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Abstract. We investigate the regularity of the weak solution to elliptic transmission prob-
lems that involve two layered anisotropic materials separated by a boundary intersecting
interface. Under a pair of compatibility conditions for the angle of the two surfaces and the
boundary data at the contact line, we prove the existence of up to the boundary square-
integrable second derivatives, and the global Lipschitz continuity of the solution. If only the
weakest, necessary condition is satisfied, we show that the second weak derivatives remain
integrable to a certain power less than two.
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1. Introduction

The paper is concerned with the Lipschitz continuity and the regularity of the

second derivatives of weak solutions to a class of elliptic equations with transmis-

sion conditions that occurs in manifold areas of mathematical physics. We consider

a bounded domain Ω ⊂ R
3 partitioned by a 2-dimensional interface S into two dis-

joint subdomains Ωi (i = 1, 2) that represent two materials, or two different phases

of the same material. The interface S is a free surface,1 whose intersection with the

outer boundary Γ of the domain Ω is a closed curve. We study the regularity of the

This research is supported by DFG Research Center ‘Mathematics for Key Technologies’
Matheon in Berlin.

1 By free surface we mean a bounded, connected surface with boundary as opposed to
a closed surface. This is not to be understood in the context of free boundary problems,
the surface S being given troughout the paper.
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function u : Ω → R that solves the problem

− div(κ∇u) = f in Ω \ S,(1.1)

[u]S = 0, [−κ∇u · nS ]S = 0 on S,(1.2)

in connection with one of the following boundary conditions on the surface Γ := ∂Ω:

−κ∇u · nΓ = Q on Γ [= Problem (PN )],(1.3)

u = ue on Γ [= Problem (PD)].(1.4)

In the equation (1.1), the function f is a given source, and the diffusion coefficient

κ is assumed to be phase-dependent, that means

(1.5) κ = κi(x) if x ∈ Ωi,

with mappings κi : Ωi → R
3×3 (i = 1, 2). The conditions (1.2) are the transmission

conditions. The symbol [·]S denotes the jump of a quantity across S, and nS is

the unit normal to the surface S that points into Ω2. In the boundary condition

(1.3), the function Q is given, and nΓ denotes the outward unit normal. In (1.4), the

function ue is given.

We address the problem (1.1), (1.2), with either (1.3) or (1.4) as (P ). The problem

(P ) is a second order elliptic transmission problem. For transmission conditions near

surfaces of class C2 that do not intersect the boundary of the domain, it has been

known for a relatively long time that the solution is globally in W 2,2 up to the

interface ([15], [8] and Chapter 3, paragraph 16 of [6]). Lipschitz continuity, for the

case that the jumps of the coefficients occur at not intersecting surfaces of class C2,

was proved in the book [6] Chapter 3, paragraph 16, and for surfaces of class W 2,q,

q > 3 in the paper [7]. These results were recently generalized in [9] for interfaces of

class C1,α (α > 0).

For the case under study of one single smooth interface intersecting the outer

boundary in three-dimensions, one can expect the integrability of ∇u to a certain

power q0 > 3, as shown in [4]. In the latest paper, the boundary Γ is polyhedral, and

mixed conditions thereon are also allowed. But it seems that sufficient conditions

for the existence of square-integrable (or p-integrable) second derivatives, and for

the boundedness of ∇u, have not yet been investigated. In this paper, we present

a set of complex compatibility conditions (the conditions (2.19), (2.20), (2.22) be-

low) involving the geometry, the anisotropic diffusion coefficient κ, and the type of

the boundary condition on Γ, that ensures the Lipschitz continuity and the W 2,2

regularity of the solution to (P ) in each subdomain. To our best knowledge, these
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compatibility conditions have not yet been known. We also prove a weaker regularity

result for the second derivatives if only (2.20), (2.22) are satisfied.

It should be mentioned that second order elliptic transmission problems are a field

of intense research. The main line of investigation in the last years concerns trans-

mission conditions at piecewise smooth (or polyhedral) interfaces, in connection with

intersection of the outer boundary of Lipschitz class. This is obviously a much more

general situation than the one we consider. The methods of edge and corner asymp-

totic are here well suited (see among others [13] and references), or more generally

a regularity theory in weighted spaces (see [1] for a recent study with references).

In the language of standard Sobolev spaces, the W s,2 regularity ([12], Section 5 of

[14], [13]) for s < 3/2 is at most expected for similar problems without additional

compatibility conditions.

The structure of the paper is as follows. In Section 2, we introduce the basic

notation, and then formulate the compatibility condition and the main theorem. In

Subsection 2.3, the compatibility conditions are explicitly interpreted for the simpler

case of isotropic diffusion. In Section 3, we design a regularization procedure to

approximate the problem (P ) by problems with continuous coefficients. The most

fundamental section is Section 4, in which we derive appropriate integral relations

and boundary conditions satisfied by the gradient of the approximate solutions. With

these results at hand, we can derive in Sections 5, 6 and 7 the higher-order estimates

from well-known arguments of the PDE theory. In Section 8, we give some conclu-

sions of our investigation.

2. Notation and statement of the main result

2.1. Notation. Throughout the paper, Ω denotes a bounded domain with bound-

ary Γ of class C2. There are a free hypersurface S ⊂ Ω of class C2 such that S ∩ Γ is

a closed curve, and two disjoint open sets Ωi ⊂ Ω (i = 1, 2) such that the partition

Ω \ S = Ω1 ∪ Ω2 is valid.

The outward unit normal to Γ is denoted by nΓ, and nS denotes the unit normal

to S that points into Ω2. We set Γi := ∂Ωi ∩ Γ for i = 1, 2. The angle of contact

α ∈ ]0, π[ of the surfaces Γ and S is defined on the curve Γ ∩ S via

(2.1) cosα := nS · nΓ, sinα :=
√

1 − cos2 α on Γ ∩ S.

R em a r k 2.1 (Data extension). Since S is of class C2, we lose no generality by

assuming that S is also defined outside of Ω. Otherwise, we always will find an

extension surface S′ ∈ C2 such that S is compactly included in the interior of the

surface S′. For ̺ > 0, define Ω̺ := {x ∈ Ω: dist(x, S) < ̺}. Choosing ̺ 6 ̺0(S)

187



sufficiently small, there is for all x ∈ Ω̺ a unique projection y(x) ∈ S such that

|x − y| = dist(x, S). Moreover, since S is defined in a neighborhood of Ω, the point

y belongs to the interior of S. We introduce the signed distance function

(2.2) dS(x) :=

{
− dist(x, S) for x ∈ Ω1,

dist(x, S) for x ∈ Ω2.

In Ω̺0
, set nS := ∇dS so that nS ∈ [C1(Ω̺0

)]3 ([3], Lemma 14.16). From the

neighborhood Ω̺0
, it is then possible to extend nS to the rest of Ω in order to obtain

nS ∈ [C1(Ω)]3. The normal nΓ has by similar arguments a continuously differentiable

extension into Ω. Due to (2.1), the functions cosα and sinα also possess natural

extensions into Ω. In order to track the dependence on the surfaces Γ and S in the

regularity estimate, we introduce

(2.3) g0 := ‖∇nΓ‖[L∞(Ω)]3 + ‖∇nS‖[L∞(Ω)]3 .

Particular systems of tangential vectors arise naturally to derive estimates near

the curve Γ ∩ S. Those are

τ (1) :=
nS × nΓ

|nS × nΓ|
, τ (2) :=

(nS × nΓ) × nΓ

|(nS × nΓ) × nΓ|
on Γ,(2.4)

T (1) :=
nS × nΓ

|nS × nΓ|
, T (2) :=

(nS × nΓ) × nS

|(nS × nΓ) × nS |
on S.(2.5)

Lemma C.3 in the appendix states the elementary relationships of these vectors.

The orthogonal matrix that transforms the standard Euclidean basis of R3 into the

orthonormal system {T (1), T (2), nS} is denoted by O. Further relevant matrices are,

first, the matrix A := OTκO, the entries of which are given by

(2.6) A =



κT (1) · T (1) κT (1) · T (2) κT (1) · nS

κT (2) · T (1) κT (2) · T (2) κT (2) · nS

κnS · T (1) κnS · T (2) κnS · nS


 ,

and, second, the perturbation κ̃ of the matrix κ defined by

(2.7) κ̃ := O



a1,1 2a1,2 2a1,3

0 a2,2 a2,3

0 a3,2 a3,3


OT .

For B ∈ R
3×3, the minors mi,j(B) (i, j = 1, 2, 3) are the numbers

(2.8) mi,j(B) := det(Bi,j), Bi,j := {bk,l}k 6=i,l 6=j for k, l, i, j = 1, 2, 3,
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Since almost exclusively the minors of the matrix A (cf. (2.6)) are needed in the

paper, we define

(2.9) mi,j := mi,j(A) for i, j = 1, 2, 3.

A function ν ∈ L∞(Ω) is called piecewise Lipschitz continuous if there are νi ∈

W 1,∞(Ωi) such that ν = νi in Ωi (i = 1, 2). For piecewise Lipschitz continuous ν,

the jump across S is the quantity

(2.10) [ν]S(x) = ν2(x) − ν1(x) for x ∈ S.

Since the functions νi have Lipschitz continuous extensions to Ω, the symbol [ν]S

still makes sense outside of S and

(2.11) [ν]S ∈ C0,1(Ω).

For a symmetric and positive definite B ∈ R
3×3 and for θ ∈ ]0, π[ define the compat-

ibility function

(2.12) fd(θ,B) :=

{
cot θb3,3/m1,1(B) + b2,3/m1,1(B) for (PN ),

cot θb3,3 + b2,3 for (PD)

that plays the fundamental role with respect to compatibility conditions near Γ∩S.

We finally introduce some functional spaces. We denote by q′ the number conju-

gated to q ∈ ]1,+∞[ in the sense that 1/q + 1/q′ = 1. The usual Lebesgue spaces

Lq(Ω), the Sobolev spaces W 1,q(Ω), and their trace spaces W 1/q′,q(∂Ω), are needed.

The definition and relevant properties of these spaces are to be found in standard

monographes (for instance [5]). Also well-known in the context of regularity theory

are the subspaces of W 1/q′,q(Γ) associated with the linear operators of extension by

zero. Define

γ−(u) :=

{
u on Γ1,

0 on Γ2,
γ+(u) :=

{
0 on Γ1,

u on Γ2,
(2.13)

V q(Γ) := {u ∈ W 1/q′,q(Γ): γ−(u) ∈ W 1/q′,q(Γ)},(2.14)

‖u‖V q(Γ) := ‖u‖W 1/q′,q(Γ) + ‖γ−(u)‖W 1/q′,q(Γ).

Relevant properties of the V q spaces are recalled in the appendix, Lemma B.2.

2.2. Statement of the main result. To investigate the regularity of the solution

to (PN ) or (PD), we first formulate some assumptions on the data. We assume that

the surfaces Γ and S, and their angle of contact α, satisfy

(2.15) Γ, S ∈ C2, α ∈ W 1,∞(Γ ∩ S), α ∈ ]0, π[ on Γ ∩ S.
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Let, moreover, the matrix κ(x) be symmetric for all x ∈ Ω and satisfy

(2.16) k0|η|
2 6 κ(x)η · η 6 k1|η|

2 for all x ∈ Ω, η ∈ R
3,

with two constants 0 < k0 6 k1 <∞. The matrix A (cf. (2.6)) is then also symmetric,

and the matrices A and κ̃ (cf. (2.7)) uniformly satisfy the inequality (2.16) with the

same constants k0, k1. For the matrix κ, we furthermore assume that

(2.17) k′1 := ‖∇κ1‖L∞(Ω1) + ‖∇κ2‖L∞(Ω2) <∞.

The right-hand side f of equation (1.1) is supposed to have the regularity

(2.18) f ∈ Lq(Ω).

In (2.18), and also in the integrability conditions formulated hereafter, we focus on

the cases q = 2 (for the W 2,p analysis), and q = q0 > 3 (for the W 1,∞ analysis).

We come now to the sufficient compatibility conditions for higher regularity. The

angle of contact α and the matrix κ (or the matrix A) are assumed to satisfy the

compatibility condition

(2.19) [fd(α,A)]S := fd(α,A2) − fd(α,A1) > 0 on Γ ∩ S,

where Ai := A|Ωi
. For the problem (PN ), we additionally require on the surface Γ

that

∃Q1 ∈W 1/q′,q(Γ), Q2 ∈ V q(Γ):
[ a3,3

m1,1

]
S

Q

sinα
= [fd(α,A)]SQ1 +Q2,(2.20)

∃g1 ∈W 1,∞(Γ):
[m2,1

m1,1

]
S

= g1[fd(α,A)]S .(2.21)

For the problem (PD), we require that

(2.22) ∇ue ∈W 1/q′,q(Γ) and ∃U1 ∈W 1/q′,q(Γ),

U2 ∈ V q(Γ): [a1,3]S(τ (1) · ∇ue) − [a3,3]S
τ (2) · ∇ue

sinα
= [fd(α,A)]SU1 + U2.

