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Abstract

We propose a mixed numerical method for solving the compressible Navier-Stokes system
and study its convergence and stability with respect to the physical domain. The numerical
solutions are shown to converge, up to a subsequence, to a weak solution of the problem posed
on the limit domain.
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1 Introduction

There is a great theoretical and evidently also practical interest in the problem of convergence of
numerical methods used for simulation of fluids in continuum mechanics. Ignoring the influence of
temperature changes we consider a mathematical model of a compressible, barotropic, viscous fluid
occupying a bounded physical domain 2 C R3. In the Eulerian coordinate system, the time evolution
of the fluid is described by means of the mass density o = o(¢,x) and the velocity field u = u(¢, z),
t € (0,T), x € Q, governed by the Navier-Stokes system of equations:

o + div,(pu) = 0, (1.1)
di(ou) + divy(ou ® u) + V,p(p) = div,S(V,u), (1.2)

where p = p(p) is the pressure, and the symbol S(V,u) denotes the viscous stress tensor, here
determined by Newton’s rheological law:

2
S(Vyu) = p (qu +Viu— gdivxu]l> + ndivyul, >0, n > 0. (1.3)

The barotropic pressure p = p(p) is a continuously differentiable function of the density satisfying

P (o)
ot
Remark 1.1 The condition v > 3 s technical; the so-called adiabatic exponent for real fluids ranges
in the interval v € (1,5/3], where the extremal value v = 1 corresponds to the isothermal case, while
~v = 5/3 characterizes the monoatomic gas.

= Pso > 0 for a certain v > 3. (1.4)

p(0) =0, p'(e) > 0 for all g >0, lim

Remark 1.2 Since the viscosity coefficients p and n are constant, we may write

div,S(Vou) = pAu + AV, diveu, A = g +1>0. (1.5)
The system is supplemented with the standard no-slip boundary condition
ulpn =0, (1.6)
and the initial conditions
0(0,+) = 09, u(0,-) =ugy, 0o >0 in Q. (1.7)



Remark 1.3 We deliberately omitted the action of an external force to simplify presentation. As
will become clear in what follows, a bounded driving force can be incorporated in the system with

only minor modifications of the proof of convergence.

1.1 Weak solutions
We adopt the standard weak formulation of the problem (1.1 - 1.7).

Definition 1.1 We say that [0, u] is a weak solution to the problem (1.1 - 1.7) in (0,T) x § if:

0>0 a.a in (0,T)xQ, o€ L*(0,T;L'(Q)), ue L*0,T; Wy*(; R)),

plo) € LY((0,T) x Q), gu € L=(0,T; L7 (; R?)):;

/ / 001 + ou - szo dx dt = / 000(0
for any o € C>=([0,T) x Q);

T
/0 /Q [Qu -Oip+ouu: Vi —|—p(g)divxgo] dz dt

T
= / [uvmu : Ve + Adiv,u divmgo} dz dt —/ ooug - (0, ) dzx
0o Jo Q

for any ¢ € C2([0,T) x O RY);

e the energy inequality
1 T
/ [g|u\2 4 P(g)} () do+ [* [ [plVoul + AdiveuP] dz i
Ql2 0 JO

dz, with P(p) = o p( ) dz,
1

22

1
< /Q [2Q0’uo‘2+P(Qo)
holds for a.a. T € (0,T).

(1.11)

(1.12)

The existence of global-in-time weak solutions under the hypothesis v > 9/5 in (1.4) was proved
by Lions [19]. The result has been later extended to the range v > 3/2 in [12]. Unfortunately, the
proof of existence in the “subcritical” range v < 3 consists of at least two steps performed at different
level of approximations and as such therefore not directly transferable to the numerical setting.
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1.2 Numerical method

Our goal is to propose a numerical method for solving the Navier-Stokes system (1.1 - 1.7) and to
show its stability with respect to the underlying spatial domain and convergence towards a weak
solution specified in Definition 1.1. To this end, we adapt the discontinuous Galerkin finite element
scheme proposed in [16], [17] for the compressible Navier-Stokes system.

Since we are interested in smooth spatial domains, we consider an unfitted mesh on a family of
polyhedral domains {€,},~0 approximating the target physical space € in the following sense: For
any compact K; C ) it holds

K; C Qy, for all h > 0 small enough, (1.13)
and, similarly, for any compact K, C R3\ Q,
K, C R*\ Q, for all h > 0 small enough, (1.14)

cf. Babuska and Aziz [2], [3].

Besides the relatively straightforward modifications to accommodate the case of variable numer-
ical domain, we also introduce a new “dissipative” discretization implemented in the upwind terms.
In such a way, we eliminate completely the artificial viscosity regularization used by several authors
(see e.g. Eymard et al. [9]) including the original scheme proposed in [17]. Very roughly indeed, this
new approach may be compared to adding an artificial viscosity to both equations in (1.1), (1.2):

Oro + div,(ou) ~ h*div,(g(|u|)V.0),

di(ou) 4 div,(ou ® u) 4+ Vyp(o) — div,S(Vyu) = h*div,(g(Ju|)V,(ou)),

where the artificial viscosity is active only for small values of the velocity amplitude |u|. The resulting
“dissipative” upwind operator remains therefore much closer to the approximated convective terms
in the continuous equations.

We note that the fact that the limit problem is defined on a possibly smooth domain may be of
interest when establishing convergence of the scheme. The problem (1.1 - 1.7) is known to possess
a local regular solution that can be extended to the full time interval (0,7") as soon as we control
the amplitude of the density, see Sun, Wang, and Zhang [20]. Moreover, any weak solution coincides
with the strong solution as long as the latter exists, see [11]. Consequently, boundedness of the
numerical densities implies unconditional convergence as long as the domain €2 is sufficiently smooth,
see Section 8 for details.

The paper is organized as follows. In Section 2, we introduce the necessary numerical framework
including the basic notation and several useful properties of the underlying function spaces. The
numerical scheme is introduced in Section 3, where we also state our main result concerning conver-
gence towards a weak solution of the Navier-Stokes system. In Section 4, we derive a renormalized



version of the continuity equation as well as the discrete version of the total energy balance. Section
5 is devoted to the stability of the scheme, containing the uniform bounds necessary for the limit
passage. In Section 6, we discuss the problem of consistency of the method rewriting finally the
numerical scheme in terms of the standard weak formulation based on smooth test functions. Having
established consistency, we show convergence of the scheme by adapting the steps of [10, Chapter 7].
Here, similarly to the existence theory, the key idea is the weak continuity property of the effective
viscous flux discovered by Lions [19]. Finally, we discuss the implications of some recent results
concerning the weak-strong uniqueness property and regularity of the weak solutions on the problem
of unconditional convergence of the numerical scheme in Section 8.

2 Preliminaries

In this section, we collect the necessary material from numerical analysis. For two numerical quan-
tities a, b, we shall write

a~bifa<ch, ¢>0aconstant, a~bif a ~band b~ a.

Here, “constant” typically means a generic quantity independent of the size of the mesh and the time
step used in the numerical scheme as well as other parameters as the case may be.

2.1 Mesh

We suppose that the numerical domains €2, admit a tetrahedral mesh E}; the individual elements in
the mesh will be denoted by E € Ej;,. Faces in the mesh are denoted as I', whereas I'j, is the set of
all faces. Moreover, the set of faces I' C 0y, is denoted I'j, ext, While 'y iy = I'p, \ Ihext. The size
(diameter of elements in the mesh) is proportional to a positive parameter h. For E, F' € E,, E # F,
the intersection ' N F' is either a vertex, or an edge, or a face I' € I',. The mesh is assumed to be
shape regular, meaning the radius of the circumsphere and the biggest ball inside each element are
“~” proportional to h. Finally, the family {Q},~0 will approximate a limit domain Q C R? in the
sense specified in (1.13), (1.14).

Each face I' € T'j, is associated with a fixed normal vector n. On the other hand, we write I'g
whenever a face 'y C OF is considered as a part of the boundary of the element E. In such a
case, the normal vector to I'g is always the outer normal vector with respect to E. Keeping this
convention in mind we introduce for any function g, continuous on each element F,

' : 1 :
out| __ 71z X nj - _ 13 L — pout _ in i out in
g*"Ir = lim g(- +n), g% = lim g(- —on), [[gllp = ¢** = ¢" {g}r = 5 (6" +g™). (1)

For I'y C OF we simply write g for g™. Occasionally, we also omit the subscript I' if no confusion
arises.



2.2 Piecewise constant finite elements
We introduce the space
Qh(Qh) = {U S L2(Qh) ’ U|E =ag € R for any F € Eh}
of piecewise constant functions along with the associated projection
1
19 L) — Qn(), T91]|p = |E|/EU dz;
we will occasionally denote
¢ [v] = o.

Finally, we recall various forms of (scaled) Poincaré’s inequality

Jo

1 q
v— [ vdz| dz < hq/ |V,v]? dx,
E

|E| /e

1 q
/ v 7/ o] dS,| dz < hq/ IV,0]7 dz, for any T C O (2.2)
E || Jr E
1 7 < ol
/ v— = [wvdS,| dS, < / V,0|? dz, for any T C 9E (2.3)
r || Jr E
for any 1 < ¢ < o0, in particular,
Hv - Hg[v]HL @) R BVl pagure), 1< g < oo for any v € WH(Qy,). (2.4)
(R,

2.3 Crouzeix-Raviart finite elements

A differential operator D acting on the x—variable will be discretized as
Dyv|g = D(v|g) for any v differentiable on each element E € E,.

The Crouzeiz-Raviart finite element spaces (see Brezzi and Fortin [4], among others) are defined
as

Vi(Qp) = {v € L*(Q) ‘ v|p = affine function, F € Fj, / [[v]] dS; =0 for any I' € thint} , (2.5)
r

together with
Vio() = {u eVi| [vas,=0foranyT e rh,m} . (2.6)
I
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Next, we introduce the associated projection
H,‘{ : Wl’q<Qh> — Vh<Qh)
requiring
/HZ[U] dS, = / v dS, for any I' € I',.
r r

It is easy to check that

div, I} [u] w dz = [ divyu w dz for any w € Qu(), (2.7)
Qh Qh
and
/thv VIl [p] do = /Qth -V, da for all v € V,0(R), ¢ € Wy (), (2.8)

see [18, Lemma 2.11].
We also recall the the error estimates

HU—HX[U] )—I—hHVh (U—H}‘:[U])

,S hm ||vmv||LQ(Qh7R3m) ) m = 17 2, ]- < q < OO, (29)

La(, La(Qp;R3)

for any v € W™4(€,), see Crouzeix and Raviart [6], and [18, Lemma 2.7].

2.4 “Dissipative” upwind operator
Denoting
[c]" = max{c, 0}, [¢]” = min{c,0}, 0 = ‘1£| / v dS,.
I

we introduce a dissipative upwind operator Up[r,u] on a face I in the form

in out

Up|r, u] :%([ﬁ-n+h‘1]++[ﬁ.n_ha]+)+r

(f-n+nT" +[@-n-h7)), (210

with a positive exponent o determined below. Note that such a definition makes sense as soon as
r € Qn(), u € Vi (Q; R?) and T’ € T .
Setting, formally, h* ~ 0 in (2.10), we obtain the conventional definition of the upwind operator

rfa-n]t + G- n] .

To illuminate the dissipative character of the new upwind operator, we may also write

ha

dissipative component

Uplr, ] = i n i = [y (7)) (2.11)

conventional upwind



where

0 for z < —1,
H(z+1)if —1<2<0,

—i(z-1if0<z<1,

0 for z > 1.

Remark 2.1 The numerical diffusion supplied by the dissipative component is quite subtle; it acts

only when |- n| < h* and has amplitude h®. Note that the conventional artificial diffusion used by
Eymard et al. [9] and [18] corresponds to

—h* ([l -

For r, ' € Qn(,), u € Vi, (U, R?), ¢ € CH(Qy,), we may use Green’s theorem to compute

/ﬂh raV,pde = ) /Eru-Vx(qb—F) de = > /6\E(¢—F)ru-nd8x+

EEE), EEE), Qn

(F—¢)rdivjude. (2.12)
Furthermore, going back to (2.11) we deduce

> / Up[r,u] [[g]] dS, (2.13)

FEF}L,int

—- X X [ ol ) s - X [ Gl (57 dss

[e%
EcE, I'pCOE Pely int r h

for any 7,9 € Qn(), u € Vi o(Qn; R?). Finally, using formula (2.13), we may compute the first
integral on the right-hand side of (2.12) for u € V},o(Qp; R?), specifically,

> /8E(gb—F)ru-nde

EeEh

S /aE‘”“'“ s, -y ¥ /FEFr([ﬁ-n]*—i—[ﬁ-n]> ds,

Eeby, EcE, TgCOFE

= > [ Uplra () as S0 [ 1) Tl (S ) aS

(0%
FEFh Ferh,int h

+ 3 /aEqﬁru'n s, — Y > /FEF(r—rout)[ﬁ~n] ds,.

EcEy EcE, TgCOFE

9



Thus, plugging the resulting expression in (2.12) we obtain a universal formula

| Ve dr= 3 [ Uplrwl [(F)] a8, +h7 35 [ (] [[F]]X<ﬁ};a“> s,  (2.14)

rery Pely int

Y X [P0 ) faenl S+ X [ ortu—w)endS, + [ (F - o)rdivin do

EeFE, 'pCOE EcEy

for any r, F' € Qu(Q), u € Vi o(Qn; R?), ¢ € CH(Qy).

