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Abstract

We consider a ”semi-relativistic” model of radiative viscous compressible Navier-Stokes-Fourier sys-
tem coupled to the radiative transfer equation extending the classical model introduced in [10] and we
study some of its singular limits (low Mach and diffusion) in the case of well-prepared initial data and
Dirichlet boundary condition for the velocity field. In the low Mach number case we prove the conver-
gence toward the incompressible Navier-Stokes system coupled to a system of two stationary transport
equations. In the diffusion case we prove the convergence toward the compressible Navier-Stokes with
modified state functions (equilibrium case) or toward the compressible Navier-Stokes coupled to a
diffusion equation (non equilibrium case).

Key words: Radiation hydrodynamics, Navier-Stokes-Fourier system, weak solution, low Mach num-
ber limit, diffusion limits, well-prepared initial data

1 Introduction

In recent works [12] [13] singular limits (low Mach number limit and diffusion limits) for a simplified model
of radiation hydrodynamics introduced by Teleaga, Seaid, Gasser, Klar and Struckmeier in [29] have been
presented, incorporating the effects of radiation in a simplified classical setting (special relativity appears
only in the persistence of the speed light ¢ in the system) and neglecting the radiative source in the
momentum equation. A more realistic model relaxing this last hypothesis was studied in [10] however this
more complete model suffers from a non manifestly positive production rate of total entropy, preventing
ones from studying these singular limits.

Our idea in the present paper is to introduce in the complete model of [10] a perturbed Planck’s
function and a suitable (relativistic) velocity cut off (this is the meaning we give to ”semi-relativistic”
model) allowing to recover this crucial positivity property for the production rate of total entropy. As the
perturbation will be small (going formally to zero as ¢ — o), one can expect to obtain the correct limit
regimes.

The motion of the fluid is still described by standard non-relativistic fluid mechanics giving the evolution
of the mass density o = o(t, z), the velocity field @ = (¢, z), and the temperature ¥ = J(¢, x) as functions
of the time ¢ and the spatial coordinate € Q C R®. The effect of radiation is still incorporated in the
radiative intensity I = I(t,x,d,v), depending on the direction & € S2, where S? C R® denotes the unit
sphere, and the frequency v > 0, but we take into account their relativistic corrections. The evolution of
I is described by a transport equation with a source term and the fluid-radiation coupling is expressed
through radiative sources in the momentum and energy equations. More precisely, the system of equations
to be studied reads as follows:

0o+ div, (o) =0 in (0,T) x Q, (1.1)

9, (o) + div, (0@ ® @) + Vap(o,9) = div,S — Sp in (0,T) x €, (1.2)

1 1
9, (29@|2 + oe(o, 19)> + div, ((29|ﬁ|2 + 0e(0,9) +p> 0+ q— Sﬁ) =-Sg in(0,7)xQ, (1.3)



1atIJrov.vII:S in (0,7) x Q x (0,00) x S2. (1.4)
C

The symbol p = p(o, 1) denotes the thermodynamic pressure and e = e(p, ) is the specific internal energy,
related through Maxwell’s equation

de 1 dp
% = E (P(Q> V) — 19619) . (1-5)

In (1.2) S is the viscous stress tensor given by S = p (V@ + Vi — %divmﬁ) +n div, 4 I, where the viscosity

coefficients p = p(9) > 0 and n = n(¥) > 0 are effective functions of the temperature. Similarly in (1.3) ¢

is the heat flux given by Fourier’s law ¢ = —xV ¥, with the heat conductivity coefficient x = k(}) > 0.
We suppose that the radiative source S is given by

1
S =0, [B(u,a;, 7,9) — I(t,z,v, cf;)] to, (4/ Itz 0,3 d& — I(t,z,v, w)) = Sac+ 8. (16)
7I S2

In the right-hand side the first term is the emission-absorption contribution where o, > 0 is the absorption
coefficient and B is a perturbation of the equilibrium Planck’s function given by

2h V3
2 b
& hv (1 s.ﬁ)
A
e -1

where h is the Planck’s constant, k is the Boltzmann’s constant and 0 < «(¥¢) < 1 is a smooth function,

B(v,&,1,9) =

(1.7)

to be determined below. One observes that for @ << 1 one recovers the standard equilibrium Planck’s
3

function B(v, V) = 22 ¥
ekv —
Note that the idea of this kind of perturbation is not new and has been extensively used in recent works
on radiative transfer [4],[6],[9],[8], for exemple in the M1 Levermore model [18],[19].
The second term in S is the scattering contribution where o5 > 0 is the scattering coefficient and in
the right-hand sides of (1.2) and (1.3) appear the coupling sources.

~ 1 [
Se(t,z) = 5/0 /s @S d@ dv, (1.8)

and -
Sg(t,z) = / S dd dv. (1.9)
0o Js2

We first suppose that the transport coefficients are smooth functions satisfying o, (9, @) = x(|@])G4(9) > 0
and o5(v) > 0 and that both depend neither on angular variable (1.1 - 1.4) (isotropy of radiation), nor on
frequency (the so called ”grey” hypothesis).

The function x appearing in the emission-absorption coefficient is a C*° cut-off satisfying

(s) = 1 if s<e,
XEZN 0 if s>e+ 8,
for an arbitrary 8 > 0. The role of this cut-off is to deal with the singularity of B and its meaning is the
following: in the “over-relativistic” regime (|@| > ¢) where special relativity would be violated, we decide
to decouple matter and radiation. Of course this is an arbitrary choice but only a meaningless region
with respect to physics is concerned (recall that in the relativistic setting [6], Lorentz factors of the type
N\ 1/2
(1 - Z—;) become singular for || = ¢).
More restrictions on properties of these constitutive quantities will be imposed in Section 2 below.
Finally system (1.1 - 1.4) is supplemented with the boundary conditions:

oo =0, ¢ 7ilan = 0, (1.10)



I(t,z,v,d)|r_ =0,

(1.11)

. ={{r,w} € xS i <0},

where 77 denotes the outer normal vector to 9€2, and initial conditions
(o(t,x), u(t,x), ¥(t,x), I(t,x,w,v))|,_q = (go(x), @ (z), 9°(x), I°x,d, V), (1.12)

forany x € Q, & € S?2,v € R,.

The relativistic version of system (1.1 - 1.11) has been introduced by Pomraning [25] and Mihalas
and Weibel-Mihalas [24] and investigated more recently in astrophysics and laser applications (in the
inviscid case) by Lowrie, Morel and Hittinger [22] and Buet and Després [6], with a special attention
to asymptotic regimes, and this last paper was a deep source of inspiration for the present work. Let
us mention that a simplified version of the system (non relativistic non conducting fluid at rest) has
been investigated by Golse and Perthame in [16] where global existence was proved under very mild
hypotheses (transport coefficients may be singular). A global existence result was also proved in [10]
for the simplified model (without relativistic corrections), under some cut-off hypotheses on transport
coefficients. As previously aforementioned it is not clear how to justify singular limits on this system
because of the lack of (manifest) positivity of the entropy production rate however it was shown recently
in [12] [13] that this difficulty disappears in the model of Teleaga, Seaid, Gasser, Klar and Struckmeier
[29], where the radiative momentum source is absent in the right hand side of (1.11).

Our goal in the present work is then to show that provided we use the aforementioned ”semi relativistic”
framework, the positivity of the entropy production rate is restored and singular limits can actually be
performed for the problem (1.1 -1.11) by using the ideas of [14].

The paper is organized as follows. In Section 2, we list the principal hypotheses imposed on constitutive
relations, introduce the concept of weak solution to problem (1.1 - 1.11), and state the existence result for
our model. In Section 3 we investigate the low Mach number limit and in Section 4 we study both the
equilibrium and non-equilibrium diffusion limits.

2 Hypotheses and existence result

We consider the pressure in the form

0 a
p(g, ’19) = 195/2P (W) + 5'194, a > 0, (21)

where P : [0,00) — [0,00) is a given function with the following properties:

P e C'0,00), P(0) =0, P'(Z) >0, forall Z >0, (2.2)
SP(Z)-P(2)Z
0< 2 ()Z Z) < cforall Z >0, (2.3)
. Z)

After Maxwell’s equation (1.5), the specific internal energy e is

3 /95/2 0 94
and the associated specific entropy reads
(2 e L 33P(2)-PU(2)Z
s(0,0) = M (193/2) ty, with M(2) =3 = < 0. (2.6)



The transport coeflicients p, 7, and k are continuously differentiable functions of the absolute temperature
such that

0<ci(1+9) <), W) <c, 0<n0) <c(l+9), (2.7)
0 <ci(1+93) < k() < ca(l+9°) (2.8)
for any ¢ > 0. Moreover we assume that o, and o, are smooth functions such that
0 <o0,(0,1), 05(9) <1, 04(9,40)B(v,d,u,9) < ca, (2.9)
oo(9,@)B(v,d,i,9) < h(v), h € L*0,00), (2.10)

where ¢; 23 are positive constants. Relations (2.9 - 2.10) represent “cut-off” hypotheses neglecting the
effect of radiation at large temperature and ultra relativistic velocities (see [26] for physical motivations).

In the weak formulation of the Navier-Stokes-Fourier system the equation of continuity (1.1) is replaced
by its (weak) renormalized version

/O / ((0+b(2))Deip+ (0-+(0))- Vi + (b(0) — V(@) )div, i) dr dt = — / (00 +b(00))(0, ) dar (2.11)

satisfied for any ¢ € C([0,T) x Q), and any b € C*[0,00), b’ € C[0,0), where (2.11) implicitly
includes the initial condition p(0,-) = gy. Similarly, the momentum equation (1.2) is replaced by

T
/ /(gﬁ'-@t@'—k U ® U : V@ + pdiv, @) do dt
o Ja

T T
:/ /s;vmg da dtf/ /§F¢ dz dtf/(gﬁ)o-a(o,-) dz, (2.12)
0 Q 0 Q Q

for any @ € C2°([0, T)xQ; R?). As usual, for (2.12) to make sense, we require that @ € L2(0,T; W, 2(Q; R?))
which contains the no-slip boundary condition (1.10). As the term S@ in the total energy balance (1.3)
is not controlled on the (hypothetical) vacuum zones of vanishing density, we will replace (1.3) by the
internal energy equation

O¢(0e) + div,(petd) + div,g= S : Vi — pdiv, @ — Sg + Sp - i, (2.13)

moreover, dividing (2.13) on ¥ and using Maxwell’s relation (1.5), we may rewrite (2.13) as the entropy
equation

Q-Vﬂ?)_SE SF.U::{, (2.14)

. . . 7 1 -
Ot (08) + div,, (ost) + div, (q) == (S : Vil — 3 5 3

U )

where the first term of the right hand side ¢, = § (S : Vi — W) is the (positive) matter entropy

production. In order to identify the second term in the right hand side of (2.14), let us recall [1] the
formula for the entropy of a photon gas

2k [
st = —73/ / v% [nlogn — (n 4+ 1)log(n + 1)] d&dv, (2.15)
& 0 S2

where n =n(I) = 2}5:73[1]3 is the occupation number. Defining the radiative entropy flux

2k [
qt = fo/ / v? [nlogn — (n +1)log(n + 1) & dddv, (2.16)
C 0 S2
and using the radiative transfer equation, we get the equation
k [ 1 n
Ops™ + di ;Rz—f/ / ~1 S didy =: ¢ 2.17
st + div,q A 521/0gn+1 Gdv =: ¢ (2.17)



Checking the identity log n?lé])i)rl = —Z—g (1 — a%) where B is the Planck’s function, using the definition

of S and taking into account that S = (04+0s) fooo f 52 wl d&I dv (the transport coefficients o, s do not

depend on &), the right-hand side of (2.17) rewrites

//52

Choosing now
Oq + 0
_ 2.18
pe (2.18)

we get
e 1 n(I) n(B) .
R__F 1, D) n(B) )
° / ,/52 v [Og n([) +1 0g n(B) 1 Ua(B I) dody
Sp i

n(I) n(I) - . 1
Wl /Sz”[og 1_logn(f)Jrl]US(I_I)dwdwrﬁSE— 5

From (2.14),(2.17) and (2.19) we obtain finally

(S:Vmﬁ— )—/ /S o [bg I) log(né)Bj_J 0o(B = I) didv
n(f)

_7/ /sw[ ll logn(f)Jrl

and equation (2.14) is replaced in the weak formulation by the inequality

T "
/ / ([QS + 50y + 0sii - Vo + [% SN szO) dx dt
Q

=" /(QS+S dw—// (S Vil — Vﬁ) dz dt
//U /S,,[ )1—10gn(§fil]oa(3—l)dwdy

D) ¢ dzdz dt (2.21)

//521/[1Og nJ)rl 1Ogn(f)ﬂ

for any p € C2°([0,T) x ), ¢ > 0, where the sign of all the terms in the right hand side may be controlled
Since replacing equation (1.3) by inequality (2.21) would result in a formally under-determined problem,

system (2.11), (2.12), (2.21) must be supplemented with the total energy balance

1
/ <2Qﬁ|2 + oe(o,V) + ER) ) dx +/ / / I(t,z,d,v) dv dd dS, dt,

/Q<1I(gﬁ) |2+(ae)o+ER0> dz,

n(I) n(I) - -
log n <1 log o) + 1] 08(171)} dddv,

Sp-a'

(2.19)

SIS

Oy (gs + SR) + div, (gs[[ + q_’R) + div, (

1
I
os(I — 1) dddv, (2.20)

os(I —1) dodv

(2.22)



where I'y = {(z,J) € 00 x 8% : & -1, > 0}.
The radiative energy E¥ is defined by

1 oo
BE(t,z) = 7/ / I(t,x,d,v) d& dv, (2.23)
¢ Js2 Jo
with Ero = [s. fooo Iy(-,&,v) d& dv, and for later purposes we also define the radiative momentum
o0
FR(t,x) = / / GI(t,x,d,v) dd dv, (2.24)
s2 Jo
and the radiative tensor ) -
IP’R(t,x) = 7/ / @ RII(t,x,d,v) dd dv. (2.25)
¢ Js2 Jo

