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Institute of Mathematics of the Academy of Sciences of the Czech Republic
Žitná 25, CZ-115 67 Praha 1, Czech Republic

Abstract

We propose a mixed finite volume - finite element numerical method for solving the full
Navier-Stokes-Fourier system describing the motion of a compressible, viscous, and heat con-
ducting fluid. The physical domain occupied by the fluid has smooth boundary and it is approx-
imated by a family of polyhedral numerical domains. Convergence and stability of the numerical
scheme is studied. The numerical solutions are shown to converge, up to a subsequence, to a
weak solution of the problem posed on the limit domain.
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1 Introduction

Numerical methods based on finite elements approximation use a mesh over the physical domain
Ω. If the boundary of the latter is curved, meshes built up by means of polygonal elements can
only approximate the kinematic boundary ∂Ω. On the other hand, rigorous error estimates of
the numerical methods usually require the exact solution of the problem to be smooth. Smooth
solutions, however, can exist only on regular physical domains. It is therefore of interest to study the
convergence of a numerical scheme in the situation when a family of numerical polyhedral domains
Ωh approaches, in a certain sense, the limit physical domain Ω. To avoid technicalities and since we
are primarily interested in smooth solutions of the problem, only bounded domains with a sufficiently
smooth boundary ∂Ω ∈ C1 will be considered although the principal results of this paper can be
easily extended to less regular geometries, say ∂Ω Lipschitz.

2



1.1 Navier-Stokes-Fourier system

The motion of a compressible, viscous, and heat conducting fluid in the framework of continuum
mechanics is characterized by three basic macroscopic (observable) quantities: The mass density
% = %(t, x), the absolute temperature ϑ = ϑ(t, x), and the velocity field u = u(t, x), depending on
the time t ∈ (0, T ) and the reference (Eulerian) spatial position x ∈ Ω. The time evolution of the
fluid is governed by the Navier-Stokes-Fourier system of equations:

∂t%+ divx(%u) = 0, (1.1)

∂t(%u) + divx(%u⊗ u) +∇xp(%, ϑ) = divxS(∇xu), (1.2)

cv [∂t(%ϑ) + divx(%ϑu)] + divxq(ϑ,∇xϑ) = S(∇xu) : ∇xu− ϑ
∂p(%, ϑ)

∂ϑ
divxu, (1.3)

where p = p(%, ϑ) denotes the pressure, S(∇xu) is the viscous stress tensor, cv the specific heat at
constant volume, and q(ϑ,∇xϑ) the heat flux, see Gallavotti [11]. For the sake of simplicity, the
effect of external mechanical and heat sources is omitted in (1.2) and (1.3), respectively.

Furthermore, we suppose the fluid is Newtonian (linearly viscous), with the tensor S determined
by Newton’s law

S(∇xu) = µ
(
∇xu +∇t

xu−
2

3
divxuI

)
+ ηdivxuI, µ > 0, η ≥ 0, (1.4)

with constant viscosity coefficients µ and η. Similarly, the heat flux is given by Fourier’s law

q = −κ(ϑ)∇xϑ = −∇xK(ϑ), K(ϑ) =
∫ ϑ

0
κ(z) dz, (1.5)

where, in contrast with (1.4), the heat conductivity coefficient κ is a continuously differentiable
function of the temperature,

κ = κ(ϑ), κ(1 + ϑ2) ≤ κ(ϑ) ≤ κ(1 + ϑ2), κ > 0. (1.6)

Finally, we assume that the specific heat at constant volume cv > 0 is constant, and the pressure
p = p(%, ϑ) satisfies
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p(%, ϑ) = a%γ + b%+ %ϑ, a, b > 0, γ > 3. (1.7)

Remark 1.1 The specific form of the constitutive relations (1.5 – 1.7) is inspired by similar assump-
tions introduced in [8]. These hypotheses may be seen as the simplest possible that are still tractable
by the available analytical methods. In particular, the problem (1.1 – 1.7), supplemented with suitable
boundary conditions, admits a global-in-time weak solution for any finite energy initial data, see [8,
Chapter 7, Theorem 7.1]. In the context of the existence theory developed in [8], the assumption
γ > 3 is optimal.

The system of equations (1.1 – 1.3) is supplemented with the no-slip boundary condition

u|∂Ω = 0, (1.8)

and the no-flux boundary condition

q(ϑ,∇xϑ) · n|∂Ω = −κ(ϑ)∇xϑ · n|∂Ω = 0, (1.9)

where the symbol n stands for the outer normal vector to ∂Ω.
The initial state of the fluid is given by

%(0, ·) = %0, ϑ(0, ·) = ϑ0, u(0, ·) = u0, (1.10)

where, in accordance with their physical interpretation, the functions %0, ϑ0 are strictly positive in
Ω.

1.2 Numerical analysis

We propose a modification of the numerical method for the Navier-Stokes-Fourier system developed
in [10] adapted to the physical domain with a smooth boundary, where the target domain Ω is
approximated by a family of polyhedral (numerical) domains {Ωh}h>0. A similar problem has been
treated in [9] in the context of barotropic fluids, where the original numerical method of Karlsen and
Karper [14], [15] has been adapted to the smooth domain setting. In contrast with [9], the presence
of the heat equation (1.3), together with the Neumann type boundary condition (1.9), create new
difficulties addressed in the present paper.

Motivated by Karper [15], we use a mixed finite-element finite-volume method, where the con-
vective terms are approximated by the standard upwind operator, while the diffusive term in the
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momentum equation is handled by means of the discontinuous Galerkin method based on the non-
conformal finite elements of Cruzeix-Raviart type. Accordingly, we consider an unfitted tetrahedral
mesh generating a family of numerical domains {Ωh}h>0 such that

Ω ⊂ Ω ⊂ Ωh ⊂ Uh[Ω] ≡
{
x ∈ R3

∣∣∣ dist[x,Ω] < h
}
, (1.11)

see Section 2.2.1 for details.
Since the diffusion coefficient in the heat equation (1.3) is nonlinear, it seems more convenient to

use the finite-volume scheme for the discretization of the heat flux as well. In order to prove stability
and, more importantly, consistency of the resulting numerical method, the underlying mesh should
be shape regular in the sense of Eymard et al. [5] and satisfy (1.11) at the same time. Examples of
tetrahedral meshes complying with this stipulation were constructed in [13].

The paper is organized as follows. In Section 2, we introduce the the concept of weak solution
to the Navier-Stokes-Fourier system, together with the necessary numerical framework including the
basic notation and properties of the underlying function spaces. In Section 3, we define the numerical
method and state our main result concerning convergence towards a weak solution of the Navier-
Stokes-Fourier system. Having exhausted the preliminary material, we report certain relations and
estimates already obtained in [10]. Section 4 deals with numerical analogues of the renormalized
version of the continuity and thermal energy balance as well as discrete version of the total energy
balance. Section 5 addresses the issue of stability of the scheme, recalling the uniform bounds
necessary for the limit passage. The material in these two sections is presented without proofs, with
the references to the relevant parts of [10]. Section 6 is devoted to the problem of consistency and
convergence of the scheme mimicking certain steps of the existence theory developed in [8, Chapter
7]. We conclude the paper in Section 7 by showing unconditional convergence of the scheme on
condition that the numerical solutions remain bounded independently of the step parameter h.

2 Preliminaries, weak solutions, numerical framework

In this section, we collect the preliminary material concerning solvability of the Navier-Stokes-Fourier
system and the apparatus of numerical analysis used in the paper.

2.1 Weak solutions

We use the concept of weak formulation of the problem (1.1 – 1.10) introduced in [8, Chapter 4]:

Definition 2.1 A triple of functions [%, ϑ,u] is a weak solution to the problem (1.1 – 1.10) in the
space-time cylinder (0, T )× Ω if:

% ∈ L∞(0, T ;Lγ(Ω)), ϑ ∈ L2(0, T ;L6(Ω)), u ∈ L2(0, T ;W 1,2
0 (Ω;R3)), (2.1)
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%u ∈ L∞(0, T ;L
2γ

γ+1 (Ω;R3)), %ϑ ∈ L∞(0, T ;L1(Ω)); (2.2)

% ≥ 0, ϑ > 0 a.a. in (0, T )× Ω; (2.3)∫ T

0

∫
Ω

[
%∂tϕ+ %u · ∇xϕ

]
dx dt = −

∫
Ω
%0ϕ(0, ·) dx (2.4)

for any ϕ ∈ C∞
c ([0, T )× Ω);∫ T

0

∫
Ω

[
%u · ∂tϕ+ %u⊗ u : ∇xϕ+ p(%, ϑ)divxϕ

]
dx dt (2.5)

=
∫ T

0

∫
Ω

[
µ∇xu : ∇xϕ+ λdivxu divxϕ

]
dx dt−

∫
Ω
%0u0 · ϕ(0, ·) dx, λ =

1

3
µ+ η > 0,

for any ϕ ∈ C∞
c ([0, T )× Ω;R3);∫ T

0

∫
Ω

[
cv
(
%ϑ∂tϕ+ %ϑu · ∇xϕ

)
−K(ϑ)∆ϕ

]
dx dt (2.6)

+
∫ T

0

∫
Ω

[
µ|∇xu|2 + λ|divxu|2

]
ϕ dx dt−

∫ T

0

∫
Ω
%ϑdivxuϕ dx dt ≤

∫
Ω
cv%0ϑ0ϕ(0, ·) dx

for any ϕ ∈ C∞
c ([0, T )× Ω), ϕ ≥ 0, ∇xϕ · n|∂Ω = 0, where

%K(ϑ) = %K(ϑ); (2.7)

the energy inequality ∫
Ω

[
1

2
%|u|2 + cv%ϑ+

a

γ − 1
%γ + b% log(%)

]
(τ, ·) dx (2.8)

≤
∫
Ω

[
1

2
%0|u0|2 + cv%0ϑ0 +

a

γ − 1
%γ

0 + b%0 log(%0)

]
dx

holds for a.a. τ ∈ (0, T ).

The existence of weak solutions to the Navier-Stokes-Fourier system on an arbitrary time interval
(0, T ) was proved in [8, Chapter 7, Theorem 7.1]. The interested reader may consult [8] for a
thorough discussion concerning the inequalities in (2.6), (2.8) as well as the interpretation of (2.7).
Further properties of weak solutions, and, in particular, the problem of weak-strong uniqueness and
conditional regularity are discussed in Section 7.
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2.2 Mesh, finite elements

In what follows, we make systematically use of the following notation:

a
<∼ b if a ≤ cb, c > 0 a constant, a ≈ b if a

<∼ b and b
<∼ a.

Here, “constant” means a generic quantity independent of the size of the mesh and the time step
used in the numerical scheme as well as other parameters as the case may be.

2.2.1 Mesh

Our numerical scheme is constructed over a family of polyhedral domains Ωh approximating Ω in the
sense specified in (1.11). Furthermore, we suppose that each Ωh admits a tetrahedral mesh consisting
of a set of compact elements E ∈ Eh, a set of faces Γ ∈ Γh, along with the associated normals n,
and a family of control points xE ∈ int[E], enjoying the following properties, cf. Eymard et al. [5,
Chapter 3]:

1. The intersection E ∩ F of two elements E,F ∈ Eh, E 6= F is either empty or their common
face, edge, or vertex.

2. For any E ∈ Eh, diam[E] ≈ h, r[E] ≈ h, where r denotes the radius of the largest sphere
contained in E.

3. If E and F are two neighboring elements sharing a common face Γ, then the segment [xE, xF ]
is perpendicular to Γ. We denote

dΓ = |xE − xF | > 0.

Remark 2.1 If the mesh is well-centered (cf. VanderZee et al. [20], [21]), the point xE can be
taken the center of the circumsphere of the element E. A well centered mesh satisfying (1.11)
for a given domain Ω was constructed in [13].

Remark 2.2 The hypothesis xE ∈ int[E] can be relaxed by assuming the so-called strict De-
launay condition, see Eymard et al. [5].

Remark 2.3 Since our method is based on finite elements of first order, the expected rate of
convergence should be the same even if the polygonal approximation of the physical domain is
replaced by more sophisticated “curved” elements, cf. Lenoir [16].
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Each face Γ ∈ Γh is associated with a normal vector n. We shall write ΓE whenever a face
ΓE ⊂ ∂E is considered as a part of the boundary of the element E. In such a case, the normal vector
to ΓE is always the outer normal vector with respect to E. Moreover, for any function g continuous
on each element E, we set

gout|Γ = lim
δ→0+

g(·+ δn), gin|Γ = lim
δ→0+

g(· − δn), [[g]]Γ = gout − gin, {g}Γ =
1

2

(
gout + gin

)
. (2.9)

For ΓE ⊂ ∂E we simply write g for gin. We also omit the subscript Γ if no confusion arises.
Finally, we distinguish two families of faces,

Γh,ext =
{
Γ ∈ Γh

∣∣∣ Γ ⊂ ∂Ωh

}
, Γh,int = Γh \ Γh,ext.

2.2.2 Piecewise linear finite elements

We start by introducing the space of piecewise constant functions

Qh(Ωh) =
{
v ∈ L2(Ωh)

∣∣∣ v|E = aE ∈ R for any E ∈ Eh

}
,

along with the associated projection

ΠQ
h : L1(Ωh) → Qh(Ωh), ΠQ

h [v] ≡ v̂, ΠQ
h [v]|E =

1

|E|

∫
E
v dx for any E ∈ Eh.

Recalling Poincaré’s inequality

∫
E

∣∣∣∣∣v − 1

|E|

∫
E
v dx

∣∣∣∣∣
q

dx
<∼ hq

∫
E
|∇xv|q dx,

we get ∥∥∥v − ΠQ
h [v]

∥∥∥
Lq(Ωh)

<∼ h‖∇xv‖Lq(Ωh;R3), for any v ∈ W 1,q(Ωh), 1 ≤ q ