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Thermodynamics

First and Second law of thermodynamics

Die Energie der Welt ist constant; Die Entropie der
Welt strebt einem Maximum zu
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Well posedness - classical sense

Existence

Given problem is solvable for any choice
of (admissible) data

Uniqueness

Solutions are uniquely determined by the
data

Stability

Solutions depend continuously on the
data
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Well posedness - modern way

Approximations

Given problem admits an approximation
scheme that is solvable analytically and,
possibly, numerically

Uniform bounds

Approximate solutions possess uniform
bounds depending solely on the data

Stability

The family of approximate solutions
admits a limit representing a
(generalized) solution of the given
problem
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Abstract conservation laws

System of equations (conservation laws)

;U + div,F(U) = 0,

“Entropies”

6tE,(U) + diVXFE,.(U) = 0, | = 1, 27 .

A priori bounds

entropy

entropy flux
/E,-(U) dx bounded in terms of the initial data, i =1,2,...
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Weak vs. strong solutions
Lack of regularity

m bounds available only in LP (L)

m presence of oscillations

states

Weak solutions

m discontinuities (shocks) appearing in finite time even for initial

/ U o(r2,7) — Ugp(m, ) dx
Q

=/ / [U:-0rp+F(U): Vyp] dx dt
T1 Q

Weak continuity
t — U(t,-) weakly continuous
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Compensated compactness - DiPerna, Tartar

Linear field equations
6tU + diVXF =0
O:Ei +diviF; <0, i=1,2,...

Nonlinear constitutive equations

F =F(U), E = E(U), F;=F;(U), i=1,2,...

Compensated compactness
m linear field equations yield constraints on possible oscillations
described by Young measure
m nonlinear constrained imposed by constitutive equations reduce
the Young measures to Dirac masses (no oscillations)
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Basic ideas of Young measures

Oscillatory sequence - convergence in the sense of averages

U, — U weakly-(*) (:)/ U, — / U for any B
B B

Young measure associated to {U,}

<oy (U),f >=lim - [nlim /B f(Un)]

r—0 |B.(y)|

— 00

Strong (pointwise a.a.) convergence

Up — U fora.a. < o,(U) =dy(,) foraa. y
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Convex integration

Linear field equations

0:U +div,F =0
Replacing constitutive equation
F =F(U) < A(U,F) = £(U) | “implicit" |
A(U,F) convex, A(U,F) > E(U)
Relaxation of constitutive equation

E(U) < A(U,F) < e, e given “energy”

F=F(U) & A(U,F) = E(U) < E(U) =
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Convex integration - DelLellis - Székelyhidi

Incompressible Euler system

1 1
div,v =0, 9xv + divy (v Qv — §|v|2]1> + Vi <§|v|2 + I'I> =0

1
F= <v @V — §|v|2]I> — symmetric traceless

Relaxation

12N Ge
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Subsolutions

9:U + div,F =0, E(U) < A(U,F)[<le
Oscillatory increments

Owe +div,G. =0, AlU+w.,F+G,.)<e

w., G. compactly supported in @, w, — 0 weakly in L*(Q)

liminf

£—

I|m|nf/ lw.|? dx > c/ e—E(U) " dax

/BE(U—i—wg) dxz/BE(U) dx+C/ e~ E(U))” ax
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Admissibility criteria

Entropy admissibility criterion - Second law
0:E(U) + div,F(U) <0

Entropy rate admissibility criterion - Dafermos [1973]

U maximal with respect to the relation >
Uu-V
54

U(t,:) =V(t,:) fort <

/E(U(t,~)) dxg/E(V)(t,.) dx for a.a. t € (7,7 +0)
Q

Q
for some § > 0
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Pointwise maximal entropy rate criterion
Maximal dissipation admissibility criterion |
U maxV

=

U(t,-)=V(t,-)fort <7

E(U(t,-)) < E(V)(t,-) fora.a. t € (1,7 + )

for some § > 0

u >'ma.x—shaurpv

-~

U(t,") =V(t,-) fort <

E(U(t,)) < E(V)(t,") for a.a. t € (1,7 + 0)
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Euler-Fourier system

Mass conservation

00 + divy(ou) =0

Momentum balance

O¢(ou) + divy(ou @ u) + V,(0¥) = @ (inviscid)

Internal energy balance

3 . . .
5 {&t(gﬁ) + dlvx(gﬁu)] - = —pvdivsu (heat conductive)
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Existence of weak solutions

Initial data

00, Yo, Up € C3, 09 >0, Y5 >0

Global existence [Chiodaroli, F.,Kreml [2013]]

For any (smooth) initial data go, Yo, ug the Euler-Fourier system
admits infinitely many weak solutions on a given time interval (0, T)

Regularity class

o€ C? 80, Vil‘} € LPforany 1 < p<oo

uec Cweak([oa T]. L2) N Loo’ diveu € Cl
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Ansatz

Application of the convex integration method, |

ou=v—+V,V div,y =0
Equations

O + div ((v+VX\IJ)®(v+VX\|J)

Y

) + V(O + 00) = 0

oidiv, (#)

g (9:(00) + diva (v(v + V) ) — &0
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Construction of solutions

Application of the convex integration method, Il

Fix 0 and compute the acoustic potential W

Compute ¥ = J[v] for v € L™

> (:(e9) + divi (9(v + V.0)) ) ~0 = — o, <

v+ V¥
Observe that 0 < ¥ < ¥, ¥ independent of v
A Take

=)

e = x(t) - S0l

and use a non-local variant of the results od Delellis and
Székelyhidi for the incompressible Euler system to find v



Conservative solutions to the Euler-Fourier system

Total energy conservation

1., 3 S
/Q(zglul +2919) (7, )dX—/Q(2QO|UO| +290190) dx

Initial data
00 € C2,190€ Cz, oo > 0, %o >0

Conservative weak solutions [Chiodaroli, F., Kreml [2013]]

For any regular initial data gg, ¥g, there exists a velocity field ug
such that the Euler-Fourier problem admits infinitely many
conservative weak solutions in (0, T)

u]
Q
1l
n
it
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Weak formulation revisited

Mass conservation
Oro + divy(ou) =0
Momentum balance
9¢(ou) + divi(ou @ u) + Vi (09) =0

Entropy production

q- Vo
92

q

0t(0s) + divy(gsu) + div, (5) = a -

Total energy conservation

1, 5, 3 (1,3
[ (Gewz+ 300} oy ax = [ (Sanluol + Santo ) ax
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Maximal dissipation criterion?
Entropy production rate

01(0s) + divy(osu) + divy (%) =0
s(e.9) = —log (5375 )
0_ _ q- sz'l9

9

Maximal dissipation

m Maximize the entropy production rate o

m Maximize the total entropy [, 0s(o,?) dx
m Maximize the entropy os(o, )
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