Definition 2.1 We say that o, 4,9, I is a weak solution of problem (1.1 - 1.11) if
0>0, 9>0 for a.a. (t,z) xQ, I>0 a.a in (0,T) x 2 x S? x (0,00),
0 € L=(0,T; L3()), ¥ € L=(0,T; L*(R)),
@€ L*(0,T; Wy (4 R?)), 9 € L2(0, T; WH2(Q)),
I L>®((0,T) x Q2x8*x(0,00)), I€L>®0,T;L*(Q x S x (0,00)),

and if o, @, ¥, I satisfy the integral identities (2.11), (2.12), (2.21), (2.22), together with the transport
equation (1.4). The existence result reads now

Theorem 2.1. Let Q C R® be a bounded Lipschitz domain. Assume that the thermodynamic functions
p, e, s satisfy hypotheses (2.1-2.6), that B satisfies (1.7) and (2.18) and that the transport coefficients p,
A, K, 04, and os comply with (2.7 - 2.10). Let {oc, Uz, V¢, I }e>0 be a family of weak solutions to problem
(1.1 - 1.11) in the sense of Definition 2.1 such that

0:(0,-) = 0c0 — 00 in L°3(Q), (2.26)

L.
[ Ged + ocetoev) + Ero0.) ar= [
Q Q

(08022 + (0€)o.e + ER,O,E) dr < B, (227)

2QO,E
/[st(gea 796) + SR(Is)](Oa ) dz = / (98 + SR)O,E dz > Sp,
Q Q

and
0<1.(0,") = Io.(-) < I, [loe(-,v)| < h(v) for a certain h € L'(0,00).
Then
0c = 0 in Chear([0, T); L¥3(2)),
e — @ weakly in L*(0,T; Wy (€ R?)),
V. — 9 weakly in L*(0,T; WH2(Q)),
and

I. — T weakly-(*) in L=°((0,T) x Q x 8% x (0, 00)),
at least for suitable subsequences, where {p,u, 9,1} is a weak solution of problem (1.1 - 1.11).
Sketch of the proof: Using bounds (2.1-2.6), the expression (1.7) of B and (2.18) in the radiative
transfer equation one gets a uniform bound for I, for any 7" > 0
0 < L(t,z,v,&) < C(T) (1 + ||IO||L°°(Q><82><(0,<X>)))a
which implies that
ISel = orxy < OO 15l o1y enie, < CD).

then it is clear by inspection that the rest of the proof of Theorem 2.1 in [10] applies verbatim to Theorem
2.1. Comparing with [10], just note that positivity of total entropy rate allows us now to relax the low-
temperature cut-off used in [10] in the transport coefficients (see Condition 2.11 in [10]) O



3 Low Mach number limit
In order to identify the limit regime we perform a scaling, denoting by

Lref7 Tref7 Urefaprefa ﬁref; Prefs €ref, Mref, Href,

the reference hydrodynamical quantities (length, time, velocity, density, temperature, pressure, energy,
viscosity, conductivity) and by Ircf, Vref, Oaref, Osref, the reference radiative quantities (radiative
intensity, frequency, absorption and scattering coefficients). We also assume the compatibility conditions

kpYrey 2h”§ef Lyey Urey

Dref = PrefCrefs Vref = — -+, Ireyf = —2°F and we denote by S := Tro Unir? Ma = Wy ool Re :=

UrcfprefLire UrcfprefLire Z . .

Zreflreforef | Pe = —refPreforel 0= < the Strouhal, Mach, Reynolds, Péclet (dimensionless) and
Href ﬂref"'ﬁref Uref

“infrarelativistic” numbers corresponding to hydrodynamics, and by £ := Lycfoq ey, Ls 1= 25‘7”;7 P =

2k 92 . . . . L . . .
W%7 various dimensionless numbers corresponding to radiation. Using these scalings and using
refCre

carets to symbolize renormalized variables we get

~ A A o 1 ~ ~
S =1ra, (B(D,u‘),ﬁ, 9) — 1) + LLG, (4 / [(,&) d& — I) .
5‘2

™

We have also for the non dimensional «

0o+ L0
=2 =55 3.1
@ Ogq +2L,0, (3.1)

Omitting the carets in the following, we get first the scaled equation for I, in the region (0,7) x Q x
(0,00) x §2

1
&6tI+u7~VxI:s:Eaa(B—I)+££sas —/ Tds—1T), (3.2)
C 47 S2

w

v
where we used the same notation B for the dimensionless Planck function B(v,d, @, ¥) = e |’
ev(I—asg?) _

We denote also by B = [, [>T dv d&, the renormalized radiative energy, by F* = [o, [ &I dv d&,
the renormalized radiative momentum, by PR = /. 52 fooo & ® &I dv dd, the renormalized radiative tensor,
by sg = [g» [y s dv dd, the renormalized radiative energy source, by 5 = [, [~ @I dv dds, the renor-
malized radiative momentum source, by §% = — [ [, v [nlogn — (n + 1)log(n + 1)] d@dv, the renor-
malized radiative entropy with n = n(I) = —Lz, by ¢% = — [ [, v [nlogn — (n + 1) log(n + 1)] & diddv,
the renormalized radiative entropy flux.

In order to analyze the low Mach number regime we put Ma = e, where € > 0 is small. We also
suppose that the flow is strongly under-relativistic so C = O(¢~!) and that a small amount of radiation is
present so P = . Finally we put Sr =1, Pe=1, Re=1, L = L, = 1 in the previous system.

Taking the first moment of (3.2) with respect to &, we get first equations for Ef and S

O B + div, F = sp, (3.3)
€0, F + div,P® = 5p, (3.4)
then the scaled system reads

1

Eatl-i-u_jva:O’a(B—I)—‘rUS(/ Id@—]), (35)
47 S2

Oro + div, (o) = 0, (3.6)

- 1
o, (gﬁJr 52FR) + div, (gﬁ'@ a+ sIP’R) + 5 Vaplo.9) — div,S =0, (3.7)



7 1 7 V0
0, (gs—i—es )—&—dlvm(gsﬁ—i—q_'R)—l— div, (?9 25 EQS:Vm_'—q v )
= n(I) n(B)
— |1 —1 I —B
+/ /821/|:0gn(1)+1 ognB)+1 oal ) dddv
n(l) I)
1 —1 — Jdy =
/ /Szylog D+ ogn 1 (I —1I)dddv =: ., (3.9)
with the conservation of total energy
d e o R - - =
T 5 old|” + oe +eE | dx+ &l dl'ydv =0, (3.10)
where
Iy = {{z,w}€dQxS? 3J-i>0} (3.11)

In order to compute the limit system, we consider now the formal expansions

I=1Iy+el +0(?),
0=00+c01+O(e?),
U=ty +et; + O 62),

)

( (3.12)
19:190+€’l91 +O(€2 .

We first note from (3.7) that Vp = O(e?) which leads, using the arguments of [14], to Vpy = Vp; = 0 and
we get
00 = Cte, Y= Cte and 9yp(00, Vo)1 + op(00,Y0)01 = Cte. (3.13)

From (3.6) follows the incompressibility condition
div, iy = 0, (3.14)

and
0y 01 + div, (Q0ﬁ1 + Ql’ljo) =0. (315)

04 (90)+0s(90)

Now observing that o = — 007205 00)

+ 0(e) we have
B(V, <, U, ’19) = B()(V, 190) + (0455 - Up9g + 191) agBo(V, 19())6 + 0(82),

where By(v,9y) = B(v,d, dp,Vo)]|,_o s0 we get from (3.5) two linear steady-state transport equations for
the first two moments Iy and Iy

LZ; . VzIO = Ja(’ﬂo) (Bo(l/, 190) Io) + 0'9(190) <417T / [0 d(.:)' — Io> 5 (316)

and
@ - lel = 0',1(190) |: (Ozo(D . ﬁo’l?o + 191) (91930(1/, 190) — 11:| + (9190'(1(190) (Bo(V, 190) — Io) 191

1 1
+8,905(190) (47‘_/ IO do — Io) ’191 + 0'5(190) (47‘_/ Il dad — Il) 5 (317)
82 S2

and the limit momentum equation is

00 (8@0 + diVm(ﬁo X ’l_jo)) + V., II — div, (/,L() (Vw’ljo + v;ﬁo) ) =0, (318)



where g = pu(y) and the gradient term contains higher correctors.
At first order, the energy equation

2 2
o8 <€2 olil)® + ge> + div, ((2 oli)* + oe +p> U+ q— 52Sﬁ> = Sg,

gives

0009€(00,V0) 3t191+(90396(90,?90)-1-60(00, ﬂO))atgl"‘din([908196(@07190)191 + (000pe(00,V0) + €0(00,0)) 01) ﬁo)

+diVm (Qoeo(go, 19())1_[1 — K‘,(Qo, ﬁo)vzﬁl) = SEl- (319)
After (3.17), the right hand side rewrites

Spi = /DO {0904 (00) (B(v,90) — Io) 91 + 0a(Y0) (@ - oo + V1) Dy B(v, Vo) — I1)} dd dv
0

/ 8,90,1 ?90 (V, ’190) —Io)ﬁl +Ja(190)(8193(1/,?90)’l91 —Il)}du'} dv.
32

From (3.15) we get p(go, Vo)t = M (0r01 + divz011p), and from (3.13) and (3.14) we have ;01 +

div, 01t = —% (Op91 + dlvmﬁluo), so plugging these identities into (3.19), we end with

d9p(00, Vo) _ po(00, Vo) T -
00 <619€(Q07 190) p) p(Qo, 190) 8 6(907 190) Qg (atﬁl dlvx(ﬁlu()))

—divz( (00,90) Vs 19 / aﬁaa 190 (u, 99) — 10)191 + 04 (00) (aﬁB(u, 0o)d1 — 11) }d& dv.
32

Putting U = iy, © = 91, 8 = 00, 0 = do, T = p(do), D{T) = 1 (v(thﬁ)’ % = r(00,00), TP =
dye(00,00) — % ( e(0o ) pO(‘;%’ﬁ(’)) we obtain the limit system in (0,7) x
Qe ’ 0
div,U =0, (3.20)
o (aﬁ +div, (U ® (7)) + VI — 2div, (ﬁ ID)((7)) —0, (3.21)

oCp (at(a + div, (@ﬁ)) — div, (RVO)

- {/OOO 3y (0a(9)B(v,9) + 04(0)09 B(v, 7)) dV+/OOO - 090a(9)Io ds d”} / /s el d3 v,
(3.22)

& Valy = 0,(0) (B(v,9) — Iy) + 05(V) (4; / Iy d& — 10> , (3.23)
32
&Vl = {Ua(g)agB(l/, ﬁ) -+ &waﬁ)B(y, @) -+ 8190'5(5) <417T/ I()(Cﬂ, v, (Zj/) dg’ — IO(IL', v, J})) }@
82

(D)1 (2, 1, 5) + 04 (D) (4; /S (0, 8) 45~ B, m) . (3.24)

We finally consider the boundary conditions

Uloa =0, VO -iilaq =0, (3.25)



for (3.20)-(3.22) and

TIp(z,v,d) =0forx € 0Q, J-1 <0 3.26)
Li(z,v,d)=0forx €0, ¥-71<0 (3.27)

for (3.23) and (3.24), and the initial conditions
Uli—o = Uy, ©li—o = O, (3.28)

and one has the following result (see [12] for a short proof)

Theorem 3.1. Let Q C R® be a bounded Lipschitz domain.
For any T > 0 the initial-bounday value problem (3.20) - (3.28) has at least a weak solution (U, 0, Iy, I)
such that
U e L>®(0,T;H()) N L*(0,T; V()

with H(Q) = {U € L*(Q;R?), div,U =0 in Q, ﬁmf:@,mdvm):HGDﬂwﬁ%QR%)

0 € V' 2((0,T) x ),

where V21’1/2 is the energy space defined in [20] p.6,
Io,I; € L*°((0,T) x Q) x S* x Ry),
with
G-Vely, &-Vely€ LP((0,T) x Q) x S x Ry),
for any p > 1.

In the following we consider the convergence from the radiative Navier-Stokes-Fourier system (1.1)-
(1.11) to the incompressible limit system (3.20)-(3.28).

3.1 Global existence for the primitive system and uniform estimates

Let us choose initial data such that

(0,-) =00e =0+ 59827

0 : (3.29)
_ 1 .
(Q):%Ezﬁtwg,

10, ) = Io. = T + eI,
where 2 > 0,9 > 0, I > 0 and fQ g((fg dx =0 for any £ > 0. Recall that after [14] for any locally compact
Hausdorff metric space X, M(X) is the set of signed Borel measures on X and M™(X) is the cone of
non-negative elements of M(X). Then we rephraze Theorem 2.1 in the scaled framework as follows

Theorem 3.2. Let Q C R? be a bounded Lipschitz domain. Assume that the thermodynamic functions
D, e, s satisfy hypotheses (2.1-2.6), and that the transport coefficients u, n, Kk, 04, 0s and the equilibrium
function B comply with (2.7 - 2.10). Let the initial data (0., Uoc, Vo, Lo,e) be given by (3.29), where
(,983711’85), 1982,[5715)) are bounded measurable functions.

