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Basic principle of mathematical modeling

Johann von
Neumann
[1903-1957]

In mathematics you don’t
understand things. You
just get used to them.

All pictures in the text thanks to wikipedia
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Turbulence or viscosity?

honey Sun
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General questions

Compressible vs. incompressible

Is air compressible? Is it important?
Does it change the weather if we shout a lot?
Is the physical space bounded or unbounded?

Viscous vs. inviscid

What is turbulence?
Do extremely viscous fluids exhibit turbulent behavior?

Effect of rotation

Does it matter that the Earth rotate?
Is the rotation fast or slow? Is it important?
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The miracle of scaling

Characteristic values and scaling

X ≈ X

Xchar

Scaling of derivatives

∂t ≈
1

Tchar
∂t

∂x ≈
1

Lchar
∂x
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Eulerian description of motion

Physical space

time t ∈ [0,∞)

position x ∈ Ω ⊂ R3

Leonhard Paul
Euler [1707-1783]

Phenomenological static variable

mass density % = %(t, x)

Bulk motion

macroscopic velocity u = u(t, x)

d

dt
X(t, x) = u

(
t,X(t, x)

)
, X(0, x) = x



(compressible) Navier-Stokes system

Claude Louis
Marie Henri
Navier [1785-1836]

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +∇xp(%) = divxS + %f George Gabriel
Stokes [1819-1903]

Isaac Newton
[1643-1727]

Newton’s rheological law

S = µ

(
∇xu +∇t

xu− 2

3
divxuI

)
+ ηdivxuI



Compressible rotating Navier-Stokes system

Equation of continuity

∂t%+ divx(%u) = 0

Equation of motion

∂t(%u) + divx(%u⊗ u) + %ω× u +∇xp(%) = µ∆xu +λ∇xdivxu + %f

External forces

ω ‖ [0, 0, 1] axis of rotation

f = ∇xG︸ ︷︷ ︸
gravitational force

+ ∇x |x× ω|2︸ ︷︷ ︸
centrifugal force

, G gravitational potential
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Scaled equations

Scaling

X ≈ X

Xchar

Mass conservation

[Sr]∂t%+ divx(%u) = 0

Momentum balance

[Sr]∂t(%u) + divx(%u⊗ u) +
1

[Ro]
%ω × u +

[
1

Ma2

]
∇xp(%)

=

[
1

Re

]
(∆xu + λ∇xdivxu) + (external forces)
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Characteristic numbers - Strouhal number

Čeněk Strouhal
[1850-1922]

Strouhal number

[Sr] =
lengthchar

timecharvelocitychar

Scaling by means of Strouhal number is used in the study of the long-time
behavior of the fluid system, where the characteristic time is large
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Mach number

Ernst Mach [1838-1916]

Mach number

[Ma] =
velocitychar√

pressurechar/densitychar

Mach number is the ratio of the characteristic speed to
the speed of sound in the fluid. Low Mach number limit,
where, formally, the speed of sound is becoming infinite,
characterizes incompressibility
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Reynolds number

Osborne Reynolds
[1842-1912]

Reynolds number

[Re] =
densitycharvelocitycharlengthchar

viscositychar

High Reynolds number is attributed to turbulent flows, where the
viscosity of the fluid is negligible
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Rossby number

Carl Gustav
Rossby
[1898-1957]

Rossby number

[Ro] =
velocitychar

ωcharlengthchar

Rossby number characterizes the speed of rotation of the fluid
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Incompressible (low Mach number) limit

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +
1

ε2
∇xp(%) = divxS(∇xu)

Asymptotic incompressibility (formal)

ε→ 0⇒ p → const⇒ %→ %(const)⇒ divxu = 0
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Helmholtz decomposition

Helmholtz decomposition

u = v︸︷︷︸
solenoidal component

+ ∇xΦ︸︷︷︸
acoustic potential

, divxv = 0

Helmholtz projection

P : u 7→ v

Incompressible (target) system

%∂tv + P
[
%u⊗ u

]
= ∆v
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Lighthill’s acoustic analogy

Pressure approximation

1

ε
∇xp(%) = ∇x

p(%)− p(%)

ε
= p′(%)

%− %
ε

+O(ε)

Michael James
Lighthill
[1924-1998]

Acoustic equation

ε∂t

[
%− %
ε

]
+ divx(%u) = 0

ε∂t(%u) + p′(%)∇x

[
%− %
ε

]
= O(ε)

Wave equation

%− %
ε

= Z , ε∂tZ + ∆xΦ = 0, ε∂tΦ + p′(%)Z = 0



Duhamel’s formula

Acoustic potential

Φ(t, ·) =
1

2
exp

(
i
√
−∆

t

ε

)[
Φ0 −

i√
−∆

Z0

]
+

1

2
exp

(
−i
√
−∆

t

ε

)[
Φ0 +

i√
−∆

Z0

]

Jean-Marie
Constant Duhamel
[1797-1872]

