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Non equilibrium diffusion limit in a barotropic radiative flow

Bernard Ducomet and Šárka Nečasová

Abstract. We consider the asymptotic regime for a barotropic model of a
compressible fluid coupled to the radiation when the radiative intensity is
driven to a diffusion limit and we study the convergence of the system toward
the asymptotic limit.
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1. Introduction

We consider a barotropic model in radiation fluid dynamics in the asymptotic
non-equilibrium diffusion limit proposed by Buet and Desprès [6]. We suppose
that the motion of the fluid is governed by the standard equations of classical fluid
dynamics describing the evolution of the mass density ̺ = ̺(t, x) and the velocity
field ~u = ~u(t, x), considered as functions of the time t > 0 and the spatial (Eulerian)
coordinate x ∈ Ω, where Ω ⊂ R3 is a bounded domain. The effect of radiation is
incorporated in the system through the radiative intensity I = I(t, x, ~ω, ν), depend-
ing, besides the variables t, x, on the direction vector ~ω ∈ S2, where S2 denotes
the unit sphere in R3, and the frequency ν ≥ 0. The action of radiation is then
expressed in terms of integral average with respect to the variables ω and ν of
quantities depending on I. Finally the evolution of the compressible viscous heat
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2 BERNARD DUCOMET AND ŠÁRKA NEČASOVÁ

conductive flow is coupled to radiation through radiative transfer equation [7] which
reads

(1.1)
1

c
∂tI + ~ω · ∇xI = S,

where c is the speed of light. The radiative source S := Sa + Ss is the sum of
an emission-absorption term Sa,e := σa (B(ν, ̺) − I) and a scattering contribution

Ss := σs

(
Ĩ − I

)
where Ĩ := 1

4π

∫
S2 I dω. S takes the form

(1.2) S = σa(B − I) + σs

(
1

4π

∫

S2

I d~ω − I

)
,

In what follows, we assume:

• Isotropy: The coefficients σa, σs are independent of ~ω.
• Grey hypothesis: The coefficients σa, σs are independent of ν.

The function B = B(ν, ̺) measures the departure from equilibrium and is a
barotropic equivalent of the Planck function. We also denote by b the frequency
average of B(ν, ̺) given by

(1.3) b(̺) :=

∫ ∞

0

B(ν, ̺) dν.

The time evolution of the density ̺ and the velocity ~u is governed by the
standard barotropic Navier-Stokes system:

(1.4) ∂t̺+ divx(̺~u) = 0,

(1.5) ∂t(̺~u) + divx(̺~u⊗ ~u) + ∇xp(̺) = µ∆x~u+ (λ+ µ)∇xdivx~u− ~SF ,

where the (constant) viscosity coefficients satisfy

(1.6) µ > 0, λ+
2

3
µ ≥ 0,

and

(1.7) ~SF = (σa + σs)

∫ ∞

0

∫

S2

~ωI d~ω dν.

The system of equations (1.1 - 1.7) is supplemented with the (dissipative)
boundary conditions

(1.8) ~u|∂Ω = 0,

(1.9) I(t, x, ~ω, ν) = 0 for (x, ~ω) ∈ Γ− ≡
{

(x, ~ω)
∣∣∣ (x, ~ω) ∈ ∂Ω × S2, ~ω · ~n ≤ 0

}
,

where ~n denotes the outer normal vector to ∂Ω, and initial conditions

(1.10) (̺(x, t), ~u(x, t), I(x, t, ~ω, ν))|t=0 =
(
̺0(x), ~u0(x), I0(x, ~ω, ν)

)
,

for x ∈ Ω, ~ω ∈ S2 and ν ∈ (0,∞).
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The coupled system (1.1 - 1.10) can be viewed as a simplified model in radiation
hydrodynamics [31], [27]. More realistic systems (including an energy equation)
appear in astrophysical applications [27] [31] and their asymptotic regimes have
been proposed by Lowrie, Morel and Hittinger [26] and revisited recently by Buet
and Després [6] ( see also Dubroca and Feugeas [17], Lin [28] and Lin, Coulombel
and Goudon [29] for related numerical issues). For the ”complete system” including
temperature, a global existence result has also recently been proved in [10] under
some cut-off hypotheses on transport coefficients and also in the steady case see
[25]. Let us mention for completeness that existence of local-in-time solutions in
the inviscid case was obtained by Zhong and Jiang [32] and that a number of results
in one-dimensional geometry are available (see [2], [12], [13], [14] and references
therein). Let us finally mention that singular limits in low Mach number regime and
diffusion regime for the full Navier- Stokes- Fourier system coupled with radiation
were also investigated see [15, 16].

