(ok(9%)*) da dt‘ is bounded.
0 Jo

Consequently, (5.23) implies

-/ /T ! [(9)° 1) dS, S 1forall 0 < a < 1. (5.24)

1—‘El—‘h int
Note however that (5.23) “blows up” when « approaches the extremal value 1.

Now another application of Lemma 5.1 (with F(9) =9 + 30, G(9) = 9*!) gives rise to

3 // (0,3 [[94]]2 dS, dt S 1 for all 0 < a < 1

1—‘er‘h int
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yielding by (5.12) with F(¢) = 9'*5,
T 1+% 2
Z/ /Hﬂhh“dsxrglforalloga<l; (5.25)

whence, by virtue of (2.27) and Lemma 2.2,
H??h“Lp(o?T;Lq(Q)) N 1 for any 1< p < 3, 1< q < 9. (526)

Finally, revisiting the thermal energy method (3.4) with ¢ = 1, in the light of the previous
estimates, we conclude

T
| [ 19huf? e ar <1, (5.27)
0 Jo

and, by virtue of (2.30),

<
HuhHiz(QT;LG(Q;Ri”)) ~ 1. (5.28)

6 Consistency

Having collected all the available uniform bounds, our next task is to verify that our numerical
method is consistent with the variational formulation of the original problem.

6.1 Continuity method

For ¢ € C'(Q), take II?[¢] as a test function in the continuity method (3.1). Using the formula
(2.17) for r = of, u = uf, F = I1?[¢] we check without difficulty that

/Qhuh V.0 dx
= % [ Uplek,uf] ([ 116 )} d. — 3 Z/ 6~ 11216]) [lgf]) [i; -]~ S,
I'el’, EcE, 'pCOE

+ Z ¢oj(uy —uy) -n dS,.

EcE, ’9F
Note that here

[ 0R06] = dchaivinl de = Y- [ (1f16] - 0)efdiviu} de =0

Eecky,

as divyuf is constant on each element F.
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Now, by Holder’s inequality,

S 3 [ Jo—nfl | eh) | | [ -n) | as,

rerl’y,

> [ (o nfiel) leh) e}

FEe€E, 'gCOFE

1/2 1/2
9N | @ - n i ’
(;/ o)l \dS) (EZEZM/ ¢ —17[0])" | ) \dS)

where the first integral on the right-hand side is controlled by (5.9).
Next, another application of Hélder’s inequality, combined with Poincaré’s inequality (2.4) and
the trace estimates (2.20), (2.21), gives rise to

> X [ (e-nfe)|w;n] as,

E€eFE;, 'pCOE
w+6 2276
(Z/ (¢ —11Z[g) )Mds) (Z/ ~’””’dS)
ECE;, \T'5COE rpcoE !
S L S A U L N 7 e

EcEy,

Now, we use the interpolation LP — L7 estimates (2.24), (2.26) and (5.28) to conclude

5v— 12

(N2

s
LS(;R3) 6 (;R3)

hHuhH . I s < pmin{l®;

aw 12 "/

= it Vool oy o~ T SHan 2w, O

V2( A2
(At) (At Huh L5(Q;R3) S (Q;R3) 6 (Q;R3) '

The next step is to estimate

> [odiu— i) nds, = 3 [ (0 ohluf i) - dS,,

I'el'y, rel’y,

where, by Holder’s inequality, (2.18-2.21),

Z/gb gb —uh) n ds,

I'el’y,

<> |lo-0
rer,

L (T) H ﬁ

L2(T) Hgi ui‘ L’y Q(F R3)
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k

LV(E) Huh 2

L2 (B;R%)

+h||v¢||L2 QR3) > HQZ UIZ’

> (flo-

DM—‘

S 15 bl @) IV 2 | Va2 gsm)
Finally, observing

Y Jld R s S Y [k IRle] - el ds,

NSRS EEE, TgCOENT iy " L B

we find by using (2.4), (5.9) and (2.20) that the artificial viscosity h'~°-term is controlled as follows

hi-e S A2 Vadllizreys [wallzzom ~ 1.

> [le) el as,

Tely ing

Since At ~ h, we conclude that there exists a > 0 such that

/Q [Diond — onwy - Vog] dz = h* (R}, ¢) in (0,T) for all ¢ € C(Q), (6.1)
with

(B, 0)| = ri@IVadl s, o Iz <1 (6.2)

6.2 Momentum method

The next step is to take
My [o], ¢ € Co(UR?),

as a test function in the momentum method (3.3). Seeing that, in accordance with (2.9), (2.12),
/ 1V VAT [6] + Mdiviufdiv, T} [¢]] do = / (1Viuf : Voo + Adivyuidivee| dr,
Q Q

and

/Qp(Qh,ﬁh)dthH;‘fW] dr = /Qp(gh,ﬁh)divm dz,

we may rewrite (3.3) in the form
/ Didiat - ¢ dz — / b @k V.o dr (6.3)
Q Q
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+ / 1Vt - V.6 + Adivyufdiveg] de - / ok, 98V dived do
Q

= /Q Diopif - (¢ =10} [¢]) dz+ > / Uplaf, uf] - ([} [¢]]] dS, — /Q ghul @1 V.0 do

r'el’y,

© > [lteh) {uk} - (el s,

FEFh int

Our goal is to estimate the four integrals on the right-hand side of (6.3). We proceed in several
steps.
6.2.1 Error in the discretized time derivative

We have
/DtQhuh ¢ Hv[ﬁb]) dz

k k-1 ko k-1
k—1 [ k—1Up — Uy v On — On & 1%
/Q,/Qh Ve (1Y) dx+/97At uf - (6 - 11[g)) de,
where, by virtue of Holder’s inequality and the error estimate (2.11),

—1

N i (o-11}[g)) da

1/2

AT 2
< Nk ey (/@(At) do| o —11}lg]

uhl gkl 2 1/2
N —1p1/2 k— h — “h 1/2
2l (e ( / < A ) dx) (At)"7*h ||V, ¢|| 2 urs)

where, in accordance with the energy estimates (5.7),

— _ 2
ST At At/g’“ w dz | ~ 1. (6.4)
Q°h At

k>0

27
Lr=1(Q)

Applying a similar treatment to the second integral we get

BN
| Wuz (o - 1[¢]) da
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o — of 1\ 2 1/2
- (A%(Mth> dx) o sy (A0) 0 V.,

where the first integral on the right-hand side is controlled by means of (5.7).
Thus we may infer that

‘/QDt(Qhﬁh) ’ (¢ - HXM) dz| ~ Vh ()| Vedllve), Irillezor) ~ 1. (6.5)