The condition (2.19) ensures the compatibility of the geometry, of the coefficient κ

and of the type of the boundary condition: If it is satisfied the function [fd(α,A)]S is

a regularizing factor in the problem. The representation conditions (2.20) and (2.22)

ensure a suitable decay of the boundary data if the function [fd(α,A)]S approaches

its critical value (see Section 2.3 below for an alternative characterization). The

main results of the paper are contained in the following two theorems.
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Theorem 2.2. Let u ∈ W 1,2(Ω) denote the unique weak solution to (PD) or to

(PN ). Assume that the conditions (2.15), (2.16) and (2.17) are satisfied, and that

(2.18) is valid with q = 2. Assume that the condition (2.19), and either (2.20), (2.21)

for the problem (PN ), or (2.22) for the problem (PD), are valid with q = 2. Then

u ∈W 2,2(Ωi) (i = 1, 2).

Assume moreover that (2.18), and either (2.20), (2.21) for the problem (PN ), or

(2.22) for the problem (PD), are satisfied for q = q0 > 3. Then u ∈ W 1,∞(Ω).

In the case that the principal hypothesis (2.19) of Theorem 2.2 is violated, we can

still prove that the weak solution to (P ) has second derivatives at least integrable to

the power 6/5.

Theorem 2.3. Except of (2.19), the same assumptions as in Theorem 2.2 with

q = 2. Let u ∈ W 1,2(Ω) denote the unique weak solution to (PD) or to (PN ).

Then there is q0 > 3 such that ∇u ∈ Lq0(Ω). Define s0 := min{q0, 6}. Then, for

1 6 p < 2s0/(s0 + 2) arbitrary, ∇u ∈W 1,p(Ωi) (i = 1, 2).

2.3. Interpretation of the compatibility conditions. A few remarks can help

better understand the conditions (2.19), (2.20) and (2.22).

In the case that κ is a scalar, one can verify that fd := cotακ−1 for (PN ), while

fd := cotακ for (PD). The condition (2.19) reduces to

(2.23) cotα[κ]S 6 0 for (PN ), cotα[κ]S > 0 for (PD) on Γ ∩ S.

Elementary consequences of (2.23) for the result of Theorem 2.2 in the case of the

isotropic diffusion are the following:

(1) For given data (κ, α), the result does not apply to both the Neumann problem

and the Dirichlet problem, unless α ≡ π/2 on Γ ∩ S (the two surfaces meet at

right angle). Otherwise, the choice which quantity to prescribe on the outer

boundary Γ has to follow the condition (2.23).

(2) If κ is, moreover, piecewise constant (that is, if κ1, κ2 ∈ R), the changes in sign

of cosα along Γ ∩ S are critical for the applicability of the result.

We also briefly comment on the representation conditions (2.20) and (2.22). In

the scalar case, the condition (2.20) reduces to

(2.24) [κ]SQ = cosα[κ−1]SQ1 + sinαQ2 on Γ,

and (2.22) reduces to

(2.25) −[κ]Sτ
(2) · ∇ue = cosα[κ]SU1 + sinαU2 on Γ.
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Thus, if the contact angle is such that | cosα| > δ0 > 0 on Γ ∩ S, the condition

(2.20) is trivially satisfied for every Q ∈ W 1/q′,q(Γ): set Q1 = −κ2κ1Q/ cosα and

Q2 = 0. Similarly, set U1 := −τ (2) · ∇ue/ cosα, U2 = 0 to obtain (2.22). The

compatibility conditions (2.20) and (2.22) are therefore only needed for the limiting

case that the function [fd(α,A)]S tends to zero on some part of Γ ∩ S. It is obvious

and easy to motivate that representation conditions of the type (2.24) and (2.25) are

necessary for every higher regularity of u that implies the existence of traces for ∇u

on manifolds.

Note that the function [fd(α,A)]S is intrinsically given only on Γ ∩ S. Therefore,

the representations (2.20) and (2.22) depend on the choice of its extension to Γ.

However, assuming additional regularity of the data Q, ue, we show in the next

Lemma that (2.20) and (2.22) more intrinsically amount to require a certain decay

along the curve Γ ∩ S. To this aim denote

K := Γ ∩ S, K0 := {x ∈ K : |[fd(α,A)]S | > 0},

dK0
(x) := dist(x,K \K0) for x ∈ K.

For s ∈ R, the properties of the spaces W s,2(U), U ∈ R
n have been studied in [11].

It is impossible to expose in a few lines the localization arguments that justify to

extend these properties to the case that U is a C2-submanifold. We recall that our

aim here is only to throw some light on the compatibility conditions. DefineW s,2
K (Γ)

as the spaceW s,2
0 (Γ1)⊕W

s,2
0 (Γ2). If s > 1/2, every function g ∈W s,2(Γ) has a trace

tr(g) ∈W s−1/2,2(K) (see [11], Theorem 9.4).

Lemma 2.4. Assume that there are β ∈ ]0, 1] and constants 0 < c1 6 c2 such

that c1d
β
K0

6 [fd(α,A)]S 6 c2d
β
K0
on K0. Assume that g ∈W s,2(Γ), s > 1/2 is such

that

(2.26) tr(g) ∈

{
W

s−1/2+β,2
00 (K0) if s− 1/2 + β = j + 1/2 for a j ∈ N,

W
s−1/2+β,2
0 (K0) otherwise.

Then, for each extension of the function [fd(α,A)]S to Γ, there are g1 ∈W s,2(Γ) and

g2 ∈W s,2
K (Γ) such that g = [fd(α,A)]Sg1 + g2.

P r o o f. Define g̃1 := g/[fd(α,A)]S on K0 and g̃1 := 0 on K \K0. Then, from

[11], Theorem 11.7, it follows that

(2.27) g̃1 ∈W s−1/2(K).

Due to (2.26) and to the trace theorem forW s,2, there exists g1 ∈ W s,2(Γ) such that

tr(g1) = g̃1 on K. Choosing an arbitrary extension of [fd(α,A)]S to Γ, we easily

obtain that g2 := g − [fd(α,A)]Sg1 belongs to W
s,2
K (Γ). �
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3. Method of the proof

To prove Theorem 2.2, we investigate a regularization of the problems (PN ) and

(PD). For ̺ > 0, t ∈ R, define

(3.1) I̺(t) :=





0 if t 6 0,

t/̺ for t ∈ ]0, ̺],

1 for t > ̺.

For ν1, ν2 ∈ L∞(Ω), define ν := νi in Ωi. Recalling (2.2), we introduce

(3.2) L̺(ν)(x) := ν1(x) + I̺(dS(x))(ν2(x) − ν1(x)) ∈ L∞(Ω).

Note that

(3.3) L̺(ν) −→ ν everywhere in Ω \ S,

and, also taking Remark 2.1 into account, we obtain for piecewise Lipschitz contin-

uous ν that

(3.4) ∇L̺(ν) = I ′̺(dS(x))∇dS(x) + L̺(∇ν)(x) =
[ν]S(x)

̺
b̺(x)nS(x) + L̺(∇ν)(x).

In (3.4) we have abbreviated b̺ := χ{06dist(x,S)6̺}(x), and L̺ applies componentwise

to vector fields. We now introduce a regularization of κ via the matrix A. For the

problem (PD), we apply the regularization (3.1), (3.2) to introduce the coefficients

(3.5) ai,j
̺ = L̺(a

i,j) ∈ C0,1(Ω) for i, j = 1, 2, 3,

where ai,j are taken from the matrix (2.6). For the problem (PN ), we introduce

(3.6) a1,1
̺ := L̺(a

1,1), a3,1
̺ := L̺(a

3,1), m1,1
̺ := L̺(m

1,1),

where the relevant ai,j are taken from the matrix (2.6), and m1,1 is given by (2.9).

The remaining entries are defined in the following way:

(3.7) a3,3
̺ := m1,1

̺ L̺

( a3,3

m1,1

)
, a2,3

̺ := m1,1
̺ L̺

( a2,3

m1,1

)
,

a2,2
̺ := (a3,3

̺ )−1(m1,1
̺ + [a2,3

̺ ]2),

a2,1
̺ := (a3,3

̺ )−1
(
m1,1

̺ L̺

(m2,1

m1,1

)
+ a2,3

̺ a3,1
̺

)
.
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The construction (3.6), (3.7), has the properties

(3.8)
a3,3

̺

m1,1
̺

= L̺

( a3,3

m1,1

)
,

a2,3
̺

m1,1
̺

= L̺

( a2,3

m1,1

)
,

m2,1
̺

m1,1
̺

= L̺

(m2,1

m1,1

)
.

In view of (3.4), the regularized coefficients have, for (PD), the important property

(3.9) T (k) · ∇ai,j
̺ = L̺(T

(k) · ∇ai,j) for i, j = 1, 2, 3 and k = 1, 2,

and therefore, due to (2.17),

(3.10) |T (k) · ∇ai,j
̺ | 6 c(k′1, g0) for i, j = 1, 2, 3 and k = 1, 2.

For (PN ), the coefficients ai,j
̺ are also constructed from the original a

i,j by applying

L̺, so that the estimate (3.10) is also easy to verify.

In view of (3.5), or of (3.6), (3.7), the matrix A̺ := {ai,j
̺ }i,j=1,2,3 satisfies (cf.

(3.3))

(3.11) A̺ −→ A everywhere in Ω \ S.

Define κ̺ := OA̺O
T , and, similarly, κ̺̃ using (2.7). Then κ̺, κ̺̃ belong to C

0,1(Ω;

R
3×3). Moreover, κ̺ → κ and κ̺̃ → κ̃ everywhere in Ω \S. We define u̺ ∈ W 1,2(Ω)

to be the unique weak solution to the problem (P̺)

(3.12) − div(κ̺∇u̺) = f in Ω,
[
−κ̺

∂u̺

∂nS

]
S

= 0 on S,

together with one of the conditions

(3.13) −κ̺
∂u̺

∂nΓ
= Q on Γ [=: (PN,̺)], u̺ = ue on Γ [=: (PD,̺)].

Lemma 3.1. Assume that κ satisfies (2.16) and (2.17). Let f ∈ L2(Ω), Q ∈

W 1,2(Ω) and ue ∈ W 2,2(Ω). Denote by u ∈ W 1,2(Ω) and u̺ ∈ W 1,2(Ω) the weak

solution to (P ) and (P̺), respectively. Then u̺ ∈ W 2,2(Ω), and

(3.14) u̺ −→ u in W 1,2(Ω).

Moreover, there is a constant c, depending only on Ω and on k1/k0, such that the

function u̺ satisfies the uniform estimates

‖∇u̺‖L2(Ω) 6 ck−1
0 (‖f‖L2(Ω) + ‖Q‖L2(Γ)) in case of (1.3),

‖∇u̺‖L2(Ω) 6 c(k−1
0 ‖f‖L2(Ω) + ‖∇ue‖L2(Ω)) in case of (1.4).
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P r o o f. The matrix κ̺ is symmetric and uniformly positive definite. Since

κ̺ ∈ C0,1(Ω;R3×3), the standard regularity theory for second order elliptic equations

in divergence form ([6], Chapter 3, Paragraph 10, Theorem 10.1, or [17], Chapter 2,

Section 2.5, Lemma 2.20 and Theorem 2.24 among others) proves theW 2,2 regularity

claim for the solution to (P̺). The strong convergence (3.14) for the entire sequence

is obvious due to the uniqueness of the respective weak solutions to (P ) and (P̺). �

Our method will consist in deriving uniform estimates for the main components

of ∇u̺ with respect to the system {T (1), T (2), nS}, that means, the functions

(3.15) ξ(1)̺ := T (1) · ∇u̺, ξ(2)̺ := T (2) · ∇u̺, ξ(3)̺ := κ̺nS · ∇u̺.

In Section 4, we reformulate the problem of regularity in a more suitable coordinate

system. Section 5 contains the core of the proof of the W 2,2 regularity, whereas

Section 6 is dedicated to the boundedness of ∇u.

4. Preliminary propositions

This section mainly contains the technical rearrangements needed to, so to say,

restate the problem in a more convenient coordinates. Throughout the remaining

sections, the matrices A̺, κ̺̃ are as defined in Section 3. In the next Lemma, basic

relationships satisfied by the functions ξ
(i)
̺ (i = 1, 2, 3) are derived. We recall the

notation (2.3) for the number g0.

Lemma 4.1. Let u̺ ∈W 2,2(Ω) denote the weak solution to (P̺). Then there are

G
(i)
̺ ∈ [L2(Ω)]3 (i = 1, 2, 3) and M

(3)
̺ ∈ [L2(Ω)]9 such that

(4.1) |G(1)
̺ | + |G(2)

̺ | + k2
0 |G

(3)
̺ | 6 c(|f | + g0k1|∇u̺|), |M

(3)
̺ | 6 c

with c = c(Ω, k1/k0, k
′
1/k0), and such that the following identities are valid almost

everywhere in Ω:

(4.2)

κ̺∇ξ
(1)
̺ = G(1)

̺ +
(
T (2) −

a2,3
̺

a3,3
̺

nS

)
×∇ξ(3)̺ −

2∑

i=1

(
a2,i

̺ −
ai,3

̺ a3,2
̺

a3,3
̺

)
(nS ×∇ξ(i)̺ ),

κ̺̃∇ξ
(2)
̺ = G(2)

̺ − T (1) ×∇ξ(3)̺ + (a1,1
̺ nS − a1,3

̺ T (1)) ×∇ξ(1)̺ ,

κ̺̃∇ξ
(3)
̺ = m1,1

̺ (G(3)
̺ +M (3)

̺ ∇ξ(1)̺ + T (1) ×∇ξ(2)).

