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1 Introduction. Equations and Notations

Let B denote a bounded C2 domain, representing a rigid body in a fluid motion.
While the fluid is governed by the usual Navier-Stokes equations, the evolution of
body is determinate by external forces acting on the surface of the body. By changing
of coordinates with respect to the movement of the body we are led to a coupled system
in D := R

3 \ B, where D appears to be an exterior domain in R
3 with C2 boundary

Σ = ∂D = ∂B.
Given T > 0, by QT we denote the cylinder D × (0, T ). The velocity of the body at

a specific point of the body at time t ∈ [0, T ] will be denoted by ξ(t), while the angular
velocity of the body at time t ∈ [0, T ], will be denoted by ω(t). The velocity of the
fluid u = (u1, u2, u3) and the pressure p will be governed by the following equations

(1.1)





div u = 0,

∂tu + (u · ∇)u = (U · ∇)u − ω × u + ν∆u −∇p in QT

fulfilling the initial and boundary conditions

u = U on Σ × (0, T ), u = 0 as |x| → +∞,(1.2)

u = u0 on D × {0}.(1.3)
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Here,

U = ξ + ω × y in (0, T ).

The equations of the rigid body are given by the momentum equations for ξ and ω,

(1.4)




mξ̇ +mω × ξ = −Φtra(u, p) in (0, T ),

Jω̇ + ω × Jω = −Φrot(u, p) in (0, T ),

where

Φtra(u, p) :=

∫

Σ

T(u, p) · ndS,

Φrot(u, p) :=

∫

Σ

(y × T(u, p)) · ndS.

Here n stands for the inward unit normal on ∂B 1) while T = (Tij) stands for the full
stress, i. e.

T = 2νD(u) − Ip, where D(u) =
1

2
(∇u + (∇u)t)

(ν = const > 0 denotes the viscosity of the fluid).
The system (1.4) will be completed by the following initial condition

(1.5) ξ(0) = ξ0, ω(0) = ω0.

Remark 1.1. 1. Since B is bounded there exists R0 > 0, such that B ⊂ BR0/2(0).
Define

D0 := D ∩ B2R0(0).

Let (v, π) ∈ C2(D0) × C1(D0). By a direct application of Gaußian theorem one
calculates

Φtra(v, π) :=

∫

Σ

T(v, π) · ndS =

∫

D0

div(φT(v, π))dy,

Φrot(v, π) :=

∫

Σ

(y × T(v, π)) · ndS =

∫

D0

div(φ(y × T(v, π)))dy

for all φ ∈ C∞
0 (B2R0) with φ = 1 on Σ. By a standard density argument the

above identity yields that both Φtra and Φrot are continuous linear functional on

1) Note, n outward unit normal on ∂D since D = R
3 \ B.
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W 2, 1(D0) ×W 1, 1(D0). Moreover, we can estimate Φtra(v, π) (Φrot(v, π) respectively)
by the multiplicative inequality stated in Lemma3.1 (see Section 3 below).

2. Given U = ξ + ω × y such that ξ,ω ∈ W 1, 1(0, T ) by an elementary calculus we
see that

∫

Σ

U · T(v, π) · ndS = ξ · Φtra(v, π) + ω ·Φrot(v, π),(1.6)

∫

Σ

U̇ · T(v, π) · ndS = ξ̇ · Φtra(v, π) + ω̇ ·Φrot(v, π)(1.7)

holds for all (v × π) ∈ W 2, 1(D0) ×W 1, 1(D0) a. e. in (0, T ).

Remark 1.2. The system (1.1)-(1.5) is obtained from the original system (e.g. see
[9]) by transforming to the coordinate system with respect to the moving body B. For
more details see [9].

Remark 1.3. Given (u, p) ∈ L1(0, T ; W 2, 1(D0)) × L1(0, T ;W 1,1(D0)) and ξ,ω ∈
W 1,1(0, T ) such that (1.4) is fulfilled. Then inserting (u(t), p(t)) into (1.6) and (1.7)
respectively we see that

(1.8)

∫

Σ

U · T(u, p) · ndS = −mξ̇ · ξ − Jω̇ · ω

a. e. in (0, T ) and

(1.9)

∫

Σ

U̇ · T(u, p) · ndS = −m|ξ̇|2 − |Rω̇|2 −mξ̇ · (ω × ξ) − ω̇ · ω × Jω

a. e. in (0, T ) respectively, where R denotes the square root of J 2) .

The existence of a global weak solution of the Leray-Hopf type has been proved
by Borchers see [1] (see also [21]).
In [13] Hishida obtained the local existence and uniqueness of a strong solution locally
in time if the initial velocity belongs to H1/2. This regularity assumption concides
with that in the famous paper of Fujita, Kato [6]. An essential part for the proof is the
deduction of a certain smoothing property together with estimates near t = 0, although
the semigroup generated by the operator Lu = −P[∆u+ (ω × x) · ∇u− ω × u] 3) , is
not an analytic one in the L2 space.

The generalization of Hishida’s results in Lp spaces has been worked out by Hieber,
Heck and Geissert in [11], where the authors proved the existence of a unique local
mild solution to the Navier-Stokes problem. The existence of global strong solutions in
the L2 framework under a smallness assumption of the data has been studied by Galdi
and Silvestre [7, 8] and by Takahashi and Tucsnak [23] for a rigid body being a disk

2) Recalling that J is positive and self adjoined, there exists a positive matrix R such that R2 = J .
3) Here P denotes the projection associated with the Helmholtz decomposition.
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in the two-dimensional situation. Local in time existence and uniqueness of the strong
solution has been proved by Cumsille and Tucsnak [3]. The global time existence and
uniqueness was investigated in work of Cumsille and Takahashi [4]. However in three
dimensional case the uniqueness is valid only under a smallness assumption of data.
Lp-Lq estimates for Stokes-system in the rotating framework can be found in [14].

Alternatively, the problem has been studied in [3, 24, 23, 5] by using the local
transformation introduced by Inue and Wakimoto in [15], and in domains depending
on time in [16, 18, 19, 20].

The paper is organized as follows. In Section 2 we introduce the notion of a weak
solution and a strong solution to system (1.1)–(1.5) belonging to appropriate Sobolev
spaces and Lebesgue spaces. Based on these definitions we state our main result on the
existence of a global strong solution (cf. Theorem2.2 and Theorem2.3). In Section 3
we list few preliminary Lemmas being used in the sequel of the paper. In Section 4
appealing to [17] we provide a global strong solution to the approximate system based
on the L2 theory. Then Section 5 deals with a-priori estimates of the solution to the
approximate system by using the Lp −Lq theory of the Stokes equations in an exterior
domain (cf. [12]) combined with the linear theory of the equation of a moving body
studied in [17]. Furthermore, using the pressure estimate from [25] we get the key
estimate (5.25) which finally leads to the crucial estimate (5.33). The proof of the
existence of strong solutions will be completed in Section 6 by carrying out the passage
to the limit in the approximate system using the a-priori estimate (5.33). Finally,
Section 7 is devoted to the proof of the second main result concerning removing the
weight in estimate of the second gradient together with the higher regularity of the
pressure.

2 Notion of a weak solution

For the statement of our main result it requires to introduce both the notion of a weak
and a strong solution to the system under consideration. Here and subsequently, by
W k, s(Ω),W k, s

0 (Ω), etc. (k ∈ N, 0 ≤ s ≤ +∞) we denote the usual Sobolev spaces. In

case if Ω is unbounded, for instance an exterior domain, then by Ŵ
1, s
0 (Ω) we denote

the corresponding homogeneous Sobolev space in general to be defined by taking the
closure of C∞

0 (Ω) under the norm

‖u‖W 1, s
0

=

( ∫

Ω

|∇u|sdx

)1/s

.