Our goal in this paper is to study the asymptotic behavior of solutions to the
problem (1.1 - 1.10) under the scaling

c ≈ 1

ε
, σa ≈ εσa(̺), σs ≈ 1

ε
σs(̺),

where ε→ 0 is a small positive parameter.
In fact this asymptotic regime corresponds to a (non-equilibrium) diffusion

limit of the system in the sense of [26] or [6]. From a physical point of view, it is
well known that, when the mean free-path of photons is small, the radiative trans-
fer equation (1.1) is well approximated by a diffusion equation, which drastically
simplifies numerical simulations used for example in inertial confinement fusion or
astrophysical purposes (see [1] and [5] for more complete introductions). Such as-
ymptotic regimes have yet been studied in [3] and [4] and our aim is to extend this
perspective to the simplified coupled system (1.1)(1.4)(1.5).

2. Hypothesis and Mathematical Preliminaries

Hypotheses imposed on constitutive relations and transport coefficients are
motivated by the existence theory for the compressible Navier-Stokes system de-
velopped in [18] and reasonable physical assumptions [31]. We suppose that the
pressure satisfies the following assumptions

• p is a C1 function on [0,∞) such that p(0) = 0,
• p ∈ C[0,∞) ∩ C2(0,∞),
• p′(ρ) > 0 for all ρ > 0, such that

(2.1)
p′(ρ)

ργ−1
= p∞ > 0, γ >

3

2
,

Let us mention that such a behavior includes the case of monoatomic gases
γ = 5/3 but one can check that all of our results also hold for more general fluids,
in particular for non-monotone equations of state met in nuclear physics [8] and
considered in [9] and [23].

We also assume the following bounds for radiative quantities

(2.2) 0 ≤ σs(̺), σa(̺) ≤ c1,
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(2.3) σa(̺)Bm(ν, ̺) ≤ h(ν), h ∈ L1(0,∞) for m = 1, 2,

for any ̺ ≥ 0. Note that relations (2.2 - 2.3) represent “cut-off” hypotheses at large
density.

The equation of continuity (1.4) is replaced by the integral identity

(2.4)

∫

Ω

̺(τ, ·)ψ(τ, ·) dx −
∫

Ω

̺0ψ(0, ·) dx =

∫ τ

0

∫

Ω

̺∂tψ + ̺~u · ∇xψ dx dt

satisfied for any ψ ∈ C1([0, T ] × Ω) and any τ ∈ [0, T ], and for ̺(0, ·) = ̺0. It is
customary to replace the equation of continuity (1.4) by its (weak) renormalized
version represented by a family of integral identities
(2.5)∫ T

0

∫

Ω

((
̺+ β(̺)

)
∂tψ +

(
̺+ β(̺)

)
~u · ∇xψ +

(
β(̺) − β′(̺)̺

)
divx~uψ

)
dx dt

= −
∫

Ω

(
̺0 + β(̺0)

)
ψ(0, ·) dx

satisfied for any ψ ∈ C∞
c ([0,∞)×Ω), and any β ∈ C∞[0,∞), β′ ∈ C∞

c [0,∞). Note
that (2.5) implicitly includes satisfaction of the initial condition

̺(0, ·) = ̺0.

The momentum equation (1.5) is replaced by
∫

Ω

̺~u(τ, ·)φ(τ, ·) dx−
∫

Ω

̺0~u0φ(0, ·) dx

(2.6) =

∫ τ

0

∫

Ω

̺~u · ∂tφ+ ̺~u⊗ ~u : ∇xφ+ pdivxφ− S : ∇xφ− ~SF · φ dx dt,

for any φ ∈ C1([0, T ]× Ω; R3) with φ|∂Ω = 0, any τ ∈ [0, T ].

Definition: We say that (̺, ~u, I) is a weak solution of problem (1.1) − (1.10)
on (0, T ) if the density ̺ is a non negative measurable function and if

(2.7) ρ ∈ Cweak(0, T ;Lγ(Ω)),

(2.8) ~u ∈ L2(0, T ;W 1,2(Ω)),

(2.9) ̺~u ∈ Cweak(0, T ;L
2γ

γ+1 (Ω; R3)),

(2.10) I ∈ L∞((0, T ) × Ω × S2 × (0,∞)),

(2.11) I ∈ L∞(0, T ;L1(Ω × S2 × (0,∞))

and if (̺, ~u, I) satisfy the integral identities (2.5),(2.6) together with the transport
equation (1.1).



NON EQUILIBRIUM DIFFUSION LIMIT IN A BAROTROPIC RADIATIVE FLOW 5

Theorem 2.1. Let Ω ⊂ R3 be a bounded domain of class C2,ν , ν > 0. Assume
that the pressure p, the transport coefficients σa, σs and the equilibrium function B
comply with (2.1 - 2.3).

Let (̺, , ~u, I) be a weak solution to radiative Navier-Stokes system (1.1)-(1.10)
for (t, x) ∈ [0, T ]× Ω, and (~ω, ν) ∈ S2 ×R+.

Then problem (1.1)-(1.10) has a weak solution (̺, ~u, I) such that
the density ̺ is a non negative measurable function,

(2.12) ρ ∈ Cweak(0, T ;Lγ(Ω)),

(2.13) ~u ∈ L2(0, T ;W 1,2(Ω)),

(2.14) ̺~u ∈ Cweak(0, T ;L
2γ

γ+1 (Ω; R3)),

(2.15) I ∈ L∞((0, T ) × Ω × S2 × (0,∞)),

(2.16) I ∈ L∞(0, T ;L1(Ω × S2 × (0,∞)),

possesses a finite energy weak solution (̺, ~u, I) for (t, x) ∈ [0, T ] × Ω, and (~ω, ν) ∈
S2 × R+ and satisfying the integral identities (2.4-2.6) together with the transport
equation (1.1).

Proof. See the proof in the Appendix. �

3. Formal scaling analysis

In order to identify the appropriate limit regime we perform a general scaling,
denoting by Lref , Tref , Uref , ρref , pref , the reference hydrodynamical quantities
(length, time, velocity, density, pressure) and by Iref , νref , σa,ref , σs,ref , Bref , the
reference radiative quantities (radiative intensity, frequency, absorption and scat-

tering coefficients and equilibrium function). We denote by Sr :=
Lref

Tref Uref
, Ma =

Uref√
ρref pref

, Re =
Uref ρref Lref

µref
, the Strouhal, Mach, Reynolds (dimensionless) num-

bers corresponding to hydrodynamics, and by C = c
Uref

, L = Lrefσa,ref , Ls =
σs,ref

σa,ref
, P =

Lref νref Sref

c ρref U2
ref

, various dimensionless numbers corresponding to radia-

tion.
Using these scalings, using carets to symbolize renormalized variables and

choosing Bref = Iref we get S =
Iref

Lref
Ŝ, where

Ŝ = Lσ̂a

(
B(ν̂, ˆ̺) − Î

)
+ LLsσ̂s

(
1

4π

∫

S2

Î(·, ~ω) d~ω − Î

)
.

Omitting the carets in the following, we get first the scaled equation for I, in the
region (0, T )× Ω × (0,∞) × S2

(3.1)
Sr

C ∂tI + ~ω · ∇xI = S = Lσa (B − I) + LLsσs

(
1

4π

∫

S2

I d~ω − I

)
.

We also denote by ER =
∫ ∞
0

∫
S2 I d~ω dν the renormalized energy and ~SF =∫ ∞

0

∫
S2 ~ωS d~ω dν.
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The continuity equation is now

(3.2) Sr ∂t̺+ divx(̺~u) = 0,

and the momentum equation
(3.3)

Sr ∂t(̺~u) + divx(̺~u⊗ ~u) +
1

Ma2
∇xp(̺)−

1

Re
(µ∆~u+ (λ+ µ)∇xdivx~u) = −P ~SF .

Supposing that a moderate amount of radiation is present (P = O(1)) in our
strongly under-relativistic flow (C = O(ε−1)), where ε is a small positive number,
we obtain the “ non-equilibrium diffusion regime” defined by

Ma = Sr = Pe = Re = 1, P = 1, C = ε−1, L = ε and Ls = ε−2.

The new system reads finally

(3.4) ε ∂tI + ~ω · ∇xI = εσa (B − I) +
1

ε
σs

(
1

4π

∫

S2

I d~ω − I

)
,

(3.5) ∂t̺+ divx(̺~u) = 0,

∂t(̺~u) + divx(̺~u⊗ ~u) + ∇xp(̺)

(3.6) = µ∆~u+ (λ+ µ)∇xdivx~u+

(
εσa +

1

ε
σs

)∫ ∞

0

∫

S2

~ωI d~ω dν.

3.1. Formal computation of the diffusion regime. In order to compute
the limit system, we consider the formal expansions

(3.7)





I = I0 + εI1 + ε2I2 + O(ε3),
̺ = ρ0 + ε̺1 + ε2̺2 +O(ε3),
~u = ~u0 + ε~u1 + ε2~u2 +O(ε3).

Plugging (3.7) in (3.4) and evaluating the lowest orders terms we get

(3.8)
1

4π

∫

S2

I0 d~ω = I0,

(3.9) ~ω · ∇xI0 = σs(̺0, ν)

(
1

4π

∫

S2

I1 d~ω − I1

)
,

and

∂tI0 + ~ω · ∇xI1 = σa(̺0)(B(̺0, ν) − I0) + σs(̺0)

(
1

4π

∫

S2

I2 d~ω − I2

)

(3.10) +∂̺σs(̺0)

(
1

4π

∫

S2

I1 d~ω − I1

)
̺1.