P r o o f. First step. In the proof, g̺, g̺ denote generic functions, and G̺, G̺

generic vector fields, that may change from line to line, but that satisfy the estimates

(4.3) |g̺| + |G̺| 6 cg0|∇u̺|, g̺ + |G̺| 6 c(|f | + g0k1|∇u̺|),
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with a constant c only dependent on k1/k0 and k
′
1/k0. An important device in the

proof is the orthonormality of the system {T (1), T (2), nS} everywhere in Ω. Every

vector field V defined in Ω has a decomposition V =
2∑

j=1

(T (j) · V )T (j) + (nS · V )nS .

We further introduce the differential operators ∂(i) := T (i) · ∇ for i = 1, 2 and

∂(3) := nS ·∇. If V1, V2 are two vector fields among {T
(1), T (2), nS}, the permutation

formula V1 · ∇(V2 · ∇u̺) = V2 · ∇(V1 · ∇u̺) + [(V1 · ∇)V2 − (V2 · ∇)V1] · ∇u̺, is valid,

so that, in view of the convention (4.3),

(4.4) ∂(i)∂(j)u̺ = ∂(j)∂(i)u̺ + g̺ for i, j = 1, 2, 3.

Second step. Due to (4.4) and the definition (3.15),

(4.5) ∂(i)ξ(j)̺ − ∂(j)ξ(i)̺ = g̺ for i, j = 1, 2.

The definition of the function ξ
(3)
̺ and the property of orthonormal decomposition

imply that

ξ(3)̺ =

2∑

i=1

(κ̺nS · T (i))ξ(i)̺ + (κ̺nS · nS)∂(3)u̺ =

2∑

i=1

a3,i
̺ ξ(i)̺ + a3,3

̺ ∂(3)u̺.

Thus

(4.6) ∂(3)u̺ =
1

a3,3
̺

(
ξ(3)̺ −

2∑

i=1

a3,i
̺ ξ(i)̺

)
,

and it follows for i = 1, 2 from (4.6) and (4.4) that

(4.7) ∂(3)ξ(i)̺ = ∂(i)∂(3)u̺ + g̺ =
1

a3,3
̺

∂(i)ξ(3)̺ −
2∑

j=1

a3,j
̺

a3,3
̺

∂(i)ξ(j)̺ + g̺,

g̺ := ∂(i) 1

a3,3
̺

ξ(3)̺ +

2∑

j=1

∂(i)
a3,j

̺

a3,3
̺

ξ(j)̺ .

The properties (3.9), (3.10) yield for i = 1, 2

(4.8)
∣∣∣∂(i) 1

a3,3
̺

∣∣∣ +
2∑

j=1

∣∣∣∂(i)
a3,j

̺

a3,3
̺

∣∣∣ 6 3
k1k

′
1

k2
0

,

which can be used to prove in (4.7) that g̺ still satisfies (4.3). Using (4.7), we also

show that

(4.9) ∂(i)ξ(3)̺ = a3,3
̺ ∂(3)ξ(i)̺ +

2∑

j=1

a3,j
̺ ∂(j)ξ(i)̺ + g̺,i.
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Third step. In (4.5), (4.7) and (4.9) we have obtained permutations formula for

the derivatives ∂(i)ξ
(j)
̺ for i 6= j. The equation (3.12) contains additional informa-

tion about the symmetrical derivatives ∂(i)ξ
(i)
̺ . Orthonormal decomposition of ∇u̺,

joined to the relation (4.6) yields

κ̺∇u̺ =
2∑

i=1

ξ(i)̺

(
κ̺T

(i) −
a3,i

̺

a3,3
̺

κ̺nS

)
+
ξ
(3)
̺

a3,3
̺

κ̺nS .

Again decomposing the vectors κ̺T
(i) (i = 1, 2) and κ̺nS it follows that

(4.10) κ̺∇u̺ =

2∑

i,j=1

(
ai,j

̺ −
ai,3

̺ aj,3
̺

a3,3
̺

)
ξ(i)̺ T (j) +

2∑

j=1

a3,j
̺

a3,3
̺

T (j)ξ(3)̺ + nSξ
(3)
̺ .

According to Lemma 3.1, u̺ ∈ W 2,2(Ω), and − div(κ̺∇u̺) = f almost everywhere

in Ω. Therefore, (4.10) implies that

(4.11)
2∑

i,j=1

(
ai,j

̺ −
ai,3

̺ aj,3
̺

a3,3
̺

)
∂(j)ξ(i)̺ +

2∑

j=1

a3,j
̺

a3,3
̺

∂(j)ξ(3)̺ + ∂(3)ξ(3)̺ = g̺

:= −f −

2∑

i,j=1

div
((
ai,j

̺ −
ai,3

̺ aj,3
̺

a3,3
̺

)
T (j)

)
ξ(i)̺ − div

( 2∑

j=1

a3,j
̺

a3,3
̺

T (j) + nS

)
ξ(3)̺ .

Due to (3.9), g̺ satisfies the estimate (4.3) again (cf. the computation (4.8)). Fix an

index i ∈ {1, 2}, and define i′ by requesting that {i} ∪ {i′} = {1, 2}. From (4.11), it

follows for i = 1, 2 that

(4.12)
(
ai,i

̺ −
[ai,3

̺ ]2

a3,3
̺

)
∂(i)ξ(i)̺ = g̺ −∇ξ(3)̺ ·

(
nS +

2∑

j=1

a3,j
̺

a3,3
̺

T (j)

)

−
(
ai,i′

̺ −
ai,3

̺ ai′,3
̺

a3,3
̺

)
∂(i′)ξ(i)̺ −

2∑

j=1

(
ai′,j

̺ −
ai′,3

̺ aj,3
̺

a3,3
̺

)
∂(j)ξ(i

′)
̺ .

In (4.12), permutation of ∂(i′) and ∂(i) together with the formula (4.4) yields

(4.13)
(
ai,i

̺ −
[ai,3

̺ ]2

a3,3
̺

)
∂(i)ξ(i)̺ = g̺ −∇ξ(3)̺ ·

(
nS +

2∑

j=1

a3,j
̺

a3,3
̺

T (j)

)

−
(
ai′,i′

̺ −
[ai′,3

̺ ]2

a3,3
̺

)
∂(i′)ξ(i

′)
̺ − 2

(
ai,i′

̺ −
ai,3

̺ ai′,3
̺

a3,3
̺

)
∂(i)ξ(i

′)
̺ .
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Using the formula (4.9) we can also re-express the term ∂(i′)ξ
(3)
̺ in the formula (4.13)

to obtain, for i = 1, 2, the decomposition

(4.14)

(
ai,i

̺ −
[ai,3

̺ ]2

a3,3
̺

)
∂(i)ξ(i)̺ = g̺ −∇ξ(3)̺ ·

(
nS +

a3,i
̺

a3,3
̺

T (i)

)

−∇ξ(i
′)

̺ ·

(
ai′,i′

̺ T (i′) +

[
2ai′,i

̺ −
a3,i

̺ a3,i′

̺

a3,3
̺

]
T (i) + a3,i′

̺ nS

)
.

In the case i = 3, we conclude from (4.11) and (4.9) that

(4.15)

∂(3)ξ(3)̺ = −

2∑

i,j=1

(
ai,j

̺ −
ai,3

̺ aj,3
̺

a3,3
̺

)
∂(j)ξ(i)̺ −

2∑

i=1

a3,i
̺

a3,3
̺

∂(i)ξ(3)̺ + g̺

= −

2∑

i,j=1

ai,j
̺ ∂(j)ξ(i)̺ −

2∑

i=1

a3,i
̺ ∂(3)ξ(i)̺ + g̺ = −

2∑

i=1

κ̺T
(i) · ∇ξ(i)̺ + g̺.

Fourth step. For i = 1, 2, the relation

(4.16)

(
ai,i

̺ −
[a3,i

̺ ]2

a3,3
̺

)
∂(i)ξ(i)̺ = −∇ξ(3)̺ · V̺ −∇ξ(i

′)
̺ ·W̺ + g̺

follows from (4.13) for the choice

(4.17)

V̺ := nS +

2∑

j=1

a3,j
̺

a3,3
̺

T (j), W̺ :=

(
ai′,i′

̺ −
[a3,i′

̺ ]2

a3,3
̺

)
T (i′) + 2

(
ai,i′

̺ −
a3,i′

̺ a3,i
̺

a3,3
̺

)
T (i),

whereas (4.16) is a consequence of (4.14) for the choice

(4.18) V̺ := nS +
a3,i

̺

a3,3
̺

T (i), W̺ := ai′,i′

̺ T (i′) +

[
2ai′,i

̺ −
a3,i

̺ a3,i′

̺

a3,3
̺

]
T (i) + a3,i′

̺ nS .

We decompose the vector ∇ξ
(i)
̺ and use the representation (4.7) to show for i = 1, 2

that

(4.19) ∇ξ(i)̺ = ∂(i)ξ(i)̺

(
T (i) −

a3,i
̺

a3,3
̺

nS

)
+ ∂(i)ξ(i

′)
̺

(
T (i′) −

a3,i′

̺

a3,3
̺

nS

)

+ ∂(i)ξ(3)̺

nS

a3,3
̺

+ g̺nS .

The representation (4.16) and the formula (4.19) imply for i = 1, 2 that

(4.20) ∇ξ(i)̺ =

(
ai,i

̺ −
[a3,i

̺ ]2

a3,3
̺

)−1

(−∇ξ(3)̺ · V̺ −∇ξ(i
′)

̺ ·W̺ + g̺)

(
T (i) −

a3,i
̺

a3,3
̺

nS

)

+ ∂(i)ξ(i
′)

̺

(
T (i′) −

a3,i′

̺

a3,3
̺

nS

)
+ ∂(i)ξ(3)̺

nS

a3,3
̺

+ g̺nS .

198



Let B
(i)
̺ be the matrix that satisfies

(4.21) B(i)
̺

(
T (i) −

a3,i
̺

a3,3
̺

nS

)
=

(
ai,i

̺ −
[a3,i

̺ ]2

a3,3
̺

)
T (i),

B(i)
̺

(
T (i′) −

a3,i′

̺

a3,3
̺

nS

)
= W̺, B(i)

̺ nS = a3,3
̺ V̺.

Multiply the relation (4.20) by B(i) to see that

(4.22) B(i)
̺ ∇ξ(i)̺ = (−∇ξ(3)̺ · V̺ −∇ξ(i

′)
̺ ·W̺)T

(i) + ∂(i)ξ(i
′)

̺ W̺ + ∂(i)ξ(3)̺ V̺ +G̺

= (T (i) × V̺) ×∇ξ(3)̺ + (T (i) ×W̺) ×∇ξ(i
′)

̺ +G̺.

Fifth step. In the case i = 1, the formula (4.17) yields

(4.23) T (1) × V̺ = T (2) −
a2,3

̺

a3,3
̺

nS , T (1) ×W̺ = −

(
a2,2

̺ −
[a3,2

̺ ]2

a3,3
̺

)
nS .

Moreover, the conditions (4.21) imply the identity

OTB(1)
̺ O = A̺ +




0 −b
(1)
̺ 0

b
(1)
̺ 0 0

0 0 0


 , b(1)̺ := a2,1

̺ −
a3,1

̺ a3,2
̺

a3,3
̺

=
m1,1

̺

a3,3
̺

.

Elementary calculations with the skew-symmetric matrix part show that

(4.24) B(1)
̺ ∇ξ(1)̺ = κ̺∇ξ

(1)
̺ + b(1)̺ (T (2) × T (1)) ×∇ξ(1)̺ .

Observe that T (2) × T (1) = −nS . Putting (4.24) and (4.23) into (4.22), the claim

(4.2) follows for ξ
(1)
̺ .

In the case i = 2, the formula (4.18) implies that

(4.25) T (2) × V̺ = T (2) × nS = −T (1), T (2) ×W̺ = a1,1
̺ nS − a3,1

̺ T (1).

Moreover, it can be shown easily that the matrix B
(2)
̺ that is uniquely defined by

the conditions (4.21) is nothing else but the matrix κ̺̃ introduced in Section 3. The

claim (4.2) for ξ
(2)
̺ follows from (4.22).

In the case i = 3, orthonormal decomposition and the formula (4.9) imply that

(4.26)

∇ξ(3)̺ =

2∑

i=1

(
a3,3

̺ ∂(3)ξ(i)̺ +

2∑

j=1

a3,j
̺ ∂(j)ξ(i)̺

)
T (i) + ∂(3)ξ(3)̺ nS +G̺

=

2∑

i=1

κ̺nS · ∇ξ(i)T (i) + ∂(3)ξ(3)̺ nS +G̺.
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Insert (4.15) into (4.26) to obtain the equivalent representation

(4.27) ∇ξ(3)̺ =

2∑

i=1

(κ̺nS · ∇ξ(i)̺ T (i) − κ̺Ti · ∇ξ
(i)
̺ nS) +G̺.

The permutation formula (4.4) implies that

(4.28) κ̺nS · ∇ξ(2)̺ T (2) − κ̺T2 · ∇ξ
(2)
̺ nS

= (κ̺nS − a3,1
̺ T (1)) · ∇ξ(2)̺ T (2) − (κ̺T

(2) − a2,1
̺ T (1)) · ∇ξ(2)̺ nS

+ a3,1
̺ T (2) · ∇ξ(1)̺ T (2) − a2,1

̺ T (2) · ∇ξ(1)̺ nS +G̺.