6.2.2 Error in the upwind term

Take F = (Hﬁgﬁ]), = (ITPTLY [¢))s, 7 = ontins, 4 = 1,2,3 in (2.17) to obtain

> [ Uplehat.ug) - (6]l S, - [ obuf @ u}: V.6 do

rery,
=> > /F (¢ — Py []) - [[obufl)[@) - 0]~ dS, + /Egﬁﬁﬁ(qs—nfnm])divhuﬁ dz
E€E,TgCOE" " E EckEp
+ 3 % [ o-uldial-ul) nds,
s
=X Xt (o TR 1el) () ([ .
oo
£ 3 % [, g (o - nfmie) (- ul () .
+ E%:; /E ofak (¢ — IOV [¢])diviul dw
+3 % [ oubdial-ul) ndS = he bt ft
o1
Step 1:

Applying Holder’s inequality to I; we obtain

nl = [ (eh) (IR0 le] - o) [ - nl[w}]] as,

EcEy,

1/2
5(2 > /FE<92>+4aﬁ-n\[[le] ds:ﬁ)

E€eE, TgCOFE
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1/2
x (Z > /FE@Z)*\ﬁZ-n! (91 (] - ¢)° dsx) ,

EecE, TpCOE

where the first term is bounded in L?*(0,T) in view of the energy estimates (5.8).
Next, as uf are continuous on each element, we have

> % [ b fab o] (uf01e] - )" as,

E€E, TpCOE

OV 2 r 2
I (6] — ¢ pemay’ g T = b

< D lobllzsom gl (o re)
Eeby,

where, in accordance with the trace estimates (2.20), (2.21), and the L — L9 estimates (2.24),

2
L7 (OE;R3)

P [¢] — 6

> lokllzaom 0kl (5, r2)
EcEy,

1 2 2
< lubleny 3 ekl (JIFI 161 = 6, 4 + 12 19200 )
EcEy, ’

1 2 2
il 3 eblusce) ([I2016] oy + 2219500350
EEEh ’

2
2 Va0 e )

1 2
< sl el (P16 = 6] g

Finally, by virtue of (2.5), (2.4), (2.11),

Qv Qlyv Q
[T 161 = & 0y < T2 (T 10— 0] ) (TR 10— 9 (6.6)
< 101 = 0 sy |TRIE = €] ) < BIVabll i
Thus,
L) < W 200Vl @) with [zl 10 < T(A) |zl a0y 6 € (0.1),  (6.7)

according to (2.26), since zj, is a piecewise constant function on (0,7°). As v > 3 and At = h, we
conclude that

nl=| Y [ (2o - o) @ n) [ohuf) dS.| S b1 Vasllirey Irilloom &1, (68)

EcEy,
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where a > 0 and 3 > 1.

Step 2:
Continuing we have

o] =

> X [ wke (0] — o) [ - n [lef]) @S,

EcE, TpCOFE

1/2 1/2
é(—z JACTRE NI dsz) (z > [ lokPak ol o o] - of dsx)

E€E, T'gCOFE

where, in accordance with (5.9), the first integral is uniformly bounded in L?(0,T).
As for the second integral, we use Holder’s inequality to deduce

> X [ Pkl e - of as,

E€E, TCOE
< > ||H§HZ[¢]—¢||%w(aE)( > / [GF |72 |72 dSI)
E€E rpcop’l'e
Next, by virtue of the trace estimate (2.20) and Holder’s inequality,
ﬁ
Q \%4 2 ~ 2y ~k 0 7
Z ||Hh 11, [(b] - ¢||L~/(3E) Z / |uh‘w—2|uh’~/—2 ds,
E€Ey, rgycoe’le
< -2 eV 9 9_2 ) 3y 222
S % (W [6] — 0l + 1 IVl ) () 967 as,) T
EcEy OF
ﬁ
By o
| X [ rag as,
rpcoE’Te
Furthermore, by (2.20-2.21), (2.5), (2.19), Hélder’s inequality and (6.6),
91—=2

3y

_2 2 L
> (WP E) = 61y + B I9u0l ) ([ 16EI77 dS.) 7

ECE,
" ( / |1~1h|”3j2 dS“:)
I'e

I'ECOE

y—2
3y
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1 e e
= Z <h||H}?Hi‘L/[¢]_¢||%’Y(E)+h||vl‘¢||%ﬂ(E)> (/E|uﬁ|v2 dl‘) (/E|u2|72 dx)

EEEh

<

Lr=2(Q)

+ RIV29l e [85]], 2 g [

ITIZTEY (6] — 113 H HQL H“h’m?m

provided v > 3,

SR\ AP 1 I & il Ty 1

where we have also used (2.22).
Finally, using the time estimates (2.26) we infer that

~1.5 _max{$;2 3
< (At)"2h? G 2}HV1¢H%W(Q)(At)2 u’fi L5(Q)

5_max 9§§ ’
W2 G V07 o [uh L9(@)

Summarizing we conclude

[Io| = (6.9)

> X[ ak (0 Te) - o) - n)[lef]) @S,

EcE, TpCOFE

S ho‘rfb(t)Hqume(Q), ||7“fb||L;a(0,T) S 1 with some a > 0, 8 > 1,
where we have used the same reasoning as in (6.7).

Step 3:
Finally, another application of Holder’s inequality gives rise to

13| =

> [ ebtio — gy o) diviaf do
Eeky,

< lohlleumy - Ndivauf |z 0kl o ¢ — TR (6]
EcEy,

Proceeding as in (6.6) and employing moreover(2.22),

L3(E;R3)

lofllzseiey D2 Nivant oo k] os;ms |6 — TRTL 6]

EcEy

L3(E;R3)

< ;1-3 .
~ B bl @l divaag | Lz g | ors) [ Vadll s oums)

yielding as in the previous step the desired conclusion

> / ont; (¢ — I [¢])divawy; da |~ k(D) Vel ey 177 sor ~ 1 (6.10)

Eeky,

13| =
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with some o > 0, 3 > 1.