Then for any € > 0 small enough there exists a weak solution (o, Ue, Ve, 1) to the radiative Navier-
Stokes system (1.1 - 1.6) for (t,x,&,v) € (0,T) x Qx 82 x R, supplemented with the boundary conditions

(1.10 - 1.11) and the initial conditions (3.29) such that
T T
/ / 0:b(0:) (Opp + Uz - Vi) da dit :/ / Bloec)divyue ¢ da dt —/ 00,:0(00.c) #(0,-) dz, (3.30)
0o Jo 0o Jo Q
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for any B such that 5 € L™ N C[0,00), b(o +f ) dz and any ¢ € C2([0,T) x ),

Z

/OT/Q ((@aﬁ’e + 5213R) -0+ (gsﬁg ® . +€IF’R) L Vad+ 1;—; divxq‘s’) dz dt

T
:/ /sgzvza dx dt—/ 000 - $(0,-) d, (3.31)
0 Q Q

for any (E € C2([0,T) x Q;R?) such that b ity _— 0, with pe = p(oe, <) and S; = S(u., V),

2 T 00
/ (52 0: || + ocee + gEf) dz dt +/ / / &l (t,2,&,v) dU dv dt
Q o Jo Jry

g2 .
= / (2 Q(],€|u0,6|2 + 00,e€0,e + EE(})&) dx, (3.32)
Q
for a.a. t € ( ,T) with Ty = {(z,5) € 00 x 8% : & -, > 0} and with e. = e(o:,9.) and EE(t,z) =
I3 Jse It 2,3, v) dd dv

T T —
[ (s +est) o+ (st + @) - Vo) dwars [ [ L9, o i
0 Q 0 Qﬂf:‘

(<" + <) pcyo s = / (50,2 + 5)(0.)) d, (3.33)
1 7. - Vi
§?2ﬁ<ge:vxﬁ€_q€§“>a

k=1 n(I.) n(B.) }
2 L o8 i1 Tl gy ) Tae(Be — Le)did
gg*h/o /sw(ognuanl 8By +1) el disdv

5) n(—fs) = .
/ /3 v ( )+1 ~loe n(l.) + 1) 7se(le = Ic)ddv,

for any p € COO([O T) x Q) with <™ € M"‘([O T)x Q) and ¢I* € M*([0,T) x Q), and with .. = o,(v,9),
0se = 0s(v,0.), B = B(v,9:), ¢ = k(0:,9:)VaDe, , s = s(0-,9e), sk = sB(1), ¢® = ¢®(I.) and
E:—lfsz (t,z,v,d) da,

/// /S () +@ - Vo)) I dwdudxdtJr/ // /S Cae (Be = L) + 0y (I = 1) | ¥ d& dv du at,
// /925[05w0xwy)dede+///Ooo@'~ﬁzfswdl“dudt7 (3.34)

for any ¢ € C([0,T) x 2 x 82 x R,).

where

and

3.2 Uniform estimates

We adapt from [14] the necessary definitions to the formalism of essential and residual sets. Given three
numbers g € Ry, J € R, and E € R, we define O the set of hydrodynamical essential values

N |
| Bl

Of .= {(g,ﬁ) ER? : 2 <p<25 -<V< 219} , (3.35)
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and OF | the set of radiative essential values

E
2

OFf .= {ER €cR: ~ <Ef< 2E} , (3.36)

with Opss := OE U OE | and their residual counterparts
Ogs = (R+)2\O£§S’ Ois = R+\O§ssv Ores = (R+)3\Oess- (3.37)

Let {0, uc,:, 1.}, ) be a family of solutions of the scaled radiative Navier-Stokes system given in The-
orem 3.2. We call M:,, C (0,T) x €2 the set

Miss = {(t,’l}) € (OaT) xQ (Qs(tvx)aﬂs(tax)aEg(tax)) € Oess}a

and M, = (0,T) x Q\M:_, the corresponding residual set.
To any measurable function h we decompose it into essential and residual parts h = [h]ess + [A]res
where [h]ess = h - Tpqe, and [A]pes = h-Taqge, . As in the low Mach number we get, after Lemma 3.1)

Defining now Hy = ge — 1 ps as the Helmholtz function for matter and H®5(I) = Ef — 9 sf, as the
corresponding radiative function and using (3.33) we rewrite (3.32) as

2 T
/ (52 0c it |* + Hy(0e,9:) + gHRﬁ(IE)> dx—i—/ / @ity (t, 2,3,v) dU dv dt+9 (7" + <) [[0,4] x Q]
Q 0o Jry

2
€ B
= /Q (2 00,|tio.c|* + 00,c€0,c + EE({‘E) da.

Observing that the total mass is a constant of motion M = fQ 0. dx = 0|9, we deduce finally that

1 . 1 _ e = 1
[ (5 e + % (50000 = (02~ D0, H5(0.9) ~ Hy(@9) + - HT5(1.))

1 T 1 _
+€7/ / G gl (t,z,d,v) dU dv dt + = v (gam +gER) [[O’t] X m
o Jr,

1 S 2
= 5 00,¢|to,
\/52 <2 £ 1SS

1 _
+ = (Hg(00,2,V0,c) — (00,e — 0)0,Hy(0,9) — Hg(2,7))

1
—I-g HRﬂ(IO7E)) dx. (338)
Now, after [14], we have the following properties for matter and radiative Helmholtz functions

Lemma 3.1. Let 5 > 0 and J > 0 be two given constants and let Hy(0,9) = oe — I ps, and HRg(I) =
EF — 9 st B
There exist positive constants C; = Cj(g,0) for j =1,---,8 such that

Ci(lo—2P + 9 = 01%) < Hy(e,9) — (¢ — 2)9,H5(2,9) — Hy(2,9)

<Cy(lo—a*+ v -9%), (3.39)
for all (9,9) € O

€ess’?

H5(97 19) - (Q - E)aQHE(Ev 3) - HE(@? 19)

0,9€0, ¢s

12



for all (0,9) € OX

res’

Hy(0,9) = (¢ = 2)9,H5(2,9) — Hy(2,9) = Ca(ee(o,9) + els(e, D)), (3.41)

for all (0,9) € O&

res’

/ / |I. — B(v,9)|%ds dv < H*(I.) < cﬁ/ / — B(v,9)|?d3 dv, (3.42)

for all I. € OF _, B
ER(I) -9 s®(I)> inf EE(I) -9 s%(I) = Cy, (3.43)
€0, s
for all E € OF _, B
ER(I) — 7 R(I) > Ce (BR(I) + |s"(1))) (3.44)
for all E € OF
Proof: The points 1 to 3 are proved in [14] and we have EE(I) — o s% fo f82¢ di dv,

where (t,z,&,v;1) = I + 120 (n ( )logn(I) (n(I)+1)log(n(I) + 1)), with n(I) = L. Computing
o = 1—|—19 log ™) and 02 = observing that dri|,_ B =0 and that 8de|l B > 0

n(I)+1 71 n(n+1)’
and applying Taylor formula with I = B(v,9), we get (3.42). As I — (t,z,d,v;1) is decreasing for [ < T
and is increasing for I > I, we get (3.43). Moreover the convexity of ¢ implies (3.44) |

From Definition (3.38), we obtain the following energy estimates

Lemma 3.2. Suppose that the initial data satisfy
||[QO,5 _E]”%Q(Q) < 0527 HWO,S _5]”%2(9) < 0527 ||E§:€ _EH%P(Q) < Ce, H\/ Qo0,e ﬁO,EHLZ((Z;RS) <C,

the following estimates hold

ess sup | M, (1) < Ce2 (3.45)
t€(0,T)
ess sup |[oe — @]ess(t)H%z(Q) < Ce?, (3.46)
te(0,T)
ess sup ||[0c — ess(t)[|72(0) < Ce?, (3.47)
te(0,T)
ess sup ||[EF — Eless()]72(0) < Ce, (3.48)
te(0,7)
ess sup ||[oce(0, Ve)]res(t) | L1 () < Ce?, (3.49)
t€(0,T)
ess sup ||[0e5(0, Ve)]res(t) | 1 () < Ce?, (3.50)
t€(0,T)
ess sup H[ER(IE)]TeS(t)”Ll(Q) < Ce, (3.51)
t€(0,T)
ess sup [57(I)]res (Bl (e < Ce. (3.52)
te(0,T)
Moreover -
(s +¢5) [[0,4] x Q] < Ce?, (3.53)
esstes(l(l)%) lv/os ug(t)HLQ(Q;Ra) <C. (3.54)
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Proof: Estimate (4.61) follow after (3.40). Bounds (4.62),(4.63) and (4.68) follow after (3.39) and
(3.42). Bounds (4.66) and (4.67) follow after (3.41) and finally (4.68) and (4.69) follow after (3.44) O

From the properties of thermodynamical functions and the hypotheses on transport coefficients, we
finally quote from [14] the supplementary estimates

Proposition 3.1. Suppose that the quantities e = e(p,v), s = s(p,9) and p = p(p, V) satisfy hypotheses
(2.1)-(2.6) and that the transport coefficients u = p(9), n = n(), kK = k(9), 04 = 04(V), 04 = 04(V)
satisfy the growth conditions (2.7)-(2.10). The following estimates hold

ess sup /([ge]%]res+[19g]4]res> (t) do < Ce?, (3.55)
te(0,7) J
T
| 108 g < (3.56)
9. —d |
/ (t) dt < C, (3.57)
0 € Wi2(Q)
T llog(¥.) — log(¥) , .||
/ Mw dt < C, (3.58)
0 € W1,2(Q)

where the generic constant C does not depend on €.

3.3 Convergence toward the target system

Our goal is now to prove that the incompressible system (3.20)-(3.28) is the limit, in a suitable sense of
the primitive system (3.30)-(3.34). Our result is as follows

Theorem 3.3. Let Q C R® be a bounded domain of class C*V. Assume that the thermodynamic functions
p, e, s satisfy hypotheses (2.1 - 2.6) with P € C1[0,00) N C?(0,00), and that the transport coefficients u,
A, K, 04, 05 and the equilibrium function B comply with (2.7 - 2.10).

Let (0e, e, Ve, I.) be a weak solution to the scaled radiative Navier-Stokes system (1.1 - 1.6) for
(t,z,d,v) € [0,T] x Q x 8% x Ry, supplemented with the boundary conditions (1.10 - 1.11) and the
initial conditions (0o,e, o, Vo, lo,e) be given by

0:(0,-) = 0+ 2050, T(0, ) = 1,0, 0=(0,) = T+ 9/ L,1.(0,) = T + eI,
where B -
0>0,09>0,1>0,
are constants and
/ M dr =0 /ﬂ(l)d:() /I(”d — 0 for all
0p,c 4T =1, 0 dr =0, 0o dx for all e > 0.
Q ’ Q ’ Q i
Assume that
of) = o) weakly — (x) in L=(Q),

— T, weakly — (x) in L>®(Q;R?),

12 — 1981) weakly — (x) in L>°(Q),
1Y) — IV weakly — (x) in L®(2 x 8 x Ry).
Then

ess sup |lo:(t) — 79| 2, <Ce,
t€(0,7) <) = lpt o

and up to subsequences =
. — U weakly — (%) in L*(0,T; WH2(Q; R?)),
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=91 = 0 weakly — (x) in L*(0,T; WH2(Q)),

I. — Iy weakly — (%) in L*(0,T; L*( x §% x R,)),

and
I, -1
€

where (U, 0, Iy, 1) solve the radiative Oberbeck-Boussinesq system, (3.20)-(3.24).

= 1M S I, weakly — () in L*(0,T; L*(2 x 8? x Ry)),

Before showing in the last part of this Section that we can pass to the limit € — 0 into the various
equations of the primitive scaled system and that the limit actually satisfies the target system, let us
first quote the following result which is a straightforward extension of Proposition 5.2 of [14] (the proof is
omitted)

Proposition 3.2. Let {0:}e>0, {U:c}es0, {Ic }e>0 be three sequences of non-negative measurable functions
such that
[ggl)] — g(l) weakly — (x) in L°°(0,T; LQ(Q)),

[09} 9D weakly — (x) in L=(0, T; L()),

[Iél)] — I weakly — (%) in L>=(0,T; L*(Q)), a.e. in S* x Ry,

where - B
0c— 0 Y. — 0 I.—1
Qél) — %7 19&1) — 56 , Is(l) _ 5 - )
Suppose that
ess sup | M, (1) < Ce?, (3.59)
te(0,7)

and let G, GF € C1(O,ss) be given functions. Then

[G(98719€)]ess — G(@ E) _ aG(ﬁvg) Q(l) + 5G(§75) 79(1)7
€ do v

weakly — (¥) in L>(0,T; L*(Q)), and if we denote

(GR(1L)],,, = [G*U(, &, v)],,, = GP(I:) - Ine,,, for aa. (B,v) € S* xRy,
we have n . B
6" o) e = OUD) _ 26T) 1,
3

weakly — () in L>(0,T; L*()), a.e. in S? x R,
Moreover if G,GT € C?(O,s) then

[Glo:, 02y — C@,V) _ 9G(2,9) o] 9G(2,9) o]

€ do B

<
99 < Ck,

Lo (0,T;L1(Q)

and

<
€ oI Ce,

€SS

H (67U, = G 0G(T) 10

Loo(0,T;L1 ()

for a.a. (B,v) € 8% x Ry.
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3.4 Proof of Theorem 3.3

1. For the continuity equation, after Proposition 3.1, we know that fOT ||t (t) L2 R dt < C so passing

2
[
to the limit after possible extraction of a subsequence, we see that @, — U weakly in L2(0, T; W12(Q; R?)).
In the same stroke o. — @ weakly in L°(0,T; L3(Q;R?)). So we can pass to the limit in the weak

continuity equation (3.30) which gives fOT Jo U Va¢ dz dt =0 for all ¢ € D((0,T) x Q), which rewrites

div,U =0, ae. in (0,7) x Q,

with U oo 0, provided 012 is regular.