From (4.27) and (4.28) it follows that

(4.29) ∇ξ(3)̺ = (κ̺nS − a3,1
̺ T (1)) · ∇ξ(2)̺ T (2) − (κ̺T

(2)

− a2,1
̺ T (1)) · ∇ξ(2)̺ nS +G̺ + M̃ (3)

̺ ∇ξ(1)̺ ,

(M̃ (3)
̺ )i,j := T

(1)
i (κ̺nS)j − nS,i(κ̺T

(1) + a2,1
̺ T (2))j + a3,1

̺ T
(2)
i T

(2)
j .

Let B
(3)
̺ be a matrix that satisfies

(4.30) B(3)
̺ T (2) =

κ̺T
(2) − a2,1

̺ T (1)

m1,1
̺

, B(3)
̺ nS =

κ̺nS − a3,1
̺ T (1)

m1,1
̺

.

Apply B
(3)
̺ to (4.29), and define M

(3)
̺ := B

(3)
̺ M̃

(3)
̺ , then

B(3)
̺ ∇ξ(3)̺ = B(3)

̺ G̺ +M (3)
̺ ∇ξ(1)̺ + (m1,1

̺ )−1(B(3)
̺ nS ×B(3)

̺ T (2)) ×∇ξ(2)̺ .

Observe that

B(3)
̺ nS ×B(3)

̺ T (2) = [a2,3
̺ ]2(T (2) × nS) + a2,2

̺ a3,3
̺ (nS × T (2))

= (a2,2
̺ a3,3

̺ − [a2,3
̺ ]2)T (1) = m1,1

̺ T (1).

We at last notice using (2.7) that the choice B
(3)
̺ = (m1,1

̺ )−1κ̺̃ satisfies (4.30). The

claim (4.2) for ξ
(3)
̺ follows easily. �

In the following Lemmas we use the result of Lemma 4.1 to derive integral relations

satisfied by the functions ξ
(i)
̺ (i = 1, 2, 3).
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Lemma 4.2. Same assumptions as in Lemma 4.1. Then there is

(4.31) G
(1)

̺ ∈ [L2(Ω)]3, |G
(1)

̺ | 6 c(|f | + g0k1|∇u̺|) a.e. in Ω,

such that for all v ∈W 2,2(Ω)

(4.32)

∫

Ω

κ̺∇ξ
(1)
̺ · ∇v =

∫

Ω

G
(1)

̺ · ∇v −

∫

Γ

(κ̺nΓ · ∇u̺)(τ
(1) · ∇v).

P r o o f. Choose v ∈ W 2,2(Ω) arbitrary, and multiply the relation (4.2) for

ξ
(1)
̺ by ∇v. Due to integration by parts and to the vector identity div(a × b) =

curla · b+ curl b · a,
∫

Ω

(
T (2) −

a2,3
̺

a3,3
̺

nS

)
×∇ξ(3)̺ · ∇v = −

∫

Ω

(
T (2) −

a2,3
̺

a3,3
̺

nS

)
×∇v · ∇ξ(3)̺

=

∫

Ω

curl

(
T (2) −

a2,3
̺

a3,3
̺

nS

)
· ∇vξ(3)̺ −

∫

Γ

(
T (2) −

a2,3
̺

a3,3
̺

nS

)
×∇v · nΓξ

(3)
̺ .

By similar arguments, and abbreviating pi,̺ := a2,i
̺ − a3,i

̺ a3,2
̺ /a3,3

̺ , it follows for

i = 1, 2 that

−

∫

Ω

pi,̺(nS ×∇ξ(i)̺ ) · ∇v =

∫

Γ

pi,̺(nS ×∇v) · nΓξ
(i)
̺ −

∫

Ω

curl(pi,̺nS) · ∇vξ(i)̺ .

Choosing G
(1)
̺ as in Lemma 4.1, we define

G
(1)

̺ := G(1)
̺ −

2∑

i=1

curl

((
a2,i

̺ −
a3,i

̺ a3,2
̺

a3,3
̺

)
nS

)
ξ(i)̺ + curl

(
T (2) −

a2,3
̺

a3,3
̺

nS

)
ξ(3)̺ .

For g ∈ C0,1(Ω), observe that curl(gnS) = gnS + ∇g × nS. Thus, only tangential

derivatives of the regularized coefficients occur in the definition of G
(1)

̺ , and (3.10)

can be used to prove the estimate (4.31). In order to reformulate the integrals over Γ,

observe that

(nS ×∇v) · nΓ = −(nS × nΓ) · ∇v = −|nS × nΓ|τ
(1) · ∇v,

(T (2) ×∇v) · nΓ = −(T (2) × nΓ) · ∇v = (T (2) · τ (2))τ (1) · ∇v.

Lemma C.3 in the appendix implies that

2∑

i=1

(
a2,i

̺ −
a3,i

̺ a3,2
̺

a3,3
̺

)
(nS ×∇v) · nΓξ

(i)
̺ −

(
T (2) −

a2,3
̺

a3,3
̺

nS

)
×∇v · nΓξ

(3)
̺

=

(
− sinα

[ 2∑

i=1

(
a2,i

̺ −
a3,i

̺ a3,2
̺

a3,3
̺

)
ξ(i)̺ +

a2,3
̺

a3,3
̺

ξ(3)̺

]
− cosαξ(3)̺

)
(τ (1) · ∇v).

Using orthonormal decomposition for the vector −κ̺nΓ · ∇u̺, the relation (4.32) is

obvious. �
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Lemma 4.3. Same assumptions as in Lemma 4.1. Then there are G
(2)

̺ , G
(3)

̺ ∈

[L2(Ω)]3 such that

(4.33) |G
(2)

̺ | + k0|G
(3)

̺ | 6 c(|f | + g0k1|∇u̺|) a.e. in Ω,

and such that for all v ∈ W 2,2(Ω)

∫

Ω

κ̺̃∇ξ
(2)
̺ · ∇v =

∫

Ω

{G
(2)

̺ + (a1,1
̺ nS − a1,3

̺ T (1)) ×∇ξ(1)̺ } · ∇v(4.34)

−

∫

Γ

ξ(3)̺ (τ (2) · ∇v),

∫

Ω

[m1,1
̺ ]−1κ̺̃∇ξ

(3)
̺ · ∇v =

∫

Ω

{G
(3)

̺ +M (3)
̺ ∇ξ(1)̺ } · ∇v +

∫

Γ

ξ(2)̺ (τ (2) · ∇v).(4.35)

P r o o f. We multiply the relation (4.2) for ξ
(2)
̺ by ∇v, v ∈ W 2,2(Ω) arbitrary.

Integration by parts and the fact that T (1) × nΓ = τ (2) yield

(4.36)

∫

Ω

(T (1) ×∇ξ(3)̺ ) · ∇v =

∫

Ω

curlT (1) · ∇vξ(3)̺ +

∫

Γ

ξ(3)̺ τ (2) · ∇v,

Choosing G
(2)
̺ as in Lemma 4.1, we define G

(2)

̺ := G
(2)
̺ − curlT (1)ξ

(3)
̺ . The estimate

(4.33) is readily checked. The relation (4.34) is obvious.

In order to prove (4.35), multiply the relation (4.2) for ξ
(3)
̺ by ∇v, v ∈ W 2,2(Ω)

arbitrary. As in (4.36),

∫

Ω

(T (1) ×∇ξ(2)̺ ) · ∇v =

∫

Ω

curlT (1) · ∇vξ(2)̺ +

∫

Γ

ξ(2)̺ τ (2) · ∇v.

Define G
(3)

̺ := G
(3)
̺ +curlT (1)ξ

(2)
̺ . The estimate (4.33) is readily checked, completing

the proof. �

We now prove two lemmas concerning the boundary data ue and Q. The compat-

ibility conditions (2.20), (2.21), (2.22) come here into the play.

Lemma 4.4. In addition to the hypotheses of Lemma 4.1, assume that the con-

ditions (2.20), (2.21) are satisfied for the problem (PN ), or that (2.22) is valid for

the problem (PD). Then there are Q̃1,̺, Q̃2,̺ ∈W 1/2,2(Γ) and Ũ2,̺ ∈W 1/2,2(Γ) such

that

m2,1
̺

m1,1
̺

ξ(1)̺ +
a3,3

̺

m1,1
̺ sinα

Q = fd(α,A̺)Q̃1,̺ + Q̃2,̺,(4.37)

a3,1
̺ (τ (1) · ∇ue) −

a3,3
̺

sinα
(τ (2) · ∇ue) = fd(α,A̺)U1 + Ũ2,̺.(4.38)
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Moreover, there is c = c(Ω, k1/k0) such that

‖Ũ2,̺‖W 1/2,2(Γ) 6 ‖U2‖V 2(Γ) + ck1g0‖∇ue‖W 1/2,2(Γ) + C1,̺,(4.39)

‖Q̃1,̺‖W 1/2,2(Γ) 6 ‖Q1‖W 1/2,2(Γ) + cg1‖ξ
(1)
̺ ‖W 1/2,2(Γ),(4.40)

‖Q̃2,̺‖W 1/2,2(Γ) 6 ck−1
0 (1 + g0)(‖Q‖W 1/2,2(Γ) + ‖Q1‖W 1/2,2(Γ)(4.41)

+ (1 + g1)‖ξ
(1)
̺ ‖W 1/2,2(Γ)) + ‖Q2‖W 1/2,2(Γ) + C2,̺,

where C1,̺, C2,̺ → 0 as ̺→ 0.

P r o o f. The condition (2.22) is by assumption valid on Γ. Recalling the defini-

tion (3.1), we multiply (2.22) by the function I̺(dS(·)), and then add on both sides

of the new relation the term a3,1
1 ξ

(1)
e − a3,3

1 (τ (2) · ∇ue)/ sinα. We obtain that

(4.42) (a3,1
1 + I̺[a

3,1]S)ξ(1)e − a3,3
1 + I̺[a

3,3]S(τ (2) · ∇ue)/ sinα

= (cotα(a3,3
1 + I̺[a

3,3]S) + (a2,3
1 + I̺[a

2,3]S))U1 + I̺U2

+ a3,1
1 ξ(1)e − a3,3

1 (τ (2) · ∇ue)/ sinα− (cotαa3,3
1 + a2,3

1 )U1.

Due to (3.5), a3,1
1 + I̺[a

3,1]S = a3,1
̺ = L̺(a

3,1) (etc. ), so that

a3,1
̺ ξ(1)e − a3,3

̺ (τ (2) · ∇ue)/ sinα = (cotαa3,3
̺ + a2,3

̺ )U1 + Ũ2,̺,

Ũ2,̺ := I̺U2 + a3,1
1 ξ(1)e − a3,3

1 (τ (2) · ∇ue)/ sinα− (cotαa3,3
1 + a2,3

1 )U1,

which proves (4.38) on Γ. Thanks to Lemma B.5 in the appendix, we verify that

‖I̺U2‖W 1/2,2(Γ) 6 ‖U2‖V 2(Γ) + C1,̺, C1,̺ → 0.

Using also Lemma B.1, the norm estimate (4.39) follows. In order to prove (4.37),

use the assumption (2.21) to define

Q̃1,̺ := Q1 +
[m2,1

m1,1

]
S
[fd(α,A)]−1

S ξ(1)̺ = Q1 + g1ξ
(1)
̺ .

Due to (B.1), we readily verify the estimate (4.40). It then follows from (2.20) that

(4.43) [fd(α,A)]SQ̃1,̺ = [fd(α,A)]SQ1 +
[m2,1

m1,1

]
S
ξ(1)̺

=
[ a3,3

m1,1

]
S

Q

sinα
−Q2 +

[m2,1

m1,1

]
S
ξ(1)̺ .

The construction (3.8) has in particular the property that

(
cotα

a3,3
1

m1,1
1

+
a2,3
1

m1,1
1

)
+ I̺[fd(α,A)]S = fd(α,A̺).
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Similarly, a3,3
̺ /m1,1

̺ = L̺(a
3,3/m1,1) and m1,2

̺ /m1,1
̺ = L̺(m

1,2/m1,1). We multiply

(4.43) by I̺(dS(·)), then with the help of (3.8), we obtain that

fd(α,A̺)Q̃1,̺ =
a3,3

̺

m1,1
̺

Q

sinα
+
m2,1

̺

m1,1
̺

ξ(1)̺ − Q̃2,̺,

Q̃2,̺ := I̺Q2 +
a3,3
1 Q

m1,1
1 sinα

−

(
cotα

a3,3
1

m1,1
1

+
a2,3
1

m1,1
1

)
Q̃1,̺ +

m2,1
1

m1,1
1

ξ(1)̺ .(4.44)

The construction of the regularization (3.6), (3.7) plays here the essential role.

The inequality (4.41) is derived in the same fashion as (4.39), using Lemma B.5,

Lemma B.1 and (4.40). �

Lemma 4.5. Same assumptions as in Lemma 4.4. Let u̺ ∈W 2,2(Ω) be the weak

solution to (P̺). If u̺ satisfies the condition (1.3), then

(4.45) −ξ(2)̺ =

(
cotα

a3,3
̺

m1,1
̺

+
a3,2

̺

m1,1
̺

)
(ξ(3)̺ + Q̃1,̺) + Q̃2,̺ a.e. on Γ.