Integrating on S2 and plugging the first two relations into the last one, we find

∂tI0 + ~ω · ∇xĨ1 − ~ω ⊗ ~ω divx

(
1

σs(̺0)
∇xI0

)

= σa(̺0)(B(̺0, ν) − I0) + σs(̺0)

(
1

4π

∫

S2

I2 d~ω − I2

)

+∂̺σs(̺0, ν)

(
1

4π

∫

S2

I1 d~ω − I1

)
̺1.
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Integrating in ν and using (3.8)(3.9), we get a diffusion equation for N :=
∫ ∞
0
I0 dν

(3.11) ∂tN − 1

3
divx

(
1

σs(̺0)
∇xN

)
= σa(̺0)(b(̺0) −N),

where b(̺0) :=
∫ ∞
0 B(̺0, ν) dν.

We finally obtain a compressible Navier-Stokes type system for ̺ and ~u coupled
to a diffusion equation for N .

Omitting the 0 index, we get finally the system

(3.12) ∂t̺+ divx(̺~u) = 0,

(3.13) ∂t(̺~u) + divx(̺~u⊗ ~u) + ∇x

[
p(̺) +

1

3
N

]
= µ∆~u+ (λ+ µ)∇xdivx~u,

(3.14) ∂tN − 1

3
divx

(
1

σs(̺)
∇xN

)
= σa(̺) (b(̺) −N) ,

with the boundary conditions

(3.15) ~u|∂Ω = 0,

the extra boundary condition on N

(3.16) N |∂Ω = 0.

and initial conditions

(3.17) (̺(x, t), ~u(x, t), N(x, t))|t=0 =
(
̺0(x), ~u0(x), N0(x)

)
,

for any x ∈ Ω, with N0(x) =
∫ ∞
0

∫
S2 I

0(x, ν, ~ω) d~ω dν.
One observes that in the limit regime, hydrodynamics is coupled to radiation

through the effective pressure π := p+ 1
3 N .

The main theorem reads

Theorem 3.1. (Main Theorem) Let Ω ⊂ R3 be a bounded domain of class
C2,ν . Let p is a C1 function on [0,∞) such that p(0) = 0, p′(ρ) > 0 for all ρ > 0
and (2.2-2.3) are satisfied. Let (̺ε, ~uε, Iε) be a weak solution of rescaled system of
equations (1.1-1.10) with

(3.18) ̺0,ε → ̺0 in Lγ(Ω),

(3.19)

∫

Ω

|(̺~u)0,ε|2
̺0,ε

dx ≤ c,

(3.20) |I0,ε(·, ν)| ≤ h(ν), h ∈ L1 ∩ L∞(0,∞).

Then up to subsequences

(3.21) ̺ε → ̺ in C([0, T ];L1(Ω)) and in Cweak([0, T ];Lγ(Ω)),

(3.22) ~uε → ~u weakly in L2(0, T ;W 1,2(Ω; R3)),

(3.23) Iε → I weakly * in L∞(0, T ; Ω× S2 × (0,∞))

where ̺, ~u, I is a weak solution satisfying

(3.24) ∂t̺+ divx(̺~u) = 0
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(3.25) ∂t(̺~u) + divx(̺~u⊗ ~u) + ∇x

(
p(̺) +

1

3
N

)
= µ∆~u+ (λ+ µ)∇xdivx~u

(3.26) ∂tN − 1

3
divx

(
1

σs(̺)
∇xN

)
= σa(̺)(b(̺) −N), b(̺) =

∫ ∞

0

B(̺, ν) dν.

4. Uniform estimates

Multiplying (1.1) on I we get

ε

2
∂tI

2 +
1

2
~ω · ∇xI

2 = εσa(bε − I)I +
σs

ε

(
1

4π

∫

S2

I d~ω − I

)
I.

Consequently, denoting

Ĩ(t, x, ν) =
1

4π

∫

S2

I(t, x, ~ω, ν) d~ω,

we deduce, integrating the above expression, that
(4.1)
1

2

∫

Ω

ε

∫

S2

I2(τ, ·) d~ω dx+
1

2

∫ τ

0

∫

Ω

σa

∫

S2

(bε−I)2 d~ω dx dt+
1

ε2

∫ τ

0

∫

Ω

σs

∫

S2

(
I − Ĩ

)2

d~ω dx dt

≤ 1

2

∫

Ω

ε

∫

S2

I2
0,ε d~ω dx+ 4πε

∫ τ

0

∫

Ω

σab
2
ε dx dt.

(4.2) ‖σ1/2
a,ε (bε − Iε) ‖L2(Ω×S2×(0,∞)) ≤ C,

(4.3) ‖σ1/2
s,ε

(
Ĩε − Iε

)
‖L2(Ω×S2×(0,∞)) ≤ Cε,

and

(4.4) ‖ε ∂tIε + ~ω · ∇xIε‖L2(Ω×S2×(0,∞)) ≤ C.

Using the Fourier argument of [4] (see Lemma 3 in [4]) we also get that for any

T > 0 the quantity
(
Ĩα
ε

)1/α

is bounded in Lq(0, T ;W β,q(Ω)) where q = 2p
p+1 ,

α = 1 + 1
2p and for any β < p−1

2p+1 .