In what follows spaces of vector-valued functions as well as vector-functions will be
designed by bold letters, i. e. we write Ls(Ω),W 1, s

0 (Ω) etc. instead of [Ls(Ω)]n,
[W 1, s(Ω)]n etc.
Given any Banach space X with norm ‖ · ‖X by Ls(a, b;X) we denote the space of
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Bochner measurable functions f : (a, b) → X, such that




‖f‖s

Ls(a,b;X) :=
b∫

a

‖f(t)‖s
Xd < +∞ if 1 ≤ s < +∞,

‖f‖L∞(a,b;X) := ess supt∈(a,b) ‖f(t)‖X < +∞ if s = +∞.

Let τ : Ω → R be a measurable positive function. We define the Lebesgue space

Lq
τ (Ω) =

{
f ∈ L1

loc(Ω) s.t.
∫
Ω
|f |qτ dx < +∞

}
, with the norm ‖f‖Lq

τ
:=

(∫
Ω
|f |qτ dx

)1/q
.

Next, by C∞
0,σ(Ω) we denote the space of all smooth solenoidal fields having compact

support in Ω. Furthermore, by C(Ω) we denote the space of all smooth vector fields
ϕ ∈ C∞

0,σ(Ω), such that

ϕ = Φ1 + Φ2 × x in a neighbourhood of ∂Ω

for some constants vectors Φ1,Φ2 in R
3. Then V(Ω) will be defined as closure of

C(Ω) with respect to the norm in W 1, 2(Ω). Clearly, by means of Sobolev’s embedding
theorem we have V(Ω) →֒ L6(Ω).

From now on let D denote an exterior domain. Without loss of generality through-
out we assume that ν = 1.

Definition 2.1. 1. Let u0 ∈ V(D) with u0 = ξ0 + ω0 × x on ∂D , where ξ0,ω0 ∈ R
3

are given. Then (u, ξ,ω) is called a weak solution to (1.1)–(1.5) if

(i) u ∈ L2(0, T ;V(D)) ∩ Cw([0, T ); L2(D)),

(ii) ξ,ω ∈ C([0, T ]),

(iii) for every ϕ ∈ C∞([0, T ]; C(D)) there holds the identity

t∫

0

∫

D

(−u · ∂tϕ + D(u) : D(ϕ) + ((u − U) · ∇u) · ϕ + (ω × u) · ϕ)dxds

+

∫

D

u(t) · ϕ(t)dx+mξ(t) · Φ1(t) + (Jω(t)) ·Φ2(t))

=

t∫

0

mξ(s) · Φ̇1(s) + (Jω(s)) · Φ̇2(s)ds

+

∫

D

u0 · ϕ(0)dx+mξ0 · Φ1(0) + (Jω0) · Φ2(0)(2.1)

for all 0 < t < T .

(iv) For all 0 < t ≤ T there holds the energy inequality
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1

2
‖u(t)‖2

L
2 +

t∫

0

∫

D

|D(u)|2dxds+
m

2
|ξ(t)|2 +

1

2
|Rω(t)|2

≤
1

2
‖u0‖

2
L

2 +
m

2
|ξ0|

2 +
1

2
|Rω0|

2.(2.2)

2. A weak solution (u, ξ, p,ω) is called a strong solution if

∂i∂ju, ∂tu ∈ Ls(0, T ; Lq
τ (D)) (i, j = 1, 2, 3),(2.3)

∇p ∈ Ls(0, T ; Lq(D) + L2(D))(2.4)

for all s, q ∈ (1, 2) with 2
s

+ 3
q

= 4, where τ = (1 + |x|)−1 and there holds

(2.5) ξ̇, ω̇ ∈ Lα(0, T ) ∀α ∈ [1, 2).

Our main result is the following

Theorem 2.2. Let u0 ∈ V(D) and ξ0,ω0 ∈ R
3. Then there exists a strong solution

(u, p, ξ,ω) to the system (1.1)–(1.5). In addition, there holds

‖∇2u‖Ls(0,TL
q
τ ) + ‖∂tu‖Ls(0,TL

q
τ ) + ‖∇p‖Ls(0,TL

q+L
2) ≤ c1(1 +K16

0 ),(2.6)

‖ξ̇‖L
α(0,T ) + ‖ω̇‖L

α(0,T ) ≤ c2(1 +K16
0 ),(2.7)

where c1 = const > 0 depending on s, q,D, while c2 = const > 0 depending on α and
D. Here K0 = ‖u0‖L

2 + |ξ0| + |ω0|.

Our second main result will give additional estimates on the second gradients of both
the velocity and the pressure

Theorem 2.3. Under the assumption of Theorem2.2 we have

(2.8)
∇2u

(1 + |∇u|)(1+δ)/2
∈ L2(0, T ; L2(D ′)) ∀ 0 < δ < 1

and

(2.9) ∇2p ∈ L1(0, T ; L1(D ′) + Lα(D ′)) ∀α ∈ (1, 2)

for every open set D ′ ⊂ D with dist(D ′, ∂D) > 0.

Remark 2.4. The global existence is shown on time interval t ∈ (0, T ), T < ∞. The
global existence of strong solution with respect to our Definition 2.1 is also valid in the
case where T = ∞.
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3 Auxiliary lemmas

Based on trace theorem and complex interpolation we have the following multiplicative
inequality

Lemma 3.1. Let 1 < q < 3. For every 1
q
< θ ≤ 1 there exists a constant c = c(θ,Σ) >

0, such that

(3.1) ‖f‖L2q/(3−θq)(Σ) ≤ c‖f‖1−θ
Lq(D0)‖f‖

θ
W 1, q(D0) ∀ f ∈W 1, q(D0).

Proof First, assume that f ∈ C1(D0). By using Sobolev’s embedding theorem and
the well-known trace theorem we see that

‖f‖L2q/(3−θq)(Σ) ≤ c‖f‖W θ−1/q, q(Σ) ≤ c‖f‖W θ, q(D0).

SinceW θ, q(D0) is continuously embedded into the interpolation space [Lq(D0),W
1, q(D0)]θ

we get

‖f‖W θ, q(D0) ≤ c‖f‖1−θ
Lq(D0)‖f‖

θ
W 1, q(D0).

Inserting the latter estimate into the former we obtain (3.1).
The general case follows by applying a standard density argument.

Remark 3.2. In Lemma3.1 letting
∫
D0

fdx = 0 by Poincaré’s inequality we obtain

(3.2) ‖f‖L2q/(3−θq)(Σ) ≤ c‖f‖1−θ
Lq(D0)‖∇f‖

θ
Lq(D0) ∀ f ∈W 1, q(D0) with

∫

D0

fdx = 0.

Applying Lemma3.1 to the functional Φtra and Φrot we get

Lemma 3.3. Let 1 < q < 3. For every 1
q
< θ < 1 there exists a constant c > 0, such

that

|Φtra(u, p)| + |Φrot(u, p)|

≤ c
(
‖D(u)‖L

q(D0) + ‖p− pD0‖Lq(D0)

)1−θ(
‖∇2u‖L

q(D0) + ‖∇p‖Lq(D0)

)θ

(3.3)

for all (u, p) ∈ W 2, q(D0) ×W 1, q(D0).

