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Abstract The equilibrium equations of no–tension (masonry–like) bodies are analyzed. Unlike
the existing proofs of the existence of the solution by Anzellotti [2] or Giaquinta & Giusti [6],
the present proof does not employ the uniform safe load condition. It is based on the assumption
of the absence of a suitably defined collapse mechanisms. The collapse mechanism belongs to
a generalized space BD�clΩ� of displacements of bounded deformation on the closure clΩ of
the body Ω. This generalized displacement can have a jump discontinuity on the boundary of the
body and the generalized strain is a measure on the closure of the body (instead of the standard
interpretation as a measure supported by the interior). The equilibriumsolution, however, belongs
to the classical space of displacements of bounded deformation BD�Ω�Ø
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1 Introduction

No–tension (masonry–like) materials [2, 6, 3, 5, 8] cannot support all stresses: only
negative semidefinite stresses are possible. Therefore, bodies made of no–tension
materials cannot support all loads, certain loads lead to the collapse of the body.
Therefore, the existence of the solution to the equilibrium equations can be proved
only under some restrictions on the loads. The existing proofs of the existence by
Anzellotti [2] and Giaquinta & Giusti [6] use a strong version of the safe load condition
which amounts to the assumption of the existence of a square integrable stress field
that balances the loads and is uniformly negative definite. However, the necessary
condition for the load in terms of stress is that the loads are balanced by a stress field
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that is negative semidefinite. Indeed, the stress corresponding to the assumed solution
is negative semidefinite and balances the loads.

The purpose of this note is to present a different condition, which avoids the
strong version of the safe load condition. Apparently, the present condition may be
less restrictive in certain situations. Namely, our proof of the existence employs the
assumptions (i) that the loads can be balanced by a continuous negative semidefinite
stress field on the closure of the body and (ii) that the loads do not admit a suitably
defined collapse mechanisms. The above discussion shows that (i) is close to neces-
sary. As for (ii), we mention that collapse mechanisms are used in the engineering
limit analysis to identify the loads that lead to the collapse of the body. Collapse
mechanism is used in cooperation with (i) and for no–tension bodies designates the
displacement that amounts to the absence of compression of the body and performs
null work on the loads. The choice of the function space for such displacements is
subject to debate [4, 9]. Here we employ a novel space BD�clΩ� of displacements
of bounded deformation on the closure clΩ of the body. This space is modeled on
a similarly constructed space of bounded variation on the closure of an open set by
Souček [10]. A general element of BD�clΩ� is a pair �uÙ ��where u is in the classical
space of displacements of bounded deformation BD�Ω� [11–12] and � is a Rn valued
measure on the boundary ãΩ of the body Ω ⊂ RnØHere u represents the displacement
field in the interior of the body while � represents the deformation of the boundary.
The map u, being an element of BD�Ω�Ù has a well defined trace �i on ãΩÙwe call this
trace the inner trace; analogously we call � the outer trace. The difference j Ú¨ �−�i
represents the jump in the deformation on the boundary. It turns out that each element�uÙ �� of BD�clΩ� has a well defined strain tensor ®�uÙ �� which is a tensor valued
measure on the closure of the body. The restriction of ®�uÙ �� to Ω is just the strain
tensor of u interpreted as an element of BD�Ω� while the restriction of ®�uÙ �� to ãΩ
is the measure of the form 1

2
�j � n + n � j� where n is the outer normal to ãΩØ

The internal energy of a no–tension body displays zero growth in the direction
of positive semidefinite strain; consequently the total energy functional (internal plus
the energy under the loads) is generally not coercive. The strong version of the safe
load condition in [2, 6] is used to obtain the coercivity (which is then due to the energy
of the loads). Analogously the above conditions (i) and (ii) are used here to prove
the coercivity of the total energy functional. The proof under (i) and (ii) involves a
limiting procedure (see the proof of Theorem 7.4, below) in which one can obtain a
concentration of deformation towards the boundary of the body; hence the measure
� on the boundary and the possibility of the strain on the boundary.