Integrating (3.4) over ~ω, we get first

(4.5) ∂t Ĩε +
1

ε
divx ~̃ωIε = σa,ε

(
bε − Ĩε

)
,

and multiplying (3.4) by ~ω and integrating over ~ω, we also have

(4.6) ∂t ~̃ωIε +
1

ε
divx

˜(~ω ⊗ ~ωIε) = −
(

1

ε2
σs,ε + σa,ε

)
~̃ωIε.

Then we get the equation

∂t Ĩε − divx

(
1

σs,ε + ε2σa,ε

[
ε∂t ~̃ωIε + divx

˜(~ω ⊗ ~ωIε)
])

(4.7) = σa,ε

(
bε − Ĩε

)
in D′((0, T ) × Ω × S2) × (0,∞).

Using (4.4) and (2.3), we conclude that the sequence {∂tĨε}ε is bounded in Lq(0, T ;W−1,q(Ω)).
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Setting Jε :=
(
Ĩα
ε

)1/α

, we deduce that

Jε ∈ Lq([0, T ];W β,q(Ω)),

‖Ĩε − Jε‖Lq((0,T )×Ω) → 0 for ε→ 0,

and

∂tĨε ∈ Lq([0, T ];W−1,q(Ω)).

Applying a variant of the Aubin-Lions Lemma (see Lemma in [4]), we deduce from

these last estimates that there exists a subsequence Ĩε converging in Lq((0, T )×Ω).

4.1. Boundedness of the forcing term in the momentum equation.

We show that the forcing terms ~SF in the momentum equation is bounded in
L2((0, T ) × Ω; R3) uniformly for ε→ 0. Indeed we have

∫ T

0

∫

Ω

~SF · ~u dx dt =

∫ ∞

0

∫ T

0

∫

Ω

(
εσa +

1

ε
σs

)
~u ·

∫

S2

~ωI d~ω dx dt dν

=

∫ ∞

0

∫ T

0

∫

Ω

εσa~u·
∫

S2

~ωI d~ω dx dt dν+

∫ ∞

0

∫ T

0

∫

Ω

1

ε
σs~u·

∫

S2

~ω(I−Ĩ) d~ω dx dt dν,

where
∣∣∣∣∣

∫ ∞

0

∫ T

0

∫

Ω

εσa~u ·
∫

S2

~ωI d~ω dx dt dν

∣∣∣∣∣ ≤ ε ‖√σa~u‖L2((0,T )×Ω)

∫ ∞

0

∥∥∥∥
√
σa

∫

S2

~ωI dω

∥∥∥∥
L2((0,T )×Ω;R3)

dν,

while ∣∣∣∣∣

∫ ∞

0

∫ T

0

∫

Ω

1

ε
σs~u ·

∫

S2

~ω(I − Ĩ) d~ω dx dt dν

∣∣∣∣∣

≤ ‖√σs~u‖L2((0,T )×Ω;R3)

∫ ∞

0

∥∥∥∥∥
√
σs

∫

S2

~ω
I − Ĩ

ε
d~ω

∥∥∥∥∥
L2((0,T )×Ω;R3)

dν.

As a consequence of (4.1), we have

∫ ∞

0

∥∥∥∥
√
σa

∫

S2

~ωI dω

∥∥∥∥
L2((0,T )×Ω;R3)

dν,

∫ ∞

0

∥∥∥∥∥
√
σs

∫

S2

~ω
I − Ĩ

ε
d~ω

∥∥∥∥∥
L2((0,T )×Ω;R3)

dν ≤ c

uniformly for ε→ 0 as soon as

(4.8) 0 ≤ σa(̺), σs(̺) ≤ σ, |B(̺, ν)|, |I0(·, ν)| ≤ h(ν), h ∈ L1 ∩ L∞(0,∞).

Thus we conclude that

(4.9) ~SF → ~g weakly in L2((0, T ) × Ω; R3),

where

(4.10) ~g = weak lim
ε→0

1

ε
σs

∫ ∞

0

∫

S2

~ωI d~ω dν in L2((0, T ) × Ω; R3).
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5. Compactness for the Navier-Stokes system

It follows from the abstract compactness results on the solution set of the
compressible Navier-Stokes system, see e.g. [18, Chapter 6], that

(5.1) ̺ε → ̺ in C([0, T ];L1(Ω)) and in Cweak([0, T ];Lγ(Ω)),

(5.2) ~uε → ~u weakly in L2(0, T ;W 1,2(Ω;R3))

as soon as we assume that

(5.3) ̺0,ε → ̺0 in Lγ(Ω),
|(̺~u)0,ε|2
̺0,ε

bounded in L1(Ω),

where the limit is a weak solution of the Navier-Stokes system

(5.4) ∂t̺+ divx(̺~u) = 0,

(5.5) ∂t(̺~u) + divx(̺~u⊗ ~u) + ∇xp(̺) = µ∆~u+ (λ+ µ)∇xdivx~u+ ~g.