Proof Fix 1
q
< θ < 1. Applying Jensen’s inequality we get

|Φtra(u, p)| + |Φrot(u, p)|

≤ c‖D(u) − (D(u))D0‖L4/(3−2θ)(Σ) + c‖p− pD0‖L4/(3−2θ)(Σ)
4) .(3.4)

Thus, the assertion immediately follows from (3.2) (cf. Remark 3.2)

For the evolutionary case we get the following multiplicative inequality

4) Notice,
∫
Σ

A · ndS = 0 for any constant matrix.
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Lemma 3.4. There exists a constant c > 0, depending only on D, such that

T∫

0

∫

Σ

fgdSdt ≤ c‖f‖L40/21(0,T ;W 1, 2(D0))×

× ‖g‖
3/20

L2(0,T ;L4/3(D0))
‖g‖

1/20

L∞(0,T ;L4/3(D0))
‖g‖

4/5

L2(0,T ;W 1,4/3(D0))
(3.5)

for all f ∈ L40/21(0, T ;W 1,2(D0)) and g ∈ L∞(0, T ;L4/3(D0)) ∩ L
2(0, T ;W 1,4/3(D0)).

Proof An iterative application of Hölder’s inequality implies

T∫

0

∫

Σ

fgdSdt ≤ ‖f‖L40/21(0,T ;L40/11(Σ))‖g‖L40/19(0,T ;L40/29(Σ)).

In view of Lemma3.1 with q = 2 and θ = 19
20

we immediately get

(3.6) ‖f‖L40/21(0,T ;L40/11(Σ)) ≤ c‖f‖L40/21(0,T ;W 1, 2(D0)).

Thus, it only remains to estimate the norm involving g. Applying Lemma3.1 with
q = 4

3
and θ = 4

5
we get

(3.7) ‖g(t)‖L40/29(Σ) ≤ c‖g(t)‖
1/5

L4/3(D0)
‖g(t)‖

4/5

W 1,4/3(D0)

for a. e. t ∈ (0, T ). Taking both sides of (3.7) to the 40
19

-th power integrating the
obtained inequality over (0, T ) and applying Hölder’s inequality we infer

‖g‖L40/19(0,T ;L40/29(Σ)) ≤ c‖g‖
1/5

L8/3(0,T ;L4/3(D0))
‖g‖

4/5

L2(0,T ;W 1,4/3(D0))

≤ ‖g‖
3/20

L2(0,T ;L4/3(D0))
‖g‖

1/20

L∞(0,T ;L4/3(D0))
‖g‖

4/5

L2(0,T ;W 1,4/3(D0))
.(3.8)

Whence, the assertion of the lemma follows by means of (3.6) and (3.8).

4 The approximate system

In order to approximate the system under consideration we will truncate both the
convective term (u · ∇)u and the unbounded term U . This requires to introduce an
appropriate cut-off function ζρ (R0 < ρ < +∞) such that ζρ → 1 as ρ → +∞. To
begin with, let η ∈ C∞(R), such that 0 ≤ η ≤ 1 in R, η ≡ 1 in (−∞, 1] and η = 0 in
[2,+∞). We set

ζρ(x) = η
( |x|
ρ

)
, x ∈ R

3 (0 < ρ < +∞).

Then, we define the truncation

[a]ρ := aζρ(a), a ∈ R
3.
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From this definition it is immediately clear that

(4.1) [a]ρ = a if |a| ≤ ρ; [a]ρ = 0 if |a| ≥ 2ρ.

In particular, in view of ∂i[v]ρ = (∂iv)η
(

|v|
ρ

)
+ v

ρ
∂iv·v
|v|

η′
(

|v|
ρ

)
χ{ρ<|v|<2ρ} it follows

(4.2) |∇[v]ρ| ≤ (1 + 2 max |η′|)|∇v| ∀v ∈ C1(R3).

This shows that [ · ]ρ : v 7→ [v]ρ is bounded linear mapping from W 1, q(D) into itself
uniformly in ρ > 0.

Let R0 < ρ < +∞ be fixed. We consider the following approximate system.

(1.1)ρ





div uρ = 0 in QT ,

∂tuρ + (uρ · ∇)[uρ]ρ = (U ρ · ∇)[uρ]ρ − ω × uρ + ∆uρ −∇pρ in QT ,

where

U ρ :=
1

2
rot (ζρξρ × y − ζρωρ|y|

2).

The system (1.1)ρ will be completed by the boundary condition (1.2) and the initial
condition (1.3), i. e.

(1.2)ρ uρ = U ρ on Σ × (0, T ), uρ = 0 as |x| → +∞,

(1.3)ρ uρ = u0 on D × {0}.

The equation of translation ξρ and ωρ are the following

(1.4)ρ




mξ̇ρ +mωρ × ξρ = −Φtra(uρ, pρ),

Jω̇ρ + ωρ × Jωρ = −Φrot(uρ, pρ) in (0, T ),

together with the initial condition

(1.5)ρ ξρ(0) = ξ0, ωρ(0) = ω0.

Remark 4.1. In what follows for notational simplicity we write ξ and ω instead of ξρ

and ωρ respectively. Set U = ξ + ω × y. Calculating

1

2
rot (ξ × y − ω|y|2) = ξ + ω × y = U

by using the product rule we obtain

U ρ = ζρU +
1

2
∇ζρ × (ξ × y − ω|y|2)

= ζρU + η′
( |y|
ρ

) |y|
2ρ

U − η′
( |y|
ρ

) y

2ρ

(
ξ ·

y

|y|

)
.(4.3)
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In particular, we have

(4.4) U ρ = U on Bρ, |U ρ| ≤ |U | + |ξ| in R
3,

and thus, U ρ → U uniformly as ρ→ +∞ on each compact subset of R
3.

Secondly, applying the chain rule and the product rule using identity (4.3) for U ρ we
find

(4.5) |∇U ρ| ≤ c
( |U |

(1 + |y|)
+ |∇U | + |ξ|

)
≤ c(|ξ| + |ω|),

where c > 0 denotes an absolute constant independent on ρ.

Similar as for the system (1.1)–(1.5) we introduce the notion of a weak solution to the
approximate system

Definition 4.2. Let u0 ∈ V(D) with u0 = ξ0 + ω0 × x on ∂D , where ξ0,ω0 ∈ R
3 are

given. Then (uρ, ξρ,ωρ) is called a weak solution to (1.1)ρ–(1.5)ρ if

(i) uρ ∈ L2(0, T ;V(D)) ∩ C([0, T ); L2(D)),

(ii) ξρ,ωρ ∈ C([0, T ]),

(iii) for every ϕ ∈ C∞([0, T ]; C(D)) there holds the identity

t∫

0

∫

D

−uρ · ∂tϕ + D(uρ) : D(ϕ) + ((uρ − U ρ) · ∇[uρ]ρ) · ϕ + (ωρ × uρ) · ϕdxds

+

∫

D

uρ(t) · ϕ(t)dx+mξρ(t) ·Φ1(t) + (Jωρ(t)) · Φ2(t)

=

t∫

0

mξρ(s) · Φ̇1(s) + (Jωρ(s)) · Φ̇2(s)ds

+

∫

D

u0 · ϕ(0)dx+mξ0 · Φ1(0) + (Jω0) · Φ2(0)(4.6)

for all 0 < t < T .

Remark 4.3. From the integral identity in (4.6) by well-know arguments from the
theory of parabolic systems we obtain the following energy equality

1

2
‖uρ(t)‖

2
L

2 +
m

2
|ξρ(t)|

2 +
1

2
|Rωρ(t)|

2 +

0∫

t

∫

D

|D(uρ)|
2dxds

=
1

2
‖u0‖

2
L

2 +
m

2
|ξ0|

2 +
1

2
|Rω0|

2(4.7)
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for all t ∈ [0, T ]. From (4.7) we infer the following a-priori estimate

(4.8) ‖uρ‖L∞(0,T ;L2) + ‖ξρ‖L
∞(0,T ) + ‖ωρ‖L

∞(0,T ) + ‖D(uρ)‖L
2 ≤ cK0,

where

K0 = ‖u0‖L
2 + |ξ0| + |ω0|.