2.5 [P — L% and trace estimates for finite elements

The estimates listed below are direct consequence of the assumed shape regularity of the mesh and
follow by a scaling argument. We claim that

1
o laiomy © 5 (1olaqey + BVt ) » 1< 0 < 00 for any v e CH(E); (2.15)
whence )
ol oy = 3 1002 for amy 1< g < 00, w e P, (216)

where P,, denotes the space of polynomials of order m.
Similarly,

1 1
]l oy < WG wl| ey 1 < g < p < 00, w € P, (2.17)

and, making us of the inequality
1 1
(Z af) v < (Z aff) i whenever p > q,
we finally obtain
el < h*G D [wllzag,) 1 < g <p < oo, for any wlp € Pu(E), E€ B, (218)
We will also need a variant of (2.17) and (2.18) for the functions of the time variable ¢ € (0, 7)),
where the discretization is of order At. Evidently,
1.1
]| oan < (A8 ]| paan 1< g < p < oo, (2.19)
and, therefore
1.1
lwllzor) = (AHGE™D|w] o 1 < g < p < oo (2:20)
for any w that is constant on any time segment [jAt, (j + 1)At] contained in [0, 7.
Finally, we recall the estimate
3 / v — 3% dS, < h/ Vol da for any v € Vio(Qn; R?) (2.21)
rer, /T Qn

that follows directly from Poincare’s inequality (2.3).

10



2.6 Discrete Sobolev spaces

We introduce a discrete H'-(semi)norm

ol @n= 3 [ s,

el int

for v € Qn(2,). We report the following estimate that may be seen as a discrete analogue of the
well-known estimates for Sobolev functions in W12

/m- [v(@) — (@ = &) dz = (|¢]* + Rl 101177, (0nime): (2.22)

for any compact K; C Q, [£| < dist[K;, 0Q], v € Qr(2), see Eymard, Gallouét, Herbin [8, Section5].

Remark 2.2 In view of our hypothesis (1.13), the expression on the left is defined provided h =
h(K;) is small enough.

Similarly, we may define a discrete H'—norm on space Vio(€2p,) setting

|’U"§J‘1/h(9h) :/Q [Vyol* dz. (2.23)
h

In view of the limit passage €, — €2, it is convenient to extend a function v € V}0(£2) to be zero
outside 2. With this convention, we have

HUHLG(RS) > ‘|v"H‘1,h(Qh)u (2.24)

and
[ @) = vl = OF du S (1€ + higl) IvllEy o, (225)

for any v € V},0(Q4), see Gallouét et al. [15].
Finally, the following assertion follows from (2.22), (2.25) and can be seen as a special case of the
results of Christiansen, Munthe-Kaas and Owren [5, Proposition 5.67]:

Lemma 2.1 For any function v € V},o(Q,) there exists R} [v] € C°(R3) such that
< <
IV R, W]l 2R m2) ~ HUHH‘l/h(Qh)a o — RY V]|l 2(rs;re) ~ h”UHH‘l/h(Q;L)-
Moreover,
R/ |k, = 0 for any compact K, C R*\ Q whenever h > 0 is small enough. (2.26)
Similarly, for any g € Qn(S2,) there is Rg lg] € C*(R3) such that
< <
Ve R 9l z2smey ~ gl 0ns 19 = B9l 2arsy ~ Pllgllay (o
for any compact K; C 2.

11



Remark 2.3 The regularizing operators R) [v], R2[v] can be taken as a spatial convolution with a
reqularizing kernel , see [5] for details.

3 Numerical scheme, main result

Having collected the necessary material, we introduce the numerical scheme to solve the Navier-Stokes
system (1.1 - 1.7).

3.1 Numerical scheme

We start by approximating the initial data by their projections onto the space Q(€2;). To this end,
we assume that both gy and ug are functions defined on the whole space R® and set

oh =T [oo] € Qn(), uj =TT [ug] € Qn(Q; R?). (3.1)
Next, we introduce the discrete time derivative

by — by

DbF =
th At

, At = h,

and define successively the sequence of numerical solutions [of, u}]js0, k= 1,2, ...,
o € Qn(), uy € Vi o(Q; R?)

satisfying:

CONTINUITY METHOD

/ Dtglﬁgb dz — Z / Up[gﬁ, ul,j] [[¢]] dS, =0 for all ¢ € Qr(); (3.2)
n NP
MOMENTUM METHOD
/Q Di(ehty) ¢ de— 37 /FUp[giﬁ,‘;,u’“] [[9]] dS. (3.3)

el int

+/Q [uvhui 2 thb aF )\divhu’,jdivhgb} dx — /Q p(gi)divhgb dz = 0 for all §Z5 € Vh,O(Qh; R3)
h

h

12



Remark 3.1 We recall that 6} = H,?[uﬁ] denotes the projection onto the space @ of piecewise
constant functions. As we will see, our discretization of the convective term in (3.3), taken over form
[18], yields a numerical analogue of the enerqy inequality providing the necessary stability estimates.

3.2 Main result

Before stating our main result, it is convenient to extend the numerical solution to be defined for
any t > 0. To this end, we set

on(t, ) = gg, uy(t, ) = u2 for t <0,

on(t,) = of, uu(t,”) = uf for t € [kAL, (k+1)At), k=1,2,....
Accordingly, we set
Uh(t) - Uh(t - At)
At

Besides, we also frequently use the already introduced convention that the functions in V} (€2,) are
defined on the whole space R?, being extended to be zero outside €2j,.
Our main result may be stated as follows:

Dt'l}h(t, ) = R t > 0.

13



Theorem 3.1 Let Q) C R? be a bounded Lipschitz domain approzimated by a family of polyhedral
domains {Qp}n=o as in (1.13), (1.14), where each y, admits a tetrahedral mesh satisfying the
hypotheses specified in Section 2.1. Let > 0, A > 0, and let the pressure p = p(o) satisfy the
hypothesis (1.4) with

v > 3.

Let [on, up)p=o be a family of numerical solutions constructed by means of the method (3.1 - 3.3)
such that
on >0 for all h > 0,

with
At~h, 0<a<l,

where « is the exponent in the dissipative upwind (2.11).
Then, extending on, Uy to be zero outside €y, we have, at least for a suitable subsequence,
on — 0 weakly-(*) in L>=(0,T; L7(Q)) and strongly in L'((0,T) x ),

wy, — u weakly in L*(0,T; L°(Q; R?)), Viu, — Veu weakly in L*((0,T) x Q; R*?),

where [p, 1] is a weak solution of the problem (1.1 - 1.7) in (0,T) x § in the sense of Definition
1.1.

Remark 3.2 As a matter of fact, the assumption that ) is Lipschitz is not really necessary and can
be considerably relaxed, see [13]. It is enough to assume that the limit domain enjoys the so-called
segment property, meaning each point on the boundary 0S) is an endpoint of a segment of fixed length,
the interior of which is contained in R3\ €.

Remark 3.3 The existence of the numerical solutions [on,ws] can be shown by means of a fized
point argument exactly as in [18].