Step 4:
The last integral

Li=3% > / - ufgk(f —uf) nds,= Y Y / (6 — ) - uboh(@* —ul) -n dS,
ECE), T5COE ECE, TpcoE’TE

can be handled in the same way as its counter-part in the continuity method, namely

7 Ak k ~k
[ a] < FZ Hgb— ¢ L(T) th (o) 1Ml zors) 1M~ Uall 2 oy
el
1
< k ~k k
~ hEth E) +hHV¢HLW(E;R3)> th L (E) up LS(E;R3) ‘uh uh‘ w 12(ER3)
max ’Y
S RO b o | Vs | Vbl s (6.11)

Similarly the artificial viscosity term is estimated again as its counter-part in the continuity
method, namely

RS [l {uh} - el asa S e S S [ (e | {uh} Tl - ¢l as,

Ferh,int E€FEy FECBEth,int E

R - (6.12)
a E;Eh FCBJ;:I‘h,int HH@’ZH L2(I) H {“i} L7 (0R?) (HHXW — 019 e T HHZM —¢ LWF%RS))
S O DI /7 7)1 O 1 PN \ 227

FEFh int

Summing up (6.8 - 6.12) we obtain the consistency formulation of the momentum method

/QDt(Qhﬁh) ¢ dz — /Q(Qhﬁh ®uyp) : V¢ do (6.13)

+ [ [V, Vit + Mivaundivag] do = [ plon, 0n)divad dz = h* (RS, ).

for a certain o > 0, ¢ € CH(Q; R?), where

(R®), 8)| < T8I Vadllr), ITfllzs) < 1 with some 8> 1. (6.14)
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6.3 Renormalized thermal energy method

Our ultimate goal in this section is to derive a consistency formulation of the renormalized thermal
energy method (4.2). As a matter of fact, it is (4.2) rather than (3.4) that is used in the proof of
convergence of the method. We use a special ansatz for x in (4.2), namely

X € W3[0, 00), x'(9) >0, x"(¥) <0, x(9) = const for all ¥ > v,. (6.15)

We start by rewriting .
> [ K@D [V @] ds,

ey /T A1

= 5 [ AOHIE@ @S, + X [ v (98) @) elas,

NSO NSRS

for any ¢ € Qn(9).
The next step is to use I1?[¢] as a test function in (4.2), where ¢ is a smooth function satisfying
V.¢-n|gq = 0. Using the error estimate (2.6), together with the uniform bounds established in (5.6),

(5.26), and (5.27), we obtain

v [ Di(ehx(0) IF[6) de — e, 3 [ Up(ehx(9h). wh) (117 (6] 1) aS, (6.16)

I'el’y,

b 3 [ () @b mgel s,

FEthm
= | (Vb Mdivih ) X ORI ]) do— | X (050 ohdiviuf 17 (6] d

“h=es 3 [l () — X @h)ok) 7 (6] )] dS. + (Di ).

Iely ing
where
(Du(0).0) =~ > [ {11} KW (W @h)as
o Iely int dF " " " ;
At 9 — k1) . ) o
—co [ X"(&a)dh (W) 11,/ [¢] dx+‘;E§3}LF%E /F TE G () [05]]2 (of) [k n]~ dS,.
Consequently,

[{Dn(t), &) | < (Ol @l =), (Du(t),0) > 0if ¢ >0, [|r[|zrom) ~ 1. (6.17)
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We point out that the above bound is readily deduced from (6.16), (5.17), (5.6) and depends on the
specific properties of the function x stated in (6.15). The sign of < Dj,(t), ¢ > can be deduced from
(6.15) in view of the definition of the projection ITP.

In the remaining part of this Section, we replace at the left-hand side of equation (6.16) the
quantity I12[¢] by ¢ and evaluate the error arising from this replacement.

6.3.1 Error in the discretized time derivative

We write
[ Di (ehx i) g le] dw = [ Dy (hx(@h)) ¢ do+ [ Dy (ehx(@h) (1F[e] - 0) da,

where

[ D1 (b)) (11f1e] - ¢) dr =

J, Bt (010 —0) e+ [ o MBS (1))

Since x is bounded, we get, similarly to Section 6.2.1,

/Qh_gh o) (P[] - ¢) de

ok — o1\ 2 1/2
B _
~ (At/Q (hAth> dﬁ) VAV (@)

provided A =& h, where the first integral is controlled by (5.7). Similarly,

kY _ (k=1
/QQQ—IX(ﬁh) Ai((ﬁh )(HEW] _¢) da

|/FFWC ﬁkl)(ﬂf[aﬁ]—cb)dx

(ﬁk 1) 1/2
(At/ ( At ) dx) NG\ P e e

where the first integral can be controlled by means of (5.20). Indeed it is enough to check that

WA) — (B s A8

whenever A>B > 0 (6.18)
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as long as y belongs to the class (6.15).
Thus we get

[ Do) (7061 = 0) da| S VR OIVablimioy [r3lzon S1 (6:19)

6.3.2 Error in the upwind term

To handle the upwind term, we use the relation (2.17) obtaining

3 Upleb(@h), w] (07101 1) . (6.20)
=[xt Veode = 3 3 [ (11700] — o) [lehx ()] [uf - n) s

E€E, T'gCOFE

Y [ d@het-wonas, + [ ob@diag (6 - 1f0) dr

Ec€E, T'gCOFE EcEy

Next, we decompose

> 3 [ (] - 0) lehx @i - n] s, =

E€FE;, 'pCOE
DY [ (W16l - o) ehlix@hl)ag - n] as,
+Y X . (n16) = 0) [lehlne((@h) ) [ -m]- aS.,

where, by means of Hélder’s and Jensen’s inequalities, the error estimates (2.6), and the trace
estimates (2.21),

> X (- 0) (eh @b - n) as,

E€eFE;, TpCOE
1/2 1/2
[ (9] .
S 2|V || 1o ) > /Th ds, 3 /|Qm2‘uﬁ.n’2 ds,
I'ely int r I'ely ine r

1/2 1/2
(o))
SHEVole | X [P as ) [ X [kl as,
e, ing 7T ey, ing * 1
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1/2 1/2
ST LA P ( 3 / de) (Z / 0Pl |2da:) ,
Ferhmt EEEh

where we may use (5.6), (5.28), and (5.17) to control both integrals on the right-hand side in L*(0,T').
Moreover, seeing that x is bounded, the integral

> X[ (e = 0) k(o)) n) s,

E€E, T'gCOFE

can be handled with the help of the energy estimate (5.9), (5.28) and the error estimate (2.6).
Finally, the remaining two integrals on the right-hand side of (6.20) can be handled by means of

(2.18) and the available energy bounds (5.6), (5.27).
Thus we have obtained

S [ Uplef(@h). wl] [117(6] ) 08, — [ chx(@h)ul - V.o da

I'el’y,

ﬂ
S z(O)||llwreeys 12l L0m) BN

Consequently, by the reasoning as in (6.7) we conclude

(6.21)

3> Uplebx ). wi] (171011 05 — [ obx(0f)uf - V.o do

S 9 () ||l w2, 171 L6 0.1) <1, with some a >0, § > 1.

6.3.3 Error in the thermal diffusion

We need the following auxiliary result.

Lemma 6.1 Let ¢ € C?*(Q) such that V,¢ - n|gq = 0.
Then

| [MFldS. + | vA¢ da| < Aol @)l1¢]cem

for any v € Q"(Q).
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Proof:
We start by writing

/qude— 3 /UA¢dX— Z/ W, ndS, =— 3 [[v]]Vee - n dS,.

