MATHEMATICA BOHEMICA, Vol. 122, No. 3, pp. 295-299, 1997

Normal spaces and the Lusin-Menchoff property

Pavel Pyrih

Pavel Pyrih, Department of Mathematical Analysis, Charles University, Sokolovska 83, 186 00 Prague 8, Czech Republic, e-mail: pyrih@karlin.mff.cuni.cz

Abstract: We study the relation between the Lusin-Menchoff property and the $F_\sigma$-"semiseparation" property of a fine topology in normal spaces. Three examples of normal topological spaces having the $F_\sigma$-"semiseparation" property without the Lusin-Menchoff property are given. A positive result is obtained in the countable compact space.

Keywords: fine topology, finely separated sets, Lusin-Menchoff property, normal space

Classification (MSC 1991): 54A10, 26A03, 31C40


Full text available as PDF (smallest), as compressed PostScript (.ps.gz) or as raw PostScript (.ps).

Access to the full text of journal articles on this site is restricted to the subscribers of Myris Trade. To activate your access, please contact Myris Trade at myris@myris.cz.


[Previous Article] [Next Article] [Contents of This Number] [Contents of Mathematica Bohemica]
[Full text of the older issues of Mathematica Bohemica at EMIS]