Time derivative

Z (t, ·) =
1

2
exp

(
i
√
−∆

t

ε

) [
i
√
−∆[Φ0] + Z0

]
+

1

2
exp

(
−i
√
−∆

t

ε

) [
−i
√
−∆[Φ0] + Z0

]



Oscillations vs. dispersion

Bounded physical space - Fourier modes

exp
(
±i
√
−∆

t

ε

)
[h] =

∑
k

exp
(
±i
√
λk

t

ε

)
〈h, ek〉 ek

Robert S.
Strichartz

Large physical space - Strichartz estimates

∫ T

−T

∥∥∥exp
(
±i
√
−∆

t

ε

)
[h]
∥∥∥p
Lq(R3)

dt ≤ ε‖h‖pH1,2(R3)

1

2
=

1

p
+

3

q
, q <∞
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Problems on large domains

Acoustic equation

∂2t,tΦ−
1

ε2
∆xΦ = 0

Finite speed of propagation

supp[Φ(t, ·)] ⊂
{
x
∣∣∣ dist(x ; supp[Φ(0, ·)]

)
≤ 1

ε

}

Large domains

Ω ≈ r(ε)O, r(ε) >>
1

ε
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Preparing the initial data

Ill prepared initial data

%(0, ·) = %+ ε%
(1)
0,ε, u(0, ·) = u0,ε{

%
(1)
0,ε

}
ε>0

bounded in L2 ∩ L∞

{u0,ε}ε>0 bounded in L2

Well prepared initial data

%
(1)
0,ε → 0 in L2 as ε→ 0

u0,ε → u0 in L2 as ε→ 0, divxu0 = 0

Nothing prepared?

What may happen if nothing is prepared?

What do we want to know?



Mathematics...

Sir Winston
Churchill
[1874-1965]

However beautiful the
strategy, you should
occasionally look at the
results
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Fundamental issues

Solvability of the primitive system

The primitive system should admit (global) in time solutions for any
choice of the scaling parameters and any admissible initial data

Solvability of the target system

The target system should admit solutions, at least locally in time;
the solutions are regular

Stability

The family of solutions to the primitive system should be stable with
respect to the scaling parameters

Control of the “oscillatory” component of solutions

The component of solutions to the primitive system that
“disappears” in the singular limit must be controlled



Analysis of singular limits

Primitive system

∂tU +
1

ε
A[U] + B[U] + εC[U] = 0, U(0, ·) = U0

• Existence of solutions on a time interval (0,T ), T independent
of ε

Identifying the limit system

A[U] = 0, Ulimit ∈ Ker[A], Uosc ∈ Range[A], U = Uosc + Ulimit

Uniform bounds

• Find uniform bounds ‖Uε‖X < c independent of ε→ 0,
prepared initial data



Equations for the limit and oscillatory components

Compactness of the “limit” component

∂tUlim + B[Ulim] = 0

• Convergence via standard compactness arguments or “stability”
of the system

Equation for the oscillatory component

ε∂tUosc +A[Uosc] ≈ 0, Uosc ≈ V
( t
ε

)
, ∂tV +A[V ] = 0

• Goal is to show

Uosc → 0 in some sense

• Convergence via dispersive estimates



Rotating (incompressible) fluids

Incompressibility

divxu = 0

Momentum equation

∂tu + divx(u⊗ u) +
1

ε
ω × u +∇xp = ∆u, ω = [0, 0, 1]

Target system

P [ω × u] = 0⇔ ω×u = ∇xΦ⇔ −u2 = ∂x1Φ, u1 = ∂x2Φ, ∂x3Φ = 0

⇒

uj = uj(t, xh), j = 1, 2, xh = (x1, x2), divhu = 0⇒ u3 = u3(t, xh)
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Incompressible limit + fast rotation

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u) + divx(%u⊗ u) +
1

ε
%ω × u +

1

ε2m
∇xp(%) = divxS(∇xu)

Path dependence

m > 1
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Oscillatory component - Poincaré waves

Equation of continuity

εm∂t

[
%− %
εm

]
+ divx(%u) = 0

Momentum equation

εm∂t(%u) + εm−1ω × (%u) + p′(%)∇x

[
%− %
εm

]
= O(εm)

Critical case

m = 1
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A triple singular limit

Mass conservation

∂t%+ divx(%u) = 0

Momentum balance

∂t(%u)+divx(%u⊗u)+
1

ε
%ω × u +

1

ε2m
∇xp(%) = εα divxS(∇xu)

Path dependence

m > 1, α > 0
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Target system

Incompressible limit

Low Mach number ⇒ compressible → incompressible

Fast rotation

Low Rossby number ⇒ 3D motion → 2D motion

Inviscid limit

High Reynolds number ⇒ viscous flow → inviscid flow

Conclusion

3D compressible Navier-Stokes system → 2D incompressible Euler
system
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Target system

Incompressibility

divxu = 0

Inviscid motion

∂tu + divx(u⊗ u) +∇xp = 0
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