Applying the standard monotone operator theory we get the following existence result

Lemma 4.4. (Existence of a weak solution to the approximate system) Let
u0 ∈ V(D) with u0 = ξ0 + ω0 × x on ∂D, where ξ0,ω0 ∈ R

3 are given. Then there
exists a unique weak solution (uρ, ξρ,ωρ) to (1.1)ρ–(1.5)ρ, satisfying the identity (4.7)
and the a-priori estimate (4.8).

Remark 4.5. It is readily seen that the weak solution (uρ, ξρ,ωρ) to (1.1)ρ–(1.5)ρ

solves the linear problem discussed in [17] with right hand side

f ρ = ((U ρ − uρ) · ∇)[uρ]ρ − ωρ × uρ

which clearly belongs to L2(QT ). Thus, from [17, Lemma3.2] we get the existence of
a global pressure pρ such that (uρ, pρ, ξρ,ωρ) is a strong solution to (1.1)ρ–(1.5)ρ, i. e.

∂i∂juρ, ∂tuρ ∈ L2(QT ) (i, j = 1, 2, 3), ξ̇ρ, ω̇ρ ∈ L2(0, T ),

while pρ ∈ L2(0, T ;L2
loc(D)) satisfying

∇pρ ∈ L2(QT ).

5 A-priori estimates for (uρ, pρ, ξρ,ωρ)

Fix ρ > R0. Let (uρ, pρ, ξρ,ωρ) denote the strong solution to the approximate system
(1.1)ρ–(1.5)ρ.

Throughout this section, for notational simplicity we write u, p, ξ,ω instead of
uρ, pρ, ξρ,ωρ respectively.

We write u = v+w and p = π+P , where (v, π) is a strong solution to the following
Stokes problem

(5.1)





div v = 0 in QT ,

∂tv − ∆v = −∇π + f in QT ,

with

f = −(u · ∇)[u]ρ + (U ρ · ∇)[u]ρ − ω × u a. e. in QT

satisfying the boundary and initial conditions

v = 0 on Σ × (0, T ), v → 0 as |x| → +∞,(5.2)

v = 0 on D × {0}.(5.3)
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5.1 Estimation of (v, π)

We start our discussion by decomposing f into the sum f 1 + f2 + f3, where

f 1 = −(u · ∇)[u]ρ + (div[u]ρ)U ρ,

f 2 = ([u]ρ · ∇)U ρ − ω × u,

f 3 = (U ρ · ∇)[u]ρ − ([u]ρ · ∇)U ρ − (div[u]ρ)U ρ.

Clearly, we can divide v and π into the sum v1 +v2 +v3 and π1 +π2 +π3 respectively,
where (vi, πi) denotes the strong solution to the Stokes system with the right hand side
f i (i = 1, 2, 3) satisfying the boundary and initial conditions (5.2), (5.3).

1◦ Estimation of (v1, π1). First recalling a-priori estimate (4.8) by the aid of Sobolev’s
embedding theorem, we deduce

(5.4) ‖u‖L∞(0,T ;L2) + ‖u‖L2(0,T ;L6) ≤ cK0,

where c = const > 0 depending only on the geometric property of D . From (5.4) and
using the Hölder’s inequality we find

(5.5) ‖u‖Lα(0,T ;Lβ) ≤ cK0 ∀α, β ∈ [2,+∞] :
2

α
+

3

β
=

3

2
.

By the definition of the truncation [ · ]ρ together with div u = 0 we have

div[u]ρ =
1

ρ

∇u : u ⊗ u

|u|
η′

( |u|
ρ

)
.

Observing Uρ

ρ
≤ cK0 we see that

| div[u]ρU ρ| ≤ c|u| |∇u|K0.

Thus,

|f 1| ≤ c(1 +K0)|u| |∇u| a.e. in QT .

Applying the Hölder’s inequality, taking into account (4.8) and (5.5) we estimate

(5.6)




‖f1‖Lα(0,T ;Lβ) ≤ c(1 +K0)‖|u| |∇u|‖Lα(0,T ;Lβ) ≤ c(1 +K3

0)

∀α, β ∈ [1, 2] : 2
α

+ 3
β

= 4.

Applying [12, Theorem2.8] and by the aid of (5.6) we obtain the estimate

(5.7) ‖∂tv1‖Lα(0,T ;Lβ) + ‖∇2v1‖Lα(0,T ;Lβ) + ‖∇π1‖Lα(0,T ;Lβ) ≤ c(1 +K3
0 )

for all α, β ∈ (1, 2) with 2
α

+ 3
β

= 4. 5)

5) Clearly, by the choice of α, β we have β < 3
2 .
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2◦ Estimation of (v2, π2). By means of (4.3) we get

|f 2| ≤ c(|ξ| + |ω|)|u| a. e. in QT .

Thus, observing (4.8) using Hölder’s inequality we get

(5.8) ‖f 2‖L2(0,T ;L2) ≤ cT 1/2K2
0 .

Applying standard L2-theory of the Stokes equation thanks (5.8) we infer

(5.9) ‖∂tv2‖L2(0,T ;L2) + ‖∇2v2‖L2(0,T ;L2) + ‖∇π2‖L2(0,T ;L2) ≤ cT 1/2K2
0 ,

where c = const depends only on the geometric property of D .

3◦ Estimation of (v3, π3). One easily calculates,

f 3 = −rot (U ρ × [u]ρ).

Estimating

(1 + |y|)−1U ρ × [u]ρ ≤ c(|ξ| + |ω|)|u| a. e. in QT ,

we see that U ρ(t) × [u(t)]ρ belongs to the weighted Sobolev space W 1, 2
τ (D) with

τ = (1 + |y|)−1 for a. e. t ∈ (0, T ). Arguing as in 2◦ appealing to (4.8) we see

‖U ρ×[u]ρ‖L2(0,T ;W1, 2
τ ) ≤ c(‖ξ‖L

∞(0,T )+‖ω‖L
∞(0,T ))‖u‖L2(0,T ;L2) ≤ cT 1/2K2

0 ,

where c = const > 0 is independent on ρ. Applying the result [17, Theorem2.1] with
ξ0 = 0, ω0 = 0 and right hand side f = rot (g) with g = U ρ × [u]ρ we deduce

(5.10) ‖∂tv3‖L2(0,T ;L2
τ ) + ‖∇2v3‖L2(0,T ;L2

τ ) + ‖∇π3‖L
2 ≤ cK2

0 .

From (5.7), (5.9) and (5.10) we infer

(5.11) ‖∂tv‖Lα(0,T ;Lβ
τ ) + ‖∇2v‖Lα(0,T ;Lβ

τ ) + ‖∇π‖Lα(0,T ;Lβ+L
2) ≤ c(1 +K3

0 )

for all α, β ∈ (1, 2) satisfying 2
α

+ 3
β

= 4.

In addition, in view of (5.11) by Sobolev’s embedding theorem and multiplicative
inequalities we get

(5.12) ‖v‖Lr(0,T ;Lq(D0)) + ‖∇v‖Ler(0,T ;Leq(D0)) ≤ c(1 +K3
0 )

for all r, q ∈
[

3
2
,+∞

]
with 2

r
+ 3

q
= 2 and r̃, q̃ ∈

(
6
5
, 4

)
(q̃ 6= +∞) with 2er + 3eq = 3.