Under the coercivity, the proof of the existence of the solution goes along the
standard lines of the direct method of the calculus of variations: the equilibrium
solution belongs to a subset U�clΩ� of the space BD�clΩ� of finite internal energy
which is obtained as a weak limit of the minimizing sequence. The internal energy
is sequentially weakly lower semicontinuous by the results of [2, 6]; Condition (i)
is employed once more to prove the continuity of the energy of loads. Moreover, it
turns out that for the minimizer the inner and outer traces coincide, i.e., there is no
jump of the displacement on the boundary. Thus the solution is actually in BD�Ω�Ø

We consider only the Neumann problem for simplicity but note that also the
Dirichlet problem can be treated by similar methods.
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2 Notation

Throughout we use the conventions for vectors and second order tensors identical
with those in [7]. Thus Lin denotes the set of all second order tensors on RnÙ i.e.,
linear transformations fromRn into itself, Sym is the subspace of symmetric tensors,
Sym+ the set of all positive semidefinite elements of Sym; additionally, Sym− is the
set of all negative semidefinite elements of SymØ The scalar product of AÙ B X Lin is
defined by A ċB ¨ tr�AB T� and | ċ| denotes the associated euclidean norm onLinØWe
denote by 1 X Lin the unit tensor. If AÙ B X SymÙ we write A ² B if B − A X Sym+Ø

We now introduce some terminology and notation for measures with values in a
finite dimensional vector space. We refer to [1; Chapter 1] for further details.

Let V be a finite-dimensional vector space. By a V valued measure in Rn we
mean a map α from a system of all Borel sets in Rn to V which is countably additive,
i.e., if B1Ù B2Ù Ü is a disjoint family of Borel sets in Rn then

α� ðU
i¨1
Bi
 ¨ ð�

i¨1
α�Bi�Ø

Below we need the choices V ¨ Sym and V ¨ Rn. We call the Sym valued measures
tensor valued measures; these will be used to model the fracture part of the strain
over the body. We call the Rn valued measures vector valued measures. These will
be used to model the value of the displacement on the boundary of the body.

We shall also employ nonnegative measures φ defined on the system of all Borel
sets in Rn with values in �0Ù ð� of nonnegative numbers or ð.

If ∆ is a Borel subset of Rn and α a V valued measure or a nonnegative measure,
we say that α is supported by ∆ if α�A� ¨ 0 for any Borel set A such that AP ∆ ¨ óØ
We denote by M�∆ÙV � the set of all V valued measures supported by ∆ and if K ⊂ V
is any set then M�∆ÙK� denotes the set of all measures from M�∆ÙV � which take
the values from K Ø We emphasize that the measures from M�∆ÙV � or M�∆ÙK� are
defined on all Borel subsets of Rn but vanish outside ∆Ø

If αk is a sequence in M�∆ÙV � and α X M�∆ÙV �Ùwe say that αk weak  converges
to α and write αk u α if �∆ β ċ dαk r �∆ β ċ dα for each continuous function β Ú ∆r V Ø

We denote by Ln the Lebesgue measure inRn [1; Definition 1.52] and we denote
by Hn−1 the n − 1-dimensional Hausdorff measure in Rn [1; Section 2.8]. If φ is a
nonnegative measure or a V valued measure, we denote by φ A the restriction of φ
to a Borel set A ⊂ Rn defined by

φ A�B� ¨ φ�AP B�
for any Borel subset B of RnØ Thus if S is an n − 1 dimensional surface in Rn then
Hn−1 S is the area measure on SØ

If φ is a nonnegative measure, we denote by fφ the product of the measure φ by
a φ integrable V valued function f on RnÛ one has

�fφ��A� ¨ �
A
f dφ
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for any Borel subset A of RnØ
The polar decomposition of measures says that if α X M�∆ÙV �Ù there exists a

pair �rÙ |α|� consisting of a Borel function r Ú ∆ r V and of a nonnegative measure
|α| on ∆ such that

α ¨ r|α|
and

|r�x�| ¨ 1 for |α| a.e. x X ∆Ø
The measure |α| is unique and the function r is unique up to a change on a |α| null
set. The measure |α| is called the total variation measure of αÙ and r the amplitude.
We denote byM�α� the mass of αÙ defined byM�α� ¨ |α|�Rn�Ø

If Ω is an open subset ofRn then C 0�clΩÙV � denotes the space of all continuous
V valued functions on the closure clΩ of Ω, C 1�clΩÙV � the space of all class 1 V
valued functions on Ω such that both the function and its gradient have continuous
extensions to clΩØFinally,C 10�ΩÙV � denotes the space of all class 1V valued functions
on Rn such that their supports are compact and contained in ΩØ

Throughout the paper c denotes a general constant that changes from line to line
and that is independent of the local variables in the surrounding text.