Thus it remains to identify the function ~g determined through (4.10).

6. The limit passage

We start by writing the rescaled equation (1.1):

(6.1) ε∂tIε + ~ω · ∇xIε = εσa(B − Iε) +
1

ε
σs(Ĩε − Iε).

In fact from (4.2) and (4.4) we see that there exists a g ∈ L2((0, T ) × Ω × S2)
such that
(
σs,ε + ε2σa,ε

)−1/2
divx (~ω ⊗ ~ω Iε) → g weakly in L2((0, T ) × Ω × S2 × (0,∞)).

Multiplying by
(
σs,ε + ε2σa,ε

)1/2
Iε and using (2.2)-(2.3) we obtain

Iεdivx (~ω ⊗ ~ω Iε) → gσ1/2
s I weakly in L1((0, T ) × Ω × S2 × (0,∞)),

with σs = σs(̺).
Now we see from above that

(
σs,ε + ε2σa,ε

)1/2
Iε → σ1/2

s I weakly in L2((0, T ) × Ω × S2 × (0,∞)),

so

1

2
divx (~ω ⊗ ~ω I2

ε ) → gσ1/2
s I weakly in L1((0, T )× Ω × S2 × (0,∞)),

and that

1

2
divx (~ω ⊗ ~ωI2

ε ) → 1

2
divx (~ω ⊗ ~ωI2) weakly in D′((0, T )× Ω × S2 × (0,∞)).

Therefore

gσ1/2
s I =

1

2
divx (~ω ⊗ ~ωI2).

Exactly as in [4], one can now check that

σ−1/2
s g̃ =

1

3

1

σs
∇xI,
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and therefore one can pass to the limit in the second term in the left hand side of
(4.7)

1

σs,ε + ε2σa,ε
∇x

˜(~ω ⊗ ~ωIε) =
1

(σs,ε + ε2σa,ε)
1/2

1

(σs,ε + ε2σa,ε)
1/2

∇x
˜(~ω ⊗ ~ωIε)

(6.2) → σ−1/2
s g̃ =

1

3

1

σs
∇xI.

As the term in the right hand side of (4.7) clearly converges to σa(̺)
[
b(̺) − Ĩ

]
,

this finally proves that N :=
∫
S2 I d~ω satisfies the limit equation (3.14).

The same argument as in [4] shows finally that N satisfies the Dirichlet bound-
ary condition N |∂Ω = 0. In fact from the fact that ~ω · ∇xI

2
ε is bounded in

L2((0, T )×Ω× R+) we deduce that Iε has a well-defined trace on ∂Ω which holds
at the limit for I and then for N . Thus, introducing

N =

∫ ∞

0

I dν,

we get the limit system in the form

(6.3) ∂t̺+ divx(̺~u) = 0

(6.4) ∂t(̺~u) + divx(̺~u⊗ ~u) + ∇x

(
p(̺) +

1

3
N

)
= µ∆~u+ (λ + µ)∇xdivx~u

(6.5) ∂tN − 1

3
divx

(
1

σs(̺)
∇xN

)
= σa(̺)(b(̺) −N), b(̺) =

∫ ∞

0

B(̺, ν) dν.

The convergence holds provided

(6.6) ̺0,ε → ̺0 in Lγ(Ω),

(6.7)

∫

Ω

|(̺~u)0,ε|2
̺0,ε

dx ≤ c,

(6.8) |I0,ε(·, ν)| ≤ h(ν), h ∈ L1 ∩ L∞(0,∞).

Remark 6.1. The existence of a classical solution for the target system is
an easy consequence of the existence of classical solution for the full compressible
Navier- Stokes -Fourier system with diffusion see [16] and [11].

7. Appendix

Sketch of Proof of Theorem 2.1:

We will use three-level approximative system with parameters n→ ∞ (denoting
the dimension of space of Galerkin approximations), η → 0 (denoting the elliptic
regularization of the continuity equation), δ → 0 (denoting the artificial pressure
constant). We introduce the approximative system and give some remarks to the
proof. We apply the approximation scheme introduced by Feireisl see [20] coupled
together with the transport equation

(7.1) ∂t̺+ divx(̺~u) = η∆̺,
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(7.2) ∂t(̺u
i) + divx(̺ui~u) + ∂xi

(
p(̺) + δ̺β

)
+ η∇xu

i.∇x̺

= µ∆ui + (λ+ µ)(divx ~u)xi
+ Si

F , i = 1, 2, 3

(7.3) ε ∂tI + ~ω · ∇xI = S,

for (t, x, ~ω, ν) ∈ (0, T )×Ω×S2×(0,∞), complemented by the boundary conditions

(7.4) ∇x̺.~n|∂Ω = 0,

(7.5) ~u|∂Ω = 0,

(7.6) I|Γ−
= 0,

and the initial conditions

(7.7) ̺(0) = ̺0 ∈ C2+ν(Ω × S2 ×R+), 0 < ̺ ≤ ̺0(x) ≤ ̺, ∇x̺0.~n|∂Ω = 0,

(7.8) (̺~u)(0) = ~q, ~q = [q1, q2, q3], qi ∈ C2(Ω), i = 1, 2, 3,

(7.9) I(0) = I0 ∈ C1+ν(Ω).