2. For the momentum equation one has only [14] g .t ® . — oU ®U, weakly in L2(0,T; L5 (Q; R?)),
however one can show that one can pass to the limit in the convective term and obtain

T T
/ /gﬁ@[jzvm¢dxdt—>/ /Eﬁ@[jzvg@dacdt.
o Ja o Ja

Moreover after the hypotheses on the pressure law, the temperature 9. is bounded in L*°((0,7); L*(Q)) N
L%(0,T; L5(Q)), which implies that S, — u(0)(V,U + VLU), weakly in L9(0, T; L9(; R?)) for a ¢ > 1.
Finally after Lemma 3.2 ||F'RHL2(O,T;L2(Q)) < C and [|P||z2(0,1522(0)) < C so e2FR — 0 and eP — 0 in

L2(0,T; L?(2)). So passing to the limit in momentum equation for a divergence-free test function 5, we

get
T . . . N . T o N N . N .
/ /(@U-@tqﬂ—@U@U:Vm(é) da dtz/ /(u(ﬁ)(va—FViU):VJ@) da dt—/§U0~¢dx,
0 Q 0 Q Q

provided that i . — Uy weakly  in L>(Q;R?).

As expected in the incompressible limit, pressure no more appears in the limit momentum equation and
as in [14], the formal relation between o and 9 is recovered by multiplying the momentum equation
by €. One gets

T J—
/ / Pe Qiveg do dt = P20 div,é d dt = 0.
0 O € g

Using Proposition 3.2 and passing to the limit, we have

T
/ / (002,90 + Dop(2,9)9 ™M) divee do dt =0,
0o Ja
which is the weak formulation of
0,p(2,2)0" + 09p(2,2)9") = Const. (3.60)

3. For the radiative transfer equation, using the L bound shown in the previous sections for I, it is
clear that I. — I, weakly in L2((0,T) x Q x S? x R,), and also after Proposition 3.1 9. — ¥, weakly in
L?(0,T; W2(Q)).

Using the cut-off hypotheses (2.9)(2.10), we can pass to the limit which gives

/Q/ooo /S G- Vot Io dis dv d + /Q /OOC /S (02(9) (B@) ~ Io) + 0(@) (o ~ Io) | ¥ d dv da,

:/ / @ - figly ¥ dl dv,
r, Jo

using the same notation for any time-independent test function 1 € C°(Q x S? x R,), which is the weak
formulation of the stationary problem
G- Valy = So, (3.61)
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with the boundary condition
=0 onIy, (3.62)

where Sy = 04 (1,9) (B(v,9) — Iy) + 05(J) (fo - Io). Now from (3.34)

T 00 _ T )
/ // /(aéer&-Vw) L= 1o d@duda;dt+/ // / [SE
o JaJo Js2 € o JaJo Js2
:// /em (0, dwduda:—i—/ / / z/)ddedt
QJo Js2 € Iy

for any 1 € C°([0,T] x Q x 82 x Ry), with S. — Sy = S(I.) — S(Ip). From Proposition 3.2 we get

SO} W dd dv dx dt

Se — So
9

+090,(0)0 WV Iy + 04 (9) 1) — 8905 (D)9 V Iy — o,(9) 1,
weakly in L>((0,T); L*(Q x 8% x R,)) with I; := I1). Passing to the limit we find the limit equation

o0 o0 o0
/ / / & Vpb I di dv d:):—i—/ / Siip dis dv d%:/ / G-ty i dT dv,  (3.63)
aJo Js2 aJo Js2 ry Jo

using the same notation for any time-independent test function 1 € C°(Q x 82 x R, ), which is the weak
formulation of the stationary problem

— 81 1= 89(0aB) (1, 0)9Y — dyoa (D) 9V Iy — 0,(D)1,

G-Vl =5, (3.64)

with the boundary condition
I=0 onT,. (3.65)

4. For the entropy balance, we rewrite equation (3.33) as

R _ R R R
/ /{Qs ~ch,0)+ss ES €at(,0+q€€q'vz§0} dzx dt

0) (0. 1 R
V. (€> -V dx dt + z <§§" +< §¢>[M;c]([0,T><§)

Q 195
<= R R
Soe — S st —s
= - Rt : 0,) ¢ da.
/Q{(QO’ € te € >SD( )} o

Similarly to [14], using Proposition 3.2 and energy estimates, we see that o == — 7 (9,s(g, 9) oM 4 dys(D, 5)19(1)),
weakly * in L(0,T; L2(Q; R%)), that %vm(i) — 0 7,90, weakly * in L2(0,T; L2(2;R?)) and

€

that é <§Z;” + & ¢>[M;C]([O <@ 0. Moreover o, ng_g U — 0 (8 5(2,9) 0™ + 9ys(0, 5)19(1)) [j' weakly

s in L2(0,T; L32(Q;R?)). Now applying Proposition 3.2 in the same stroke, we get that e2=—>— AL 0,
weakly * in L>°(0, T; L2(Q; R?)).

Let us compute the limit of qi . We have

@ =qiI.) = —/ / V2 {n.logn. — (n. +1)log(n. + 1)} dS dv,
0 S2
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with n. = n(I.) = L. Applying once more Proposition 3.2 with GF(I) = n(I)logn(I) — (n(I) +

v3

1)log(n(I) + 1) and integrating on S? x R, we find

7_>// ( Jrl)&[(l)dﬁdu,
0 SQV I)

and as ”(T()TJ)rl = %, we have
AR 1 ozr
qa q — F (I(l))7
€ 19
with the radiative momentum FE(I fo Js2 @ IM 43 dv. So

_ T v FR(T)
/ /(q q>~vxcpd:cdt—>—//(hv"”()¢dxdt.
0 Jo J

As we know from (3.64) that
div, FF = / 319% (B(v, ) — )19(1) + 0,(0) (319B(1/, 99 — Ilﬂ do dv,
52

the limit contribution in the right-hand side becomes

LT A [0 (B0 - 10) 00+ 04 (008070 1) 6 a5 v

Gathering all of these terms, we recover the limit equation for entropy

/ / 9,5(3, )0 + dys(3, D)9 )(8t¢+U V¢(364) dmdt / / N .00 V.6 de dt

/// /S [0900(@) (B,9) = Io) 00 + 04(@) (9B, 9)9™) ~ 1) | ¢ d5 dv e at

:fA@@ﬁ@ﬂ> )+ 0ys(2, 095" ) 6(0, ) da,

and using (3.60), it is routine to check that we finally obtain the energy equation (3.22).

4 Diffusion limits

Diffusion limits consist in supposing that one of the transport coefficient is small while the other is large.
These regimes have been introduced by Lowrie, Morel et Hittinger [22] and also considered by Buet and
Despres [6]. Contrary to the low Mach number limit studied previously, these limits both correspond to
a compressible system which introduces a new difficulty in the sense that we need to estimate differences
between two variable quantities. We show in this last Section that as in [13] this difficulty may be overcome
by using a relative entropy inequality introduced by Feireisl and Novotny [15]. In order to identify the
appropriate limit regimes we perform two different scalings.

e The first one corresponds to the equilibrium diffusion regime defined in [6] by
Ma=Sr=Pe=Re=P=1,C=¢"!, Ly=c?and L=¢"1,

leading to the primitive system

cOT+G Vol = Yo, (B—1) + 20, (1/ Icwf), (4.1)
e 47 S2
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Oro + div, (o) =0, (4.2)

o, (gﬁ+ gﬁR) + div, (gm @+ IP’R) 4 V.p— div,S=0. (4.3)
L R : Lo _ PR
O §Q|u| +oe+ ET ) +div, §Q|u| +0e+p u—&—?—I—q—Su =0, (4.4)
- 1 .
O (os +esg) + div, (0tds + Gr) + div, <g> > 3 (S t Vil — 4q Zaﬂg) 7
n(I) n(B) -
| —1 (I—-B
A /S2l/|:0g (IH+1 Ogn(B)—l—l 7al ) diddy
n(I) n(I) =
+e lo —lo - os(I — 1) dwdv. 4.5
/ /szV[g (I)+1 gn([)+1 ( ) *5)
with J
(gé’ + ER) do+ — / / - I dlpdv =0, (4.6)
dt r,

where & = 1 [@]? +e.
e The second one is the

[43

non-equilibrium diffusion regime” also defined in [6] by
=Sr=Pe=Re=P=1C=¢""', L=c?and L, = L.

One checks that equations (4.2) (4.3) (4.4) and (4.6) still hold in this scaling. The new transport equation
is

1 1
eI+ -Vl=co,(B-—1)+ ag<4/ Idzﬁ—[), (4.7)
™
and the new entropy equation is
7 1 7- V0
O¢ (08 + esg) + div,, (otis + qr) + div, (g 23 (S Vi 9 - )

o0 1 n(I) b n(B) - o
=, /sw[logn(I)H lgn(B)+1] ol = B) did
L[ 1 n(I) n(I)
+EA 1¥”P%”UW+1_bng+1

4.1 The equilibrium-diffusion regime

os(I —1) ddv. (4.8)

In order to compute the limit system, we use the formal expansions (3 12) and keep the low order terms

U3

n (4.1). Introducing the unperturbed Planck’s function B(v, ) = 22— ; and computing in (2.18) the
ekd —

expansion a = % =1+ O(g?), we have in (1.7)

B(l/, @, 1, 19) = B(l/, 190) + (@' <o + 191) 6193(1/, 190)6 + 0(62).
We get first
I() = B(V, 190), (49)

and

I = (07 - Ugto + 191) aqu(l/, 190) — @ -Vl (410)

b
O’a(190>
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As the related radiative quantities are

ER = EF 1 cEF + 0(£?),
FE=Fr 4+ cFE +0(?), (4.11)
P = Pl 4 ePF + O(£2),

using (4.9) and (4.10) we find

R > 4 . 471'4
Ey = B(v,99) dv = a¥y, with a = —,
o Js2 15
Flt=o.
We get also
PR — /Oo/ (@ i) 9000 B(w, o) ~ ! 5@ V.BW, 90)) ) d dv,
0o Js2 a4 (Vo)
o0 1 o0
= 190170/ / & ® BOyB(v,¥) dd dv — 7Vx/ / & ® JB(v,¥) do dv,
0o JS2 oa(Vo) 0o Js2
SO 4 )
- a
Fff = — Wiy — ——— V.(adp). 4.12
1 3 oUo 30-(1(190) \Y (a 0) ( )
Finally

(oo}
PE = / / 5@ GB(v,¥) dd dv = <94 1,
0 52 3
where I is the unit tensor. The limit momentum equation is then
0 (00tin) + divs (0otio @ tip) + VP (00, Vo) = div.S(0o, Vo),
where p(00,%0) = p(00,J0) + %193 and the limit energy equation is
01 (0e(00,0)) + dive (0oe(00, Vo)to) + dive (k(0o,Y0) Vo) = S(00, Vo) : Vetio — p(00,Vo)diva i,

where e(gg, %) = e(0o,J0) + agioé’ and k(d9) = k(o) + ;7‘2 3.
Hence omitting the 0 index, we finally obtain the decoupled limit system in (0,7") x

Oro + div,(pt) = 0, (4.13)
¢ (0t) + div, (ot ® @) + V,p = div,S, (4.14)
1 1
o) (2 oliio)? + ge) + div, ((2 oli)* + oe + p) a+q— Sﬁ) =0, (4.15)
~ 1 .
0, (05) + divy (o5) + divs (3) = £ (s: vya— V") (4.16)
9 9 9
I =B(v,1), (4.17)
where p(o,9) = plo,d) + 20%, e(0,9) = e(0,9) + 20%, k() = w(d) + A29%, § = —k(9)V,9 and
0s = os + a3
We also get boundary conditions
ﬁ|aQ =0, VU -1ilgq =0, (4.18)
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and initial conditions
(ol 1), iz, 1), D@ty = (@), @(z), (@), (4.19)
for any = € Q with the following compatibility conditions
() |ag = 0, VI° - ii|pq = 0. (4.20)

As expected, this system corresponds to a viscous compressible heat-conductive fluid at local ther-
modynamical equilibrium with radiation, equilibrium being achieved between matter and radiation with
radiative intensity I = B(v, 1), corresponding to the black-body radiation at temperature ¢ with radiative
energy Er(¥) = ad*.

From the classical results of Matsumura and Nishida [23] (see also Jiang [17]) let us quote an existence

result for this system. Let (g,9) be two given constants with g > 0 and 9 > 0. We note
eo = [lo0 — 0ll Lo (o) + l@o ||z (@) + 190 — V1) + [ Tollz2(0) + [[VollL1(a) (4.21)
where V) is the initial vorticity (recall that V;; = 0;u; — 0;u;), and
FEy:=ep+ ||va0||L2(Q) + ||Vx190HLQ(Q) + ||VmT0||L2(Q)7 (4.22)
for an arbitrary fixed ¢ such that 3 < g < 6. The following result holds

Theorem 4.1. 1. (Local solution) There exists a positive constant Ty such that (o,u, ¥, 1) is the unique
classical solution to the problem (4.13)-(4.15) with boundary conditions (4.18), initial conditions (4.19),
and compatibility conditions (4.20) in (0,T) x Q for any T < Ty such that

(o, @,9) € C([0,T], H*()),
D0 € C([0,T), H*(Q)), 0, 0,0 € C([0,T), H'(Q)),
0,041, 0,9 € L*([0, T, H*(2)).

2. (Global solution) Let (0o — 8, 10,90 — V) € (H*(2))® and inf ¥y > 0.

There exists positive constants < 1 andT' > 0 depending on the data such that if Ey < T'n, (0,4, 9,1) is
the unique classical solution to the problem (4.13)-(4.15) with boundary conditions (4.18),initial conditions
(4.19) and compatibility conditions (4.20) in (0,T) x Q for any T > 0, such that

(Q —0,U,V — 5) € C([OvT]7H3(Q))a

sup [l — 0l = (@) < 0/2, inf 9 >0,
t>0 z€Q,t>0
D0 € C([0,T), H*(Q)), 0y, 0,0 € C([0,T), H(Q)),
0,04, 8,0 € L*([0,T), H*(2)).

Moreover if eg <1
-2l3 |7 9 — 9|3 Va2 < Ted
oiltlET o —2ll72() + 14ll72(0) + | 122(0) + IVa?l72(q) < Teg,

and
sup ([le = 2llz () + 19 = L= (0)) < Teo.
0<t<T

Remark 1. As mentioned previously it is worth to note that when one considers the formal “nonconducting
at rest” situation where k = 0 and @ = 0 and in the no-scattering case (os = 0), one obtains from
(4.1)- (4.4) a simplified system introduced by Bardos, Golse and Perthame [2] for which they proved global
existence and diffusion limit (called “Rosseland approzimation”) under assumptions much more general
than ours.
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4.2 The non-equilibrium diffusion regime

Expanding as above using (3.12) in (4.7) and evaluating the lowest orders terms we get

1
— Iy dd = 1 4.2
Ar o 0 dw 0 ( 3)
. 1 -
W - vffo == (75(190) (/ Il dad — Il> 5 (424)
47 S2

and
025]0 + u_i . szl = Ua(ﬁo)(B(ﬁo, l/) — Io)

1 1
+US(190) <4’IT /82 12 d(ﬁ—[g) +8190'S(190) <47T /52 Il da —Il> 191. (425)

Plugging the first two relations into the last one, we find

Ohlo+ & Vol — 3@ divy, <1vx10)
0'5(190)

1 1
— 0o (0) (B(do, 1) — Io) + 04(10) (4/ I di — 12> 4 9yos(90) (M/ I dé — 11> .
S2 S2

™

Integrating in v and & and using (4.23), (4.24) we get a diffusion equation for N := fooo Iy dv

1 1 a
N — = div, [ ——V.N | = 04(0) (294 = N), 4.26
0 = g v (Vo) = o) (98- ) 20
and we get also
_ 1 1
EF =N, Fﬁ:—ggs V.N, P§:§Nﬂ.

Keeping the zero order term in equations (4.2),(4.3)(4.4) we finally obtain a compressible Navier-Stokes-
Fourier system with sources coupled to a diffusion equation for N. Omitting the 0 index, we get finally
the system

Opo + divy (o) =0, (4.27)
O¢(0t) + div, (ot ® @) + V,p = div,S, (4.28)
1 1
Oy (2 oliio)® + ge) + div, <<2 oli* + oe + p) u+q-— Sﬁ) =0, (4.29)
2 A Y A ) AN R R A C
Ot (08) + divy (pst) + div, (19) =3 (S : Vet 3 > + 3 5 3 (a9* = N), (4.30)
1. 1
0N — 3 diva (USW)VIN) =0,(0) (a* — N), (4.31)

where p =p + %N, e=c+ % and d = kV,0 + ivm with boundary conditions
oo =0, VU -ii|pg =0, N|zq =0, (4.32)
initial conditions
(o(@,t), t(x,t), 9(,t),N(@,1)|_g = (¢’ (@), @(2), ¥°(z), N°(2)), (4.33)
for any « € Q, with N°(z) = [;° [s. I°(x,v,&) d& dv and the compatibility conditions

ﬁQ'aQ = 07 Vﬁo . ﬁ|89 = 07 NO|aQ =0. (434)
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It will be useful as in [6] to define the non equilibrium temperature 6, by
N = af?. (4.35)

In analogy with previous works on asymptotic analysis of radiative transfer equation (see [2], [3]) we call
(4.27)-(4.33) the Navier-Stokes-Rosseland system. As in the equilibrium case, we have a global existence
result for solutions of this problem for small data.

Let (9,0,9, N) be a given constant state with g > 0, J > 0 and N = B(¢J). We note

eo = [10° = 0ll oo ) + 17| 0y + 19° = Ol sy + IN® = Ny + Tl 22(0) + V0|2 (0),  (4.36)

and
Eo = eg + [Vad®llL2 @) + IV llLa () + V2T 2(0), (4.37)

for an arbitrary fixed ¢ such that 3 < ¢ < 6. The following result holds

Theorem 4.2. 1. (Local solution) There exists a positive constant T, such that (o, @, 9, N) is the unique
classical solution to the problem (4.27)-(4.31) with boundary conditions (4.32), initial conditions (4.33)
and the compatibility conditions (4.34) in (0,T) x Q for any T < T, such that

(¢, @, 9, N) € C([0,T), H* (),
Do € C([0,T], H*(R)), 0y, 0,9,0,N € C([0,T], H (Q)),
8tg, 8t17, 8ﬂ9,atN (S L2([0,T},H2(Q))

2. (Global solution) Let (o° — 0,4, 9° — 9, N® — N) € (H*(Q))% and inf ¥°,inf N° > 0.

There exists positive constants n < 1 and T’ > 0 depending on the data such that if Eg < T'n, (o,d,9, N)
is the unique classical solution to the problem (4.27)-(4.31) with boundary conditions (4.32), initial condi-
tions (4.33) and the compatibility conditions (4.34) in (0,T) x Q for any T > 0, such that

(Q - @a ﬂ:a 19 - 572\7 - N) € C([O7T]a H3(Q))7
sup o — 0llpe() < 2/2, inf >0,
t>0 z€Q,t>0
dro € C([0,T], H*(R)), 0y, d,9,0,N € C([0,T], H (Q)),
dvo,0,11, 0,9, 0,N € L*([0,T], H*()).

Moreover if eg < n

oi??:r o —§||%2(Q) + HﬁH%z(Q) + |9 —5”%2(9) + N _N”%Z’(Q) + ||Vz?9||%2(9) + ||V1NH%2(Q) <Tep.

and
sup (lo = ollz=() + |9 = I Lo () + [N = Nl =) < Teo.
0<t<T

The proof of this result consists in a direct adaptation of the technique used in [11] and is omitted.

4.3 Relative entropy inequality

We can rephrase the existence result of Theorem 2.1 in the rescaled context as follows
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Proposition 4.1. Suppose that the conditions of Theorem 2.1 are satisfied. Then for any € > 0 small
enough there exists a weak solution (0e,Us, V¢, 1) to the radiative Navier-Stokes systems (1.1-1.4) for
(t,z,&,v) €0, T|xQxS*xR ., with boundary conditions (1.10 - 1.11) and initial conditions (go.e, @0, Y0.¢, Loc)-
More precisely we have

/QQE(T,.)qb(T,.) dz —/ng,a¢(0,.) dx :/O /QQE (8;¢ + @iz - Vo) da di (4.38)
for any ¢ € C*([0,T) x Q), and any T € [0, 7],

/ QEﬁE(Ta ) : _»(Ta ) d.’l? - / QO,E’JO,E : 5(07 ) d.’L’
Q Q

— /OT/Q ( (gsﬂe + eﬁf) 010 + (@sas ® U + IP’f’) Vb + pe dived — S, : vza) de dt =0, (4.39)

for any ¢ € CH[0,T) x LR?) | and any 7 € [0,T), such that ¢-nlyg = 0, with p. = p(o,Y:) and
Se = S(ﬁs;ﬁa);

/ / ( 0| |? +95€5+6ER> dx dt+/ / c(t,x,d,v) dT dv dt
Ty

1 .,
= / (2 Q0)5|UO75|2 + 00,:€0,c + €E55> dx =: &, (4.40)
Q

for a.a. t € [0,T) with Ty = {(z,&) € 02 x §? : & -7, > 0} and with e. = e(p-,V.) and E(t,x) =
I3 Jse It 2,3, v) dd dv

/O /Q((@gngresf) O + (0es-tic + @) - Vap) da dt+/0 /ng-vm@ da dt+ (" +§§;¢>[M;C]([O’TX§)

< [ (om0t eslie) 900, dot [ (o5 +es)(rer, ) da, (4.41)
Q Q
where ) Loy
mo__ . - qe - xzVe
= I <S€ : Vot T ) , (4.42)
and

e 1 n(l.) n(B:) ; -
R>/ /—1 —1 W9)(B. — I.) d&d
e = 0o Js2v 8 n(l;) +1 08 n(B:) +1 7as’( ) desdv

/ / l g) o )
S22V + 1 n([s) +1
for ¢ € C([0,T) x Q) and any T € [0,T), with <™ € M*([0,T) x Q) and <& € M*([0,T) x Q), where
M(X) is the set of signed Borel measures on X and M™T(X) is the cone of non-negative elements of
M(X).
We consider two possible values for the transport coefficients in the two cases j = 1 (equilibrium case)
or j =2 (non-equilibrium case)

o, V(I — I.) d&dy, (4.43)

1 o
o) = | 7 oalle) =1, (4.44)

eoq(Ve) if j =2,
and
eos(V:) if j=1,

G —1| 1
Ose ~ o) ifj=2.

(4.45)
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p@noting B, = B(y’(ﬁ’ﬁ&ﬁg)’ q_'E = /{,(198>qu98, S = 5(957 195>, 85 = SR(IE>7 d;R — (j'R(Ls), and
L= 1L Js2 Ie(t, 2, v,&) A&, we have finally

/ // / (0 + & - Vo) L. di dv de dt
0 QJ0 S2
+/ // / [aa@ (B. — L) + 0,0 (I;—IE)M; 43 dv dx dt,
0 QJ0 S2
= // / ely Y(0,2,d,v) did dv dx—// / el.(r,z,d,v) dd dv dx
QJ0 S2 QJO S2

+/ / / & - gl dT dv dt, (4.46)
0o Jr,.Jo

for any ¢ € CY([0,T) x QA x 82 xR,), any 7 € [0,T], for j =1,2.

Just mention that any weak solution (o, ., 9., I.) enjoys all of the regularity and integrability prop-
erties given in Theorem 2.1.

Following now the lines of [15] we introduce a relative entropy inequality satisfied by any weak solution
(0,4, 9, I) of the radiative Navier-Stokes system (see also [27] in a more general context). Let us consider
a set {r,®,U} of arbitrary smooth functions such that r and © are bounded below away from zero and

—

U’asz = 0. We call ballistic free energy the thermodynamical potential given by Hg(o,9) = ve(o,9) —

O©0s(0,V), and radiative ballistic free energy the potential HE(I) = EE(I) — ©s?(I). The relative entropy
is then defined by
E(0,9|r,©) := Ho(0,9) — 9,Ho(r,0)(0 — ) — Ho(r,©).

One observes that, after thermodynamical stability, p — Hg(p, ©) is strictly convex and § — Hg(p, )
attains its global minimum at § =©.
Testing equation (4.38) with ¢ = L |U|?, we get

1 - 1 - T = - -
/ — 0:|U(r,") dx—/ — 00|00, dx:/ / 0- (U.atU+a'5~va.U) dx dt. (4.47)
02 02 0 Ja
Testing now equation (4.39) with ¢ = (j, we get

—

/ 0t (T, ") - ﬁ(T7 ) dx — / 00,:Uo,e - U(0,-) dz.
Q Q

= / / ( (QEUE + EF’;R> 0,0 + (0etUe @ U +P) : v, U + pe div,U —S. : VJ?) dx dt. (4.48)
o Ja

Combining (4.47), (4.48) and (4.40), we get

T 1 . T
/ / (2 ocliie — U* + oeec + 5E5> (7,-) dx dt +/ / & Al (t,z,&,v) dl' dv dt
0 JQ o Jry

1 N —
B /;l <2 Q0,€|U0,5 - U(Ov )|2 + 00,e€0,¢ + EE(?’:E) e

/ / ((Qsatb +0 U‘E . vz‘)) (L 7u5) ps dl":t(’ SE . CI‘J 75[4 '(‘)tz/ — P : \Vi l]) dx dt.
0 Q S € €
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Testing now equation (4.41) with ¢ = ©, we get

_; : mﬁg
[oeneseiron i [ oaratioisee [ (600 S5 ora
’ £
n(l) n(B.) G B
— 1 _ 7) BE _ Ie—:
/ / {/ /S2V|: +1 Ogn(B€)+1 Oag ( )dwdy
+ ~ |lo —lo -
/O /‘SZV[ gn(IE)"‘l gn(Is)+1
’ y 0 Q 195
From (4.49) and (4.50) we get

o, (I, - I.) dw dz/} dx dt

1 .

/ ( QE|ﬁE—U‘2—|—gEeE—|—eE£—(QESE—HSS )© ) da:+/ / (t,x,d,v) dl dv dt
o \2 r,
+/ / © (SE Vi, — el 'ﬁv“’ﬁa) dz dt

) n(B:) G .
—log —~"€/ J) _
/ / {/ /521/[ 5+1 Ogn(BE)Jrl 0a)(B: — I.) dd dv
S22V g +1 n(15)+1

S/ <2 00,c|t0.c — U(0,-)[? +Q08606+€E05 (Qoso,a-l-asge)@(oa')) dx
Q

oI, - I.) dw du} dx dt

+/T/ ggatﬁwgﬁg-vwﬁ) : (ﬁ—ﬁs) e divI(j—i—ngvwﬁ—aﬁf-@ﬁ—Pg:lej) d dt

/ / ggsg-i-es 6t@+ (ggseug—f—qa) Va @ dx dt — / / - .V,0 dx dt. (4.51)

Testing equation (4.38) with ¢ = J,He(r, ©), we get

/ «QsapH@('ra 9)(7—, ) dx — / QO,sapH@ (T(Oa ')a @(07 )) dx
Q Q

B /oT /gz (Qsat (6”H@(r’ @)) tete - Va (3pH@(7“a @)>) dz dt. (4.52)

From (4.51) and (4.52) we get

1 . -
/Q (2 Qs|us - U|2 + H@(Qsaﬁs) - H@(Ta @) - apH@(T, @)(Qs - T) + €H(§(Ie)> (T, ) dx

//F+ t”’“"”drdydﬂ// (Saszﬁg—%i””&>dxdt
/ /sz {/ /52 v [ —)Fl log n(nB(EB;E_)Fl] 0. 9(B. — I.) d& dv
T [bg 1) o)
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< [ 5 onclioe ~ 010, do
Q
""/Q (HG(O,-)(QO’@ 190,5) - H@(O,~)(T(O7 ')7 9(07 )) - 690,5H9(0,~)(T(07 ')7 9(07 '))(QO,E - T(Oa ))
+EH§(O,~)(1015)) dx

+/OT/Q ((@satﬁ+gsﬁs~vxﬁ) : ((7—175) —p. div,U + 8. : V,U — eFR. 9,0 — PR . vz(j> e di

/ / (Qeseat@+gas Ue - Vg @+ 19 -V 6) dx dt
/ / ssRat@+ -V @) dx dt—/ / geat 8Q€Ho(r 6)) + 0:1y - r(é)gH@(r, @))) dx dt

+ / 0,(rd,Ho (r.0) — Ho(r.0)) du d. (4.53)
0 Q
Observing finally that for D = 9, or D = V, one has
DO,He(r,0) = —s(r,0)DO — 19,s(r,0)DO + 92 ,He(r,0)Do + 82 yHe (r,©) DY,

and using the thermodynamical relations 92 ,He(r,0) = L 0,p(r,0), rd,s(r,0) = —% dyp(r,0), and
92 yHe(r,0) = 9, (9(19 - @)8195> (r,0) = (¥ —0)dy (,98195(@, 19)) (r,®) = 0, equation (4.53) rewrites after

some algebraic rearrangements (see [15] for details)

1
/( ocli- — U + & (e, 9c|r, ©) + e HE (1) ) dac—i—/ / (t,x,d,v) dl dv dt
Q r,

+/ /@<ngvzﬁgq€'ﬁm) da dt

/// /51/[ J)r1 log((lﬁ] 0.9 (B, - 1.) d& dv dz dt
/// [gzu Eil—log (f(fl o 9O — 1) d& dv d dt,

S/QQ(QOEIUOf U(0,-)]* + € (00, 90, [r(0, )@(0,~))+5HR(1075)) dz
+/ /ge(a‘a—ﬁ).vmﬁ.(ﬁ—ﬁa) dz dt—i—/ /Qa(sa_s(n@)) ((j_ga).vw@dx dt
0 Q 0 O
+/ (Qs (&ﬁﬂ?-mﬁ) : (U‘—ﬁe)) dz dt
/ / pe div,U —S. : V, U dw dt — / / (esf010 + ¢ - V,0) du dt
0 Q

_/OT/Q(QE (se—s(r,Q))Gt@ dm dt—/o /QQE (50 — s(r, @)U - V.0 da dt

/OT Qﬁi v @dxdw/T/Q((l—éf)atp(r,@)—ffﬂevxp(r,@))) da dt

T 10 7
—/ / (gﬁﬁaﬂﬂpfzvzﬁ) dz dt =: K0+Z/ K;(t) dt. (4.54)
0 Ja j=170

It will be the goal of our next Section 4.4 to provide a bound for the right-hand side of (4.54).
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4.4 Uniform estimates

Our intention is to apply the previous relative entropy inequality (4.54) with (p,,d) is the classical
solution of the target system (in the equilibrium case or in the non equilibrium case), in order to bound
the quantities o — 7, U, — (j, Y. — 0O, EF — N. Note that in the equilibrium case: N = fooo B(v,9) dv = a®*
while accordingly in the non-equilibrium case, N is the solution of the diffusion equation (4.31).

Just mention that the existence of classical solutions of the previous target systems is either local (for
T < T, small enough) or corresponds to a small departure from an equilibrium state. This last possibility
corresponding to the kind of regime we are interested in (diffusion limits), we suppose in the following that
the data of the problem satisfy the smallness requirements of Theorems 4.1 and 4.2.

Following the definitions of Section 2, we choose positive numbers (o, 9,9, 9, E, E) in the equilibrium

case and (g, 0,7, 9, N, N) in the non-equilibrium case, such that

1
0<o< = min _ r(t,z) <2 max _ r(t,z) <o,
=7 2 (t@)e0,1]1xQ (t,2)€[0,T]x
1 _
0<y <= min Ot z) <2 max _ O(t,z) <9,
2 (t,2)€[0,T]xQ (t,2)€[0,T]x
1 . R R =
0<E< - min Et(t,z) <2 max _ E%(t,z) < E,
2 (t,2)€[0,T]x0 (t,2)€[0,T]x
1 I
O<N< - min _ N(t,xz) <2 max _ N(t,xz) < N,
2 (tx)e0,T]x0 (t,z)€[0,T]xQ

and we split any measurable function h as h = hegs + hyes, Where hess(t, z) = h(t, z) if (0,9, EX) € [p, 0] x
[9,9] x [9,9] (equilibrium) (or if (o,9, E®) € [p,0] x [¢,9] x [N, E] (non-equilibrium), and he,s(t, ) = 0
otherwise. B

Then applying Lemma 3.1, we see that there exist positive constants C; for j = 1,- - -,6 such that

C1 (Jo- — r|* + [9. — ©%) < He(0:,9:) — (0- — r)doHe(r,0) — Ho(r,©)

<Oy (Jo- =7 + 9 = ©F), (4.55)

for all (o, 9:) € [0,2) x [9, 7],

He(0:,79:) — (0 —7)00He(r,0) — Ho(r,0) > C3 (1 4 0e(0:, V<) + 0|s(0s,Ve)]) (4.56)

otherwise. In the same stroke we have
0o . ) .
04/ / \I. — B(v,&3,U,0)?dd dv < HR(I.) < 05/ / \I. — B(v,&,U,0)%da dv, (4.57)
0o Js2 0 Js2

for all EF € [E, F,
H™(IL.) > Co(1 + B + [sfY)), (4.58)

otherwise, with © replaced by ©, in the non equilibrium case. We have now the crucial inequality

Lemma 4.1. Let (09, @), 0©)) be the solution of problem (4.13-4.19) satisfying the conditions of Theorem
4.1 (equilibrium case) and let (o), @) g(ne), 9&”6)) be the solution of problem (4.13-4.19) satisfying the
conditions of Theorem 4.2 (non equilibrium case) and choose (r,U,0) = (0(©), @), 0()) in the equilibrium

case or (r, U,e, 0,) = (o9, qne) g(ne), 9£7Le)) in the non equilibrium case. One has the following relative
entropy inequality

[ (5 el = 0P +€ (euvulr0) + 070 ) (1) da (4.59)
Q
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1 1 . - <
S g |:C€0 + / (§QO,E|UO,E - U(O7 )|2 + & (QO,Ea ?90,E|T(07 ')7 @(Oa )) + HR(IO,E)>d'r:| 665 ta
Q

where C and C' are positive constant depending on (r, (7, 0,0,.) and ey is the same as in Theorems 4.1 and

4.2.
The lengthy proof of this result is given in the Appendix.

Remark 2. The price to pay in order to get rid of any e in the left-hand side of the inequality (4.59)
(compare with (4.54)) is the large factor %/ which makes the temporal range of validity of (4.59) very small.

Using this inequality the following estimates hold

Lemma 4.2. Suppose that eq = O(e?) (initial data of the target systems are “well pepared”) and suppose
also that initial data of the primitive system and any of the target systems are close in the following sense

00, — 00llz2() < C¢, [[P0,e — Yollz2(0) < Cé, ||y/00,c (Ho,e — ’J)HLz(Q;R:‘) < Ce.

Then the following estimates hold

(gg” + gf) {[o, ] x ﬁ] < Ce, (4.60)
ess sup |M5  (t)] < Ce, (4.61)
te(0,T)
ess sup |[lo- — Q]ess(t)”LQ(Q) < OV, (4.62)
te(0,7)
ess sup [0 — Vess(t) || L2(0) < CVe, (4.63)
te(0,7)
ess sup |2z (@) = 70) | e, < OVE (4.64)
te(0,T) ’
ess sup [|[EF — ER(I)]ess ()| 120 < CVE, (4.65)
te(0,T)
€ss sup ”[Qse(gsaﬁs)]reS(t)”Ll(Q) < OV, (4.66)
te(0,T)
€ss  sup ”[963(96’ﬁs)]reS(t)”Ll(Q) < OV, (4.67)
te(0,T)
ess sup |[[BR(1)]res()| 10y < CVE, (4.68)
te(0,T)
€ss  sup ”[SR(IE)]res(t)”Ll(Q) < Cye. (4.69)
te(0,7)

Proof: Bound (4.60) follows after the proof of (4.59) and implies (4.61). Bounds (4.62),(4.63),(4.64)
and (4.68) follow after (3.39), (3.42) and (4.59). Bounds (4.66) and (4.67) follow after (3.41) and finally
(4.68) and (4.69) follow after (3.44) O

Let us finally quote the following result which is a straightforward application of Proposition 5.2 of [14]
(the proof is omitted)

Proposition 4.2. Let {0:}e>0, {Uc }es0{l: }es0 three sequences of non-negative measurable functions such
that
(o] = o weakiy — (x) in L0, T; L2(Q)),

{198)} — W weakly — (x) in L=(0,T; L*(12)),

ess
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[Iél)] — IW weakly — () in L=(0,T; L*()), a.e. in S x Ry,

where
o= gy Y=V ) LT
€ € €
Suppose that
ess sup |ME, (1) < Ce2 (4.70)
t€(0,T)

Let G,G® € CY(O,ss) be given functions. Then

[G(oes Ve)]ess = Gl0,9) — 0G(0,9) O 9G(0,9)

H@)
€ do 0 ’

weakly — () in L>(0,T; L*(2)), and if we note

(GR(1L)],.. = [GR(I(, &, v)],,, = GMI) Tume,.. for a.a. (&,v) € S* xRy,
we have " .
[G (IE)] ess - G (I) N 8G(I) [(1)
€ ol ’

weakly — (¥) in L>=(0,T; L*(Q)), a.e. in 8% x R,.
Moreover if G,GT € C?(O.ss) then

H (G (e, Ve)less — Glo,9)  9G(0,9) [9(1)} 9G(0,7) {19(1)]

€ do 9

< Ck,
Le=(0,T;L1(Q)

and

[G"(1.)]

- GR(I)  aG(I)
ess (1) <
9 ol |:I ]ess - Cg,

L~ (0,T;L1(Q)

for a.a. (B,v) € S x Ry.

4.5 Convergence toward the target systems

We are now in position to prove that the equilibrium diffusion target system (4.13)-(4.15) and the non-
equilibrium diffusion target system (4.27)-(4.31)) are the limit in a suitable sense, of the primitive system
(3.30)-(3.34) when & — 0.

e The convergence result in the equilibrium case goes as follows

Theorem 4.1. Let Q C R? be a bounded domain of class C%". Assume that the thermodynamic functions
p, e, s satisfy hypotheses (2.1 - 2.6) with P € C1[0,00) N C%(0,00), and that the transport coefficients yu,
1, K, Oa, 05 and the equilibrium function B comply with (2.7) - (2.10).

Let (0e,Ue, Ve, 1) be a weak solution to the scaled radiative Navier-Stokes system (3.5 - 3.8) for
(t,z,0,v) € [0, T] xQ2x 8% xR, supplemented with boundary conditions (1.10 - 1.11) and initial conditions
(00,6, Uo,e, Vo, I0,c) such that

Q6(07 ) = 00 + \/‘gg((]gv ﬁ&(oa ) = ﬂ'0767 196(07 ) - 190 + \/gqg(()];cza

where (0o, 1, Vo) € H3(Q) are smooth functions such that (09, 90) belong to the set OX  where g > 0, 9 > 0,
are two constants and [, 982 de =0, [, 1982 dz = 0.
Suppose also that

o — Uy strongly in L (;R?),
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983 — Q(()l) strongly in L*(Q),

19(()172 — 19(()1) strongly in L*(Q).

Then up to subsequences )
0. — 0 strongly in L>(0,T; L3 (%)),

. — @ strongly in L*(0,T; WH2(Q; R?)),
9. — 9 strongly in L>(0,T; L*(Q)),
I. — B(v,0) strongly in L>=((0,T) x Q x S?) x (0, 0)),

where (o, U,9) is the smooth solution of the equilibrium decoupled system (4.13)-(4.15) on [0,T] x , with
wnitial data (0o, Up, Vo).

Proof: Let us observe that after Theorem 2.1 bounds (2.9), (2.10) and relative entropy inequality
(4.59), the temperature . is bounded in L?(0,T; W12(Q2)) then after extraction of a subsequence

9. — 9 in L*([0,T] x Q). (4.71)

1. For the continuity equation, one observes after Lemma 4.2 that

i

Using this fact together with bounds in Lemma 4.2, we see that

dt < C.

2
Vi + Vi, — 3 div, .1

L2(:;R?)

T
/0 1 (t) = G5, 2 s, U < C,

so, passing to the limit after possible extraction of a subsequence, we have 7. — 0 weakly in L2(0,T; W12(£); Rg’)).
In the same stroke g. — o, weakly in L(0,T; L>/3(€; R?)). So we can pass to the limit in the weak con-
tinuity equation (4.38) which rewrites as (4.13), together with the boundary condition @ -ns|y, = 0,
provided 0f2 is regular.

2. For the radiative transfer equation we have shown in the previous sections, using the result of Bardos,
Golse, Perthame and Sentis [3] that I. — I, weakly in L>((0,T) x 2x 8% xR, ), and that 9. — 9, weakly
in L2(0,T; Wh2(Q)). As the radiative transfer equation (3.34) is linear in I, we can pass to the limit in
the weak formulation of radiative transfer equation which gives

/Q/OOO/S 7a(0) (B(v,9) — )¢ d& dv da = 0,

for any test function ¢ € C°((0,T) x Q x 8% x R ) which is the weak formulation of the equation
I(t,z,v,&) = B(v,9(t, x)).

3. For the momentum equation, one knows that due to possible strong time oscillations of the gradient
component of velocity, one has only o.1. ® . — ot ® i, weakly in L?(0,T}; L%(Q; ]RS))7 however one can
show after the analysis of [14] (see [10]) that one can pass to the limit in the convective term and obtain

T T
/ /Qeﬁe®ﬁezvm¢d$dt—>/ /gﬂ'@ﬂzvm(bdxdt.
o Ja 0o Ja

Moreover after the hypotheses on pressure, 9. is bounded in L°°((0,7); L*(Q)) N L?(0,T; L5(Q)), which
implies that S, — p(9) (Vi + Vi), weakly in L9(0,T; LY(; R?)) for a ¢ > 1.
Using (4.62) and (4.63)

ess sup ||pe — pless(t)||lz2() < Ck,
t€(0,T)
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then V,p. — V,pin D’

As we know that EF — a9*, weakly in L°((0,T) x Q x 82 x R, then PF — q9* I and eFE — 0, so
we can pass to the limit in all the terms of the momentum equation (4.39) and obtain (4.14).