Remark 3.4 The assumption p'(0) > 0 facilitates the analysis but can also be relazed, see [18].

14



4 Renormalization and the total energy balance

We introduce a renormalized variant of the continuity method (3.2) and derive a discrete analogue
of the total energy balance (1.12). In what follows we use the notation

co{A, B} = [min{A, B}, max{A, B}].

4.1 Renormalized equation of continuity

Take ¢ = b'(of), where b is a smooth function, as a test function in the continuity method (3.2) to
obtain

k k Qi - Qﬁ_l k
/Qh b/(gh)DtQh dr = 0 Tb,(9h> dx
B b(of) —b(ok™) At . (of—d
~ Ja, [ At - &) T4, de

At oF — qu 2
— D k - e h h
/Qh 1b(0y) dzx a, 2 V(&) ( At dz

for a certain & € co{of ™", of }.
Similarly to (2.13), the upwind term can be written as

> [ pleh ) [peh)]] as. e S [ [[eh]] [[Fab]] x (S0) as.

== > 2 /F V' (ar) [Q;’i[ﬁ’é-nVJr ()™ [ﬁ’g~n]] ds,
EcE, TgCOFE E
==X 3 [, Dbt ur o (o)) @ n] s,
LI . (b(eh) —'(eh)h) - n s,
T (™) v () o s,
= o, (b(o) = ¥'(of) ok ) divau do
DI (e ((eh)™) = veh ()™ ) i -m- as,

15



-2 > /FE (b(ef) — ¥/ (cf) k) [af - m]~ dS,

E€eFE, 'pCOE
. 1 2 . _
= [ (vleh) — ¥(h)eh) diviay do+ 5 S S [ v [[oh] ] k- m] S,
Qn E€E, TpcoE’1E

Thus, summing up the previous estimates we obtain the integrated renormalized continuity
method:

[, Dbty [ (¥(ehek — bleh) divauf do (1)
At 11 Qk_Qkil ? 1 17 2 . _
= [, S (B ) are g 3 3 [ ol [[]) ol s,
>y Lo [ x (520) as.

with

&8 € co{of™, o} on each element E € Ej, nf,wy € co{of, (0F)°™} on each face I € Ty,

4.2 Energy inequality

Our goal is to derive a discrete counterpart of the energy inequality (1.12). To this end, we take
¢ = u} as a test function in the momentum method (3.3). First, in accordance with the renormalized
continuity method (4.1), we claim that

2

/Q p(of)divyuf do = — /Qh D,P(o}) dx—{—; Z Z /FE P"(nf) ((Qﬁ)out — Qk> [@f-n]~dS, (4.2)

h Ec€E, TgCOFE
~ k—1\ 2
a ek Nk u-n At 1 ek Qﬁ—Qh
—he ST [P ([ () ase— [ S (25 ) e,
FEFh,mt
where the pressure potential P has been introduced in (1.12).
Next, we compute
kok _ k—lok—1
=k ko ~k OnUp — Op Uy
u;, - Di(o;u dx:/u- dx 4.3
/Qh n - Di(opuy) , P At (4.3)
ko k-1 sk okl
_ k|2 Oh — Op k—1k  Up — Wy
~ Ja, “uh‘ A v B
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2
dzx.

:/Q “ ‘ Dyoj; + 0 I;Dt’ } dx—i—/ At o1 k-1
h

The upwind term reads

S [ Unlekah.dl- [[a]]as, 400 Y Hggagﬂ.“ﬁg“x(ﬁij) s, (44)

At

el int I'ely ing
- R out o
== > [ ah (g + (dher)™ o) as,
EcE, T'gCOFE
== % [ laf (o fmhen (o)™ w7 ) s
E€E;, 'pCOE

#3 3 f()" wa (a - (a)™) as,
GBI R

FGFh int

= /Up of,uf) H‘uh‘ ” dS, + h®
el

—l—; Z /F Qh Out uh n| (’ ‘ — ( )0m2> dsS,

EeEhFEcaE

_+_1 Z / Out 2 (gﬁ)out [ﬁi ‘ n]_ as,
EEEhFEcaE I'e

1 he R Sk
35wt (o] dw2rgmm@m-muzrnxczf)

—i-} 3 / out 2 (Qi)out G- dS,

EeE rpcoE’lE

Summing up (4.2-4.4) and making use of the continuity method (3.2) we deduce the energy
inequality

1
D [2@2|ﬁ2|2+P<92) do+pu [ (Vg de/ [divaug|* do (4.5)
h h
At oh— o', e |u - wf
at A% ey S B I

B Z Z / out n]f u > ds,

EcE, 'gCOFE
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~k ~k out|?

+he Y /F{QZ}

Ielh int

2oy (hax (ﬁ]f,;;n> + !ﬁﬁ-nl) [eh]]" as. <o

FEFh,int

with A = inf {P"(0)} > 0.
0>0

5 Stability

In this section, we derive uniform bounds for the family [gp,up]p>0 independent of the time step

At ~ h and the element size h.

5.1 Mass conservation

Taking ¢ = 1 in the continuity method (3.2) we obtain

/ on(t,") da::/ 0 dx:/ 0o dz for any h > 0,
Qn Qp Qpn

meaning the total mass is conserved by the scheme.

5.2 Energy bounds
The energy inequality (4.5) yields

1 T T
/ [ghmhy? + P(Qh)] () detp [ [ 19w de ar+x [ divaf? de dr
Qh 2 0 Qh 0 Qh

L g
< [ |GG + P(eh)] do = Eo, Eon 1
h

whence
SUD, ¢ (0.1 |v/@r A (T, ) L2(@usrey ~ 1,
sup,¢ o)l on (7, )l vy ~ 1,
and

T
/ / |thh|2 dz dt ’SJ 1;
0 JQp

18
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whence, in accordance with (2.24),

un | 2(0,7;6(r3:R3)) SE N (5.6)

where the bounds are uniform for A — 0. We recall that u;, as well as other quantities, extended to
be zero outside the numerical domain ), may be regarded as functions on the whole space R3.
Finally, we record the bounds resulting from numerical dissipation:

2 . 112
>/ [@Z—gﬁ‘ll +opfap | de S (5.7)
k>0
T out 1~ — |~ ~ \out 2 <
- > / / (0n)™" [4y, - 1] )uh—(uh) ds, dt ~ 1 (5.8)
EcE,TrcoE’0 “l'e
T ES ~ out |2 u, - n
. / /{@h}\uh—(uh) ' x( - ) ds, dt < 1 (5.9)
FGFh,int 0 r

and

) /OT/F (Iﬁh-n\ by (ﬁ’;lf» lon]]2 dS. dt < 1. (5.10)

Felp int

6 Consistency formulation

Having collected all the available uniform bounds, our next task is to verify that our numerical
method is consistent with the variational formulation of the original problem.