EcEy EcEy, el ing

Recalling the definition of the projection IT17 we observe that

(17 ¢]]
dr

|Vx¢-n—

~ h|[¢[|c2 @) on any face I';

whence it remains to estimate

E (Ferz / ) ( 2 /thsx)mslvﬂéh(mﬁl/%

1—‘GFh int Ferh,int

Q.E.D.

Now, we are ready to deal with the diffusion term

> [ v ()} i @b mEelas.

I'e 1—‘hlnt

Introducing a new function K,

K (9) = X' (0)K'(9),

we may write the diffusive term with the help of the mean-value theorem as

(X (95) } K@D = (K 05)]] + e (@) [05])7,

where cf is uniformly bounded. Consequently, we get
> / (5] [Po]))as,
Ok
- 3 [l mienas. - > [T,

Seeing that
[TI7 6]l < hlIVaoll=()
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we can estimate the last integral using the entropy bounds (5.17), (5.18). Combining the above
results with Lemma 6.1, we get

> [ (¢ (@) b s, (6.22)

= —/QKX(ﬁz)A(b dx + haTwH(bHCg@), HTlOHLB(O,T) N 1, a>0,8>1,

where we have used (2.26) in the same way as in (6.7).

6.3.4 Error estimates in the remaining terms

By virtue of (5.6), (5.28), (5.26), (6.15), (2.6), (2.26),
[ (uI¥nub? + Naiviuf]?) X (95) (150] = 0) da| (6.23)
+| [ X @)k ehdiviuf (1]¢] = 0) do|S hr O Voll@, [ [psor S 1 a > 0.6 > 1.

Finally, we note that the similar treatment, in combination with the estimate (5.9), can be applied
to eliminate the h'~*-term on the right-hand side of (6.16), namely

ne S [Tk 1(x@h) — X 05)ok) (6] 1] as,

Ieln int

(6.24)

~ () Nlllw @), P20 < 1 a>0,8> 1.

Thus, going back to formula (6.16) while summing up the estimates (6.17), (6.19), (6.21), (6.22-6.24),
we obtain the consistency formulation of the renormalized thermal energy method:

| Di (ehix@h) ¢ do = [ ehx(@h)ul - Vag do = [ K,(05)A6 do (6.25)

_ /Q (Vb2 + Mdiviuf[?) X' (95)¢ do — /Q X (995 dfdiviule do + (Dn, ¢) + h (RiF, ¢),

with some a > 0, for any test function ¢ € C?(Q), V,é - njsq = 0, and any  satisfying (6.15),
where D), satisfies (6.17), and

‘<Ri113(t)7¢>’ S TilzB(t)||¢||o2(ﬁ)7 ||7“i1z3||Lﬁ(o,T) ~ 1 with some § > 1. (6.26)
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Remark 6.1 The required reqularity of the test functions ¢ in (6.25) can be relaxed to

¢ € W**(Q), Vo -n|p =0 on any face T C 0Q.

7 Convergence

We are ready to establish convergence of our numerical scheme to a weak solution of the problem.
We take advantage of the consistency formulation derived in the preceding section that converts the
problem to the framework of the mathematical theory developed in [14]. The reader may want to
check the material of [14, Chapters 6,7] for technical details omitted in the present text. We also
refer to [1] for a complete existence proof based on the technique of time discretization.

7.1 Pressure estimates

The uniform bound (5.6) is not sufficient for passing to limit in the “elastic” pressure component
07. To get better integrability of the pressure, we introduce an inverse of the divergence commonly
referred to as Bogovskii’s operator B, see Bogovskii [2]. The operator acts on integrable functions of
zero mean in 2 and enjoys the following properties:

B[r] € Wy (Q; R®), div,B[r] = r for any r € LP(Q), / rde=0, 1<p< oo, (7.1)
Q

1Bl gyps) ~ lI7llzo), 1< p < oo, (7.2)

HB[T]HLq(Q;RS) S HTHWO_I’Q(Q)v 1 <g< oo, (7.3)

where the symbol W, ¢ denotes the dual to the Sobolev space W4 (not to be confused with W14 -
the dual to W2*?). We refer to Galdi [16, Chapter 3] for a detailed proof of the properties (7.1), (7.2),
and to Geissert, Heck and Hieber [18] for (7.3). It is important that the afore-mentioned estimates
are valid for any Lipschitz domains, in particular for €.

The pressure estimates are obtained by taking

¢=B[gh—|§2|/gghdx]

as a test function in the consistency formulation (6.13) of the momentum method:

T T 1 T
2(h + 9,) dadt //”“ddt:—/ d// 9,) dzdt 7.4
/0 /QQh( + ¥) dadt + o de Q) ondz | Qp(gh, n) dz (7.4)
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T 1 T 1
D,(oniy,) - B —7/ dz| d dt—h"‘/ RS.B —7/ dz| ) dt
+/0 /Q +(onty) [Qh Q L on 4 x ; < b lé)h Q , on dz

T 1
—/ /(Qhﬁh®uh>3v18 Qh——/ghdx dx dt
0o Ja Q| Ja

T 1 1
+/ / uVpay -V, B oy — —/ op dz| + Mdivyuy, |on — —/ op dx dx dt
o Ja Q| Ja Q| Ja

Combining the stability estimate (5.6) with (7.1) we observe that
1 1
- d L0, T; Wy (2));
B [Qh |Q| /QQh $‘| S (07 » YV 0 ( ))7

whence admissible for (6.13). In particular, thanks to (6.14), (5.6), (7.2) we get

T 1
ho‘/ RS B Qh——/ghdx dt - 0as h— 0.
0 Q| Ja

Next, we apply by part integration to the time “derivative” to deduce

T 1
D,(onti) - B —7/ dz| dz dt
/0 /Q +(ontp) [Qh ] | on x] T

_/ onTi, - [gh |Q|/Qh dx] dx—/ A - [Q,{L—&/ﬂg}l dx] da
e e o] oo

k>1

N 1 R 1
:/Qghuh'B[Qh_M/Qthxl (T,-) dw—/QQ?LU?L'B[@i—M/Q@idx] dz

a /oT /Q on(t — At)u,(t — At) - B[Dy o] dz dt.

We observe that the expression on the right-hand side of (7.4) is bounded uniformly for A — 0.

