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Introduction
This work is considered with the numerical solution of inviscid compressible fluid flow through
a channel with moving walls. The governing Euler equations written in the ALE (Arbitrary
Lagrangian-Eulerian) form are discretized by the discontinuous Galerkin method. We apply a
semiimplicit linearization with respect to time. Currently, the movement of the wall must be
prescribed by a given formula.

Formulation of the problem
We consider the flow in a bounded 2D domainΩt depending on timet with boundary∂Ωt =
ΓI ∪ ΓO ∪ ΓWt , whereΓI andΓO represent the inlet and outlet andΓWt represents moving
impermeable walls.

The dependence of the domain on time is taken into account with the aid of a regular ALE
mappingAt : Ω0 → Ωt, i.e. X 7→ x = x(X, t). Further, we define the ALE velocity:̃z(X, t) =
∂
∂t

x(X, t) = ∂
∂t
At(X), z(x, t) = z̃(A−1

t (x), t), t ∈ [0, T ], x ∈ Ωt and the ALE derivative of a

functionf = f(x, t): DA

Dt
f(x, t) = ∂f̃

∂t
(X, t)|X=A−1

t (x), wheref̃(X, t) = f(At(X), t), X ∈ Ω0.
It is possible to show that

DAf

Dt
=

∂f

∂t
+ z · ∇f =

∂f

∂t
+ div(zf)− fdivz. (1)

This leads to two different formulations of the Euler equations in ALE form:

1)
DAw

Dt
+

2∑
s=1

∂f s(w)

∂xs

− z · ∇w = 0,

2)
DAw

Dt
+

2∑
s=1

∂gs(w)

∂xs

+ wdivz = 0

(2)

wheref s, s = 1, 2, are theinviscid fluxesand

w = (ρ, ρv1, ρv2, e)
T ∈ R4,

f i(w) = (fi1(w), . . . , fi4(w))T = (ρvi, ρv1vi + δ1ip, ρv2vi + δ2ip, (e + p)vi)
T

(3)

andgs, s = 1, 2, are modified inviscid fluxes

gs(w) := f s(w)− zsw. (4)
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Figure 1: Pressure isolines.

This system is equiped with standard inlet and outlet boundary conditions. On the moving wall
we impose the impermeability conditionv · n = z · n, wheren is the unit outer normal toΓWt .
The discretization of equations 1) and 2) in (2) is carried out by the discontinuous Galerkin finite
element method, which uses piecewise polynomial function spaces without the assumption of
interelement continuity, e.g. [2].

Discretization in time is carried out using the semi-implicit linearization of the backward
Euler method used in [1]. Additional terms which are a result of the ALE formulation of (2) do
not require special treatment, since they are linear with respect to the unknown state vectorw
and therefore can be taken implicitly.

Now we describe the construction of the ALE mapping. We assume that the inlet and outlet
are straight segments given by the conditionsX1 = −2 andX1 = 2, respectively. In our
first results we assume that the upper wall is given by the conditionX2 = 1 and that the ALE
mapping is equal to the identity in the sets[−2,−1] × [0, 1] and[1, 2] × [0, 1]. Otherwise we
construct the ALE mapping so that lower wall is represented at timet by the graph of the smooth
function.

sin(0.5 ∗ t) ∗ (cos(π ∗X1) + 1)/4.

This movement is interpolated to the rest of the domain.
The computed solution is periodic and although the flow is inviscid, a vortex forms after the

lower wall starts to descend. This vortex is then convected out of the domain through the outlet.
Figure 1 shows the pressure isolines at three different time instants: before the vortex is formed,
after the formation and the vortex convection.
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