Finally, referring to Remark 1.1 from (5.11) we obtain

(5.13) ‖Φtra(v, π)‖L
α(0,T ) + ‖Φrot(v, π)‖L

α(0,T ) ≤ c(1 +K3
0 )

for all 1 ≤ α < 2.

13



5.2 Estimation of (w, P )

For the sake of simplicity we assume u0 = 0. Clearly, recalling the definition of (w, P )
this pair solves the equation

(5.14)





div w = 0 in QT ,

∂tw − ∆w = −∇P in QT ,

satisfying the following initial and boundary conditions

w = U ρ on Σ × (0, T ), w = 0 as |x| → +∞,(5.15)

w = 0 on D × {0},(5.16)

accompanied by the equations of the body

(5.17)




mξ̇ +mω × ξ = −Φtra(w, P ) −Φtra(v, π) in (0, T ),

Jω̇ + ω × Jω = −Φrot(w, P ) − Φrot(v, π) in (0, T ),

together with the initial condition

(5.18) ξ(0) = ξ0, ω(0) = ω0.

The first a-priori bound on w can be obtained immediately from (5.12) with r =
+∞, q = 3

2
and r̃ = 4

3
, q̃ = 2, respectively, together with the a-priori bound on u (cf.

(4.8), (5.5) ). Thus,

(5.19) ‖w‖L∞(0,T ;L3/2(D0)) + ‖∇w‖L4/3(0,T ;L2(D0)) ≤ c(1 +K3
0 ),

where c depends on D0 and T .

5.2.1 Homogenization

Set W := w−UR0 . Recalling the definition of U ρ (cf. (1.1)ρ in Section 4) since ρ > R0

we have UR0 = U ρ in a neighbourhood of B. Since div UR0 = 0 and UR0 = U =
ξ + ω × y on Σ × (0, T ) the pair (W , P ) solves the Stokes like system

(5.20)





div W = 0 in QT ,

∂tW − ∆W = −∇P − ∂tUR0 + ∆UR0 in QT

satisfying the homogeneous Dirichlet boundary condition with zero initial data.
Since ζR0 is smooth, from the definition of UR0 it follows that

(5.21) |DγUR0 | ≤ c(|ξ| + |ω|)χB2R0
≤ cK0χB2R0

a. e. in QT
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for every multi-index γ, were c = const > 0 depending on |γ| and R0 only. Observing
(5.19) with help of (5.21) we obtain

(5.22) ‖W ‖L∞(0,T ;L3/2(D0)) + ‖∇W ‖L4/3(0,T ;L2(D0)) ≤ c(1 +K3
0).

On the other hand, for every multi-index γ we get

(5.23) |∂tD
γUR0 | ≤ c(|ξ̇| + |ω̇|)χB2R0

a. e. in QT .

In particular, (5.23) implies

(5.24) ‖∂tUR0‖L40/21(0,T ;W2,2) ≤ cΛ,

where

Λ = ‖ξ̇‖
L

40/21(0,T ) + ‖ω̇‖
L

40/21(0,T ).

Unfortunately, both ξ̇ and ω̇ are not controlled yet, since it requires estimates on the
second gradient of w and the pressure gradient ∇P . This will be achieved by using
the Lp estimate of the higher order derivatives of the pressure P obtained in [25].
Accordingly, using (5.21) and (5.24) we find

‖∇P‖L40/21(0,T ;W2,2) ≤ c‖∂tUR0 − ∆UR0‖L40/21(0,T ;W2, 2)

≤ c(‖ξ̇‖
L

40/21(0,T ) + ‖ω̇‖
L

40/21(0,T ) +K0)

= c(Λ +K0).(5.25)

5.2.2 Estimates of the second gradient

Multiplying (5.20)2 with −2∆W integrating the result over D × (0, t) (t ∈ (0, T )) and
applying integration by parts we end up with the following identity

∫

D

|∇W (t)|2dx+ 2

t∫

0

∫

D

|∆W |2dxds

≤ 2

t∫

0

∫

D

∂tUR0 · ∆W dxds− 2

t∫

0

∫

D

∆UR0 · ∆W dxds.

+ 2

t∫

0

∫

D

∇P · ∆W dxds

for a. e. t ∈ (0, T ).
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With help of Cauchy-Schwarz’s inequality and Young’s inequality making use of
(5.21) we get

1

2

∫

D

|∇W (t)|2dx+

t∫

0

∫

D

|∆W |2dxds

≤ cK2
0 + 2

t∫

0

∫

D

∂tUR0 · ∆W dxds+ 2

t∫

0

∫

D

∇P · ∆W dxds

= cK2
0 + I + II.(5.26)

(i) To estimate I we apply Green’s theorem, which yields

I = 2

t∫

0

∫

Σ

n · (∇W − (∇W )D0) · U̇dSds− 2

t∫

0

∫

Σ

n · ∇U̇ · (W − W D0)dSds

+ 2

t∫

0

∫

D

∂t∆UR0 · (W − W D0)dxds

= I1 + I2 + I3.

With help of Lemma3.4 applying Poincaré’s inequality and Young’s inequality together
with (5.22) we get

I1 ≤ c‖U̇‖L40/21(0,T )‖∇W ‖
3/20

L2(0,T ;L4/3(D0))
‖∇W ‖

1/20

L∞(0,T ;L2(D0))
‖∇2W ‖

4/5

L2(0,T ;L2(D0))

≤ c(1 +K
9/20
0 )‖U̇‖L40/21(0,T )

{
‖∇W ‖2

L∞(0,T ;L2) + ‖∇2W ‖2
L2(0,T ;L2)

}17/40

≤ c(1 +K
9/20
0 )Λ

{
‖∇W ‖2

L∞(0,T ;L2) + ‖∆W ‖2
L2(0,T ;L2)

}17/40
6) .

For the estimation of I2 we argue similar as above by using (5.22) and taking into
account (5.24). This gives

I2 ≤ c‖∇U̇‖L40/21(0,T )‖W ‖
1/5

L∞(0,T ;L4/3(D0))
‖∇W ‖

4/5

L2(0,T ;L4/3(D0))

≤ c(1 +K3
0)Λ.

Similarly,

I3 ≤ c(1 +K3
0)‖∂t∆UR0‖L40/21(0,T ;L2(D0))

≤ c(1 +K3
0)Λ.

Whence, inserting each estimates of I1–I3 into the right hand side of I we deduce

I ≤ c(1 +K3
0)Λ + c(1 +K

9/20
0 )Λ

{
‖∇W ‖2

L∞(0,T ;L2) + ‖∆W ‖2
L2(0,T ;L2)

}17/40

.

6) Notice, in view of (5.24) we have ‖U̇‖L40/21(0,T ) ≤ cΛ.
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(ii) Secondly, by using Green’s theorem observing ∆P = 0, the integral II becomes

II =

t∫

0

∫

Σ

n · (∇W − (∇W )D0) · ∇PdSdt

−

t∫

0

∫

Σ

n · ∇2P · (W − W D0)dSdt

= II1 + II2.

For the estimation of II1 we proceed exactly as for the estimation of I1 making use of
Lemma3.4. Thus,

II1 ≤ c(1 +K
9/20
0 )‖∇P‖L40/21(0,T ;W1,2)×

×
{
‖∇W ‖2

L∞(0,T ;L2) + ‖∆W ‖2
L2(0,T ;L2)

}17/40

.

To estimate II2 we argue as for I2. Hence,

II2 ≤ c‖∇P‖L40/21(0,T ;W2,2)‖W ‖
1/5

L∞(0,T ;L4/3(D0))
‖∇W ‖

4/5

L2(0,T ;L4/3(D0))

≤ c(1 +K3
0)‖∇P‖L40/21(0,T ;W2,2).

Inserting estimates of II1 and II2 into the right hand side of II making use of (5.25)
we arrive at

II ≤ c(1 +K
9/20
0 )(K0 + Λ)

{
‖∇W ‖2

L∞(0,T ;L2) + ‖∆W ‖2
L2(0,T ;L2)

}17/40

+ c(1 +K3
0)(K0 + Λ).

Finally, inserting estimates for I and II into (5.26) applying Young’s inequality we are
led to

(5.27) ‖∇W ‖2
L∞(0,T ;L2) + ‖∆W ‖2

L2(0,T ;L2) ≤ c(1 +K4
0)(1 + Λ40/23).

5.2.3 Estimation of Λ

Fix t ∈ (0, T ) such that w(t),v(t), ∂tw(t), ∂tv(t), P (t), π(t) are sufficiently regular. We
multiply both sides of (5.14)2 in t by − div T(w(t), P (t)) and integrate the result over
D . Accordingly,

(5.28)

∫

D

| div T(w(t), P (t))|2dx =

∫

D

∂tw(t) · div T(w(t), P (t))dx.
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We continue our discussion by evaluating the integral on the right. For, we use inte-
gration by parts and the fact that w(t) = U(t) on Σ. Thus,

∫

D

∂tw(t) · div T(w(t), P (t))dx

=

∫

Σ

U̇ (t) · T(u(t), π(t)) · ndS

+

∫

Σ

U̇(t) · T(v(t), π(t)) · ndS −

∫

D

∂t∇w(t) : T(w(t), P (t))dx

= A+B + C.(5.29)

(a) In view of (1.9) since |Jω̇|2 ≥ κ|ω̇|2 for a positive constant κ using Young’s in-
equality together with (4.8) we see that

A ≤ −
m

2
|ξ̇(t)|2 −

κ

2
|ω̇(t)|2 + c(|ξ(t)|2 + |ω(t)|2)

−
m

2
|ξ̇(t)|2 −

κ

2
|ω̇(t)|2 + cK2

0

(b) Observing (1.7) we have

B = ξ̇(t) ·Φtra(v(t), π(t)) + ω̇(t) · Φrot(v(t), π(t)).

Thus, with help of Young’s inequality we deduce

B ≤
m

8
|ξ̇(t)|2 +

κ

8
|ω̇(t)|2 + c(|Φtra(v(t), π(t))|2 + |Φtra(v(t), π(t))|2).

(c) To estimate C we use integration by parts taking into account div w = 0. This
shows that

C = −2

∫

D

∂tD(w)(t) : D(w)(t)dx

=

∫

D

∂tw(t) · ∆w(t)dx−

∫

D

∂tUR0(t) · ∆w(t)dx

− 2

∫

D

∂t∇UR0(t) : D(w)(t)dx

= C1 + C2 + C3.

Next, using Cauchy-Schwarz’s inequality it follows

C1 ≤ ‖∂tw(t)‖L
2‖∆w(t)‖L

2 .

To estimate C2 and C3 make use of (5.23) along with Young’s inequality. Consequently,

C2 + C3 ≤
m

8
|ξ̇(t)|2 +

κ

8
|ω̇(t)|2 + c‖∇w(t)‖2

L
2 + c‖∆w(t)‖2

L
2.
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Inserting the estimates of A,B and C into the right of (5.29), taking into account the
a-priori bound for ξ,ω and moving the terms involving ξ̇, ω̇ to the left, we are led to

m

4
|ξ̇(t)|2 +

κ

4
|ω̇(t)|2 +

∫

D

∂tw(t) · div T(w(t), P (t))dx

≤ cK2
0 + c

{
|Φtra(v(t), π(t))|2 + |Φrot(v(t), π(t))|2 + ‖∇w(t)‖2

L
2 + c‖∆w(t)‖2

L
2

}

+ c‖∂tw(t)‖L
2‖∆w(t)‖L

2 .(5.30)

Taking both sides of the above inequality to the 20
21

-th power integrating the result over
(0, T ) observing (5.13) and (5.28) making use of (5.27) we deduce

Λ2 ≤ c
{
K4

0 + ‖∇w‖2
L

2 + ‖∆w‖2
L

2

}
+ c‖∂tw‖L40/21(0,T ;L2)‖∆w‖L2(0,T ;L2)

≤ c(1 +K4
0 )(1 + Λ40/23) + c‖∂tw‖L40/21(0,T ;L2)(1 +K2

0)(1 + Λ20/23).

Then by the aid of Young’s inequality the Λ terms on the right can be absorbed by
the term on the left. Whence,

(5.31) Λ ≤ c(1 +K16
0 ) + c(1 +K

23/13
0 )‖∂tw‖

23/26

L40/21(0,T ;L2)
.

5.2.4 A-priori bound of ∂tw and Λ

Let t ∈ (0, T ) be appropriately chosen as in the previous subsection. We are going to
multiply both sides of (5.14)2 in t with ∂tw(t) and integrate the result over D . This
gives

(5.32)

∫

D

|∂tw(t)|2dx =

∫

D

div T(w(t), P (t)) · ∂tw(t)dx.

Using (5.30), arguing as in the proof of (5.31), we obtain

‖∂tw‖L40/21(0,T ;L2) ≤ c(1 +K16
0 ) + c(1 +K

23/13
0 )‖∂tw‖

23/26

L40/21(0,T ;L2)
.

Whence, with help of Young’s inequality together with (5.31) we deduce

(5.33) ‖∂tw‖L40/21(0,T ;L2) + Λ ≤ c(1 +K16
0 ).

5.2.5 A-priori bounds for ∇2w and ∇P

Inserting a-priori estimate (5.33) for Λ into the right of (5.27), it follows that

(5.34) ‖∇w‖L∞(0,T ;L2) + ‖∆w‖L2(0,T ;L2) ≤ c(1 +K16
0 ).

Next, by (5.14)2,

‖∇P‖L40/21(0,T ;L2) ≤ ‖∂tw‖L40/21(0,T ;L2) + ‖∆w‖L40/21(0,T ;L2).
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Hence, (5.27), (5.34) imply

(5.35) ‖∇P‖L40/21(0,T ;L2) ≤ c(1 +K16
0 ).

5.2.6 Improvement of integrability in time

Let 1 < α < 2. Define,

Λα = ‖ξ̇‖L
α(0,T ) + ‖ω̇‖L

α(0,T ).

Taking both sides of (5.30) to the α
2
-th power and integrating the resultant inequality

over (0, T ), taking into account (5.13) and (5.34) we are led to

Λ2
α ≤ c

{
K0 + ‖∇w‖2

L
2 + ‖∆w‖2

L
2

}
+ c‖∂tw‖Lα(0,T ;L2)‖∆w‖L

2

≤ c(1 +K32
0 ) + c‖∂tw‖Lα(0,T ;L2)(1 +K16

0 ).

Analogously, in view of (5.32) using (5.30) we get

‖∂tw‖Lα(0,T ;L2) ≤ c(1 +K16
0 ) + c‖∂tw‖

1/2

Lα(0,T ;L2)
(1 +K8

0).

Thus, inserting the latter into the former inequality using Young’s inequality we arrive
at

(5.36) ‖∂tw‖Lα(0,T ;L2) + Λα ≤ c(1 +K16
0 ).