6.1 Continuity method

For ¢ € C°(R?), take TI1¢[¢] as a test function in the continuity method (3.1). Using the formula
(2.14) for r = of, u = uf, F = I1¢[¢] we check without difficulty that

|, chuk- Voo dr= 3 [ Uplofuf] [[11[6] ]] as,

T'el’y,

- S [ (ool o] wEon as.+ S [ ookl — i) n s,

EeFE, 'rCOF EcEy
~k

e 3 [ {laf]) [0 )] () as.

1—‘el_‘h,int
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Note that here
/ (TI1¢[¢] — ¢)of divyul do = > / (19 [¢] )ordivyul doe =0
n E€E,
as div,uf is constant on each element F.
Now, by Holder’s inequality,

> X (o= i) [[a]] koo

S 5 [lo-ndoll [[et]] 1 [k on- | as,

E€E), T xCOE Tery,
1/2 1/2
Z/ gh u~n]"dSm >y / ¢ — 2| ])2‘ﬁ2~n‘dSz :

Tery, E€E), T xCOE

where the first integral on the right-hand side is controlled in L*(0,7) by (5.10).
As for the second integral, we may apply Holder’s inequality, combined with Poincaré’s inequality
(2.4) and the trace estimates (2.15), (2.16) to obtain

> > [ (o-nfe)|afn ] as,

E€E), TgCOE
j 2v—6
3y
Z/ 6— ()™ ds, > [ |a €77 g,
EGEh I'5COE rpcop e
N hEZEh ‘uhH 27—6 ER3) || ¢||L76-:6(E R3) Huh’ L2'y 6(Q R3) || quLﬁ:e (Q R3) )
Finally, we use the interpolation L? — L7 estimates (2.18), (2.20), and (5.6) to conclude
<, p,min{l, 57 23k
hHuh’L% S (3 R3) Iv ¢HLVGJ:6(Q \R3) h ? ‘uh LS(Q,;R3) IV ’3¢” (i R?)
min{1, 'Y 1/2 1/2 min{1, 7 1/2
= WS AN AN ] 1901 S I AT
The next step is to estimate
> [ oohul— i) mdS, = 3 [ (0 - G)oh(ul — i) -n dS.,
rely, rery
where, by Holder’s inequality, (2.21), and (2.15),
> (6= es(us — ) -mas, < > &= k] ey o =00, 2,
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< 13k k
~ B ol v | Vg [ L2 m3x3) | Va @ | L2 (0,73 -

The last step consists in controlling the numerical viscosity. To this end, we first claim that (5.10)
gives rise to

e S [ e dsear s (6.1)

Ieln int

Next, we get

> [ llon) [[ule]]] as.

el ing

Y Y [ el - ¢f ds.;

EE€E), TgCOENT ), iy L 2

whence, by virtue of (6.1) combined with (2.4) and (2.15), we may infer that

> [ {[a] [[mfe]] (n) s,

I‘erh,int

+a

1ta
o S hE ()| Vsl rz@nrnys 17820 ~ 1.

Remark 6.1 Our estimates of the numerical viscosity are in fact considerably better than in [18,
Section 5.3, Lemma 5.5]. This is due to the fact that the pressure considered here satisfies p'(0) > 0
yielding (5.10).

Using the standard representation theorems for bounded linear forms on Sobolev spaces, we
reformulate the continuity method as:

|, [Diné = orun - V] do= [ Ri(t.)- Voo da (6.2)
for any ¢ € C>°(R?), where R} is a piecewise constant of the time ¢ € [0, 7] such that

HR,ll < hP for a certain § > 0. (6.3)

6y
L2(0,T;L57=6 (R3;R3))

6.2 Momentum method

In order to derive a consistency formulation of the momentum method, we take
Iy [¢], ¢ € C=(% R?),

as a test function in the momentum method (3.3). Note that, in accordance with the hypothesis
(1.13), ¢ € C>(,; R?) as soon as h > 0 is small enough. By virtue of (2.7), (2.8), we have

/Q 1V VAIT (6] + Mdiviufdivy T} [¢]] do = /Q 1V Vo6 + Mdivyuidivee| d,
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and

| plen)div.11} (] de = | plon)dive da.

Consequently, we may rewrite (3.3) in the form

/QDtQ ay - Qﬁdx—/ Qhuh®uh V.o dx (6.4)

+ / 1Vt - V.6 + Adivyufdiveg] de - / ok, 98)div,d do
Q

-/ Dot (6~ 11}[]) dot > J Uplegahw] - [[07e]]] dS. — [ ohuf @ uf: Voo do

rery,

= /Qh Dyofiy - (¢ — 1} [g]) do+ > / ony) [ - ]t + (gpup)™ [ -] ) - {[Hﬁqﬁ]ﬂ ds,

I'el’y,

_/ dhuf@uf: Voo do—n® Y [ [lovu]- [[Hﬁ@HX(ﬁ%n) s

1—‘el—‘h,int

Our goal is to estimate the four integrals on the right-hand side of (6.4). We proceed in several
steps.

6.2.1 Error in the discretized time derivative

We have
|, Deckat - (0 - 1)) da
[ VAT (o) an s [ BT (o)) ae

where, by virtue of Holder’s inequality and the estimate (2.9),
-1 b1

R W (1Y) de

N A 1/2

1/2 — -

< b (/Qeﬁ (W) d:c) o 1)
1/2

- _ukt 2
S ek 2 (At [ (M) ar) @0 el

27
Ly=1 ()

TR
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In accordance with the energy estimates (5.7), we have

_ _ 2
ST At At/ ot L Al dz | < 1. (6.5)
Q, " At

k>0

Applying a similar treatment to the second integral we get

k-1
[ A8 (-1 (e]) do
1/2

Qk_Qk—l 2
S(At/ (45 d“"’) et ) (ALY 20 Ve,
Qp t

where the first integral on the right-hand side is controlled by means of (5.7).
Thus we may infer that

S VR OIVel@, Irillzon ~ 1. (6.6)

‘/Qh Dy(ontin) - (¢ - HXM) da

6.2.2 Error in the upwind term

Take F = 11} [¢] = I?T1Y [¢] in (2.14) to obtain

> /F ((onun)™[@ - n]* + (guu)™ @ 0] ) - [[11} [¢]]] dS. — /Q ghuf @ uf: V.0 do

rery,
=> > /F (20 (6] — ¢) - [[ofuf]] [ -n)~ dS, + 3 /E O (6 — TIOTLY [¢])diveul de
EEE, TgCOE" " E EcEp
3 % [ o @l — ) nas,
E€E, TpcdE’1E
- > X [ (b (o - nfuyle)) (@ n)- [[uf] as.
EcE, T'gCOE" E
£ Y % [k (o mpnylel) (i -nl [[df]] as.
EcE, 'gCOF E

+ 3 | ofuk(s - IPILY [¢)divauf do
E

EcEy

+Y % /FEgb«l?fLQZ(ﬁfL—uﬁ)~ndezfl—|—Iz+Ig+I4.