4. For the entropy balance we rewrite equation (3.33) in the form

T — 1 T >R
/ / ((gsss + sf)atga + 0eSetie - Vi + % Vzga) dx dt + — / / & Ve dx dt
0o Ja e eJo Jo Ve

T Beiorsm T B o< /Q (05 +5™))(0,)¢(0, ) do

g/ [(00,50,c + s8) — (2050 + s8] #(0, ) dx—/T/ {o0-(5- — 8) + (0- — 0)s + sE — ™)} Oy du dt

/ / {Qs Se Ue (Qeua - QU)S} Vz‘ﬂ dx dt— / / [ - :| VIQD dx dt+<§;n - Cm; ¢>[M;C]([O,T><§) .

for any ¢ € C2°([0,T] x Q).
Using Proposition 4.2, one computes first

1" "
7//(1& Tcpda:dt%//—vxgodxdt
eJo Ja Ve

as & — 0, where fj is given by formula (4.12).
In the same stroke, we find

T FRV,0
R. 1 x
(5 0) ascrqpo,rxm) — /0 /Q —gz pdrdt

as € — 0, by using once more Proposition 4.2.

After the conditions on the data and the estimates in Lemma 3.2 and using verbatim the techniques
of [14](Chap. 5) one concludes that all of the integrals in the right hand side converge to zero as € — 0,
which proves that the limit entropy inequality (4.16) is obtained O

e The convergence result in the non-equilibrium case goes as follows

Theorem 4.2. Let Q C R? be a bounded domain of class C%¥. Assume that the thermodynamic functions
p, e, s satisfy hypotheses (2.1 - 2.6) with P € C1[0,00) N C?(0,00), and that the transport coefficients u,
A, K, 04, 05 and the equilibrium function B comply with (2.7) - (2.10).

Let (e, e, Ve, I.) be a weak solution to the system (3.5 - 3.8) for (t,x,&,v) € [0,T] x Q x 8% x Ry,
supplemented with the boundary conditions (1.10 - 1.11) and the initial conditions (9o, %o, Vo.e, Lo.c)
such that

0:(0,-) = 00 + VE0y),  @.(0,-) =doe, 0:(0,-) = 0o+ VEOL), L.(0,-) = Ip + VeI,

where the functions (o, ,Y) and v — Iy(z,d,v) belong to H3(QY) and are such that (00,90, Er(Ip))
belong to the set Oess. Suppose also that

U e — Uy strongly in L‘X’(Q;R:”),
Q((Jlg — o) strongly in L*(9),
950 — 0§ strongly in L*(%),

I(()le) — I( ) strongly in L>((0,T) x £ x (0,00)).
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Then up to subsequences .
0 — 0 strongly in L*(0,T; L3 (Q)),
. — i strongly in L?(0,T; Wh2(Q; R%)),
9. — 9 strongly in L>(0,T; L*(Q)),

and
N. — N strongly in L*=((0,T) x Q),

where Ne = fooo f32 I. d& dv and (p,u, 9, N) is the smooth solution of the Navier-Stokes-Rosseland system
(4.27)-(4.31) on [0,T] x Q with initial data (oo, tio, Yo, No).

Proof: Exactly as in the equilibrium limit, the temperature . is bounded in L?(0,7; W2(Q2)) then
(4.71) holds.

1. As in the equilibrium limit, we can pass to the limit in the weak continuity equation (4.38) which
gives (4.27) and we can also pass to the limit in momentum equation (4.39) and obtain (4.28).

1. For the radiative transfer equation, one can adapt the result of Bardos, Golse, Perthame and Sentis
[3].
As we consider the “grey hypothesis”, we use the average notation I. instead of N, := fooo I. dv in all
this subsection. We start with

1 1 i
Ol + = & Vol = 04 (B. = 1) + = 0 (16 - IE> : (4.72)

with B, := B(v,d, 4., 9. ), and
Ia|t:0 = Iy, (4.73)

where I, = = Jso I A, 04c = 04(Ve, Ue) and o5 . = 05(0.). After [10] we see that

L]l o (@xs2) < C(T) (L4 [ Ioll = (oxs2)) -
Multiplying (4.72) by I, integrating over the whole phase space and using (2.10), we get

Hai,/sQ (BE - IE) ||L2(Q><S2) < CE; (4.74)

HU;,/E (ia - IE) 22 axs2) < Ce, (4.75)

and
< C. (4.76)

1
g 8t15—|—* OUVJIE
€ L2(QxS?)

N\ 1l/r
Using the Fourier argument of [3] (see Lemma 3 in [3]) we also get that for any T > 0 (Ig’ ) is bounded

in L0, T; W*1(Q)) where ¢ = %, r=1+ ﬁ and for any s < 2’;;11.
Integrating (4.72) over &, we get first
- 1 — .
O I + — div, GL = 0. (Bg - 15) , (4.77)
and multiplying (4.72) by w and integrating over o, we also have
- 1 . e 1 -
Oy W1, + - div, (d@dl.) = — 2 Ose +e0q,e | DL (4.78)
Then we get the equation
_ 1 . o~ B
8, I — div, ( €0, GI. + div, (G @ QIE)D = G (BE - 15) , (4.79)
Osie +E0q e
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in D'((0,T) x Q x 82). Using (4.76) and (2.10), we conclude that the sequence {8; I.}. is bounded in
L0, T; W=14(Q)).

-\ 1/r
Setting J. := (Ig) , we deduce that
Je € LA([0,T); W=1(Q)),

11z = Je||Lago.ryxa) — 0 for e =0,

and
I € LI([0, T); W~19(9)).
Applying a variant of the Aubin-Lions Lemma given in [3], there exists a subsequence INS converging in
L1((0,T) x Q).
Now we can pass to the limit in (4.72). In fact from (4.74) and (4.76) we see that there exists a
g € L?((0,T) x Q x §?%) such that

(0sc +00.) P div, (@& I.) — g weakly in L2((0,T) x Q x 82).
Multiplying by (0. + £04..)"/? I. and using (2.9)-(2.10) and (4.71) we obtain
Idiv, (3 @& I.) — gol/?I weakly in L' ((0,T) x Q x §?),

with o5 = 04(1).
Now we see from above that

(s +€0a.:)? I. — 0}/2I weakly in L*((0,T) x Q x §?),

SO
1
5 dive (G I?) — go}/?T weakly in L'((0,T) x Q x §2),

and that 1 1
5 divz (& ® BI2) — 5 dive (@ ® @I%) weakly in D'((0,T) x Q x §?).

Therefore goy/*T = 3 div, (& ®&I?).

Exactly as in [3], one can now check that o, 1 G = %U% VI, and therefore one can pass to the limit
in the second term in the left hand side of (4.79)
L v.@edl) ! ! VACEIA
R EEe— G®dl) = G®D
Os.e + E0q,e ’ ) (US,E + 80',175)1/2 (Us,g + 60',175)1/2 ! )
11

g = 52— V.1 4.80
o=V, (1.80)

As the term in the right hand side of (4.79) clearly converges to o,(9) [B(¢¥) — I], this finally proves that
N satisfies the limit equation (4.31).

The argument of [3] shows finally that I satisfies the Dirichlet boundary condition N|,, = 0. In fact
from the fact that & -V, I2 is bounded in L2((0,7) x Q x R,) we deduce that N. has a trace which holds
at the limit.

2. For the entropy balance we rewrite equation (4.41) in the form

T . — - T S R
/ / (gsgatw—i-gesgug-vwgo—f—gi.er) dx dt+(s §¢>[ME;C]([07TX§)+/ / 19E pdz dt—/ 00.:50,e9(0,-) dz
0o Ja e o Ja Ve Q

< /OT/Q (%js) _ SEﬂ(I))gp dx dt. + /Q [Qo,eso’s — QOSO] ©(0, ) dx
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—/ / {0:(8e — 8) + (0- — 0)8} Oy da: dt — / / {0e(8c — 8)te + (0ete — oU)s} - Vi da dt
0o Jo o Jo

T CTE (T N .
_/0 /Q {195 _ 19] Vo da dt + (" = <1 0) jio)0,7x0)

for any ¢ € C2°([0,T] x Q).
We first observe that the first term in the right-hand side converge to zero, by applying the same
argument as [10](see Proposition 4.1) based on the average Lemma of Bournaveas and Perthame [5].
Finally, after the hypotheses made on the data and the estimates in Lemma 3.2 and using once more
verbatim the techniques of [14](Chap. 5) one concludes that all of the remaining integrals in the right hand
side converge to zero as € — 0, which proves that the limit entropy inequality (4.30) is obtained O

Appendix: Proof of Lemma 4.1

Let us denote g € Ry, ¥ € Ry and E € R, the numbers appearing in Theorems 4.1 and 4.2 and use the
previous definitions (see Section 3.2) of essential and residual quantities.

After Lemma 3.1, all of the terms in the left-hand side of (4.54) are positive. Then we have to estimate
the contributions in the right-hand-side.

K| s/gs
Q

—

2
i, — U’ da.

DR - , 1
Q

| K| < ’/ 0c (s — s(r, ©)) (17 — ﬁ) V.0 dr
Q

U — i, T

o ) [2,0 /2 l[5(0e, 02) — 5(r, ©)],..| dz + /2 0= (32 92) — 5(r, ©))], .|

dx] .
From Lemma 3.1 we have

. 2
U — i,

[ listo00) = st 0],
Q

dxﬁé”[j—ﬁa

+C’(5)/ & (0e,9:|r,©) dz,
Q

L2(Q;R3)

for 6 > 0 and using interpolation we get

= 5 2
0 —i. dxchHU—a’g

[Qe (S(Qaa 195) - 8(7‘, 9))]res| LS(QR?)

0 ‘ +C(9) ”[Qe (s(0e, V) — s(r, C—)))]’resHiG/S(Q) .

Using hypotheses (2.1)-(2.4) together with the property t — [, & (0c,c|r,©) dx € L>(0,T), we conclude
that

5/3
e (s(oes 02) — (O], eularogey < € ( /Q £ (02, 0.7, ©) dx) .

So finally we end up with

- 2
K| géHU—a’e )
Wy 2 (4R3)

+C(6;r,U, @)/ € (0z,9¢|r,©) dx.
Q
Using (4.15) we get

ng/ﬂ(ge (3tﬁ+ﬁ.vm(7) . ([j—_gs)) dm:/Q& (ﬁ—ag) (divIS(@,vzﬁ)—Vzp(n@)) dx

r

- /Q 0 —T (U—ﬂs) (diVIS(@7vzﬁ)—vmp(r’ @)) d:c+/

r Q
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Estimating the first integral as for Ks, we have

2

[ {ga " (0 - a.) (v S( V.0) - Vsl @))] as

r €SS

< (6,0, 0)ll [0 = 1l aqey +0 |0 - .

L2(;R3)

) o 2
< C((s, T, U7@) (” [Qs]ess ||%5/5(Q) + ” [1]355 ||2LG/5(Q)> +o HU o

LS(Q;R3)
Integrating by parts in the second integral, we have also

U —.) (div.S(©, V,U)-V.p(r,0)) dz :/ S(0,V,0) : V, (U — i ) —p(r,0) div, (U — . ) ) d.
, (7~ ) (av:5(0. 9:0) -2t 0) de = [ (510,920 02 (0~ ) -ptr.0) aive (0 - ) )
So, using the embedding W12(Q)) — L5(Q2), we end as above with

2

K, S/Q(S(@,Vrﬁ) .V, (ﬁ—ﬁs) — plo,9) div, (ﬁ—ﬁs)) d:r+§HUfﬁg

W1.2(Q;R3)

+C'(5:7, T, @)/5(g5,195|r,®) dx,
Q

for any § > 0.
Now we have

Kg = —/ Q€<8(Q€,195)—8(T7@)3t@ dx = —/ o {s(gs,ﬁg)—s(r,@)} 0;0 dx—/ o {s(ga,ﬁs)—s(r,@)} 00 dx,
Q Q €SS Q

TEeS

where the second term is bounded as follows

< 1901 ( /Q (5002, 92)] da 4 11s(r ©) (o /Q o] dw)

gc’((s;r,ﬁ,@)/ & (0:,9¢|r,©) dx.
Q

[ e[ste00-sr0)] a0 as

The remaining integral is bounded as follows

/995[5(95,195)—5(7“,@)} ’8t@da::/ﬂ(gg—r) [s(ga,ﬁg)—s(r,@)} ’0,5@da:—l—/ﬂr[s(ga,ﬂg)—s(r,@)} )at@dx.

€SS €SS €SS

Using Taylor formula

/Q (gg - r) {3(95, 9.) — s(r, @)} ess@@ dx

< C(o;r,17,0) / € (0., 0.Ir,0) du.
Q
Finally

/Qr[s(gg,ﬁa)—s(r,@)Lssﬁt@ dx:/Qr[s(gg,ﬁs)—ags(r,@)(gs—r)—(’?@s(r,@)(195—@)—5(7”,@)} 00 dx

€SS

_/QQ[ags(r,e)(gs—r)—a@s(r, @)(ﬁg—@)}essat@ daH—/Qr[@Ts(r, @)(95—7')—8@5(7“7@)(195—9)]&@ de.