3 No–tension materials

We here outline briefly the constitutive theory of no–tension materials. The response
of a no–tension material is completely determined by the tensor of elastic constants
CØ Here and below C Ú Symr Sym is a given linear transformation, such that

E ċ C E ± 0 for all E X SymÙ E © 0Ù
E1 ċ C E2 ¨ E2 ċ C E1 for all E1Ù E2 X SymØ





(3.1)

We introduce the energetic scalar product 〈 ċÙ ċ〉 and the energetic norm ‖ ċ ‖ on Sym
by

〈AÙ B〉 ¨ A ċ C BÙ ‖A‖ ¨ √
〈AÙ A〉

for each AÙ B X SymØ
Proposition 3.1. If E X SymÙ there exists a unique triplet �TÙ EeÙ Ef� of elements
of Sym such that

E ¨ Ee + EfÙ
T ¨ C EeÙ

T X Sym−Ù Ef X Sym+Ù
T ċ Ef ¨ 0Ø





(3.2)

Equivalently, the triplet �TÙ EeÙ Ef� is characterized by (3.2)1Ù2 and

Ee is the orthogonal projection of E onto C −1 Sym− with respect to 〈 ċÙ ċ〉,
Ef is the orthogonal projection of E onto Sym+ with respect to 〈 ċÙ ċ〉.





(3.3)

The reader is referred to [2, 6] or [3] for proofs. We define the stored energy � Ú
Symr R by
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��E� ¨ 1
2
h�E� ċ E ª 1

2
‖ΠE‖2

for any E X Sym where Π Ú Sym r C −1 Sym− is the orthogonal projection onto
C −1 Sym− with respect to 〈 ċÙ ċ〉; Ee and Ef are called the elastic and fracture parts
of the deformation EØ
4 Projections of measures

Let ∆ be a Borel subset of RnØ Later in this work, ∆ will be the closure of and open
set with class 1 boundary. The following two results are proved by Anzellotti [2] in
the case ∆ is an open set, but the relevant proofs hold verbatim if ∆ is a Borel set.

Theorem 4.1 (Cf. Anzellotti [2; Definition immediately preceding Lemma 2.2;
Lemma 2.6]). Let K be a closed convex cone in an finite dimensional space V
with inner product 〈 ċÙ ċ〉Ø Denote by K þ the conjugate cone,

K þ ¨  A X Sym Ú 〈AÙ B〉 ² 0 for all B X K(Ø
If α X M�∆ÙV � then there exists a unique pair α1Ù α2 of measures such that α1 X
M�∆ÙK�Ù α2 X M�∆ÙK þ�Ù

α ¨ α1 + α2
and for any pair β1Ù β2 of measures such that β1 X M�∆ÙK�Ù β2 X M�∆ÙK þ�Ù and

α ¨ β1 + β2Ù
we have

|β1| ³ |α1|Ù |β2| ³ |α2|
where | ċ | denotes the total variation measure with respect to the norm ‖ ċ ‖ derived
from 〈 ċÙ ċ〉Ø
The measure PKα Ú¨ α1 (respectively, P

K þα Ú¨ α2) is called the projection of α onto

K (respectively, K þ).

Remark 4.2 (Cf. Anzellotti [2; Lemma 2.5]). Let K be a closed convex cone in an
inner product space V . Then the set M�∆ÙK� is weak  sequentially closed in the
sense that if αk X M�∆ÙK� and αk u α for some α X M�∆ÙV � then α X M�∆ÙK�Ø
5 The space BD�cl	�
Throughout the rest of the paper, let Ω be a bounded open connected subset of Rn

with class 1 boundary. We denote by BD�clΩ� the set of all pairs �uÙ �� where
u X L 1�ΩÙRn� and � X M�ãΩÙRn� such that there exists a measure ®�uÙ �� X
M�clΩÙ Sym� satisfying