EcE, T'gCOFE
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Step 1:
Applying Holder’s inequality to I; we obtain

nl=| Y [, by (o] — o) fuf -nl~ [[o]] s,

EEEh

1/2 1/2

R 12 B 2

S X [ faken|[[wf]] e ) (X X [ (b |an| (nfn)le) - 6)” as. |
EE€E, TgcoE 'l E€E, TgcoE’1E

where the first term is bounded in L?*(0,T) in view of the energy estimates (5.8).
Next, as uf are continuous on each element, we have

> % [ e fab o] (uf01e] - )" as,

EeE, I'pCOE

OV 2 r 2
I (6] — ¢ oy g T =1

Y

< D lobllzsom bl (o re)
Eeby,

where, in accordance with the trace estimates (2.15), (2.16), and the L” — L9 estimates (2.18),

2
HSH]‘{ [¢] - Qb L7(8E;R3)

> lokllzaom 0kl (5,r2)
EcEy,

E;R3

1 2 2
< claflle@ury Yo loklzae (| (6] - ¢|| + W2 |Vl L m9)
h L( )

E€Ey,

1 2
WH“ZHL@‘(%R% > lleillzae <HH§HZ[¢] —¢

T V200 )

E€E), LY (B R)
< bl mll oo (T2 16] = 67 ) o + 12 1960 i)
Finally, by virtue of (2.4), (2.9),
HHgHZM —¢ LY (9,3 R3) = HHg[HZM — 9l L7 (9,;R3) * Hngm —¢ LY(9,;R3)
< 1010) = 0, gm0y + [IR10) = 0, g ) < Vbl i),

As v > 3, we conclude that

1
1Ll = ~ A OIVedll@, Irilleior ~ 1.

(6.7)

S [, (i) - o) (- nl- [[ghuf] as.

EcEy

24



Step 2:
Next, we have

|| =

S O% [oak (el - o) (@ o) [[e]] as.

EeE, T'rCOFE

1/2
-l [[o]] as, 2l m (1711} 0] — of
(e (A o) (3, it

where, in accordance with (5.10), the first integral is uniformly bounded in L?(0,T).
As for the second integral, we use Holder’s inequality to deduce

> % [ JukPg - nf[0gm(s - of as,

Ec€E, T'gCOFE
Y—2
< > HHSHXM—Gb“%w(aE ( > / |ﬁh|7 2|u|7 dS) .
E€Ey, IpCOE
Next, by virtue of the trace estimate (2.15) and Holder’s inequality,
ﬂ
2y 2 !
> IR 6]~ 6l om ( S fa dsm)
E€E, I'pCOE

S (WP ] = 6l e + 17 I VadllEs)) (

EeE), I'pCOE

_2 -2 737”
S Y (IR 6] = ol + 0 IVL0l ) ( [ 185 as.)

EcEy,

y—2

3y

| X[ rak as,
rgcoE”’lEe

Furthermore, by (2.16) and Holder’s inequality,

-2 _2 e 3 3y
> (PRI 6] = 613 () + 17 Vel ) ( /MIUZW? dsx)

EcEy,

212

25

> [ lof= g njm

1/2
dsx)

2y—1

dsm)




y—2

3y

x ( 3 /FE i[5 de>

I'ECOE

1 e e
Z (hHH;?H}‘L/[Cb] _¢||%’Y(E)+h||vl‘¢||%ﬂ(E)> (/E|u;€l|v2 dl‘) (/E|uﬁ|v2 dI)

EecEy,

TR 6] = Sl1Z-

A

2
3
Ly=2(Qp)

2

<
~ 3
Lv=2(Qp)

k
]

]

u,

k
R

3y

2 ~k
5 )+ h|V29l1s @) H“h‘ L3772 ()

1
h L2 (y,
3 5 —max{5;3

5 gy © BBV,

S b Ved |34 H“i‘ L3772 ()

3 .
L5@) provided v > 3,

where we have used (2.17).
Finally, using the time estimates (2.20) we infer that

5 _max{8;3 —1,5 _max{8.3 1 3
B2 |V, 601 7 ) [uh < (A1) 2nE BN V6 o) (A0 i,

3
L5(Q4)

Summarizing we conclude

|Io] =

> % [ ak (nPnTe) - o) fug-n) [[of] as.

E€E, TpCOE
—max{2;3
S ()| Vabl vy, Il 1

Step 3:
Another application of Holder’s inequality gives rise to

T3] =

> /E of il (¢ — TP [¢])diviuf dz| =

EcEy,

S [ k(o — 11} ) divi; do

EcEy

< okl einsy X lldivau |l l[uf | o |6 — 1) 6]

Beb, L3(E;R?)
Now, by virtue of (2.17) and (2.9),
lohllzo@n D Ndivaug]lzece k]l Loz ‘cb — 11} [¢] 3B
EGE}—L b
1 .
S i b vl 1 s 6 = T 061

_3 .
~ B o i diviag |z, 105 | o) 1V 2@l 15 0y
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yielding the desired conclusion

Ll =| Y [ ehah(o - gy [ehdivaug de| 2 Vari@) | Veslow, Iriluen 1. (69)

EeKy

Step 4:
The last integral

=Y ¥ [ o-uieh@;—uf) nas,

Ec€E, TgCOFE

can be handled in the same way as its counter-part in the continuity method.

6.2.3 Bounds on numerical dissipation

Finally, the numerical viscosity

~k

w3 [l [ (M7 a5,

Pely int

can be estimated by means of (5.9), (5.10) in a similar way as in the continuity method

k

[ ol [[R]]x () as.

Fth,int

he S RS (O]|V ]| L e - (6.10)

Summing up (6.7 - 6.10) we obtain the consistency formulation of the momentum method:
/QDt(Qhﬁh) ¢ dr — /Q(Qhﬁh ®uy) : Ve do (6.11)

+ /Q [V htp : Voo + Adivaupdived] di — /Q plon)divye dz = /Q R2(L,-) : Voo du,

for any ¢ € C>(£2; R?), where R? is piecewise constant in time,

SK8 B >0. (6.12)

=

L
L1(0,T;L7 =T (s R?))
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7 Convergence of the numerical solutions

We are ready to establish convergence of solutions of our numerical method to a weak solution
of the limit problem. We take advantage of the consistency formulation derived in the preceding
section that converts the problem to the framework of the mathematical theory developed in [10]
and [19]. The reader may also consult [1] for a complete existence proof based on the technique of
time discretization very close to the numerical method applied in the present paper. Throughout
the whole section we shall systematically use our convention that all quantities defined on €2, are
extended to be zero outside €2y,.

