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Basic principle of mathematical modeling

In mathematics you don't
understand things. You
just get used to them.

Neumann

Johann von
[1903-1957] J

All pictures in the text thanks to wikipedia
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Is air compressible? Is it important?
Does it change the weather if we shout a lot?

Is the physical space bounded or unbounded?
—

What is turbulence?

Do extremely viscous fluids exhibit turbulent behavior?
—

Does it matter that the Earth rotate?
Is the rotation fast or slow? Is it important?
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e time t € [0, )

@ position x € Q C R3

2
¥
=4

@ mass density o = o(t, x)

@ macroscopic velocity u = u(t, x)

EX(t’ X) = U(t,X(t, x)>7 X(0,x) = x

o>



(compressible) Navier-Stokes system

Mass conservation

Claude Louis Oro + divy(ou) =0
Marie Henri
Navier [1785-1836]

Momentum balance F«jl

Ot(ou) + divy(ou ® u) + Vi p(0) = div,S + of George Gabriel
Stokes [1819-1903]

Newton’s rheological law

2
= t _ Z A8 H . ]I
Isaac Newton S= (qu + Viu 3d1VxU ) + ndiveu

[1643-1727]



Compressible rotating Navier-Stokes system

Equation of continuity

0ro + divy(ou) =0

Equation of motion

O¢(ou) + divy(ou @ u) + pw X u+ V,p(p) = pAsu+ AV diveu + of

External forces

w || [0,0,1] axis of rotation

f = V.G + Vilx x w\2 , G gravitational potential
—— N————

gravitational force  centrifugal force
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Characteristic numbers - Strouhal number

Strouhal number
length
[Sr] = 5 cha
timecharvelocity pax

char

Cen&k Strouhal
[1850-1922]

Scaling by means of Strouhal number is used in the study of the long-time
behavior of the fluid system, where the characteristic time is large
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velocity o,

\/pressure,,, /density ..

[Ma] =

Mach number is the ratio of the characteristic speed to
the speed of sound in the fluid. Low Mach number limit,
where, formally, the speed of sound is becoming infinite,
characterizes incompressibility

[=]




Reynolds number

Reynolds number

density .., velocity o length ..

[Re] =

ViSCOSitY char

Osborne Reynolds
[1842-1912]

High Reynolds number is attributed to turbulent flows, where the
viscosity of the fluid is negligible
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[Ro] = velocity .,

Weharlength ..

Rossby number characterizes the speed of rotation of the fluid

[m]

=
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Incompressible (low Mach number) limit

Mass conservation

Oro + divy(ou) =0

Momentum balance

9¢(ou) + divy(ou ® u) + ?VXp(g) = div,S(V,u)

Asymptotic incompressibility (formal)

e — 0= p — const = p — p(const) = div,u =0
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+
solenoidal component

acoustic potential

B0V + P[@u ® u} — Av

«O» «F»r « = « E E QA




Lighthill’s acoustic analogy

Pressure approximation

epl0) = VAL ZPE _ 5272 4 o)

Acoustic equation

. {9 - 9} + divy(ou) = 0

c0{eu) + P@)7x | 2| = 00

Michael James Wave equation
Lighthill
[1924-1998] 0-7

=2, 0Z+ D=0, 0,0 +p(D)Z =0




Duhamel’s formula

Acoustic potential

o(t,) = %exp (imé) [% - \/iiAZO]

Time derivative

== exp (1 7A2> [i\/j[d)o] + Zo}

Jean-Marie Jr% 2 ( 7A£) [ i\/j[cbo] + ZO}

Constant Duhamel
[1797-1872]



Oscillations vs. dispersion

Bounded physical space - Fourier modes

exp( +iv/—A- ) [h] = Zexp (il\/> ) (h, ex)

Large physical space - Strichartz estimates

T
t P
iv—A- P
/77 [exp (iv=a2) [h]HLq(Rg) dt < e Al1Zs 2 gy

1 3
Robert S. 5:;+a,q<oo
Strichartz

Eduard Feireisl Scales in fluid dynamics




<
|
| =

92, AP =0

| m
N

supp[®(t,-)] C { ‘dlst(x supp[®(0, )])

B

Q
2
—_

~r(e)O, r(e) >> -

A=

12N G4

m
a
u]
v
a
it
v
it
v



0(0,-) = 2+ <05, u(0,-) = ug,.

{g((fg}ao bounded in L% N L™

{uoc},.o bounded in L2

g&—)Oin [ase—0

Ug,c — Ug in L% as e — 0, diveug =0

@ What may happen if nothing is prepared?
@ What do we want to know?

o>



However beautiful the
strategy, you should
occasionally look at the
results

Sir Winston
Churchill
[1874-1965]




Fundamental issues

Solvability of the primitive system

The primitive system should admit (global) in time solutions for any
choice of the scaling parameters and any admissible initial data

Solvability of the target system

The target system should admit solutions, at least locally in time;
the solutions are regular

Stability

The family of solutions to the primitive system should be stable with
respect to the scaling parameters

Control of the “oscillatory” component of solutions

The component of solutions to the primitive system that
“disappears” in the singular limit must be controlled



0:U + éA[U] + B[U] +eC[U] = 0, U(O,") = U

e Existence of solutions on a time interval (0, T), T independent
of €

.A[U] =0, Ulimit € Ker[.A], Upse € Range[.A], U = Usse + Utimit
—

e Find uniform bounds ||U:||x < ¢ independent of ¢ — 0,
prepared initial data

o>




Equations for the limit and oscillatory components

Compactness of the “limit” component

a1.“ Ulim a4 B[Ulim] =0

e Convergence via standard compactness arguments or “stability”
of the system

Equation for the oscillatory component

t
£0: Uose + AlUoscl & 0, Unse & V (), 86V +A[V] =0
e Goal is to show

Upsc — 0 in some sense

e Convergence via dispersive estimates




Rotating (incompressible) fluids

Incompressibility

div,u =0

Momentum equation

1
Oru + divy(u @ u) ++ Vip = Au, w=[0,0,1]

Target system

Plwxul=0&wxu=V,®& —u=0,®, u; =0,,®, 0,,®=0

=

uj = uj(t7Xh)7 J = 1a2a Xh = (X17X2)7 dthU =0= usz = U3(t7Xh)
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Oro + divy(ou) =0

Be(0u) + divy(ou ® u) + i 8i — div,S(V,u)




eM0; [Q;ng] + divk(ou) =0

0—0

£ (gu) +" ko x (o) + (Vs [ F] = 0(e)

«F
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Oro + diVX(Qu) _0

9 (ou) +divi(ou®u)+

1
z2m VxP(0)

=7 kivS(V0)

«O>r 4Fr «=H» <= .




Target system

Incompressible limit

Low Mach number = compressible — incompressible

Fast rotation
Low Rossby number = 3D motion — 2D motion

Inviscid limit
High Reynolds number = viscous flow — inviscid flow

Conclusion

3D compressible Navier-Stokes system — 2D incompressible Euler
system
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atu + divx(u & U) T VXP =0

«0>» «Fr « > .