Indeed combining the estimates (2.5), (5.3), (5.6), and (5.28) we have

sup |[|ontis(T, ‘)HLq(Q,R?,) N 1, ¢g= 2777
TE(O,T) ,-y_‘_ 1
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- 6 :
||Qhuh||L2(0,T;LS(Q;R3)) ~ L, ||Qhuh||L2(0,T;LS(Q;R3)) > 1, s= ’y—ZG >2ify >3, (7.7)

while, by virtue of (7.3) and the consistency formulation (6.1) of the continuity method

B[Digy] is bounded in L*(0,T; L* (2. R*), &' = 6y -
’y J—

uniformly for h — 0.
Finally, by virtue of (7.7) and (5.28)

. 3 .
lontn @ unl| 20 7issirey ~ 1, s = 713 >3/2if v > 3; (7.8)

consequently, due to (7.1), the remaining integrals on the right-hand side of (7.4) can be estimated
in the same way as in [14, Chapter 5] and we may conclude that

lonll L+ (o) ey~ 1. (7.9)

7.2 Weak sequential compactness

In accordance with the uniform estimates (5.6), (5.26), and (5.28) we may assume that

on — o0 weakly-(*) in L>(0,T; L7(£2)), (7.10)
Uy, — ¥ weakly in LP(0,7; LY(Q)) forany 1 <p <3, 1 <¢ <9, (7.11)

and
u;, — u weakly in L*(0,T; L°(Q; R?)) (7.12)

at least for a suitable subsequence h — 0. Moreover, we have ¢ > 0, and, by virtue of (5.1),

/QQ(T, ) dr = /QQO dz for a.a. t € (0, 7).
As a consequence of (5.22), and since ¥ — log is a concave function
log(¥) € L*(0,T; L°(£2)), in particular ¥ > 0 a.a. in (0,7) x .
Next, it follows from (2.10) that

[an — unl| 20,7y x;r2) — 0, (7.13)
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in particular,
a;, — u weakly in L?(0,T; L5(Q; R?)). (7.14)

The final observation is that (5.27) implies
Vi, — V,u weakly in L?((0,7T) x Q), (7.15)
where the limit velocity field satisfies
u € L*0,T; Wy (Q; R?)).

Remark 7.1 The fact that the weak limit of Vyuy, coincides with Vi u follows from the “density”
of the spaces Vi in Wy stated in (2.11) and the estimate (2.13).

7.2.1 Convergence of convective terms and of the thermal pressure o

To establish the weak convergence of convective terms, we need the following result which is a variant
of [20, Lemma 2.3].

Lemma 7.1 Let {vp}n=0, {wn}nso be two sequences of functions in (0,T) x Q such that
vp, Wy, are constant functions of the time on any interval [kAt, (k + 1)At), k=0,1,..., At = h,

vy, — v weakly-* in LP*(0,T; L™(Q)), w, — w weakly-* in LP*(0,T; L%(Q)),

1 1 1 1

7+7:7+*§17 pl>17Q1>17Z:1727

P P2 @1 @2
‘/ﬂDtvhgb dz| < r(t)||¢llwra for certain k,p > 1, ||[r"||pom) SEE (7.16)
[wn(t, x) — wp(t,z — g)HLPz(O,T;qu(Q)) — 0 as [€] — 0 uniformly in h. (7.17)

Then
vpwp, — vw in the sense of distributions in (0,T") x €.

In agreement with the estimates (5.25), (5.27) and the compactness properties of the spaces Hllfm
Hp, stated in (2.31), (2.28) we observe that the sequences

{wn}tnso, {9n}rs0, and{x(¥n)}n>0, With x as in (6.15)
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satisfy the hypothesis (7.17) with ps = ¢ = 2, while the hypothesis (7.16) can be checked for gy,
onUp, and g, x(¥,) by means of the consistency formulations (6.1), (6.13), and (6.25), respectively.
Thus a successive application of Lemma 7.1 gives rise to the following limits:

onu;, — ou weakly in L*(0, T} L%(Q; R?)) (7.18)
ontn @ up, — pu ® u weakly in L((0,7) x Q) for some ¢ > 1, (7.19)
onX(9n) — ox(¥) weakly-(*) in L>(0, T L7(2)), (7.20)
and .
onx(Up)wy, — ox(9)u weakly in L*(0,T; L7+6(Q). (7.21)

Here and hereafter we denote f(p,9,u) a L'-weak limit of the sequence f(gp, Vs, uy), in particular,
x(9) denotes a weak limit of x(95).
Employing Lemma 7.1 on any compact subset K in {2 to treat the product o0, we get in view
of (2.28), (5.17), (6.1)
on¥, — oV weakly in L*((0,T) x K), (7.22)

where we have also used (7.10), (7.11).
Remark 7.2 As for the exponent q in (7.19), we recall that

opuy, € L>=(0,T; L%(Q)) N L*(0,T; L%(Q; R*) «— L"((0,T) x Q) for a certain r > 2
by interpolation.

7.2.2 Limit in the continuity and momentum methods

Letting h — 0 in (6.1), (6.13) we obtain
/ / 00hp+ ou- Vo] du dt = / 00(0 (7.23)
for any ¢ € CL([0,T) x Q);
T —_
/ / [Qu O+ ouu: Vg + pddivep + aprdivep + bgdivxgo} dx dt (7.24)
0 Ja
T
= / / [;qu : Ve + Adiv,u divxﬁp} dx dt — / ooug - (0, ) dx
0 Jo Q
for any ¢ € C1([0,T) x Q; R?).
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7.3 Strong convergence of the density

13

To show strong convergence of the densities, we use the method of Lions [22] based on the “weak
continuity” of the effective viscous flux. To this end, we extend o, by zero outside €2, and use the

quantities
¢ = VA on], (7.25)

where

olt,2) = v(O)n(a), b € CX(0,T), n € C=(Q), ~A~fu] = 7, [ Hum}]] |

€17

and F denotes the standard Fourier transform, as test functions in the consistency formulation (6.13)
of the momentum method:

/ / p(on, On)on — /\thlvgguh} de dt = (7.26)

/OT/Q Mdivew, = plon, )| Vg - V(A ou]) do dt — h? /OT (RS, V(A [on])) dt
+/0T/Q,uvhuh Ve [Sﬁvx(A_l[gh])] dr dt

_/OT/Q<Qhﬁh ®@uy) : V, (gpvx(Afl[Qh]D d dt + /OT/QDt(Qhﬁh) V(A op]) dz .

We notice that, by virtue of the well known properties of the operator VA~ on LP(R3), the func-
tion ¢ € L>°(0,T; W, (€ R%)), and it is therefore and admissible test function for the momentum
method.

Furthermore, using the by-part integration formula, we get

/OT/QDt(Qhﬁh).@vx(A Yon]) dz dt = / /sot+At ()Qhﬁh_vz@fl[gh]) de dt

T
- /0 /Q won(t — At)in(t — At) - VAV [D,0p] du dt
T oo(t+ At) — o) B
= —/0 /QM Ai il )Qhuh V(A o)) dz dt

T
+ / / pon(t — At)Gn(t — At) - VoA div, (opup) de dt
0 Q

T
e [ [ ponlt = A~ A1) VAR de db,
0 Q
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where we have used the consistency formulation (6.1).
Remark 7.3 Note that (6.1) holds on the whole space, meaning for test functions in C>°(R?) pro-
vided op, has been extended to be zero outside ). In particular, the error operator R' can be viewed

as a quantity bounded in the space L*(0,T; W~14(R3)), ¢ = 5316.