�
Ω
divT ċ u dLn + �

clΩ
T ċ d®�uÙ �� ¨ �

ãΩ
Tn ċ d� (5.1)

for every T X C 1�clΩÙ Sym�Ø Here n is the (continuous) outer normal to ΩØ We call
� the outer trace of �uÙ ��. It will be shown that the measure ®�uÙ �� is uniquely
determined by �uÙ ��Ø We call the elements of BD�clΩ� generalized displacements.
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Let �uÙ �� X BD�clΩ�. By taking T X C 10�ΩÙ Sym� in (5.1) we learn that u X
BD�Ω�Ù and ®�uÙ �� Ω is the small strain tensor corresponding to uØ Here BD�Ω�
is the classical space of displacements of bounded deformation [11–12]. We thus see
that ®�uÙ �� Ω is uniquely determined by uØ We denote the trace of u in the sense
of BD�Ω� by Ti�uÙ �� X L 1�ãΩÙRn� so that we have

�
Ω
divT ċ u dLn + �

Ω
T ċ d®�uÙ �� ¨ �

ãΩ
Tn ċ Ti�uÙ �� dHn−1 (5.2)

for every T X C 1�clΩÙ Sym�Ø Subtracting (5.2) from (5.1) we obtain

�
ãΩ

T ċ d®�uÙ �� ¨ �
ãΩ

Tn ċ d�� − Ti�uÙ ��Hn−1�
for every T X C 1�clΩÙ Sym�. The arbitrariness of T|ãΩ then implies that

®�uÙ �� ãΩ ¨ �� − Ti�uÙ ��Hn−1� � nØ (5.3)

Here a�b ¨ 1
2
�a�b+b�a�Ø Combining the uniqueness of ®�uÙ �� Ω with (5.3),

we see that ®�uÙ �� is uniquely determined.
We introduce a norm | ċ | on BD�clΩ� by setting

|�uÙ ��| ¨ |u|L 1�ΩÙRn� +M�®�uÙ ���Ø
It is clear that the just defined | ċ | is a seminorm. Let us show that it is a norm,
i.e., |�uÙ ��| ¨ 0 implies u ¨ 0Ù � ¨ 0Ø Thus let |�uÙ ��| ¨ 0, so that u ¨ 0 and
®�uÙ �� ¨ 0Ø Then the left hand side of (5.1) vanishes and hence also the right hand
side vanishes which by the arbitrariness of T gives � ¨ 0Ø Thus �uÙ �� is the null
element of BD�clΩ�Ø
Remark 5.1. If � X M�ãΩÙRn� then �0Ù �� X BD�clΩ� with ®�0Ù �� ¨ � � n as
one easily finds. Considering �uÙ �� + �0Ù �� with �uÙ �� X BD�clΩ� fixed and �
varying over M�ãΩÙRn�Ù we see that the two components u and � of any element of
BD�clΩ� are independent, with u restricted to belong to BD�Ω�Ø Thus

BD�clΩ� ¨ BD�Ω� � M�ãΩ�Ø
Proposition 5.2. There exists a c X R such that

M��� ² c|�uÙ ��| (5.4)

for every �uÙ �� X BD�clΩ�Ø
Proof (Cf. Souček [10; Proof of Theorem 2(i)].) For every x X ãΩ there exists an
orthogonal frame such that in this frame, n�x� ¨ �1ÙÜ Ù 1�/√n. Then there exists
an open ball B�xÙ rx� such that n�y� ¨ �n1�y�ÙÜ Ù nn�y�� with ni�y� ³ 1/�2√n�
for every y X ãΩ P B�xÙ rx�Ø We can then find a finite number of such balls Bk Ú¨
B�xkÙ rxk

�Ù k ¨ 1ÙÜ ÙK Ù which covers ãΩØ Let �k be a partition of unity on ãΩ
subordinated to the covering BkÙ k ¨ 1ÙÜ ÙK . Then

M��� ² K�
k¨1
M��k� (5.5)

where �k ¨ �k�Ø Further,
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M��k� ² n�
i¨1
M�σ ki � (5.6)

where �k ¨ �σ k1 ÙÜ Ù σ kn �Ø Let i and k be fixed and let

C ¨  η X C 1�ãΩP Bk�Ù |η|C 0�ãΩPBk� ² 1(Ø
Next let us extend, without changing notation, an arbitraryη X C as a constant on lines
parallel to the xi coordinate axis (in the new coordinates). Let η be such an extended
function. We now apply (5.1) to T such that Tii ¨ η�k and all other components
of T vanish (no summation convention throughout the proof). We obtain, writing
� ¨ �τ1ÙÜ Ù τn�, and denoting by Eij the components of ®�uÙ ��Ù