7.1 Local pressure estimates

The uniform bound (5.4) is not sufficient for passing to limit in the pressure p(p), the latter being
bounded only in the non-reflexive space L>(0,T’; L*(R?)). To get better integrability of the pressure,
we use the quantities

¢ = oV.A  nonl,

where
1
€[?

and F denotes the standard Fourier transform, as test functions in the consistency formulation (6.11)
of the momentum method:

olt,2) = B(ho(a), v € C2(0,T), n, w e C2(Q), A~ o] = Fo, [ Fo m] |

T
/0 /QSDU {P(Qh)@h - )\thiquh} dz dt = (7.1)

[, D=tV o3 o) o i [ [ 2 V(o087 )
" /oT /Q Vi = Ve [pVo(A o)) da dt

- /OT/Q(Qhﬁh ®up) : V, (SOVx(A_l[Uth dz dt + /OT/QDt(Qhﬁh) - oV (A non]) de dt.

Furthermore, using a discretized version of the “by-parts integration” formula and the consistency
formulation of the momentum method (6.2), we deduce

[ [ Do) oo drar = — [ [ PEEEIZE0 5, g (A o)) ar at (7.2
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T
— | entt = At = A1) VAT [ Dygy] dr
(T et AL —o(t) 1
_ /O /Q v oniin - Vo (A nor]) da dt

T
+ [ ponlt = A0EA(E = A1) - VoA [pdiva(orw)] da dt
0 JQ

T
+/ / pop(t — At)u,(t — At) - V,A™! {ndivaH dz dt.
0 Q

We observe that the expression on the right-hand side of (7.1) is bounded uniformly for A — 0.
Indeed combining the estimates (5.3), (5.4) we have

<
sup |lopup(T, - spyy~ 1, ¢ = ——, 7.3
7€(0,T) || " h( )HLQ(R ) Y +1 ( )
||ghuh||L2(0 T;Ls(R3;R3)) N 1, s= 677 > 2 if v > 3. (74)
Eiai} ’ ,y+6

The integrals on the right-hand side of (7.1) can therefore be estimated in the same way as in [10,
Chapter 5] and we may conclude that

| onll r+1 (0, x iy < 1 for any compact K C €. (7.5)

7.2 Weak sequential compactness

In accordance with the uniform estimates (5.4-5.6), there is a subsequence of numerical solutions
such that
on — 0 weakly-(*) in L>°(0,T; L7 (R?)), (7.6)

and
u;, — u weakly in L*(0, T; L°(R*; R?)). (7.7)

Moreover, we have ¢ > 0, and, by virtue of (5.1),
/ o(r,:) doz = / 0o dz for a.a. t € (0,7).
Q Q
Next, it follows from (2.9) that

|ay, — uh”L?((o,T)th;RB) — 0, (7.8)

in particular,
), — u weakly in L?(0,T; L°(R*; R?)) (7.9)
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provided 1y, were extended to be zero outside €2y,.
Finally, we observe that (5.5) implies

Viu, — V,u weakly in L2((0,T) x R*; R¥3); (7.10)
whence the limit velocity field satisfies
uc L*0,T;W"(R? RY)).

Remark 7.1 The fact that the weak limit of Vyuy, coincides with Vi u follows from the “density”
of the spaces Vi in Wy stated in (2.9).

In addition, we may use Lemma 2.1 to construct the smooth approximations R} [uy],
RY [u;] — u weakly in L2(0, T; W"2(R?; R?)).

It follows from (2.26) that the limit u vanishes on any compact K, C R3\ Q. Since Q is Lipschitz,
we conclude

u e L¥0,T; Wy (Q; R%)).

Remark 7.2 Note that this is the only point, where certain reqularity of 0S) is needed. As already
pointed out, the assumption §2 to be Lipschitz can be considerably relaxed.

To establish the weak convergence of convective terms, we need the following result that can be
seen as a variant of [17, Lemma 2.3].

Lemma 7.1 Let {v,}ns0, {wn}nso be two sequences of functions in (0,T) x Q, Q a domain in RY,
such that

Up, Wy, are constant functions of the time on any interval [kAt, (k + 1)At), k=0,1,..., At

Q

h,

1 1 1 1

vy, — v weakly in LPY(0,T; LY(Q)), wy, — w weakly in LP*(0,T; L%(Q)), —+ — = —+ — =1,
P1 P2 q G2

‘/ﬂDtvhﬁb dz| < ra(®)||¢llwrn(q) for certain k,p > 1, |72 ~ 1, (7.11)

lwn(t, x) — wi(t, 2 — )l pre (.10 — 0 @s €] = O uniformly in h. (7.12)

Then
vpwy, — vw in the sense of distributions in (0,T) X Q.
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In agreement with the gradient estimates (5.5) and the compactness properties of the space Hy,
stated in (2.25), we observe that the sequence {uy, },~¢ satisfies the hypothesis (7.12) with ps = ¢o = 2
Q) = Q, while the hypothesis (7.11) can be checked for gy, opt, with the help of the consistency
formulations (6.2), (6.11). Thus a successive application of Lemma 7.1 gives rise to the following
limits: ]

oy, — ou weakly in L2(0,T; L775 (Q; R®)), (7.13)

and
onli;, ® 1, — ou ® u weakly in L4((0,T) x €; R**?) for some ¢ > 1, (7.14)

Remark 7.3 As for the exponent q in (7.14), we recall that
opuy € L>=(0,T; L%(Q; R*) N L*(0,T; L%(Q; R*) < L"((0,T) x Q; R*) for a certain r > 2

by interpolation.

7.3 Limit in the field equations

At this stage we are ready to pass to the limit in the consistency formulation of the numerical method.
Letting h — 0 in (6.2), (6.11) we obtain

T
/0 /RS [00up + ou - V| da dt = —/RS 00(0,-) dz (7.15)
for any p € C°([0,T) x R3);
T _
/o /Q {gu O +ou®u: Vyp + p(Q)dingp} de dt (7.16)

T
= / / [;qu : Ve + Adiv,u divxgp} dx dt — / ooug - (0, ) dx
0 Ja Q

for any p € C°([0,T) x Q; R?).
Remark 7.4 In view of the local pressure estimate (7.5) we may assume that

B _an
p(or) = plo) weakly in L™~ (K) for any compact K C €.
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7.4 Strong convergence of the density

In order to finish the proof of convergence we have to show strong (a.a.) pointwise convergence of

the numerical densities in order to replace p(g) by p(p) in (7.16). To this end, we use the method of
Lions [19] based on a “weak continuity” property of the effective viscous flux. Going back to (7.1),
(7.2), we focus on the term

/0 ' /Q Vit : Vo [pVa (A o)) de dr. (7.17)
Following [18], we perform a “by parts of integration” to obtain
/thuh V.6 dz = /thuh (Vo - V1) e dx—i—/Qthh V7o do
= /chrlhuh ccurl,¢ dr + /Q Viuy, : V;fqﬁ dx

= / curl,uy : curl,¢ dx +/ divpuy, : div,¢ do + error term,
Q Q

where the error is estimated by means of [18, Lemma 8.2] as
‘/Q thh . ngﬁ de — /Qdivhuh . divxgzﬁ dx’ ,f, thhuhHL2(Q;R3x3)Hv2¢HL2(Q;R27). (718)
Returning to (7.17), we get