If u̺ satisfies the condition (1.4), then

(4.46) ξ(3)̺ = (cotαa3,3
̺ + a3,2

̺ )(ξ(2)̺ + U1) + Ũ2,̺ a.e. on Γ.

P r o o f. We recall the notation (2.4) and (2.5). If (1.3) is satisfied in the sense

of traces, then

(4.47) Q = −κ̺nΓ · ∇u̺ = −(nΓ · nS)κ̺nS · ∇u̺ − (nΓ · T (2))κ̺T
(2) · ∇u̺,

thanks to orthonormal decomposition on Γ. For the same reason, the equivalence

(4.6) yields

κ̺T
(2) · ∇u̺ ξ

(i)
̺ + a2,3

̺ nS · ∇u̺ =

2∑

i=1

(
a2,i

̺ −
a3,i

̺ a3,2
̺

a3,3
̺

)
ξ(i)̺ +

a3,2
̺

a3,3
̺

ξ(3)̺ .

Using Lemma C.3 and the definition (3.15) of ξ
(3)
̺ , we easily deduce from (4.47) that

−ξ(2)̺ =

(
cotα

a3,3
̺

m1,1
̺

+
a3,2

̺

m1,1
̺

)
ξ(3)̺ +

m2,1
̺

m1,1
̺

ξ(1)̺ +
a3,3

̺

m1,1
̺ sinα

Q,

and (4.45) follows from Lemma 4.4, (4.37). With help of orthonormal decomposition,

(4.6), and Lemma C.3

τ (2) · ∇u̺ = (τ (2) · T (2))ξ(2)̺ + (τ (2) · nS)(nS · ∇u̺)

= cosαξ(2) −
sinα

a3,3
̺

(
ξ(3)̺ −

2∑

i=1

a3,i
̺ ξ(i)̺

)
.
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If (1.4) is satisfied in the sense of traces, then

ξ(3)̺ = (cotαa3,3
̺ + a3,2

̺ )ξ(2)̺ + a3,1
̺ ξ(1)e −

a3,3
̺

sinα
τ (2) · ∇ue,

and (4.46) follows from Lemma 4.4, (4.38). �

5. W 2,2 regularity

In this section we prove the convergence of the approximation method (P̺) in the

spaceW 2,2. In order to abbreviate our estimates, we introduce for the problem (PN )

the quantities

Nq := k−1
0 (‖f‖Lq(Ω) + ‖Q‖W 1/q′,q(Γ)),

Ñq := k−1
0 (‖f‖Lq(Ω) + ‖Q1‖W 1/q′,q(Γ) + ‖Q2‖V q(Γ)),

and for the problem (PD) the quantities

Nq := k−1
0 ‖f‖Lq(Ω) + ‖∇ue‖W 1,q(Ω),

Ñq := Nq + ‖U1‖W 1/q′,q(Γ) + ‖U2‖V q(Γ).

Here, the functions Qi and Ui are taken from (2.20), (2.21) and (2.22). The main

result of the section is the following:

Theorem 5.1. Assume that S ∈ C2 and f ∈ L2(Ω). Let u be the weak solution

to (P ). Assume that the condition (2.19) is valid, and that one of the following

assumptions is satisfied:

(1) u satisfies (1.3) on Γ, and the conditions (2.20), (2.21) hold with q = 2.

(2) u satisfies (1.4) on Γ, and the condition (2.22) holds with q = 2.

Then u belongs to W 2,2(Ωi) for i = 1, 2 and, moreover, satisfies the continuous

estimate

(5.1) ‖D2u‖L2(Ωi) 6 c(1 + g0)Ñ2

with a constant c that depends on Ω, k1/k0, k
′
1/k0, and additionally on g1 for the

problem (PN ).

The p r o o f of the theorem is carried out in the following four propositions.
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Proposition 5.2. Assume that S ∈ C2 and f ∈ L2(Ω). Let u̺ be the weak

solution to (P̺). Assume that u̺ satisfies either (1.3) with Q ∈ W 1/2,2(Γ) or (1.4)

with ue ∈W 3/2,2(Γ). Then there is a constant c, depending only on Ω and on k1/k0,

such that

(5.2) ‖∇ξ(1)̺ ‖L2(Ω) 6 c(1 + g0)N2.

P r o o f. Let u̺ denote the solution to the problem (P̺). We first consider the

boundary condition (1.3). For v ∈W 2,2(Ω), introduce the linear functional

(5.3) F
(1)
Q (v) :=

∫

Γ

Q(τ (1) · ∇v).

The continuity estimate

(5.4) |F
(1)
Q (v)| 6 cg0‖Q‖W 1/2,2(Γ)‖∇v‖L2(Ω)

follows from Lemma C.1, and implies that the functional F
(1)
Q extends by density to

W 1,2(Ω). Due to (4.32),

(5.5)

∫

Ω

κ̺∇ξ
(1)
̺ · ∇v =

∫

Ω

G
(1)

̺ · ∇v + F
(1)
Q (v) ∀v ∈ W 1,2(Ω).

In (5.5), we are allowed to choose v := ξ
(1)
̺ . To derive (5.2) from the estimates (5.4)

and (4.31) and Lemma 3.1 is a straightforward exercise on Young’s inequality.

For the boundary condition (1.4), we introduce the extension ue ∈ W 2,2(Ω) of the

boundary data, and ξ
(1)
e := τ (1) · ∇ue ∈W 1,2(Ω). Due to (4.32),

(5.6)

∫

Ω

κ̺∇(ξ(1)̺ − ξ(1)e ) · ∇v =

∫

Ω

(G
(1)

̺ − κ̺∇ξ
(1)
e ) · ∇v ∀v ∈ W 1,2

0 (Ω),

and (5.2) follows. �

Berfore stating the following lemma, we recall the definition (2.12) of the func-

tion fd.
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Lemma 5.3. Let the hypotheses of Proposition 5.2 be valid. Assume in addition

that the condition (2.19) is valid. For u ∈ W 1,2(Ω), v ∈ W 2,2(Ω), define

(5.7) (B̺(u), v) := −

∫

Γ

fd(α,A̺)u(τ
(2) · ∇v).

Then, the mapping B̺ extends to an element of L(W 1,2(Ω), [W 1,2(Ω)]∗). Moreover,

there is ̺0 = ̺0(S, κ2, κ1, α) such that for all ̺ 6 ̺0 the inequalities

(B̺(u), (u−m)+) 6 c̃(1 + g0)

∫

Γ

u(u−m)+,(5.8)

(B̺(u), (u+m)−) 6 c̃(1 + g0)

∫

Γ

u(u+m)−(5.9)

are valid for all u ∈ W 1,2(Ω) and all m ∈ N, with c̃ := ck−1
0 for (PN ), and c̃ := ck1

for (PD).

P r o o f. Due to Lemma C.1 and Lemma B.1,

(5.10) |(B̺(u), v)| 6 cg0‖fd(α,A̺)u‖W 1/2,2(Γ)‖∇v‖L2(Ω)

6 c̺‖u‖W 1/2,2(Γ)‖∇v‖L2(Ω)

for all u ∈ W 1,2(Ω), v ∈ W 2,2(Ω). Therefore, the mapping B̺ extends by density to

an element of L(W 1,2(Ω), [W 1,2(Ω)]∗).

For u ∈ W 2,2(Ω), m ∈ N,

(5.11) (B̺(u), (u −m)+) =
−1

2

∫

Γ

fd(α,A̺)τ (2) · ∇((u +m)(u−m)+).

For the (PN )-case of (2.12), integration by parts yields

(5.12)

(B̺(u), (u−m)+) =

∫

Γ

(
cotατ (2) · ∇

a3,3
̺

m1,1
̺

+ τ (2) · ∇
a2,3

̺

m1,1
̺

)
(u+m)

2
(u −m)+

+

∫

Γ

(
divΓ(cotατ (2))

a3,3
̺

m1,1
̺

+ divΓ(τ (2))
a2,3

̺

m1,1
̺

)
(u +m)

2
(u−m)+.

Using (3.4), the fact that τ (2) · nS = − sinα on Γ, and (3.8), we compute

(5.13) cotατ (2) · ∇
a3,3

̺

m1,1
̺

+ τ (2) · ∇
a2,3

̺

m1,1
̺

= − sinαb̺̺
−1[fd(α,A)]S

+ cotαL̺

(
τ (2) · ∇

a3,3

m1,1

)
+ L̺

(
τ (2) · ∇

a2,3

m1,1

)
.
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Due to the uniform continuity of the data A1, A2, α there is a neighborhood D

of the curve Γ ∩ S such that (2.19) is valid in the domain D ∩ Ω. Therefore, if

̺ 6 ̺0(A1, A2, α), then

(5.14) − sinαb̺̺
−1[fd(α,A)]S(u+m)(u−m)+ 6 0.

The estimate

cotαL̺

(
τ (2) · ∇

a3,3

m1,1

)
+ L̺

(
τ (2) · ∇

a2,3

m1,1

)
6
k2
1k

′
1

k4
0

together with (5.13) and (5.14) yields

(5.15)

(
cotατ (2) · ∇

a3,3
̺

m1,1
̺

+ τ (2) · ∇
a2,3

̺

m1,1
̺

)
(u+m)(u −m)+ 6

2k2
1k

′
1

k4
0

u(u−m)+.

The estimate (5.8) follows from (5.12) and (5.15). For the problem (PD), we can

reformulate

(5.16) (B̺(u), (u−m)+) =
1

2

∫

Γ

(cotατ (2) · ∇a3,3
̺ + τ (2) · ∇a2,3

̺ )(u+m)(u −m)+

+
1

2

∫

Γ

(divΓ(cotατ (2))a3,3
̺ + divΓ(τ (2))a2,3

̺ )(u +m)(u−m)+.

Under the assumption (2.19), we verify for ̺ 6 ̺0 (cf. (5.14)) that

(5.17) (cotατ (2) · ∇a3,3
̺ + τ (2) · ∇a3,2

̺ ) 6 ck′1.

Here again, the estimate (5.8) follows from (5.16) thanks to standard inequalities.

Due to the formula

(B̺(u), (u +m)−) = −
1

2

∫

Γ

fd(α,A̺)τ (2) · ∇((u −m)(u+m)−),

we similarly verify (5.9). Finally, in view of the continuity property (5.10), the

inequalities (5.8) and (5.9) hold true for all u ∈ W 1,2(Ω). �
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Proposition 5.4. Assume that S ∈ C2 and f ∈ L2(Ω). Let u̺ be the weak

solution to (P̺). Assume that u̺ satisfies (1.3), and that the conditions (2.19),

(2.20), (2.21) are valid with q = 2. Then there is a constant c = c(Ω, k1/k0, k
′
1/k0)

and a sequence of numbers {C̺} that tends to zero, such that

(5.18) ‖∇ξ(3)̺ ‖L2(Ω) 6 c(1 + g0)Ñ2 + C̺.

P r o o f. Thanks to the relation (4.45), the operator B̺ of Lemma 5.3, and to

the functional

(5.19) F
(2)

Q̃2,̺
:= −

∫

Γ

Q̃2,̺(τ
(2) · ∇v)

(cf. (5.3), and (5.4) for a norm estimate on F (2)), (4.35) is equivalent to

(5.20)∫

Ω

(m1,1
̺ )−1κ̺̃∇ξ

(3)
̺ · ∇v =

∫

Ω

{G
(3)

̺ +M (3)
̺ ∇ξ(1)̺ } · ∇v + (B̺(ξ

(3)
̺ + Q̃1,̺), v)

+ F
(2)

Q̃2,̺
(v), ∀ v ∈W 1,2(Ω),

or, for the variable w̺ := ξ
(3)
̺ + Q̃1,̺, to

(5.21)

∫

Ω

(m1,1
̺ )−1κ̺̃∇w̺ · ∇v =

∫

Ω

{G
(3)

̺ +M (3)
̺ ∇ξ(1)̺ + [m1,1

̺ ]−1κ̺̃∇Q̃1,̺} · ∇v

+ (B̺(w̺), v) + F
(2)

Q̃2,̺
(v), ∀ v ∈W 1,2(Ω).

In the relation (5.21), it is possible to choose v := w̺. In view of (5.8) and (5.9)

with m = 0, and of the interpolation inequality (C.2), we have

(5.22) (B̺(w̺), w̺) 6 cκ−1
0 (1 + g0)‖w̺‖

2
L2(Γ)

6 cc20k
−1
0 (1 + g0)‖w̺‖L2(Ω)‖∇w̺‖L2(Ω).

Employing from now on Young’s inequality as in the proof of Proposition 5.2,

Lemma 4.4 and Proposition 5.2 to bound the quantities Q̃1,̺, Q̃2,̺ and ξ
(1)
̺ , the

estimate (5.18) immediately follows. �
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Proposition 5.5. Assume that S ∈ C2 and f ∈ L2(Ω). Let u̺ be the weak

solution to (P̺). Assume that (2.19) is valid, that u̺ satisfies (1.4) on Γ, and that

the condition (2.22) holds with q = 2. Then there is a constant c = c(Ω, k1/k0, k
′
1/k0),

and a sequence C̺ that converges to zero, such that

(5.23) ‖∇ξ(2)̺ ‖L2(Ω) 6 c(1 + g0)Ñ2 + C̺.