�
ãΩPBk

ηni dσ
k
i ¨ �

ãΩPBk

ηni�
k dτi

¨ �
ΩPBk

�η�k�Ùiui dLn + �
clΩPcl Bk

η�k dEii

¨ �
ΩPBk

η�kÙiui dL
n + �
cl ΩPcl Bk

η�k dEii

Since ni ³ 1/�2√n�Ù we have

|σ ki | ¨ sup "� η dσ ki Ú η X C*
² c sup " �

ΩPBk

η�kÙiui dL
n Ú η X C* + c sup" �

cl ΩPcl Bk

η�k dEii Ú η X C*
² c �
ΩPBk

|ui| dLn + cM�Eii�
² |�uÙ ��|Ø

Summing over i and k and using (5.5) and (5.6) we obtain (5.4). è
6 No–tension bodies

We now apply the results of Section 4 to bodies made of no–tension materials. We
put

V ¨ SymÙ
〈AÙ B〉 ¨ C A ċ B for every AÙ B X SymÙ

K ¨ C −1 Sym−Ù
K þ ¨ Sym+Ø





(6.1)

Furthermore, we denote by PK Ú M�clΩÙ Sym� r M�clΩÙK� and P
K þ Ú

M�clΩÙ Sym� r M�clΩÙK þ� the orthogonal projections of measures onto the
cones M�clΩÙK� and M�clΩÙK þ� with respect to the scalar product 〈 ċÙ ċ〉.

We denote by U�clΩ� the set of all �uÙ �� X BD�clΩ� such that PK®�uÙ �� is
absolutely continuous with respect to Ln and the density, still denoted by PK®�uÙ ��Ù
satisfies

E�uÙ �� Ú¨ 1
2 �
Ω
‖PK®�uÙ ��‖2 dLn ° ð

where ‖ ċ ‖ is the norm corresponding to the scalar product 〈 ċÙ ċ〉Ø We call E�uÙ ��
the internal energy of the displacement �uÙ ��Ø Furthermore in view of (3.3), we call
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PK®�uÙ �� the elastic strain and P
K þ®�uÙ �� the fracture strain corresponding to

the generalized displacement �uÙ ��Ø
Theorem 6.1. Let �ukÙ �k� X U�clΩ� and let u X Ln/�n−1��ΩÙRn�Ù F X
M�clΩÙ Sym� and � X M�ãΩÙRn� be such that

uk u u in Ln/�n−1��ΩÙRn�,

uk r u in L 1�ΩÙRn�,

Y�ukÙ �k� u F in M�clΩÙ Sym�Ù
�k u � in M�ãΩÙRn�Ù





(6.2)

and
E�ukÙ �k� ² c (6.3)

for all k and some c X RØ Then �uÙ �� X U�clΩ�, F ¨ Y�uÙ ��Ù and

lim inf
krð

E�ukÙ �k� ³ E�uÙ ��Ø (6.4)

Proof We have

�
Ω
divT ċ uk dL

n + �
clΩ

T ċ d®�ukÙ �k� ¨ �
ãΩ

Tn ċ d�k

for every T X C 1�clΩÙ Sym� and every kÛ the limit using (6.2) provides

�
Ω
divT ċ u dLn + �

cl Ω
T ċ dF ¨ �

ãΩ
Tn ċ d�

which shows that �uÙ �� X BD�clΩ� and F ¨ ®�uÙ ��Ø Furthermore, since (6.3)
holds, [2; Theorem 3.3] gives (6.4) and completes the proof. è
7 Collapse mechanisms and the coercivity of energy

We consider loads which consist of the body force b X Ln�ΩÙRn� and the surface
traction s X C 0�ãΩÙRn�Ø The energy of a displacement �uÙ �� X BD�clΩ� under the
loads is given by