Finally, we focus on the term

/OT /Q Vi, : Vs [0V (A )] da dt. (7.27)

In order to eliminate the gradient term, we need to perform a “by parts of integration” step, namely

/ Vo : Voo do — / Vi (V. - V) 6 da + / Vous : V76 da
Q Q Q

= / curl,uy, : curl, ¢ dz —i—/ Viuy, : V;{¢ dx (7.28)
Q Q

= / curlyuy, : curl,¢ dx +/ divpuy, : diveep doe+ < &0 >
Q Q

where

<& >— /Q (Vawn : V26 — divawydiv,g) de = Y /a (- V60— w, - ndiv,0)ds,.

EcEy,

Noticing that both the mean value of u; over each face and the function V¢ are continuous over
each face, we write following [21, Lemma 8.2],

<&o>= 3 > [ ((wn— i) (Voo = [Vadlp) -1 = (w = Gr) - n(diveg — [diveo]; )dS,.

EeE, I'COE

Consequently, by virtue of (2.18) and (2.20-2.21) we finally get,

1<&6>1° 3 S lup — dnrlewse) | Vet — [Vaolpll 2m (7.29)

EeE, T'COE

SETUYS Y = e re) (||qub — [Vu@lrllL2(zre) + h||v325¢||L2(E;R9)>

Feky, TCOE
S R Vil 2.0 | V20| 220 r27),

for any ¢ € W22(Q; R?*) N W, ().
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Now, coming back to the original test function (7.25), we may write

< &b >= /O ' /Q (Viw, - VI [V, (A7 [RY[0n]])] — diveundiv, [pV, (A [R2[1]])] } de at

—l—/ / thh goV (A’l [Qh — R?[Qhﬂ)} — divyudiv, [wx (A’l [Qh — Rg[gh]b} } dx dt

where R? are the regularizing operators introduced in Lemma 2.1. Revoking the bounds (5.9) and
applying Lemma 2.1, we obtain

T Q 2 <2 [T 2 e
| Nlew = BRlonlFaqy dt = 5 [ llonlly, @ dt < b
and
- iz
VR Tenlll 2002050 = (/O lonllZ, (@) dt) ~heh
whence, in accordance with (7.29),
| < &> |2 b/ with ¢ =V, [oVa(A " on])] (7.30)

where we have used the fact that V2ZA™! is a continuous operator from LP(R3) to LP(R?), 1 < p < oo.
Summing up the previous estimates and regrouping terms in (7.26) we obtain

/ / p(on, In)on — (A + u)ghdwzuh} do dt = I+ (7.31)

/OT/Q [()\ + ,u)divxuh — p(gh, ﬁh)]vggw . Vx<A_1[Qh]) de dt
_/OT/Q w(t+AA1ti— o(t) ortin - V(A ]} d

+ /OT /Q pcurl,uy - curl, {@Vm(A’l[th dz dt — /OT /Q(Qhﬁh ®uy) : (VW ® fo(Ail[Qh])) d dt

T T
_ / / o(onlin @p) : (Vo ® V) (A [on]) da dt + / / o(oniin)(t — AL) - VoA~ div, (opuyp) de dt,
0 [9] 0 Q

where
I, = h (/0 /Qgpgh(t—At)uh(t—At)~VxA (R dz dlt—/0 (R}, oVa(A (o)) dt+/0 Th)

with some a > 0 and 7, such that ||rp || 1(0,m)x0) N
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Remark 7.4 It is worth-noting that this is the only step in the proof, where we have used the artificial
reqularization term added to the continuity method.

Now we apply a similar treatment to the limit equation (7.24), specifically, we extend o by 0
outside €2, and use the test function

¢ =V, A7 g,
After a straightforward manipulation (cf. [14, Chapter 6]) we arrive at

/OT /Q go[p(g, No— (A + u)gdivzu} dz dt = (7.32)

/OTA[Adivxu—M}vx¢.vx(A1@ & dt—/OT/Qatgogu'vx(Al[QD do dt
+/OT/QMcurlxu-curlx [@VI(Afl[QM dx dt_/OT/Q(Qu®u) | (Vx§0®vx(Ail[Q])> de dt

—/j/ﬂgp(gu@ u) : (V. ®@ V) (A o]) do dt + /()T/ngg_)u - VA div, (ou) dx dt.

The principal idea due to Lions [22] is that all terms on the right-hand side of (7.31) converge
to their counterparts in (7.32). The has been proved in the continuous case in [22] and for the
time discretization problem in [1, Section 3.3], Lions [22]. The same result at the level of numerical
discretization was obtained by Karlsen and Karper [20], Karper [21].

Seeing that the error term I, in (7.31) vanishes for h — 0, the most difficult task is to show that

- /OT/Q@(Qhﬁh u) : (Ve @V, (A o)) d dt+/0T/Qgp(ghﬁh)(t_ At) - VA div, (opuy) do dt
(7.33)

—

—/OT/ng(gu@) u) : (V,® V) (A g]) dz dt + /OT/Q¢QU - VA Ydiv, (ou) dz dt.

Here, we observe that the velocity field u; can be approximated by its spatial regularization in the
spirit of Lemma 2.1,

lan, — Ry [un]ll 20,5 00esm3)) ~ b7, B = B(g) > 0 for any 2 < ¢ <6,

where we have used (2.30), (2.11) and interpolation. In particular, we may “replace” uy by R} [uy]
in (7.33). Now, the limit (7.33) can be verified exactly as in [1, Section 3.3] or Karper [21, Lemma
9.3].
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Thus we get the desired conclusion - the effective viscous flux identity due to Lions [22]:

/ / p(on, On)on — (A + u)ghdlvmuh} dz dt — / / 0,9)0— (A + ,u),gdivxu} dz dt (7.34)

as h — 0 for any ¢ € C((0,T) x Q), which, in view of (7.22) and the monotonicity of the density
dependent part of the pressure, namely

a@*T +b? > agio + be®,
yields the crucial relation
odiv,u > odiv,u. (7.35)

The relation (7.35) implies strong convergence g5, — o a.a. in (0,7') x Q. Indeed the regularization
procedure of DiPerna and Lions [7] can be applied to show that g is a renormalized solution of the
continuity equation, in particular,

/leog(g)(T, ) dx + /T/diivmu dz dt < /QQO log (o) dz for any 7 € [0,T7, (7.36)
0

cf. [14, Chapter 6]. On the other hand, passing to the limit in the renormalized continuity method
(4.1) for b(p) = olog(p) for a spatially homogeneous test function ¢ = ¢(t) yields