P r o o f. The proof is very similar to the proof of Proposition 5.4.

Using the relation (4.46), the operator B̺ of Lemma 5.3 and the functional F
(2)

Ũ2,̺

(cf. (5.19)), the relation (4.35) is equivalent to

(5.24)

∫

Ω

κ̺̃∇ξ
(2)
̺ · ∇v =

∫

Ω

{G
(2)

̺ + (a1,1
̺ nS − a3,1

̺ T (1)) ×∇ξ(1)̺ } · ∇v

+ (B̺(ξ
(2)
̺ + U1), v) + F

(2)

Ũ2,̺
(v), ∀ v ∈W 1,2(Ω).

For the variable w̺ := ξ
(2)
̺ + U1, it follows that

(5.25)

∫

Ω

κ̺̃∇w̺ · ∇v =

∫

Ω

{G
(2)

̺ + (a1,1
̺ nS − a3,1

̺ T (1)) ×∇ξ(1)̺ + κ̺̃∇U1} · ∇v

+ (B̺(w̺), v) + F
(2)

Ũ2,̺
(v), ∀ v ∈ W 1,2(Ω),

where it is possible to choose v := w̺. The estimate (5.23) follows with arguments

similar to the proof of Proposition 5.4. �

Proposition 5.6. Let the assumptions of Theorem 5.1 be satisfied. If u denotes

the weak solution to (P ), then u ∈W 2,2(Ωi) for i = 1, 2. Moreover,

ξ(i)̺ ⇀ T (i) · ∇u in W 1,2(Ω) (for i = 1, 2), ξ(3)̺ ⇀ κnS · ∇u in W 1,2(Ω).

P r o o f. Proposition 5.2, and either Proposition 5.4 in the case of (PN,̺), or

Proposition 5.5 in the case of (PD,̺), provide uniform bounds for the sequences {ξ
(1)
̺ },

and either {ξ
(2)
̺ } or {ξ

(3)
̺ }, in the spaceW 1,2(Ω). Due to the gradient representations

of Lemma 4.1, it then follows for both problems that there is C > 0 independent of

̺ such that ‖∇ξ
(i)
̺ ‖L2(Ω) 6 C for i = 1, 2, 3. Thanks to the reflexivity of W 1,2(Ω),

we find ξ(i) ∈W 1,2(Ω) such that

ξ(i)̺ ⇀ ξ(i) in W 1,2(Ω) for i = 1, 2, 3.

On the other hand, ξ
(i)
̺ → T (i)·∇u for i = 1, 2 and ξ

(3)
̺ → κnS ·∇u almost everywhere

in Ω (cp. Lemma 3.1). Thus

T (i) · ∇u = ξ(i) ∈ W 1,2(Ω) (i = 1, 2), κnS · ∇u ∈ W 1,2(Ω).

�
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6. W 1,∞ regularity

Theorem 6.1. Same assumptions as in Theorem 5.1. Assume that there is q0 > 3

such that f ∈ Lq0(Ω). For the problem (1.3), let Q satisfy (2.20) with q = q0; for

the problem (1.4), let ue satisfy (2.22) with q = q0. Then ∇u ∈ L∞(Ω), and the

estimate ‖∇u‖L∞(Ω) 6 cÑq0
is valid, with a constant c that depends continuously

on Ω, on g0, on k1/k0, on k
′
1/k0, and also on g1 for the problem (PN ).

For the proof, we will show that the functions ξ(i), i = 1, 2, 3, belong to L∞(Ω).

However, we cannot prove that the approximation method (P̺) converges in the

space W 1,∞(Ω). Fortunately, once the result of Theorem 5.1 is ensured, we can

derive in the limit new regularity properties that turn out to be sufficient for the

result.

Proposition 6.2. Assume that S ∈ C2. Let u denote the weak solution to (P ).

Assume that there is q0 > 3 such that f ∈ Lq0(Ω), and such that u either satisfies

(1.3) with Q ∈ W 1/q′

0
,q0(Γ) or (1.4) with ue ∈ W 2,q0(Ω). Then ξ(1) belongs to

W 1,q0(Ω) and satisfies the estimate

(6.1) ‖ξ(1)‖W 1,q0 (Ω) 6 cÑq0
.

Here, the constant c depends continuously on Ω, on g0, on k1/k0, and on k
′
1/k0.

P r o o f. We let ̺ → 0 in (4.32) to see in the case of the boundary condition

(1.3) that ξ(1) ∈W 1,2(Ω) satisfies

(6.2)

∫

Ω

κ∇ξ(1) · ∇v =

∫

Ω

{G
(1)

+ curl(Q(τ (1) × nΓ))} · ∇v ∀ v ∈ W 2,2(Ω),

where Lemma C.1 is used to rewrite the functional F
(1)
Q . The estimate (4.31) ensures

that

‖G
(1)

‖Lq0(Ω) 6 ‖f‖Lq0(Ω) + cg0k1‖∇u‖Lq0(Ω).

Since we can obtain a bound on ‖∇u‖Lq0(Ω) with the arguments of Lemma A.1, the

right-hand side of (6.2) belongs to [W 1,q′

0(Ω)]∗, with a corresponding norm estimate.

The result now follows in principle from Theorem 1.2 in [4]. We give the idea of

the proof in the appendix, Lemma A.1. In the case of the boundary condition (1.4),

introduce ξ
(1)
e := τ (1) · ∇ue to see that the function ξ

(1) − ξ
(1)
e satisfies

(6.3)

∫

Ω

κ∇(ξ(1) − ξ(1)e ) · ∇v =

∫

Ω

{G
(1)

− κ∇ξ(1)e } · ∇v, ∀ v ∈ W 1,2
0 (Ω).

Here again, the right-hand side of (6.3) extends by continuity to an element of the

space [W
1,q′

0

0 (Ω)]∗, and the regularity follows from the same fundamental result in [4].

�
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For the regularity of ξ(2) and ξ(3), we need to state some further properties valid

on the surface Γ. We introduce a weighted space (cf. (2.14))

(6.4) V q
α (Γ) := {u ∈W 1/q′,q(Γ): fd(α,A)u ∈ W 1/q′,q(Γ)},

‖u‖V q
α (Γ) := ‖u‖W 1/q′,q(Γ) + ‖fd(α,A)u‖W 1/q′,q(Γ).

Lemma 6.3. Let u ∈ W 1,2(Ω) be the weak solution to (P ). Assume that the

hypotheses of Theorem 6.1 are valid. If u is associated with (PN ), then there are

Q̃1, Q̃2 ∈W 1/q′

0
,q0(Γ) such that

ξ(2) = −fd(α,A)(ξ(3) + Q̃1) − Q̃2 a.e. on Γ,(6.5)

fd(α,A)(ξ(3) + Q̃1) ∈ W 1/2,2(Γ).(6.6)

If u is associated with (PD), then there is Ũ2 ∈W 1/q′

0
,q0(Γ) such that

ξ(3) = fd(α,A)(ξ(2) + U1) + Ũ2 a.e. on Γ,(6.7)

fd(α,A)(ξ(2) + U1) ∈W 1/2,2(Γ).(6.8)

P r o o f. The relations (6.5) and (6.7) are easy consequences of Lemma 4.5

and of the convergence in Proposition 5.6. We recall the notation (2.13). Defining

Q̃1, Q̃2, Ũ2 as accumulation points of the sequences Q̃1,̺, Q̃2,̺, Ũ2,̺, the representa-

tions derived in Lemma 4.4 yield

Q̃1 = Q1 + g1ξ
(1),

Q̃2 = γ+(Q2) +
a3,3
1

m1,1
1

Q/ sinα− fd(α,A1)Q̃1 +
m2,1

1

m1,1
1

ξ(1),

Ũ2 = γ+(U2) + a3,1
1 ξ(1)e − a3,3

1 (τ (2) · ∇ue)/ sinα− fd(α,A1)U1.

Thus, the assumptions on Q1, Q2, U1, U2, the result of Proposition 6.2, and the

property (B.1) are sufficient to verify the W 1/q′

0
,q0 regularity of Q̃1, Q̃2, Ũ2.

Since ξ(2) + Q̃2 ∈ W 1/2,2(Γ), (6.5) directly proves (6.6). The proof of (6.8) is

completely similar. �

Lemma 6.4. For u ∈ V 2
α (Γ) and v ∈ W 2,2(Ω), define the bilinear form

(6.9) (B(u), v) = −

∫

Γ

fd(α,A)u(τ (2) · ∇v).
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ThenB extends by density to an element of L(V 2
α (Γ), [W 1,2(Ω)]∗), and for 2 6 q0 6 6,

the inequalities

(B(u), (u −m)+) 6 c̃(1 + g0)‖u‖L2q0/3(Γ)‖∇(u−m)+‖
L

q′
0(Ω)

,(6.10)

(B(u), (u +m)−) 6 c̃(1 + g0)‖u‖L2q0/3(Γ)‖∇(u+m)−‖
L

q′
0(Ω)

(6.11)

are valid for all u ∈ W 1,2(Ω) such that u ∈ V 2
α (Γ), and for all m ∈ N. Here c̃ := ck−1

0

for (PN ), and c̃ := ck1 for (PD).

P r o o f. For u ∈ V 2
α (Γ) and v ∈ W 2,2(Ω), Lemma C.1 implies the inequality

(6.12) |(B(u), v)| 6 cg0‖fd(α,A)u‖W 1/2,2(Γ)‖∇v‖L2(Ω),

so that B extends by density to an element of L(V 2
α (Γ), [W 1,2(Ω)]∗).

For u ∈ W 2,2(Γ) such that u ∈ V 2
α (Γ) and for m ∈ N (cf. (5.7)) we have

(6.13) (B(u), (u −m)+) = lim
̺→0

(B̺(u), (u −m)+).

The inequalities (6.10) and (6.11) therefore immediately follow from (5.8) and (5.9)

and Hölder’s inequality. Due to the density Lemma B.4 these inequalities remain

valid for all u ∈W 1,2(Ω) such that u ∈ V 2
α (Γ). �

Proposition 6.5. Same assumptions as in Theorem 6.1 for the problem (PN ).

Then ξ(3) belongs to L∞(Ω) with an estimate

(6.14) sup
Ω

|ξ(3)| 6 cÑq0
.

P r o o f. Denote w := ξ(3) + Q̃1. Passing to the limit ̺→ 0 in the relation (5.21)

for test functions v ∈ W 2,2(Ω), it follows that

(6.15)∫

Ω

[m1,1]−1κ̃∇w · ∇v =

∫

Ω

{G
(3)

+M (3)∇ξ(1) + [m1,1]−1κ̃∇Q̃1} · ∇v

−

∫

Γ

(
cotα

a3,3

m1,1
+
a3,2

m1,1

)
w(τ (2) · ∇v) −

∫

Γ

Q̃2(τ
(2) · ∇v).

In view of Lemma 6.4, (6.15) is equivalent to
∫

Ω

(m1,1)−1κ̃∇w · ∇v =

∫

Ω

{G
(3)

+M (3)∇ξ(1) + [m1,1]−1κ̃∇Q̃1} · ∇v

+ (B(w), v) + F
(2)

Q̃2

(v),

where the choices v := (w − m)+ and v := (w + m)− are possible for all m ∈ N.

The claim follows using Lemma C.4, in connection with the estimates (6.10), (6.11),

(5.4), as well as (4.33) and Proposition 6.2. �
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Proposition 6.6. Let the hypotheses of Theorem 6.1 for the problem (PD) be

valid. Then ξ(2) belongs to L∞(Ω) and satisfies the estimate

(6.16) sup
Ω

|ξ(2)| 6 cÑq0
.

P r o o f. Define w := ξ(2) + U1. Passage to the limit in the relation (5.25) for

test functions v ∈ W 2,2
Γ2

(Ω), and Lemma 6.4 yield

(6.17)

∫

Ω

κ̃∇w · ∇v =

∫

Ω

{G
(2)

+ (a1,3T (1) − a1,1nS) ×∇ξ(1) + κ̃∇U1} · ∇v

+ (B(w), v) + F
(2)

Ũ2

(v).

We complete the proof as in Proposition 6.5. �

We are now able to complete the proof of Theorem 6.1.

P r o o f of Theorem 6.1. We first consider the case of the boundary condition

(1.3). Due to Propositions 6.2 and 6.5, ξ(1), ξ(3) are globally bounded in the domain

Ω. The relation (6.5) and the triangle inequality yield

(6.18) sup
Γ

|ξ(2)| 6
k1

k2
0

sup
Ω

(|ξ(3)| + |Q̃1|) + ‖Q̃2‖L∞(Γ).

On the other hand, we can pass to the limit in the relation (4.34) to see that ξ(2) ∈

W 1,2(Ω) satisfies, for all v ∈W 1,2
0 (Ω),

∫

Ω

κ̃∇ξ(2) · ∇v =

∫

Ω

{G
(2)

+ (a3,1T (1) − a1,1nS) ×∇ξ(1)} · ∇v.

Lemma C.4 implies that

‖ξ(2)‖L∞(Ω) 6 sup
Γ

|ξ(2)| + c(‖G
(2)

‖Lq0(Ω) + ‖∇ξ(1)‖Lq0(Ω)),

and the claim follows from the estimate (6.18) and Proposition 6.2.