W�uÙ �� ¨ �
Ω

b ċ u dLn + �
ãΩ

s ċ d�Ø
If �uÙ �� X U�clΩ�Ù we define the total energy F�uÙ �� by

F�uÙ �� ¨ E�uÙ �� − W�uÙ ��Ø
Definition 7.1. We say that �uÙ �� X BD�clΩ� is a collapse mechanism if ®�uÙ �� X
M�clΩÙ Sym+�, W�uÙ �� ¨ 0Ù and ®�uÙ �� © 0Ø
Remark 7.2. Let us say that the loads satisfy the uniform safe load condition if there
exists a map T X C 0�clΩÙ Sym� such that

�
clΩ

T ċ d®�uÙ �� ¨ W�uÙ ��
for all �uÙ �� X BD�clΩ� and
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−T�x� ċ A ³ ε0|A|

for all A X Sym+Ù all x X clΩ, and some ε0 ± 0Ø Under the uniform safe load
condition there is no collapse mechanism. Indeed, assuming that �uÙ �� X BD�clΩ�
is a collapse mechanism we obtain

0 ¨ −W�uÙ �� ¨ − �
cl Ω

T ċ d®�uÙ �� ³ ε0M�®�uÙ ���
and hence ®�uÙ �� ¨ 0 contrary to the assumption on �uÙ ��Ø Under the uniform safe
load condition one can actually modify the proofs in [2, 6] to prove that the total
energy is coercive in the sense that

F�uÙ �� ³ c1�E�uÙ �� +M�®�uÙ ���	 − c2
for all �uÙ �� X BD�clΩ� some c1 ± 0 and some c2 X RØ (We here note that the proofs
in [2, 6] allow for a slightly more general condition that T is actually only square
integrable, defined almost everywhere with respect to LnØ) The goal of this paper is
to relax the uniform safe load condition and to prove (a weaker, but still sufficient,
version of) the coercivity of the energy functional under the weaker assumption of
the absence of collapse mechanism.

Remark 7.3. (i) We have
M�G� ² tr�G�clΩ�� (7.1)

for every G X M�clΩÙ Sym+�Ù and (ii) G w tr�G�clΩ�� is a continuous linear
functional on M�clΩÙ Sym� (with respect to weak  convergence).

Proof (i): Let G X M�clΩÙ Sym+� and let A be a Borel set. Denote by λi, i ¨ 1ÙÜ Ù nÙ
the eigenvalues of the tensor G�A� respecting the multiplicities. Then

‖G�A�‖ ¨ � n�
i¨1
λ2i � 1/2 ² n�

i¨1
|λi| ¨ n�

i¨1
λi ¨ tr�G�A��

Consequently,

M�G� ¨ sup " ð�
k¨1

‖G�Ai�‖ Ú ðU
k¨1
Ai ¨ clΩÙ Ak P Al ¨ ó if k © l*

² sup " ð�
k¨1
tr�G�Ak�� Ú ðU

k¨1
Ai ¨ clΩÙ Ak P Al ¨ ó if k © l*

¨ tr�G�clΩ��
i.e., we have (7.1). (ii): This follows immediately by noting that tr�G�clΩ�� ¨�clΩ 1 ċ dG where 1 stands for the function on clΩ that is identically equal to the unit
tensor 1Ø è
Theorem 7.4 (Coercivity). Assume that the following two conditions hold:
(i) the loads �bÙ s� have an admissible equilibrating stress field in the sense that

there exists a T X C�clΩÙ Sym−� such that

�
cl Ω

T ċ d®�uÙ �� ¨ W�uÙ �� (7.2)

for every �uÙ �� X BD�clΩ�Û
(ii) the loads do not admit a collapse mechanism.



10

Then the total energy is coercive in the sense that for every sequence �ukÙ �k� X
U�clΩ� such that the sequence F�ukÙ �k� is bounded from above we have that the
sequencesM�|®�ukÙ �k�|	 and E�ukÙ �k� are bounded.

