Seminář odd. 26 Tenkých vrstev a nanostruktur

Fyzikální ústav AVČR, Cukrovarnická 10, Praha 6

datum: 14. 11. 2014 pátek

čas: 14:00

místnost: knihovna, budova A, 1.p.

TÉMA

Growth of small organic molecules on graphene

Christian Teichert

Institute of Physics, Montanuniversität Leoben, Austria

Crystalline films of small organic semiconductors offer attractive potential for optoelectronic applications on flexible substrates. However, these applications require a transparent and flexible electrode material; and here the novel material graphene (Gr) comes into play. Since small conjugated molecules like the rod-like oligophenylene molecule para-hexaphenyl (6P) fits well to the hexagonal structure of graphene, growth of 6P on Gr can be expected in a lying configuration.

As demonstrated by in situ by low-energy electron microscopy, 6P grows at 240 K indeed in a layer-by-layer mode with lying molecular orientation on Ir(111) supported graphene [1]. Islands nucleate at Gr wrinkles [2]. At higher temperatures, needle-like 6P crystallites-also composed of lying molecules are observed [3]. Also on exfoliated, wrinkle-free graphene, such needles develop with discrete orientations defined by the Gr lattice as detected by atomic-force microscopy (AFM) [4, 5]. Needles are never observed on contaminations or on the silicon oxide substrate. There, exclusively islands and terraced mounds [6] composed of upright standing molecules are observed. Since these structures are easily detected by AFM, growth of 6P can be used to sense the cleanliness of a variety of graphene substrates.

- [1] G. Hlawacek, et al., Nano Lett. 11 (2011) 333.
- [2] G. Hlawacek, et al., IBM J. Res. Devel. 55 (2011) 15.
- [3] F. Khokar, et al., Surf. Sci. 606 (2012) 475.
- [4] M. Kratzer, et al., JVSTB 31 (2013) 04D114.
- [5] M. Kratzer, et al., e-J. Surf. Sci. Nanotechn. 12 (2014) 015303. [6] G. Hlawacek, et al., Science 321 (2008) 108.

odborný garant: RNDr. Antonín Fejfar, CSc.