In the case of the boundary condition (1.4), Propositions 6.2 and 6.6 yield the

global boundedness of the components ξ(1), ξ(2). Using the relation (6.7) and the

triangle inequality, we obtain

(6.19) sup
Γ

|ξ(3)| 6 k1 sup
Ω

(|ξ(2)| + |U1|) + ‖Ũ2‖L∞(Γ)),

and the claim follows from (4.35) and Proposition 6.2. �
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7. W 2,p-regularity

This section is essentially devoted to the proof of Theorem 2.3. In the case that the

compatibility condition (2.19) is violated, it is still possible to prove the existence of

second weak derivatives for the weak solution to (P ). This is based on the following

observation.

Lemma 7.1. Let g ∈ C1(R) be nonnegative and nondecreasing, and assume

moreover that Mg :=
∫ +∞

−∞ |t|g′(t) dt < ∞. Then the mapping B̺ from Lemma 5.3

satisfies for all u ∈W 1,2(Ω) the inequality

(7.1) (B̺(u), g(u)) 6 cMg.

P r o o f. For t ∈ R, define G(t) :=
∫ t

0 sg
′(s) ds. The function G is by assumption

bounded by the number Mg, and for u ∈W 2,2(Ω) arbitrary, the identity

(7.2) (B̺(u), g(u)) =

∫

Γ

fd(α,A̺)τ
(2) · ∇G(u)

is valid. For the (PN )-case of (2.12), integration by parts yields (cf. (5.12))

(7.3) (B̺(u), g(u)) =

∫

Γ

(
cotατ (2) · ∇

a3,3
̺

m1,1
̺

+ τ (2) · ∇
a2,3

̺

m1,1
̺

)
G(u)

+

∫

Γ

(
divΓ(cotατ (2))

a3,3
̺

m1,1
̺

+ divΓ(τ (2))
a2,3

̺

m1,1
̺

)
G(u).

Observe that under the assumptions of the present lemma

(7.4) ̺−1

∫

{x∈Γ: dist(x,Γ∩S)6̺}

G(u) 6 Mg̺
−1 meas({x ∈ Γ: dist(x,Γ ∩ S) 6 ̺})

→Mg meas(Γ ∩ S).

Arguing as in (5.13), (5.15), the inequality (7.1) follows. The arguments for (PD)

are completely similar. In Lemma 5.3, we have already proved that the mapping

B̺ extends by density to an element of L(W 1,2(Ω), [W 1,2(Ω)]∗). In view of the

continuity property (5.10), the inequality (7.1) is valid for all u ∈ W 1,2(Ω). �

P r o o f of Theorem 2.3. For δ ∈ ]0, 1[, consider the function

(7.5) gδ(t) := sign(t)
(
1 −

1

(1 + |t|)1+δ

)
.
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Then g′δ(t) = (1 + δ)(1 + |t|)−2−δ, and it follows that Mgδ
< ∞. We consider the

relation (5.21) in the case of (PN ). In the case of (PD), we start from (5.25) and the

arguments are completely similar. In (5.21), choose v := gδ(w̺) as the test function.

Using in particular Lemma 7.1, we can prove that there is C independent of ̺ such

that

(7.6)

∫

Ω

(m1,1
̺ )−1g′δ(w̺)κ̺̃∇w̺ · ∇w̺ 6 C.

It is to note here that the uniform bounds onG
(3)

̺ (Lemma 4.3), on Q̃2,̺ (Lemma 4.4)

and on ∇ξ
(1)
̺ (Prop. 5.2) are still valid since they were obtained independently of

the condition (2.19). Denote hδ(t) :=
∫ t

0

√
g′δ(s) ds. The function hδ is globally

bounded, and the inequality (7.6) shows that there is C̃ independent of ̺ such that

‖∇hδ(w̺)‖L2(Ω) 6 C̃. Therefore, hδ(w̺) → χ ∈ W 1,2(Ω) weakly. Moreover, using

Lemma 3.1 and Lemma 4.4, we can show that χ = hδ(w), where w = ξ(3) + Q̃1.

Using the lower semicontinuity of the norm, the latest result and (7.6) yield

(7.7)

∫

Ω

g′δ(w)|∇w|2 6 C̃.

Let p < 2. Then Hölder’s inequality and (7.7) imply that

(7.8)

∫

Ω

|∇w|p 6

( ∫

Ω

g′δ(w)|∇w|2
)p/2( ∫

Ω

|g′δ(w)|−p/(2−p)

)(2−p)/2

6 C̃2/p

( ∫

Ω

|1 + |w||p(2+δ)/(2−p)

)(2−p)/2

.

The main theorem of [4] implies, via arguments similar to Lemma A.1, that there is

q0 > 3 such that the weak solution to (P ) satisfies u ∈ W 1,q0(Ω). This yields ξ(3) ∈

Lq0(Ω). Thanks to Lemma 4.4, Q̃1 ∈ L6(Ω). Therefore, w ∈ Ls(Ω), s = min{q0, 6}.

If p < 2s/(s+ 2), then there is δ > 0 such that the right-hand side of (7.8) is finite,

which implies that ∇w ∈ Lp(Ω). We obtain that ξ(3) ∈ Ls(Ω) ∩W 1,p(Ω). Due to

Lemma 4.1, also ξ(2) ∈ Ls(Ω)∩W 1,p(Ω). Therefore, ∇u ∈ W 1,p(Ωi) for i = 1, 2. �
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8. Conclusion

In this paper we derived sufficient conditions under which the weak solution to

the transmission problem (P ) satisfies higher (W 2,2(Ωi), or the optimal W
1,∞(Ω))

regularity near the intersection of a C2 surface with the smooth outer boundary of

the domain. These sufficient conditions are essentially compatibility conditions that

involve the angle of contact of the two surfaces, the anisotropic coefficient matrix

κ, the type of the boundary condition and the boundary data. The compatibility

function of the problem fd defined in (2.12) plays an essential role (cf. Section 2.3

for the representation of fd in the case of a scalar coefficient κ).

The proof of the regularity results relies on one simple fact: according to its sign,

the quantity [fd] (= jump of fd at the intersection of the two surfaces S and Γ)

regularizes a certain component of the gradient. The function fd associated with the

Neumann problem regularizes the oblique component κnS · ∇u = ξ(3) (cf. Propo-

sition 5.4), the function fd associated with the Dirichlet problem regularizes the

conormal component T (2) · ∇u = ξ(2) (cf. Proposition 5.5) of the gradient.

According to this theory, the changes of sign of the quantity [fd] are critical. This

is also the topic of the representation conditions (2.20), (2.21), and (2.22) (see the

section 2.3) that impose a decay of the boundary data as [fd] approaches zero on the

curve Γ ∩ S.

It is obvious and easy to motivate that representation conditions of the type (2.20),

(2.21), and (2.22) at the contact line are necessary for every higher regularity of u

that implies the existence of traces for∇u on manifolds. In the context of our method,

we have not yet been able to discuss the question whether also (2.19) is necessary.

This will be the object of further investigations. Nevertheless, we could prove with

our method in Section 7 that a certain W 2,p regularity is preserved independently of

the latest compatibility condition.

Appendix A. An auxiliary regularity result

Lemma A.1. Let κ ∈ [C(Ωi)]
9 for i = 1, 2. Let F ∈ [Lq0(Ω)]3 with 3 < q0 6 3+δ

(δ = a positive constant defined in the paper [4]). Assume that u ∈W 1,2(Ω) satisfies

(A.1)

∫

Ω

κ∇u · ∇v =

∫

Ω

F · ∇v, ∀ v ∈ W 1,2(Ω).

Then u belongs to W 1,q0(Ω), and it satisfies the estimate

(A.2) ‖u‖W 1,q0(Ω) 6 c(‖F‖Lq0(Ω) + cS{‖F‖L2(Ω) + ‖∇u‖L2(Ω)}).
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The constant c depends on Ω, k0 and k1. The constant cS depends on the surface S

only upon its C1-norm, and on the matrices κi (i = 1, 2) upon their C-norm.

P r o o f. For simplicity, we only prove the regularity in a neighborhood D (D ⊂

R
3 open) of the curve Γ ∩ S, which is clearly the challenging point. For x0 ∈ Γ ∩ S

there are, due to the definition of C2 surfaces, a neighborhood U of x0 and a C
2-

diffeomorphism ϕ that maps U onto the unit cube Q1, and such that ϕ(x0) = 0,

ϕ(Γ ∩ U) = ]−1, 1[×{0} × ]−1, 1[ and ϕ(S ∩ U) = ]−1, 1[×]−1, 1[×{0}. Define

ψ := ϕ−1.

To attain the model configuration of the paper [4], consider for 0 < r < 1 a prism

Pr := △r × ]−r, r[⊂ Q1, where △r is an equilateral triangle with sidelength = r, and

with its base located in the line ]−1, 1[×{0}×{0}. Denote Γr := ∂Pr∩ ]−1, 1[×{0}×

]−1, 1[ and Σr := ∂Pr \ Γr. Due to the choice of Pr, ψ(Pr) ⊂ U for all r 6 1.

Transforming the formula (A.1), we obtain that

(A.3)

∫

Pr

µ∇ũ · ∇ṽ =

∫

Pr

F̃ · ∇ṽ, ∀ṽ ∈W 1,2
Σr

(Pr)

where ũ = u ◦ ψ, and µ is the piecewise Lipschitz continuous, symmetric, and uni-

formely positive definite matrix |detψ′|[ψ′]−1κ ◦ ψ[ψ′]−T , and F̃ is the vector field

|detψ′|[ψ′]−TF ◦ ψ.

Introduce in Pr the piecewise constant matrix µ
0 such that µ0

i := µi(0) for i = 1, 2.

If w ∈W 1,2
Σr

(Pr) satisfies

(A.4)

∫

Pr

µ0∇w · ∇ṽ =

∫

Pr

F̃ · ∇ṽ, ∀ṽ ∈ W 1,2
Σr

(Pr),

Theorem 1.2 in [4] implies that there is a constant c0 = c0(µ
0) such that

(A.5) ‖w‖W 1,q0 (Pr) 6 c0‖F̃‖Lq0(Pr).

(The independence of c0 of r is easy to check: use the transformation Ψr(x) := rx

from the unit prism P1 onto Pr, and apply on P1 Theorem 1.2 of [4]).

It has been shown for instance in [2] that the Banach perturbation argument

implies the existence of a positive r0 = r0(µ) such that for all r 6 r0 and for ũ

satisfying (A.3)

‖∇ũ‖W 1,q0 (Pr) 6
c0

1 − c0f(r)

(
‖F‖Lq0(Pr) +

1

r
{‖F̃‖L2(Pr) + ‖∇ũ‖L2(Pr)}

)
,

where f(r) := ‖µ− µ0‖L∞(Pr).

The minimal necessary size of r depends only on the surfaces S,Γ and on the

uniform continuity of the matrices κi, so that a finite covering of a neighborhood of

the curve Γ ∩ S is possible. �
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Appendix B. Auxiliary propositions concerning trace spaces

We first note a useful elementary property of the spaces W 1/q′,q(Γ).

Lemma B.1. Let 1 6 q 6 ∞ be arbitrary. If u ∈ W 1/q′,q(Γ) and g ∈ C0,1(Γ),

then gu belongs to W 1/q′,q(Γ), and there is a constant c = c(q,Γ) such that

‖gu‖W 1/q′,q(Γ) 6 cq‖g‖C0,1(Γ)‖u‖W 1/q′,q(Γ).

P r o o f. For q = ∞ the claim is obvious. Otherwise, the triangle inequality

implies that

‖gu‖q

W 1/q′,q(Γ)
=

∫

Γ

∫

Γ

|u(x)g(x) − u(y)g(y)|q

|x− y|2+q/q′
dy dx

6

∫

Γ

|u(x)|q
( ∫

Γ

|g(x) − g(y)|q

|x− y|2+q/q′
dy

)
dx+

∫

Γ

|g(x)|q
( ∫

Γ

|u(x) − u(y)|q

|x− y|2+q/q′
dy

)
dx.

Define c̃q := sup
x∈Γ

(
∫
Γ |x− y|−1 dy)1/q. Due to Lipschitz continuity of g, it follows that

‖gu‖W 1/q′,q(Γ) 6 c̃q‖∇g‖L∞(Γ)‖u‖Lq(Γ) + ‖g‖L∞(Γ)‖u‖W 1/q′,q(Γ),

and (B.1) follows easily. �

The following lemma states basic properties of the spaces V q(Γ), and of the oper-

ators γ+ and γ− (cf. (2.13)).

Lemma B.2. Let µ ∈ L∞(Ω) be piecewise Lipschitz continuous, that is, µ :=

µi ∈ C0,1(Ωi) for i = 1, 2. Then:

(1) The mapping u 7→ µu is continuous from V q(Γ) into W 1/q′,q(Γ) for all 1 6 q 6

∞.

(2) Define d(x) := dist(x,Γ∩S) for x ∈ Γ. For 1 6 q <∞, a function u ∈W 1/q′,q(Γ)

belongs to V q(Γ) if, and only if, ‖u/d1/q′

‖Lq(Γ1) <∞.