/ olog(o)(r,-) dz + /T/ odiv,u dz dt < / 0o log(0p) dz for a.a 7€ (0,7). (7.37)
Q 0 Jo Q

Combining (7.35 - 7.37) we get
olog(o) = elog(e)
yielding
on — oin L'((0,T) x Q), (7.38)
by virtue of the strict convexity of the function o — plogo. Moreover, coming with this information

back to (7.22), we get
onVy — 09 weakly in L2((0,T) x Q). (7.39)

Having established the strong convergence of the density, we may remove the bar in the momentum
equation (7.24). We may also pass to the limit in (4.9) to obtain the energy inequality (1.20). Thus
our ultimate goal is to perform the “renormalized” limit letting o — 0 in (7.51) to recover the
thermal energy balance (1.18). This will be done in the next section.
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7.4 Convergence of the temperature

Our goal is to establish strong (a.a.) pointwise convergence of the approximate temperature away
from the (hypothetical) vacuum region. To this end, we first apply once more Lemma 7.1 verifying
its hypotheses by means of (5.16), (2.28), (6.25) to obtain at the end

on X (01)05 — ox (V)Y weakly in L?(0,T; L%(Q))
for any x as in (6.15), from which we deduce, taking (5.26) into account, that
0n¥3 — 0¥? weakly in L((0,T) x Q) for a certain ¢ > 1. (7.40)
However, relation (7.40) and (7.38) together with (5.6) implies

¥y — VU (strongly) in L? ({(t,x) €(0,7) x Q ‘ o(t,z) >0 ) : (7.41)

see [14, Chapter 6] for details. As a consequence, we may replace x(v) by x(¢) whenever this
expression is multiplied by p.

7.4.1 Renormalized temperature method

The limit passage in (6.25) is slightly more complicated. Taking a nonnegative test function ¢ our
alm is to convert to an inequality and accordingly to get rid of the error term D,. To this end,
however, we need the function

[0, 2] — x'(¥)2* to be convex in [0, 00) x R

for the integral
T
/0 /Q [u|thh|2 + )\|divhuh|2}x’(19h)g0 dz

to be weakly lower semi-continuous. As observed in [14, Chapter 4, Lemma 4.8.] this equivalent, at
least if x is smooth, to a structural condition

V() > 0, X'(9) <0, T y(9) = 0, "(O)'(9) > 20" (9))? for all 9> 0. (7.42)
A typical example of such a function is y = T,
1
T.00=0, T.(¥) = ——— 1.
(0) =0, T,(9) Ao 0<es

Unfortunately, the condition (7.42) is not compatible with the hypothesis (6.15) in the sense that
functions satisfying (7.42) cannot have compactly supported first derivative as required in (6.15) and
frequently used in Section 6.3.
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In view of these difficulties, we introduce a family of functions T4, ,,,

T () = Ta(9) for 9 < m, Tom(m) = Tu(m), Th,,(¥) = max { T),(m)+T% (m) (0 —m); 0} for & > m.
(7.43)
Clearly, x = T, complies with (6.15) as soon as m > 0 is finite.
Passing to the limit in the consistency formulation (6.25) of the renormalized temperature method
we get

T
/ / {gTam(ﬁ)@tgp + 0Ty m(W)u-Vyp + Ka,m(ﬁ)Aap} dz dt + /ﬂ 00T m(Vo)p(0,-) dz  (7.44)

+/ / p|Vaul? + /\|le3011| T’ o dr < / / V)odivyup dz dt + (Mam, @) ,
QKajm(ﬁ) = 0Ky m(9), odiv,u = odiv,u (7.45)
for any test function
0 € CH[0,T) xQ)), >0, Vipec L>®((0,T) x Q, R¥?), Voo -n|sq =0, (7.46)

where we have denoted
Ka,m = KTa,m'

The extra term M., - the weak-(*) limit of (u|Vyus|* + A|divyug|?)
of defect measure satisfying

T(0n) = T)u(94)| - is a kind
[(Mams 9)| ~ T (m) ||l () (7.47)
As 9y, satisfy (5.25), we get
Vo, ViKam(9) € L*((0,T) x Q; R?),

in particular, we may integrate by parts in the convective term

T T
/ / Ram(@Ap dz dt = — / / VoKam() - Vap de dt. (7.48)
0o Jo 0o Jo
With this convention, the integral formula (7.44) makes sense for test functions satisfying
©>0,0€ L0, T) x Q) NL*0,T; WH(Q)), dwp € L*((0,T) x Q). (7.49)

Next, we observe that the class (7.46) is in fact dense in (7.49). This follows from the statement
proved in Appendix (Lemma 8.2): For any ¢ € Wh3(Q) N L>®(2), ¢ > 0, there exists a sequence

{ont,
¢n Z 0: an € W272(Q)a vxgbn : n|8Q - O, |¢n| ’5 17 Vﬂc¢n - Vx¢ in LQ((O’T) X Q)
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Thus we may assume that (7.44), with the convention (7.48), holds for any test function belonging
o (7.49).
Now consider a test function ¢,

©>0, p e WH((0,T) x Q) NLZ((0,T) x Q), Ap € L=((0,T) x Q), Vop-nlgg=0. (7.50)

Keeping v > 0 fixed, we may let m — oo in (7.44) to conclude that

/DT /Q [gTa(ﬁ)atsH o, (9)u- Vo + Ka(ﬁ)Agp] dz dt + /Q 00T (90)0(0, -) d (7.51)

T T
[ [Vl + Mdivou?| T2 (0)p dr < [ [ Ti(0)d0diveap do dt,
0 Q 0 Q

oK (V) = 0Ka(9), (7.52)

for any test function ¢ as in (7.50), where

Ka = KTQ.

Note that, by virtue of the hypothesis (1.9) and the uniform bounds (5.26),

Kom(@) — K,(09) in L'((0,T) x Q) as m — oo,

where K, () denotes a weak limit of K,(¢,) for h — 0.