Proof Consider the sequence �ukÙ �k� X U�clΩ� such that the sequence F�ukÙ �k�
is bounded. We have

F�ukÙ �k� ¨ 12 �
Ω
‖Eek‖2 dLn − �

Ω
T ċ Eek dL

n − �
clΩ

T ċ dEfk ² c ° ð (7.3)

where
Eek Ú¨ PK®�ukÙ �k�Ù Efk Ú¨ PK þ®�ukÙ �k�Ø

We note that the third integral in (7.3) is nonpositive since T ² 0 and Efk ³ 0Ø Thus
we have

1
2 �
Ω
‖Eek‖2 dLn − �

Ω
T ċ Eek dL

n ² c
and using − �

Ω
T ċ Eek dL

n ³ −|T|L2�ΩÙSym���
Ω
‖Eek‖2 dLn
 1/2

we obtain
1
2 �
Ω
‖Eek‖2 dLn − |T|L2�ΩÙSym���

Ω
‖Eek‖2 dLn
 1/2 ² cØ

This implies that the sequence E�ukÙ �k� ¨ 12 �Ω ‖Eek‖2 dLn is bounded.
To prove that the sequence |®�ukÙ �k�| is bounded, assume on the contrary that

the massM�|®�ukÙ �k�|	 of the sequence |®�ukÙ �k�| satisfies

M�|®�ukÙ �k�|	 r ðØ (7.4)

We have

M�|®�ukÙ �k�|	 ²M�|Eek |	 +M�|Efk |	
¨ �
Ω
‖Eek‖ dLn +M�|Efk |	

² Ln�Ω� 1/2��
Ω
‖Eek‖2 dLn
 1/2 +M�|Efk |	Ø

The boundedness of the sequence �Ω ‖Eek‖2 dLn proved above and (7.4) then imply

M�|Efk|	 r ðØ
The sequence Fk Ú¨ �Eek + Efk�/M�|Efk |	 is bounded in mass, i.e., sup M�Fk�Ù k ¨
1ÙÜ( ° ð. Indeed, M�Eek�/M�|Efk |	 r 0 while Efk/M�|Efk|	 has mass equal to 1Ø
The sequence Fk is the sequence of strains of the sequence of displacements �vkÙ �k�
where vk ¨ uk/M�|Efk |	 and �k ¨ �k/M�|Efk|	.

Let R be any linear operator from BD�Ω� to the subspace of rigid body displace-
ments such that Rv ¨ v for any rigid body displacement [12; Remark 1.1, Chapter
II, Section 1]. By passing from vk to vk − Rvk we can assume that Rvk ¨ 0 without
affecting the energy and the strain tensor. By the Sobolev inequality for BD�Ω� [12;
Remark 2.5, Chapter II, Section 2] we have

|vk|Ln/�n−1��ΩÙRn� ² cM�Fk� r c
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and thus the sequences

|vk|Ln/�n−1��ΩÙRn� and |vk|L 1�ΩÙRn�
are bounded. As also M�Fk� is bounded, it follows from Proposition 5.2 that also
the sequence M��k� is bounded. Hence we can find a subsequence, still denoted
by vk, and an element v X Ln/�n−1��ΩÙRn� and measures F X M�clΩÙ Sym� and
� X M�ãΩÙRn� such that

vk u v in Ln/�n−1��ΩÙRn�,

vk r v in L 1�ΩÙRn�,

Fk u F in M�clΩÙ Sym�Ù
�k u � in M�ãΩÙRn�Ø





(7.5)

By Theorem 6.1, �vÙ �� X BD�clΩ� and ®�vÙ �� ¨ FØ
The rest of the proof shows that �vÙ �� is a collapse mechanism.
Dividing (7.3) byM�|Efk |	 we obtain

1
2 �
Ω
‖F ek‖2 dLn − �

cl Ω
T ċ dFk ² c/M�|Efk |	

where we have put F ek ¨ PKFkÙF fk ¨ P
K þFkØThe limit using F ek r 0 inL2�ΩÙ Sym�

gives
W�vÙ �� ª �

clΩ
T ċ dF ¨ 0Ø (7.6)

Furthermore, by the above, F ekL
n u 0 in M�clΩÙ Sym� and hence

F fk ¨ Fk − F ekL
n u F in M�clΩÙ Sym�. (7.7)

Since F fk X M�clΩÙ Sym+�Ù we also have

F ª ®�vÙ �� X M�clΩÙ Sym+� (7.8)

by Remark 4.2. In view of (7.6) and (7.8), to prove that �vÙ �� is a collapse mechanism,
it now remains to be showed that ®�vÙ �� © 0Ø But (7.1) gives