P r o o f. (1): On Γ, one has µu = µ1γ
−(u)+µ2γ

+(u). Due to Lemma (B.1) and

the triangle inequality, it follows that

(B.1) ‖µu‖W 1/q′,q(Γ) 6 ‖µ1γ
−(u)‖W 1/q′,q(Γ) + ‖µ2(u− γ−(u))‖W 1/q′,q(Γ)

6 c(‖µ1‖W 1,∞(Γ) + ‖µ2‖W 1,∞(Γ))‖u‖V q(Γ).
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(2): The definition of γ− implies that

‖γ−(u)‖q

W 1/q′,q(Γ)
=

∫

Γ1

∫

Γ1

|u(x) − u(y)|q

|x− y|2+q/q′
dxdy + 2

∫

Γ1

|u(x)|q d̄Γ1
(x)q/q′

dx,

d̄Γ1
(x) :=

( ∫

Γ2

|x− y|−(2+q/q′) dy

)q′/q

, x ∈ Γ1.

There are constants c1, c2 such that c1d
−1(x) 6 d̄Γ1

(x) 6 c2d
−1(x) on Γ1, proving

the claim. �

R em a r k B.3. The elements of the space V q(Γ) satisfy a critical decay property

u/d1/q′

∈ Lq(Γ1) (cf. [10], Cor. 5.1). In the case q = 2, it is possible to relate the

space V 2(Γ) to the space W
1/2,2
00 .

In the following lemma, we note a density property of the space V q
α (Γ) (cf. (6.4)).

Lemma B.4. Assume that u ∈ V 2
α (Γ). Then there is a sequence {vk}k∈N ⊂

C∞(Ω) ∩ V 2
α (Γ) such that vk → u in V 2

α (Γ).

P r o o f. We first show some preliminaries. With the abbreviation µ := fd(α,A),

the definition of V 2
α implies that

‖u‖V 2
α (Γ) = ‖u‖W 1/2,2(Γ) + ‖µu‖W 1/2,2(Γ),

and since µu = µ1γ
−(u) + µ2γ

+(u), it follows that

(B.2) ‖u‖V 2
α(Γ) 6 ‖u‖W 1/2,2(Γ) + ‖µ1γ

−(u)‖W 1/2,2(Γ) + ‖µ2γ
+(u)‖W 1/2,2(Γ).

Lemma B.2, (2) and Lemma B.1 yield

‖µ1γ
−(u)‖W 1/2,2(Γ) 6 ‖µ1u‖W 1/2,2(Γ1) + ‖µ1u/d

1/2‖L2(Γ1)

6 c‖µ1‖C0,1(Γ)‖u‖W 1/2,2(Γ) + ‖µ1u/d
1/2‖L2(Γ1).

By similar arguments, it follows from (B.2) that

(B.3) ‖u‖V 2
α(Γ) 6 c1(‖u‖W 1/2,2(Γ) + ‖µ1u/d

1/2‖L2(Γ1) + ‖µ2u/d
1/2‖L2(Γ2)).

To start the proof of the approximation property, consider first the truncation

Tk(u) := sign(u)min{|u|, k}, at level k ∈ N. Due to the dominated convergence,

note that

‖µ1(Tk(u) − u)/d1/2‖2
L2(Γ1)

=

∫

{x∈Γ: |u(x)|>k}

µ2
1u

2

d
→ 0.
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Since it is well-known that Tk(u) → u in W 1,2(Ω), or in W 1/2,2(Γ), the inequality

(B.3) shows that Tk(u) → u in V 2
α (Γ) as k → ∞. Therefore, there is no loss of

generality in assuming u ∈ V 2
α (Γ) ∩ L∞(Γ).

Since µ ∈ L∞(Γ), (B.3) implies immediately that

(B.4) ‖u‖V 2
α(Γ) 6 c2‖u‖V 2(Γ), V

2(Γ) ⊆ V 2
α (Γ).

In the second step, we prove that V 2(Γ) is dense in V 2
α (Γ).

For k ∈ N, we choose a Lipschitz continuous function ψk ∈ C0,1(Ω) such that

ψk(x)





= 1 if dist(x,Γ ∩ S) > 1/k,

∈ [0, 1] if 1/2k 6 dist(x,Γ ∩ S) 6 1/k,

= 0 if dist(x,Γ ∩ S) < 1/2k,

|∇ψk| 6 k, supp(∇ψk) ⊆ {x ∈ Ω: dist(x,Γ ∩ S) 6 1/k}.(B.5)

Then the sequence {ψku} is uniformly bounded in W
1,2(Ω) and in W 1/2,2(Γ), since

‖u∇ψk‖L2(Ω) 6 ‖u‖L∞(Ω)kmeas(supp(∇ψk))1/2 6 C.

Since also ψk|u| 6 |u| on Γ, the inequality (B.3) shows that the sequence {ψku} is

uniformly bounded in V 2
α (Γ) as well. Due to the Hilbert space structure of V 2

α (Γ),

ψku ⇀ u in V 2
α (Γ) for a subsequence.

Weak and strong closures coincide for convex sets (an argument sometimes called

Mazur’s Lemma), and we can extract a sequence of convex combinations of ψku that

strongly converges to u in V 2
α .

In the third step, we show that C∞(Ω) ∩ V 2(Γ) is dense in V 2(Γ). If ũ ∈ V 2(Γ),

then the extension by zero to S (same notation) satisfies ũ ∈ W 1/2,2(∂Ωi) for i = 1, 2.

Therefore, via extension into Ω with the trace theorem, there is a sequence {ζk} ⊂

C∞
c (Ω\S) such that ζk → ũ in W 1,2(Ωi). Thus, by the argument of Lemma B.2, (2)

we have

‖γ−(ζk − ũ)‖W 1/2,2(Γ) = ‖ζk − ũ‖W 1/2,2(∂Ω1) → 0,

establishing the density in V 2.

For ε > 0, thanks to the first and second steps of this proof there is a ũε ∈ V 2(Γ),

such that ‖u − ũε‖V 2
α (Γ) 6 ε. Due to the third step, there is ζε ∈ C∞(Ω) ∩ V 2(Γ)

such that ‖ζε − ũε‖V 2(Γ) 6 ε. It follows from (B.4) that

‖u− ζε‖V 2
α (Γ) 6 ‖u− ũε‖V 2

α (Γ) + ‖ζε − ũε‖V 2
α (Γ) 6 (1 + c2)ε,

proving the approximation property. �
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Lemma B.5. Let µ̺ := L̺(µ) denote the approximation (3.2) of the coefficient µ.

Assume that u ∈ V 2(Γ). Then µ̺u→ µu in W 1/2,2(Γ).

P r o o f. For x ∈ Γ, define g̺(x) := µ̺(x) − µ(x). Due to Lemma B.2, (2), it is

clear that g̺u ∈ W 1/2,2(Γ). Denote Γ̺ := {x ∈ Γ: dist(x, S) 6 ̺}. Then g̺(x) = 0

for all x ∈ Γ \ Γ̺. Therefore, we have

‖g̺u‖
2
W 1/2,2(Γ) = 2

∫

Γ\Γ̺

∫

Γ̺

u2(x)g2
̺(x)

|x− y|2
dy dx

+

∫

Γ̺

∫

Γ̺

|(ug̺)(x) − (ug̺)(y)|
2

|x− y|3
dy dx.

By assumption, u2d̄Γ1
∈ L1(Γ) (cf. Lemma B.2), and therefore

∫

Γ\Γ̺

∫

Γ̺

u2(x)g2
̺(x)

|x− y|3
dy dx 6

∫

Γ\Γ̺

u2g2
̺d̄Γ1

→ 0,

by the dominated convergence theorem. On the other hand,

∫

Γ̺

∫

Γ̺

|(ug̺)(x) − (ug̺)(y)|
2

|x− y|3
dy dx 6

∫

Γ̺

|u(x)|2
( ∫

Γ̺

|g̺(x) − g̺(y)|
2

|x− y|3
dy

)
dx

+

∫

Γ̺

|g̺(x)|
2

( ∫

Γ̺

|u(x) − u(y)|2

|x− y|3
dy

)
dx.

We estimate |g̺(x) − g̺(y)|
2 6 4‖µ‖2

L∞(Ω) and obtain that

∫

Γ̺

|u(x)|2
(∫

Γ̺

|g̺(x) − g̺(y)|
2

|x− y|3
dy

)
dx 6 4‖µ‖2

L∞(Ω)

∫

Γ̺

u2d̄Γ1
→ 0,

due to the absolute continuity of the integral. On the other hand, denoting f(x) :=∫
Γ |u(x) − u(y)|2/|x− y|3 dy ∈ L1(Γ), we have the majoration

∫

Γ̺

|g̺(x)|
2

( ∫

Γ̺

|u(x) − u(y)|2

|x− y|3
dy

)
dx 6

∫

Γ̺

|g̺(x)|
2f(x) dx→ 0.

�
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Appendix C. Some useful properties

Lemma C.1. Let 1 6 q 6 ∞ be arbitrary, let g ∈ W 1,q(Ω), and let τ ∈

{τ (1), τ (2)} where τ (i) is defined by (2.4). For v ∈W 2,q′

(Ω),
∫

Γ

g(τ · ∇v) =

∫

Ω

curl(g(τ × nΓ)) · ∇v,(C.1)

∣∣∣∣
∫

Γ

g(τ · ∇v)

∣∣∣∣ 6 (g0‖g‖Lq(Ω) + ‖∇g‖Lq(Ω))‖∇v‖Lq′ (Ω).(C.2)

P r o o f. The representation (C.1) follows from integration by parts. The esti-

mate (C.2) is obvious due to Hölder’s inequality. �

Lemma C.2. For all u ∈ W 1,2(Ω), we have the estimate

(C.3) ‖u‖2
L2(Γ) 6 c0‖∇u‖L2(Ω)‖u‖L2(Ω).

P r o o f. The inequality (C.3) is proved in [6], Chapter 2, Paragraph 2. �

The proof of the following Lemma follows from elementary vector identities.

Lemma C.3. Let T (1), T (2) be given by (2.5), and let τ (1), τ (2) be given by (2.4).

Then we have on Γ

T (1) · τ (1) = 1, T (1) · τ (2) = 0, T (1) · nΓ = 0,(C.4)

T (2) · τ (1) = 0, T (2) · τ (2) = cosα, T (2) · nΓ = sinα,(C.5)

nS · τ (1) = 0, nS · τ (2) = − sinα, nS · nΓ = cosα.(C.6)

Lemma C.4. Let q0 > 3 be an arbitrary real number, and let m0 ∈ N. For all

m ∈ N such that m > m0, let u ∈ W 1,2(Ω) satisfy

(C.7)

∫

Ω

|∇(u −m)+|2 6 K‖∇(u−m)+‖
L

q′
0(Ω)

.

Then there is a consant c depending on Ω such that sup
Ω
u 6 m0 + cK. Under the

same conditions, let u satisfy

(C.8)

∫

Ω

|∇(u +m)−|2 6 K‖∇(u+m)−‖
L

q′
0(Ω)

.

Then inf
Ω
u > −m0 − cK with a constant c depending on Ω.

P r o o f. Lemma C.4 follows from a (nowadays classical) lemma by G. Stampac-

chia [16]. Supplements to the original proof are to be found, for instance, in [17],

Chapter 2, Section 2.3. Similar results were obtained in [6], Chapter 3, Paragraph 13.

�

223



References

[1] C.Bacuta, A. L.Mazzucato, V.Nistor, L. Zikatanov: Interface and mixed boundary
value problems on n-dimensional polyhedral domains. Doc. Math., J. DMV 15 (2010),
687–745. zbl zbl

[2] J.Elschner, J.Rehberg, G. Schmidt: Optimal regularity for elliptic transmission prob-
lems including C

1 interfaces. Interfaces Free Bound. 9 (2007), 233–252. zbl zbl
[3] D.Gilbarg, N. S.Trudinger: Elliptic Partial Differential Equations of Second Order.
Reprint of the 1998 ed. Classics in Mathematics. Springer, Berlin, 2001. zbl zbl

[4] R.Haller-Dintelmann, H.-C.Kaiser, J. Rehberg: Elliptic model problems including
mixed boundary conditions and material heterogeneities. J. Math. Pures Appl. (9) 89
(2008), 25–48. zbl zbl

[5] A.Kufner, O. John, S. Fučík: Function Spaces. Academia, Praha, 1977. zbl zbl
[6] O.A. Ladyzhenskaya, N.N.Ural’tseva: Linear and Quasilinear Elliptic Equations. Math-
ematics in Science and Engeneering 46. Academic Press. New York, 1968. zbl zbl

[7] O.A. Ladyzhenskaya, V.Ya. Rivkind, N.N.Ural’tseva: The classical solvability of diffrac-
tion problems. Tr. Mat. Inst. Steklova 92 (1966), 116–146. (In Russian.) zbl

[8] O.A. Ladyzhenskaya, V.A. Solonnikov: Solutions of some non-stationary problems of
magnetohydrodynamics for a viscous incompressible fluid. Tr. Mat. Inst. Steklova 59
(1960), 115–173. (In Russian.)

[9] Y.Y. Li, M.Vogelius: Gradient estimates for solutions to divergence form elliptic equa-
tions with discontinuous coefficients. Arch. Ration. Mech. Anal. 153 (2000), 91–151. zbl zbl
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