7.4.2 Biting limit in the renormalized thermal energy balance

Our last task in the proof of Theorem 3.1 is to perform the limit & — 0 in (7.51) to obtain (1.18).
As observed in [14, Chapter 7], the only problem are estimates of the terms K, () on the vacuum
set

{(t,2) € (0,T) x Q| o(t,z) = 0}
We note that the estimates (5.4) together with (5.26) are strong enough to justify the limit

K,(0¥) — K(¥) = K(9) for « — 0 on the set {(t,x) €(0,7) x Q ’ o(t,x) > 0}. (7.53)

In order to get the desired bounds on the vacuum set, we follow the procedure elaborated in [14,
Chapter 7, Section 7.5.2]. To begin, we observe that the estimates (5.4), (5.26) yield

/ / K, (9)|"dz = / / 9)["dz dt < c¢(w), w > 0, for a certain 7 > 1, (7.54)
{g>w} {Q>w}
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uniformly for o — 0.
In order to derive a bound for K, (1)) on the hypothetical vacuum zone, we follow the approach
of [14, Chapter 7, Section 7.5.2]. As

/QQ(T,-) dx:/ﬂgo dx = My > 0 for any 7 € [0, 7],

we have

/ o(r, ) dz > M — w|Q).
o>w

On the other hand, by Holder’s inequality,
L_l
| ede<i{o> )T el
o>w

Combining these two inequalities we conclude that there is a function d(w) independent of 7 € [0, T
such that
{o(r,-) > 2w}| > d(w) > 0 whenever 0 < 2w|Q)| < M. (7.55)

For 0 < w < M/2|Q| fixed, take a function B € C*°(R) such that
B non-increasing, B(z) =0 for z < w, B(z) = —1 for z > 2w.

Now we take n = n(7,-) to be the unique solution of the Neumann problem

An:B(g)—@ QB(Q) dz in Q, /Qndx:(), V.n - nlgg = 0.

Since €2 is Lipschitz, we deduce from the elliptic theory that
Ve (T, )| Lo < 1 for a certain q > 3,

cf. [12], in particular,
n(r,-) > nforall 7 €[0,77.

Seeing that 7 — 7 belongs to the class (7.50) we can take it as a test function in the renormalized
temperature equation (7.51) to obtain

/OTA)I(M<B(Q)—’;2’LB(Q) da:) do dt

T T
5/ /919|u||Vx77| dz dt + sup /919|77| dx+/ /ﬁgldivxu||n| de dt
o Jo Q o Ja

T7€[0,T
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—/OT/QamgTa(ﬁ) dz dt.

Furthermore, as o satisfies the renormalized continuity equation, we may compute

om = AN l@tB(g) — @/{lﬁtB(g) da:] = — AR [div,(B(o)u)]

+A#VB@%J%@@&Wu—;ﬂé@%ﬁ-ﬂ@mmwmd4.

In view of the elliptic estimates available for the Neumann Laplacean on Lipschitz domains (see
for instance Fabes, Mendez, and Mitrea [12]) and the integrability properties of o, ¥, u established
in the preceding section, we may infer that

T [ ——— 1
K(0) (Blo) = 15: [ Blo) do) dwdt =1 7.56
[ R (B0 - g [, B0 i) as (7.56)
uniformly for « — 0. Combining the relations (7.54 - 7.56) we deduce the desired conclusion
T [ <
/ / K,(¥) dz dt ~ 1 uniformly for a > 0, (7.57)
0o Ja

cf. [14, Chapter 7, Section 7.5.2]. Thus, letting a« — 0 we get

Ko (9) / K(V) € L'((0,T) x Q), oK (V) = oK (9).

Passing to the limit for & — 0 in the renormalized temperature equation (7.51) we obtain (1.18).
We have proved Theorem 3.1

8 Appendix
This section collects the proofs omitted in the text.

Lemma 8.1 Suppose that gf € Qun(Q), x € C*(R).
Then

J X @ Dieka)@ dr = 3 [ Up okt k] (X (ah)2]) as.

FEFh

= [ Dilehx(gh)@ dw— 3 [ Up [ehx(gh). wi] (2] S,

I'el'y,
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v <z~>@d_zz/ @ e

E€eE, TgCOFE

#0116 () — X (gh)ak) @) s

FEFh int

for any ® € Q(S2), where

& € co {gf{_l,gf} , Nf € co {gﬁ, (gﬁ)Jr} :

Proof:
We have
Q _Q
/X’(g,’;)Dt okgl)® dx—/x 9% Ah 9 4y (8.1)
Q t
k—1
Qh—Qh k— 19h 9
— e N K
/ [gh Al +X'(91) 0 Ar ] dz

k—1\ 2
g
= [ 9 (9h) Duck + o Dix(g)] @ da + / 5 o X"(&) (Ath> b

with & € co{g, ™", g5 }.
The upwind term reads

[ Ueleft ul] [ ()2, (8.2
== 5 5 (chok o nl s (het) (o0 2,
RPN L gh(k[ﬂ’i'ﬂ”(@?i) afn ) as.
I

/ Up(ah,uy) [[X'(g1)95®]] dS,

+2 > / honl” (X(g;’i)—x((g’i)+>)@ ds,

E€eE, I'pCOFE

=PI / ( (o)) (k) 10k ml o s,

EEEhF COFE
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= > /Up ohuy) (X' (97) 91 ®]) Sy — > /UP on ) [[x(gr)®]] dS,

rely, Ir'el’y,

+ 3 [ Uplehx(gh). uf) T[] as,

I'el’y,

+ ) Z/ ( (gﬁ)+>2(gi)+[uh n|~® ds,.

EEE FpCoE

Combining (8.1), (8.2) with the continuity method (3.2) we obtain

[ Di(dha) x'(ghye de = 3 [ Uplehgh. u] (1Y (g5)@]las,

rel’y,

_/ o' Dex(gn)® dz + - /Up o, uy) [ (1)) dS. +f/ (&) (gh> ¢ dx

I'el’y,

-3 / Up(dfx(gh), uh) [[®]) d,

—E;EhFE%E / ( — (9%) ) (o) (@} -n)"® ds,
~h 30 [l [ (oh)she) oS,

Finally, we use x(gF)® as a test function in the continuity method (3.2) to deduce the desired
conclusion.

Q.E.D.

Lemma 8.2 For any ¢ € Wh2(Q) N L>(Q), ¢ > 0, there exists a sequence {¢,},
b >0, ¢n € WHHQ), Vaodn -nlog =0, |pn| 1, Vadn — Vaod in L2((0,T) x Q).

Proof: Let ¢ > 0, ¢ € WH3(Q) N L>®(Q). Since Q is Lipschitz, we may assume that ¢ is
defined on the whole space R?® with the same properties. The set of edges £ C 952, meaning the all
intersections of the boundary faces, is of zero W12 —capacity in R*. Therefore we may construct a
sequence {¢y, }n>0 such that

bn € Co(RNWEAR?),0 < ¢, ~ 1, ¢y — ¢ in WHH(R?), (8.3)
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and
¢, = 0 in an open neighborhood of £. (8.4)

Thus it is enough to show the conclusion of the Lemma for functions ¢ on Q belonging to the
class (8.3), (8.4). Since these vanish on the edges, we may extend them on an open neighborhood
of Q as even functions with respect to the normal vector on all faces. Now we use the standard
regularizing kernels to construct the sequence {¢, },~o with the desired properties. In particular, all
bn, satisfy Vo, - 1|pq = 0.

Q.E.D.
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