Finally, by the equation (5.14)2 using (5.34) and (5.36) we obtain

(5.37) ‖∇P‖Lα(0,T ;L2) ≤ c(1 +K16
0 ).

6 Passage to the limit ρ→ +∞

From (5.11), (5.34), (5.36) and (5.37) we get the a-priori estimate

‖∂tuρ‖Ls(0,T ;Lq
τ ) + ‖∇2uρ‖Ls(0,T ;Lq

τ ) + ‖∇pρ‖Ls(0,T ;Lq+L
2)

+ ‖ξ̇ρ‖L
α(0,T ) + ‖ω̇ρ‖L

α(0,T ) ≤ c(1 +K16
0 )(6.1)

for all s, q ∈ (1, 2) with 2
s

+ 3
q

= 4 and 1 ≤ α < 2.

Observing (4.8) by a standard reflexivity argument, there exist a sequences (uρj
, ξρj

,ωρj
)

with ρj → +∞ as j → +∞ and u ∈ L∞(0, T ; L2(D)) ∩ L2(0, T ;V(D)) together with
ξ,ω ∈ C([0, T ]) such that

uρj
⇀ u in L2(0, T ;V(D)),(6.2)

uρj

∗
⇀ u in L∞(0, T ; L2(D)),(6.3)

ξρj
→ ξ, ωρ → ω uniformly on [0, T ], as j → +∞.(6.4)
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In view of (6.1) applying a standard compactness argument we get

(6.5) uρj
→ u in L2(QT ).

As it has been proved in case of the Navier-Stokes equation with help of (6.3) one
verifies that u(·, t) is weakly continuous with respect to the L2 norm. In addition
there holds

(6.6) u(t) → u0 in L2(D) as t→ 0+.

Now, in view of (6.2), (6.4) and (6.5) we are in a position to carry out the passage to
the limit ρj → +∞ in the weak formulation of (uρ, ξρ,ωρ) to see that (u, ξ,ω) is a
weak solution to (1.1)–(1.5).

Furthermore, by means of reflexivity from (6.1) we get p ∈ L1(0, T ;L1
loc(D)) with

∇p ∈ Ls(0, T ;Lq(D)) such that

(6.7) ∇pρj
→ ∇p in Ls(0, T ; Lq(D)) as j → +∞

for all s, q ∈ [1, 2) with 2
s
+ 3

q
= 4. Thus, taking into account the lower semi continuity

of the norm from (6.1), it follows

‖∂tu‖Ls(0,T ;Lr
τ ) + ‖∇2u‖Ls(0,T ;Lq

τ ) + ‖∇p‖Ls(0,T ;Lq+L
2)

+ ‖ξ̇‖L
α(0,T ) + ‖ω̇‖L

α(0,T ) ≤ c(1 +K16
0 )(6.8)

for all s, q ∈ (1, 2) with 2
s

+ 3
q

= 4 and 1 ≤ α < 2. Accordingly, u is a strong solution

to (1.1)–(1.5). This completes the proof of Theorem2.2.

7 Proof of Theorem2.3. Removing the weight

Let (u, p, ξ,ω) be a strong solution to (1.1)–(1.5), the existence which is guaranteed
by Theorem2.2. The aim of this section is to prove the statement of Theorem2.3
removing the weight in estimating the norm of ∇2u.

We begin our discussion by a localization argument. Let D ′ ⊂ D with dist(D ′, ∂D) >

0 be arbitrarily chosen. Then, fix an open set B′ ⊃ B such that B
′
⊂ R

3 \D ′. In par-
ticular, there exists 0 < R0 < +∞ such that R

3 \ D ′ ⊂ BR0 . Now, let R0 < ρ < +∞.
Take φ ∈ C∞

0 (D) such that 0 ≤ φ ≤ 1 in R
3, φ ≡ 1 on Bρ ∩ D ′ and φ ≡ 0 in

R
3 \ B2ρ \ B′. Furthermore we may assume that |∇φ| ≤ c and |∇2|φ ≤ c in R

3 with
c = const independent on ρ.

We multiply both sides of (1.1)2 by φ taking into consideration the product rule
we see that

∂t(φu) + ((u − U) · ∇)(φu) − ∆(φu)

= (u · ∇φ)u − 2∇φ · ∇u − ∆(φu)

− div φ(U ⊗ u) − φ(ω × u) −∇(φpρ) + pρ∇φ(7.1)
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in R
3 × (0, T ), where

pρ = p− pB2ρ\Bρ .

Performing the divergence on both sides of the above equation we find

−∆(φpρ) = (∇u)t : ∇(φu) + u · ∇(∇φ · u) + ∇φ · ∂tu

− ∆(∇φ · u) + 2∇2φ : ∇u + (∆∇φ)u

− div(u · ∇φU) + ∇2φ : (U ⊗ u)

−∇φ · (ω × u) −∇p · ∇φ− ∆φpρ

= (∇u)t : ∇(φu) − div gρ + hρ,

where

gρ = ∇(u · ∇φ) + u · ∇φU ,

hρ = u · ∇(∇φ · u) + ∇φ · ∂tu + 2∇2φ : ∇u + (∆∇φ)u

+ ∇2φ : (U ⊗ u) −∇φ · (ω × u) −∇p · ∇φ− ∆φpρ.

In what follows by c we denote a positive constant which may change their numerical
value line by line but does not depend on ρ. Clearly, in view of (2.2) we have gρ ∈

L2(0, T ; L2(D)) such that

(7.2) ‖gρ‖L
2 ≤ cK0.

On the other hand, in view of ∇φ · ∆u ∈ L20/19(0, T ;L10/7(R3)) we infer div gρ ∈

L20/19(0, T ;L10/7(R3)). By the aid of (2.6) and (2.2) we obtain

(7.3) ‖ div gρ‖L20/19(0,T ;L10/7(R3)) ≤ c(1 +K16
0 ).

Owing to ∇φ · ∂tu ∈ L20/19(0, T ; L10/7(D)) we have hρ ∈ L20/19(0, T ;L10/7(R3)) and
there holds

(7.4) ‖hρ‖L20/19(0,T ;L10/7(R3)) ≤ c(1 +K16
0 ).

Introducing the Newton potential we may decompose φpρ into the sum P0+P1+P2,
where

P1(t) := −
1

4π

∫

R3

gρ(y, t) ·
x− y

|x− y|3
dx,

P2(t) :=
1

4π

∫

R3

hρ(y, t)

|x− y|
dx

a. e. in R
3 and for a. e. t ∈ (0, T ). Hence, in view of (7.2) one verifies P1 ∈

L2(0, T ; Ŵ 1,2(R3)), P2 ∈ L20/19(0, T ; Ŵ 2, 10/7(R3)) together with the a-priori estimate

(7.5) ‖P1‖L2(0,T ;W 1, 2(R3)) + ‖P2‖L20/19(0,T ;W 2,10/7(R3)) ≤ c(1 +K16
0 ).

22



Furthermore, observing (7.3) it follows ∇2P1 ∈ L20/19(0, T ;L10/7(R3)). Hence,

(7.6) ‖∇2P1 + ∇2P2‖L20/19(0,T ;L10/7(R3)) ≤ c(1 +K16
0 ).