/oT /Q Vil : Va [90vw(A_1[779hD] dz dt

g -1 T T -1
/o /chrlhuh : curl, {govx(A [ngh])} dz dt—l—/o /thuh AV [(pVI(A [T)th dz dt,
with .
/ / Vi, : VI {QOVZ(A_I[th])] de dt
o Ja

— /OT /Q Viuy, : Vf [@Vz (Afl {?wh — T]Rg[gh]b} dr dt

+ /OT /Q Viuy, : VL {SOVx (A‘l [nRhQ[Qh]D} dz dt

where Rg are the regularizing operators introduced in Lemma 2.1. Thus, revoking the bounds (5.10)
and applying Lemma 2.1, we obtain

T T
< < —a
| llew = BRlonl2aae dt < 02 [ llanllFy o,y dt S B
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where K C () is a compact set containing the spatial support of the function 7. In particular, the
integral

/OT /Q Vyuy, : Vf {@Vx (A—l [th — an[gh]D} dz dt

vanishes for h — 0 and may be included in the error term on the right-hand side of (7.1).
Similarly, by the same token,

1+

T 1/2
< 5 _lfa
IV Ry [onl| 20,5120, = (/0 lonllz, ) dt) ~hT
whence, in accordance with (7.18) we may replace

/OT /Q Vit : Vf |:90Vx (Ail {WRg[Qh]D} dz dt

~ /OT | diviw, s div, [V, (A7 [nR(en)])] dedt~ [ ! [ diviwy : div,, [¢9, (A7 [nen])] de d

Summing up the previous estimates and regrouping terms in (7.1) we obtain

/OT/QQOU [p(@h)@h - (A ,u)ghdiv:cuh} de dt = (7.19)

/OT/Q [()\ + p)div,uy, — p(Qh)}Vch VoA™Y noy)) dz dt
_ /OT/Q @(t -+ AAti - QO(t) Qhﬁh . vx(A_l[th]) dz dt

‘|'/OT/QMCUFIhUh-CuI‘1x {QOVI(A—l[th])] dz dt_/OT/Q(Qhﬁh@)uh) : (V$90®Vx(A_1[77@h])) de dt

- /OT /Qw(@hﬁhééuh) L (Vo®Va) (A [nen]) da di+ /0 ! /Q o(ontin) (t—A1)-V, A [ndiva(onuy)] dz di

+En(p,n),
with the error term Ej(p,n) — 0 as h — 0 for any fixed ¢, 7.

Remark 7.5 It is worth-noting that this is the only step in the proof, where we have used the artificial
viscosity term included in the upwind.

33



Now we apply a similar treatment to the limit equation (7.16), specifically, we use the test
functions

¢ = VA" [ng.
After a straightforward manipulation (cf. [10, Chapter 6]) we arrive at

/ | enlplele = (O + pediv,u] do at = (7.20)

/OT/Q Miv,u — p(0)]| Vi - Vo (A [ng]) du dt—/OT/Qat(pQu‘vx(A_l[nQ]) do dt
-I—/OT/Q,MCurlxu-curlw [gngg(A—l[ngm dax dt_/OT/Q(Qu@)u) : (szo®vx(A—1[ng])) de di

- /oT /Q plou@u) : (V, @ Vo) (A [ng]) da dt + /OT /Q pou - V, A [ndiv,(ou)] dz dt.

The principal idea due to Lions [19] is that all terms on the right-hand side of (7.19) converge
to their counterparts in (7.20). The has been proved in the continuous case in [19] and for the
time discretization problem in [1, Section 3.3], Lions [19]. The same result at the level of numerical
discretization was obtained by Karlsen and Karper [17], Karper [18]. Here, we recall that the error
terms in (7.19) vanish for A — 0; whence the most difficult task is to show that

_/ / ontiy @) (Ve ® V) (A nop]) do dt (7.21)

T
+ / /Q o(0ntin)(t — At) - VoA~ \dive (nopup) de di
0
%

T At T Al
—/O /Qgp(gu® u) : (V, ® V,) (A [no]) dz dt+/0 /nggu - VA7 div,(nou) dz dt.

Moreover, in view of the numerical dissipation estimates (5.7), we may replace (onuy)(t — At) by
onty. Finally, we observe that the velocity field u, can be approximated by its spatial regularization
in the spirit of Lemma 2.1,

|, — RX[U]Z]HLQ(O’T;Lq(Q;RS)) < n’, B = B(q) > 0 for any 2 < g < 6.

In particular, we may write R} [uy] in place of uy in (7.21). Now, the limit (7.21) can be verified
exactly as in [1, Section 3.3] or Karper [18, Lemma 9.3].
Thus we get the desired conclusion - the effective viscous flux identity due to Lions [19]:

/ / plon)on — (A + M)thlVIuh] dr dt — / / Q — (A + u)gdlvxu} dz dt (7.22)
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as h — 0 for any ¢ € C°((0,7") x Q), which yields the crucial relation
odiv,u > pdiv,u. (7.23)

The inequality (7.23) implies strong convergence g5, — o0 a.a. in (0,7") x €. Indeed the regular-
ization procedure of DiPerna and Lions [7] can be applied to show that g is a renormalized solution
of the continuity equation, in particular,

/ olog(o)(t,-) dz + /T/ odiv,u dz dt < / 00 log(go) dz for any 7 € [0, 77, (7.24)
Q 0 Jo Q

cf. [10, Chapter 6]. On the other hand, passing to the limit in the renormalized continuity method
(4.1) for b(p) = plog(o) we obtain

/leog(g)(T, ) dz + /T/diivxu dr dt < /Qgg log(0o) dx for a.a 7 € (0,7). (7.25)
0

Combining (7.23 - 7.25) we get

olog(o) = olog(o)

yielding the desired conclusion
on — 0in L'((0,T) x Q). (7.26)

Seeing that the energy inequality (1.12) follows from (4.5) we have completed the proof of Theorem
3.1.

8 Unconditional convergence
Our ultimate goal is to discuss the situation when both the data gy, uy and the underlying physical

domain €2 are regular. Specifically, we claim the following result concerning unconditional convergence
of bounded numerical solutions.
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Theorem 8.1 In addition to the hypotheses of Theorem 3.1, suppose that ) is a bounded domain
of class C*™ and the initial data satisfy

00 € WH(Q), 0o > 0>0inQ, ue W22(Q; R%),
and n = 0. Moreover, assume that

of <r forallk=1,2,..., h—0. (8.1)

Then the convergence claimed in Theorem 3.1 is unconditional, meaning the limit solution o, u
1s reqular, unique, and the whole family of numerical solutions converges to it.

Proof:

The hypothesis (8.1) implies that the density component of the limit solution is bounded. Using
the conditional regularity result proved in [11, Theorem 2.4] and [14, Theorem 4.6] we conclude that
the limit solution is regular whence unique.

Q.E.D.
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