The first two integrals in the right-hand side can be estimated in the same way as before and we end with

K < C((s;r,U‘,e)/ € (0:.9:l0.9) dz —/ o[0r5(r.©) (0 = 1) + Bos(r,0) (4. — ©)] 40 da.
Q Q
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Accordingly, we have also

K7:—/ Qg(s(gs,ﬁs)—s(r,@))ﬁ-vm@ dxﬁC(&;n[i@)/8(95,195|7",®) dx
Q Q

—/ o[0r5(r,0) (0 — 1) + Dos(r, ©)(0. ~ ©)|T - V.0 d.
Q
Finally we find

Ky = /Q ( (1 — —) Op(r,0) — 7 Ue xp(r,@)) dx

< /Q ( (1 — 7) (&gp(r 0)+UV..p(r, @)) d:v—l—/gp(r,@)divxﬂs dx—l—/ﬂ ( (1 - %) Vap(r,©) <175—(7) dz,

and using the same argument used for Ky, we get

[ (%) vpro)(a. - 0)

for any § > 0, so we end with

2

—

<C'(6;7,U,0) {5 U

—

Ug
WL2(Q;R3)

—|—/ E (0e,9:|r, O) dx},
Q

Ky < /Q ( (1 - 7) (atp(r ) + uVp(r, @)) dx + / p(r, ©)div, i, dx

Q
N 2 o
+6HU—11’5 +C(5;7‘,U,®)/5(Q8,198|r,@) dz
W2 (Q;R?) Q

Plugging all of the previous estimates into (4.54) we get

1
/( ocli- — U + & (e, 9c|r, ©) + e HE (1) ) dx—i—/ / (t,x,d,v) dl dv dt
Q r,

+/ / (;S(Qa7vm'&:5) : Vxﬁa - S(Ta (j) : (Vmﬂs - Vg;(j) - S(Qa7vwﬁs) N VIIj) dw dt
0 Q €

/ / QE) E -V,0 S) q<Q£;196)'v1195

- 0 ) da di

/// /51/[ ll IOg((E;i]aagj)(Be—Ig)d@’dudxdt
/// /Szy EJ)rl log ((Q o (I — I.) d& dv da dt

S/Q2 (QOEWOE— U(0,-)* + & (00,6, Y0,¢|r(0, )@(0,~))+HR(IO7E)) dz

+ /OT [6]|0 - @
—i—/Q (p(r,@) —p(gs,ﬁ5)>divxﬁ dx +/Q ( (1 - 7) (8tp(r O) + - Vyp(r, @))

/ o(0,5(r.0)(0: — 1) ~ Dos(r.O)(0. ~ ©)) (0,0 + T - V,0) da

2

_ SRR
(Q;R3)+C(5,T,U,@)/Q(§ o:|u. — U| +g(957198|r7@)) dx] dt

Wi.2

//esR&g@—F -V,0) dz dt — //:—:FR oU + P, : V,U) dx dt. (4.81)
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We must now estimate the five last terms in the right-hand side.
We begin with the last two integrals. In the first one we observe that the first part is bounded as

follows - - -
/ /(Esf@t@) dz dt‘ g/ /5Hf\8t10g®| da dt+/ /5E5|8tlog@| dz dt
0 Q 0 Q 0 Q

< |0 log ©| = () (/ / eHE do dt + eeo) ,
0o Ja
and in the second part

/ /@R~Vx®dxdt’§
0 Q

/ / (esfo,0 + ¢ v,0) dx dt’ <C <60 +/ / HE dx dt> , (4.82)
0 Q 0 Q

where we took into account (4.57) and (4.58).
In the second integral we check that the first part is bounded in the same way

/ /eﬁfatﬁ du dt’ —c / // / &(I. — B(v,0))-8,U d& dv dx dt‘
0 Q 0 QJo S2

/OT /Q /OOO /S B ([ = B, 0))ess + [I: = B, 0)]yes) - U did dv da dt‘

< Ce||0,U || e (/ / HE dx dt> ,
0o Jo
and in the second part

//P?Vxﬁdxdt‘é / // /@®@(IgB(V,@))~Vm(7du'5d1/dmdt‘
0 Q 0 QJ0 S2

/// /Q@J)B(y,@)-vmﬁd@'dudxdt‘
0 QJ0 S2

T o0 o 1
/ / / / 503 (I = B, O)]ess + [ — B(r,0)]yes) - Vol d dv dar dt‘+
0o JaJo Js2 3

< O\ VU] L (/ / HE dx dt+eo> ,
0 Q

/ /(sﬁf 0,0 + P, : V,U) dx dt‘ <C (eo +/ / HE dx dt) . (4.83)
0 Q 0 Q

Now using the previous thermodynamical identities for Hg and the continuity equation for the target
system, we get rid of the remaining integrals in the right-hand side of (4.81) (see [15]) by observing that

/ /e|s§||vx@|| dax dt‘ gcnvz@nm(m/ /HR dz dt,
0 Q 0 Q

then

=€

_|_

<

/ / 6*div,U dz dt’
0 Q

then finally

r

A= /Q (p(r, Q) — p(ge,ﬁg))divw(j' dx —l—/Q ( (1 — &) (atp(r, O) +d- V,p(r, @)) dx
- /Q Q(@rs(r, 0)(0- — ) — dos(r,0) (V. — @)) (at@ +U- vz@) d
= /Q (p(r,©) = plo-, v.) ) div, i do + /Q 0(© —1.) 96s(r,0) (0,0 + T - V,0) da
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— r— 0: )0y r@div,;(jda:.
[ (r=c)antre)

Finally the second term in the right-hand side rewrites as follows

/ 0(0 —9.) dos(r,©) (at@ U vme) da
Q

/Q r(© ~0.) [215(r.0) + T - Vs(r.0)] do /Q (0~ . )dop(r, ©)div. T da

/Q (9. [ (8.0 : 9.0 - as, VIS) Va0 divx(W)} da

_/ (€ —.)dep(r, ©)div, T da.
Q

We deduce finally that
A= [ (ple.) = plec ) = (0. 9) - — o) = daple,0)(0. = 0))div, T d.

+/Q ©—9.) [é (S(T, [7) : Vxﬁ _ q(@avxg) ) vx@) — divx<w>} dx.
Observing that

/Q (p(ra ©) — p(0z,V:) — Opp(r,0)(0- — 1) — Dop(r, ©) (Ve — @))divmﬁ dx

we see that (481) reduces ﬁnally to

1 .
[ (5 et =07+ & (000 + 210 ) () da
Q
T (_) . . . . . = N
+/ / (ﬂfS(gs,Va:uE) iVt —S(rU) : (Vate — Vi U) —S(0-, Vo) : VIU) dx dt
0 Q 5
T 9 . .
+/ / ( —7S(0s, Vaii.) : sz) da di+

/ / q0, Vg 19 V © O o, Vi¥e) - Vi,
JACE

0 0 )dmdt
9 @ve))ve 7(0,V,0) - V. (0.

/ o @I _@)> dx dt
s

(e0.cl0.c = T(0, ) + € (0.0 o.clr(0,),0(0,)) + eH (1)) da

<
U — i. +C'(8;7,U, @)/ & (0z,9:|r, ©) da;] dt+C" (6,7, U, @)(e0+/ /HR dz dt)
Wi2(Q;R3) Q o Ja

+/OT[5

(4.84)
Finally we can control all of the dissipative terms (the three last integrals in the left-hand side), by using
verbatim the computations in [15] which leads to the final inequality

1 . T L2
[ (5 edie = 0P + £ ne) + et ) o o [ [ (9= 0.0] de
Q 0 Q
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T 2 T 9
—|—k2/ /‘v;r'lga_Va:G)‘ dx dt+k3/ /‘Vzlogﬁa—vzlog@‘ dr dt
0o Ja o Jo
§k460+/ (1 (@o,e
o \2
T 1
o[ [ (Lo
° /o Q(z

where the positive constants k; depend on (r, U ,0,0,.) through the norms involved in Theorems 4.1 and
4.2. Thus we end with

ﬁO,s - [7(0, )‘2 +& (QO,E» 190,6|T(07 ')7 @(07 )) + eHR(IO,E)) dx

512
i, — U] 4 & (0., 0.]r,©) + 5HR(I€)) dz dt, (4.85)

1 .
5/ (2 0ot — TP + € (0o, 9.1, ©) + HR(IE)) (r,) do
Q

1 . .
< kaco + / <§ (9076|U0,e —U(0,))* + & (00.c, P0.|r(0,-),0(0,-)) + HR(IO,E)) dx
Q

+7€5/OT/Q(;QE

Using Gronwall’s inequality we get finally the requested inequality (4.59).

12
. — U‘ + € (02,0, ©) + HR(L)) da d. (4.86)

Acknowlegment: Sdrka Necasovd acknowledges the support of the GACR (Czech Science Foundation)
project P201-13-00522S in the framework of RVO: 67985840.Part of work has been done during her visit
of CEA and she would like to thank for wonderfull hospitality of Prof. Ducomet and his colleagues.

References

[1] R. Balian. From microphysics to macrophysics. Methods and applications of statistical physics Vol. I1.
Springer Verlag, Berlin, Heidelberg, New York, 1992.

[2] C. Bardos, F. Golse, B. Perthame, The Rosseland approximation for the radiative transfer equation,
Comm. Pure. Appl. Math., 40 (6):691-721, 1987.

[3] C. Bardos, F. Golse, B. Perthame, R. Sentis, The nonaccretive radiative transfer equations: Existence
of solutions and Rosseland approximation, J. Funct. Anal. 77 (2) (1988) 434-460.

[4] C. Berthon, C. Buet, J.-F Coulombel, B. Despres, J. Dubois, T. Goudon, J.E. Morel, R. Turpault,
Mathematical models and numerical methods for radiative transfer. Panoramas et Syntheses No 28,
Société Mathématique de France, 2009.

[5] N. Bournaveas and B. Perthame, Averages over spheres for kinetic transport equations; hyperbolic
Sobolev spaces and Strichartz inequalities, J. Math. Pures Appl., 80:517-534, 2001.

[6] C. Buet and B. Després. Asymptotic analysis of fluid models for the coupling of radiation and hydro-
dynamics, J. Quant. Spectroscopy Rad. Transf. 85 (2004), 385-480.

[7] R. Dautray and J.L. Lions Ed., Analyse mathématique et calcul numérique pour les sciences et les
techniques, T. 3. Eyrolles, Paris, 1985.

[8] B. Dubroca, J.-L. Feugeas, Etude théorique et numérique d’une hiérarchie de modéles aux moments
pour le transfert radiatif, C. R. Acad. Sci. Paris, 329 (1999) 915-920.

[9] B. Dubroca, M. Seaid, J.-L. Feugeas, A consistent approach for the coupling of radiation and hydro-
dynamics at low Mach number, J. of Comput. Phys. 225 (2007) 1039-1065.

40



[10] B. Ducomet, E. Feireisl, S. Nec¢asova. On a model of radiation hydrodynamics. Ann. I. H. Poincaré-AN
28 (2011) 797-812.

[11] B. Ducomet, S. Necasové, Global smooth solution of the Cauchy problem for a model of radiative
flow, to appear in: Ann. della Scuola Norm. Sup. di Pisa.

[12] B. Ducomet, S. Necasové, Low Mach number limit for a model of radiative flow, Journal of Evolution
equations, 14: 357-385, (2014).

[13] B. Ducomet, S. Necasové, Diffusion limits in a model of radiative flow, to appear in Annali dell
Universita di Ferrara, DOI 10.1007/s11565-014-0214-3

[14] E. Feireisl and A. Novotny, Singular limits in thermodynamics of viscous fluids. Birkhauser, Basel,
2009.

[15] E. Feireisl and A. Novotny, Weak-strong uniqueness for the full Navier-Stokes-Fourier system, Arch.
Rational Mech. Anal., 204 (1):683-706, 2012.

[16] F. Golse and B. Perthame, Generalized solutions of the radiative transfer equations in a singular case,
Comm. Math. Phys. 106 (1986) 211-239.

[17] S. Jiang, Global solutions of the Cauchy problem for a viscous polytropic ideal gas, Ann. Scuola Norm.
Sup. Pisa Cl. Sci. (4) Vol. XXVT (1998) 47-74.

[18] D. Levermore, Relating Eddington factors to flux limiters, J. Quant. Spectroscopy Rad. Transf. 31
(1984), 149-160.

[19] D. Levermore, Moment closure hierarchies for kinetic theories, J. Stat. Phys. 83 (1996), 1021-1076.

[20] O. A. Ladyzenskaja, V.A. Solonnikov, N.N. Ural’ceva, Linear and quasilinear equations of parabolic
type. AMS 1968.

[21] C. Lin, Mathematical analysis of radiative transfer models, PhD Thesis, 2007.

[22] R. B. Lowrie, J. E. Morel, J. A. Hittinger, The coupling of radiation and hydrodynamics, The
Astrophysical Journal, 521 (1999) 432-450.

[23] A. Matsumura, T. Nishida, Initial boundary value problems for the equations of motion of compressible
viscous and heat-conductive fluids, Commun. Math. Phys. (89) (1983) 445-464.

[24] B. Mihalas and B. Weibel-Mihalas. Foundations of radiation hydrodynamics. Dover Publications,
Dover, 1984.

[25] G. C. Pomraning. Radiation hydrodynamics, Dover Publications, New York, 2005.

[26] J. F. Ripoll, B. Dubroca and G. Duffa, Modelling radiative mean absorption coefficients, Combust.
Theory Modelling 5 (2001) 261-274.

[27] L. Saint Raymond, Hydrodynamic limits: some improvements of the relative entropy method, Ann.
1. H. Poincaré-AN, 26:705-744, 2009.

[28] H. Sohr, The Navier-Stokes Equations, An Elementary Functional Analytic Approach. Birkhauser,
Basel, 2001.

[29] 1. Teleaga, M. Seaid, I. Gasser, A. Klar, J. Struckmeier, Radiation models for thermal flows at low
Mach number, J. of Comput. Phys. 215 (2006) 506-525.

[30] X. Zhong, J. Jiang, Local existence and finite-time blow up in multidimensional radiation hydrody-
namics, J. Math. Fluid Mech. 9 (2007) 543-564.

41


http://www.tcpdf.org