1 ¨ M�F fk� ² tr�F fk �clΩ�� r tr�F�clΩ��
by (7.7). Thus trF ³ 1 and hence F ª ®�vÙ �� © 0Ø è
Remark 7.5. Assume that the loads satisfy Conditions (i) and (ii) of Theorem 7.4.
Then s ċ n ° 0 everywhere on ãΩØ
Proof Let x X ãΩ be fixed and consider a displacement �0Ù aδx� X BD�clΩ� where
a X Rn is arbitrary and δx is the Dirac measure supported by xØ Then ®�0Ù aδx� ¨
a � n�x�δx and applying (7.2) to this generalized displacement we obtain

T�x�n�x� ċ a ¨ s�x� ċ aÛ
hence T�x�n�x� ¨ s�x� by the arbitrariness of aØ Consequently, s�x� ċ n�x� ¨
T�x�n�x� ċ n�x� ² 0 i.e., s�x� ċ n�x� ² 0Ø Furthermore, if s�x� ċ n�x� ¨ 0 then
the generalized displacement �0Ù n�x�δx� has positive definite strain tensor, viz.,
n�x��n�x�δx and W�0Ù n�x�δ�x�� ¨ 0ØThus �0Ù n�x�δx� is a collapse mechanism,
a contradiction. Hence s�x� ċ n�x� ° 0Ø è
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8 The existence of solution to the equilibrium problem

We now state the main result of this note.

Theorem 8.1. Assume that Conditions (i) and (ii) of Theorem 7.4 hold. Then there
exists a �uÙ �� X U�clΩ� which minimizes the total energy F on U�clΩ�Ø For this
solution, the inner and outer traces coincide, � ¨ Ti�uÙ ��Hn−1Ø
Proof Let

I Ú¨ inf  F�uÙ �� Ú �uÙ �� X U�clΩ�(
we have I X �−ðÙð�Ø Let �ukÙ �k� be a minimizing sequence, i.e., a sequence such
that

F�ukÙ �k� r I Ø
Let R be the linear transformation as in the proof of Theorem 7.4. As in that
proof, we can assume that Ruk ¨ 0 for all kØ By Theorem 7.4, the sequences
|®��ukÙ �k�| and E�ukÙ �k� are bounded. The boundedness of |®�ukÙ �k�| and Propo-
sition 5.2 imply that also the sequence M�σk� is bounded and by the Sobolev in-
equality also |uk|Ln/�n−1��ΩÙRn� is bounded. Then there exist u X Ln/�n−1��ΩÙRn�Ù
F X M�clΩÙ Sym� and � X M�ãΩÙRn� such that (6.2) hold for some subsequence,
still denoted �ukÙ �k�Ø Hence by Theorem 6.1 we have �uÙ �� X U�clΩ� and (6.4).
By the assumptions on the loads we have

W�ukÙ �k� r W�uÙ ��
and thus

I ¨ lim inf
krð

F�ukÙ �k� ³ F�uÙ �� ³ I Ø
Thus �uÙ �� X U�clΩ� which minimizes the total energy F on U�clΩ�Ø

To prove the second part of the assertion, assume that � © Ti�uÙ ��Hn−1 and
consider the generalized displacement �uÙTi�uÙ ��Hn−1�. Prove that

F�uÙTi�uÙ ��Hn−1� ° F�uÙ ��Ø
Indeed, since the projection of the measure ®�uÙ �� onto C −1 Sym− is absolutely
continuous with respect to the measure LnÙ we see that the singular measure
®�uÙ �� ãΩ ¨ �� − Ti�uÙ ��Hn−1� � n takes its values from Sym+Ø This oc-
curs if and only if � − Ti�uÙ ��Hn−1 ¨ φn where φ is a scalar positive valued finite
measure. Moreover, φ is not identically equal to 0 since the measure ®�uÙ �� ãΩ
is different from 0Ø Then

W�uÙ �� − W�uÙTi�uÙ ��Hn−1� ¨ �
ãΩ

s ċ n dφ ° 0
because s ċ n ° 0 everywhere on ãΩÙ see Remark 7.5. As clearly

E�uÙ �� ¨ E�uÙTi�uÙ ��Hn−1�Ù
we have

F�uÙ �� ± F�uÙTi�uÙ ��Hn−1�Ø
But this is a contradiction with �uÙ �� being a minimizer of the total energy. è
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