Here S := εσa (B − I) + 1
εσs

(
1
4π

∫
S2 I d~ω − I

)
and ~SF =

∫ ∞
0

∫
S2 ~ωS d~ωdν.

Let us fix n ∈ N , η, δ > 0, ε and consider the orthogonal family of eigenfunc-
tions ψn of the Dirichlet Laplacian on Ω given by

−∆ψn = λnψn on Ω, ψn|∂Ω = 0.

We consider a sequence of finite dimensional spaces

Xn = [span{ψj}n
j=1]

3, n = 1, 2, ...

The approximate solutions ~u ∈ C([0, T ];Xn) we look for are required to satisfy the
integral equation

(7.10)

∫

Ω

̺(t)~u(t).ψ dx−
∫

Ω

~q.ψ dx =

∫ t

0

∫

Ω

[
µ∆~u− divx(̺~u⊗ ~u) + ∇

(
(λ+ µ)divx ~u− p(̺) − δ̺β

)

-
~SF + η∇x̺.∇x~u

]
.ψ dx ds

for all t ∈ [0, T ] and any function ψ ∈ Xn.

(7.11) ∂t̺+ divx(̺~u) = η∆̺,

and

(7.12) ∂tI + ~ω · ∇xI = S,

with the initial and boundary conditions (7.4)-(7.9).
Then we consider the mapping

T : Xn → Xn,

T (~v) → T (~u)

defined in the following way: For a given v we firstly find ρ as a unique solution to
the problem
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(7.13) ∂t̺+ divx(̺v) = η∆̺,

(7.14) ∇x̺.~n|∂Ω = 0.

(7.15) ̺(0) = ̺0 ∈ C2+ν(Ω), 0 < ̺ ≤ ̺0(x) ≤ ̺, ∇x̺0.~n|∂Ω = 0,

Precisely, we will solve the Neumann problem for the density

The existence of a solution for the initial-boundary value problem (7.3), (7.4),
(7.7), is standard and can be found in [21, Lemma 2.1, Lemma 2.2].

Lemma 7.1. Assume ~v is a given vector function belonging to the class

(7.16) ~v ∈ C([0, T ]; [C2(Ω)]3), ~v|∂Ω = 0

Then the initial-boundary value problem (7.13), (7.14) (7.15) possesses a unique
classical solution ̺ = S(~v) on the set [0, T ] × Ω such that ̺(t) ∈ C2+ν(Ω) for any
fixed t ∈ [0, T ]. Moreover, assuming the initial datum ̺0 satisfies (7.15), the ”so-
lution” operator S : ~v 7→ ̺ enjoys the following properties:

(1) ̺ = S(~v) is the unique classical solution of (7.3), (7.4), (7.7) ;
(2)

(7.17) ̺ exp
(
−

∫ t

0

‖divx ~v(s)‖L∞(Ω) ds
)
≤ S(~v)(t, x) ≤

̺ exp
( ∫ t

0

‖divx ~v(s)‖L∞(Ω) ds
)

for all t ≥ 0;

(3)

(7.18) ‖S(~v1) − S(~v2)‖C([0,T ];W 1,2(Ω)) ≤ Tc(κ, T )‖~v1 − ~v2‖C([0,T ];W 1,2
0

(Ω)),

for any ~v1, ~v2 belonging to the set

Mκ = {~v ∈ C([0, T ];W 1,2
0 (Ω)) | ‖~v(t)‖L∞(Ω) + ‖∇~v(t)‖L∞(Ω) ≤ κ for all t}.

Then we find I as a solution to the transport equations

(7.19) ε ∂tI + ~ω · ∇xI = S,

for (t, x, ~ω, ν) ∈ (0, T )× Ω × S2 × (0,∞)

(7.20) I|Γ−
= 0,

(7.21) I(0) = I0 ∈ C1+ν(Ω × S2 ×R+).

The compactness of the averages over sphere has to be used to get the existence
of I. Precisely, we apply the following lemma

Lemma 7.2. (C. Bardos, F. Golse, B. Perthame, R. Sentis) Let I ∈ Lp(Ω ×
S × (0,∞)) and ∂tI + ~ω · ∇xI ∈ Lp(Ω × S × (0,∞)) for some 1 < p <∞. Then

(7.22) Ĩ ≡ 1

4π

∫

S

I(·, ~ω, ·) d~ω

belongs to the space Lp((0,∞);W s,p(Ω)) for any 0 < s < min{ 1
p , 1 − 1

p}, and

(7.23) ‖Ĩ(·, ν)‖W s,p(Ω) ≤ C(‖I(·, ·, ν)‖Lp(Ω×S) + ‖∂tI + ~ω · ∇xI(·, ·, ν)‖Lp(Ω×S)).
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Proof. See [24, Theorem 4] �

Finally, we find ~u as a solution to

(7.24)

∫

Ω

̺(t)~u(t)~ψ dx−
∫

Ω

~q ~ψ dx

=

∫ T

0

∫

Ω

{
µ∆~v−divx(̺~v⊗~v)+∇x

(
(λ+ µ)divx~v − p(̺) − δ̺β

)
−η∇x̺∇x~v+~SF

}
~ψdx dt.