Clearly, since P1 + P2 solves the equation −∆(P1 + P2) = div gρ + hρ we deduce that

(7.7) −∆P0(t) = (∇u(t))t : ∇(φu(t)) in R
3

for a. e. t ∈ (0, T ).
Fix t ∈ (0, T ) such that u(t) ∈ W 1, 2(D). Define,

ũ(t) =





u(x, t) for x ∈ D

U(t) for x ∈ B

Recalling (1.1)1 and (1.2) we see that ũ ∈ W 1, 2(R3) satisfying div ũ = 0. As it has
been shown in [2] there holds

(∇ũ(t))t : ∇(φu(t)) ∈ H
1,

where H 1 denotes the Hardy space (cf. [22]). Consulting [22, VII.3, Cor. 1] we obtain

P0(t) ∈ Ŵ 2, 1(R3)) together with the estimate

(7.8) ‖P0(t)‖W 2, 1(R3) ≤ c‖∇u(t)‖2
W

1, 2.

Integration of (7.8) over (0, T ) gives

(7.9) ‖P0‖L1(0,T ;W 2, 1(R3)) ≤ c(‖∇u‖2
L

2(0,T ;L2) + ‖u‖L∞(0,T ;L2)) ≤ cK2
0 .

Fix j ∈ {1, 2, 3}. Applying the ∂j to both sides of (7.1) we see that r = ∂j(φu) solves
the transport equation

(7.10) ∂tr + ((u − U ρ) · ∇)r − ∆r = ∂ju · ∇(φu) + ∂j∇P0 + f 1 + f 2

in R
3 × (0, T ), with f1 ∈ L2(0, T ; L2(R3)), f2 ∈ L20/19(0, T ; L10/7(R3)) such that

(7.11) ‖f 1‖L2(0,T ;L2(R3)) + ‖f2‖L20/19(0,T ;L10/7(R3)) ≤ c(1 +K16
0 ).

We divide r into the sum s+t, where s stands for the weak solution in L∞(0, T ; L2(R3))∩
L2(0, T ; W 1, 2

0 (R3)) solving the transport problem

(7.12) ∂ts + ((u − U) · ∇)s − ∆s = [f 1 + f 2]1 in R
3 × (0, T ), 7)

satisfying the following boundary and initial condition

s = 0 on Σ × (0, T ), s = 0 as |x| → +∞,(7.13)

s = [r(0)]1 on D × {0}.(7.14)

7) Recall that [a]1 = aζ1(a) (a ∈ R
3).
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As [f 1 + f 2]1 ∈ L2(0, T ; L2(R3)) by the standard energy method taking into account
that ‖r(0)‖L

2 ≤ K0 along with (7.12) we get

‖s‖2
L∞(0,T ;L2(R3)) + 2‖∇s‖2

L2(0,T ;L2(R3))

≤ c
{
‖r(0)‖2

L
2(R3) + ‖[f1 + f2]1‖

2
L1(0,T ;L2(R3))

}

≤ c(1 +K16
0 )(7.15)

(7.16)

Furthermore, owing to [r(0)]1 ≤ 2 and [f 1 + f2]1 ≤ 2 we claim that

(7.17) ess sup
R3×(0,T )

|s| ≤ c∗,

where c∗ denotes an absolute constant. Indeed, multiplying both sides of the i-th
equation in (7.12) by (si − h)+ (h > 2) we obtain

ess sup
t∈(0,T )

∫

R3

[(si − h)+]2dx+ 2

T∫

0

∫

R3

[∇(si − h)+]2dxdt ≤ 4

∫

Ah

(si − h)+dxdt,

where

Ah = {(x, t) ∈ R
3 × (0, T ) | si(x, t) > h}.

By means of Sobolev’s embedding theorem and Hölder’s inequality we are led to

∫

Ah

(si − h)10/3dxdt ≤ c[mes(Ah)]
7/3.

Now, let 2 < h1 < h2 < +∞ be arbitrarily chosen. From the last inequality we deduce
that

(h2 − h1)mes(Ah2) ≤

∫

Ah2

(si − h1)
10/3dxdt ≤ c[mes(Ah1)]

7/3.

By a well-known algebraic argument due to Stampaccia we get h0 = const > 2, such
that mes(Ah0) = 0, which implies si ≤ h0. Analogously, one shows that si is bounded
from below. Whence, (7.17).

Next, combining (7.10) and (7.12) we see that t is a weak solution to

(7.18) ∂tt + ((u − U) · ∇)t − ∆t = f in R
3 × (0, T ),

where

f = ∂ju · ∇(φu) + ∂j∇P0 + f 1 + f 2 − [f 1 + f 2]1,
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fulfilling t(0) = r(0) − [r(0)]1. By the definition of the truncation [ · ]1 it follows that
both t(0) and f are integrable, more precisely,

(7.19)

∫

R3

|t(0)|dx+

T∫

0

∫

R3

|f |dxdt ≤ c(1 +K16
0 ).

Fix i ∈ {1, 2, 3}. Multiplying both sides of the i-th equation of (7.18) by sign (ti)
(
1−

1
(2c∗+|ti|)δ

)
(0 < δ < 1) integrating the result over R

3 × (0, t) (t ∈ (0, T )) using

integration by parts and taking into account (7.19) we end up with

t∫

0

d

dt

∫

R3

̺(ti)dxds+ δ

t∫

0

∫

R3

|∇ti|2

(2c∗ + |ti|)2c∗+δ
dxds

≤ −

t∫

0

∫

R3

(u − U) · ∇̺(ti)dxds+ c(1 +K16
0 )

= c(1 +K16
0 ),(7.20)

where

̺(τ) :=

|τ |∫

0

(
2c∗ −

1

(1 + ξ)δ

)
dξ, τ ∈ R.

Again using integration by parts recalling ‖t(0)‖L
1 ≤ K0 we infer

t∫

0

d

dt

∫

R3

̺(ti)dxds =

∫

R3

̺(ti)(x, t)dx−

∫

R3

̺(ti)(x, 0)dx

≥

∫

R3

̺(ti)(x, t)dx− cK0.

Thus,

(7.21)

T∫

0

∫

R3

|∇t|2

(2c∗ + |t|)1+δ
dxdt ≤ cδ−1(1 +K16

0 ),

where c denotes a positive constant depending only on D . Thanks to (7.17) having
|r| ≥ |t| − c∗ making use of (7.16) and (7.21) we obtain

T∫

0

∫

R3

|∇r|2

(2c∗ + |r|)1+δ
dxdt ≤

T∫

0

∫

R3

|∇s|2dxdt+

T∫

0

∫

R3

|∇t|2

(2c∗ + |t|)1+δ
dxdt

≤ c(1 +K16
0 ).(7.22)
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Recalling that r = ∂j(φu) from (7.22) we deduce that

T∫

0

∫

Bρ∩D ′

|∇2u|2

(2c∗ + |∇u|)1+δ
dxdt ≤ c(1 +K2

0).

Consequently, with help of Fatou’s Lemma the passage to the limit ρ → +∞ leads to
assertion (2.8).

It only remains to show (2.9). Let ψ ∈ C∞(R3) such that 0 ≤ ψ ≤ 1 in R
3, ψ ≡ 1

on R
3 \ D ′ and ψ ≡ 0 in R

3 \ B′. As above multiplying both sides of (1.1)2 by ψ and
applying the operator div we obtain the following Poisson equation

−∆(pψ) = (∇ũ)t : ∇(uψ)

+
(
∂tu − ∆u + ω × u − U · ∇u −∇p

)
· ∇ψ − p∆ψ

in R
3×(0, T ). Since the right hand side of the above equation belongs to L1(0, T ; H 1)+

L1(0, T ;Lα) for all α ∈ [1, 2) by using [2] and Calderón-Zygmond theory (cf. [22]) we
see that

∂i∂jpψ ∈ L1(0, T ;L1(R3)) + L1(0, T ;Lα(R3)), i, j = 1, 2, 3.

Hence, (2.9) holds true. This completes the proof of Theorem2.3.

Acknowlegment:
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