Applying the Schauder fixed point theorem and passing to the limit n→ ∞ we get

Lemma 7.3. Suppose β > max{4, γ}. Assume the initial data ̺0, ~q satisfy
(7.7), (7.8). Then there exists a weak solution ̺, ~u of the problem (7.3) - (7.1)
such that ̺ ∈ Lβ+1((0, T ) × Ω) and the following estimates hold:

(7.25) sup
t∈[0,T ]

‖̺(t)‖γ
Lγ(Ω) ≤ c(̺0, ~q, I0, δ),

(7.26) δ sup
t∈[0,T ]

‖̺(t)‖β
Lβ(Ω)

≤ c(̺0, ~q, I0, δ, ),

(7.27) sup
t∈[0,T ]

‖√̺(t)~u(t)‖2
L2(Ω) ≤ c(̺0, ~q, I0, δ),

(7.28)

∫ T

0

(
‖~u(t)‖2

L2(Ω) + ‖∇x~u(t)‖2
L2(Ω)

)
dt ≤ c(̺0, ~q, I0, δ),

and

(7.29) ε

∫ T

0

‖∇x̺(t)‖2
L2(Ω) dt ≤ c(̺0, ~q, I0, δ).

Moreover, the modified energy inequality

(7.30)
d

dt

∫

Ω

[
1

2
̺|~u|2 + Π(̺) +

δ

β − 1
̺β

]
dx+

∫

Ω

[
µ|∇x~u|2 + (λ+ µ)|divx ~u|2

]
dx

≤
∫

Ω

[
ps(̺) divx ~u− ~SF · ~u

]
dx

holds in D′(0, T ) along with its ”integrated” version .
∫

Ω

[
1

2
̺|~u|2(τ) + Π(̺)(τ) +

δ

β − 1
̺β(τ)

]
dx

(7.31) +

∫ τ

0

∫

Ω

[
µ|∇x~u|2 + (λ+ µ)|divx ~u|2

]
dx dt

≤
∫

Ω

[
1

2

|~q|2
̺0

+ Π(̺0) +
δ

β − 1
̺β
0

]
dx+

∫ τ

0

∫

Ω

[
ps(̺) divx ~u− ~SF · ~u

]
dx dt

for a.e. τ ∈ (0, T ).
Finally, there exists r > 1 such that ̺t, ∆̺ ∈ Lr((0, T ) × Ω) and the equation

(7.3) is satisfied a.a. on (0, T )× Ω.
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The vanishing viscosity limit

Now we pass to the limit in (7.3), (7.2), (7.1) letting η → 0. For more details
see [21].

We get the following lemma

Lemma 7.4. Let β, δ > 0, and R > 0 be given such that

β > max{γ, 4}.
Let the pressure p satisfy the constraints of hypothesis see Section 2. Then, given
initial data ̺0, ~q, I0 as in (7.7), (7.8), there exists a finite energy weak solution ̺,
~u, I of the problem

(7.32) ∂t̺+ divx(̺~u) = 0

(7.33)

∂t(̺u
i)+divx(̺ui ~u)+∂xi

(
p(̺)+δ̺β

)
= µ∆ui+(λ+µ)(divx ~u)xi

− ~SF , i = 1, 2, 3,

(7.34) ε ∂tI + ~ω · ∇xI = εσa (B − I) +
1

ε
σs

(
1

4π

∫

S2

I d~ω − I

)
,

with boundary conditions

(7.35) ~u|∂Ω = 0

on (0, T ) × Ω, and

(7.36) I|Γ−
= 0,

for t ∈ (0, T ), (x, ~ω) ∈ Γ− ≡
{
(x, ~ω)

∣∣∣ (x, ~ω) ∈ ∂Ω × S2, ~ω · ~n ≤ 0
}

and for ν ∈
(0,∞), and for initial conditions (1.5).

The artificial pressure limit

Finally, to conclude the proof of Theorem 2.1, one has to pass to the limit for
δ → 0 to get rid of the artificial pressure term. For this step we refer to [21, Section
4] where this is done for the monotone pressure-density constitutive law and to [22,
Theorem 1.1] where the necessary modifications how to accommodate the pressure
satisfying the constraints of hypothesis see Section 2 can be found.
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25, 115 67 Praha 1, Czech Republic

E-mail address: matus@math.cas.cz

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

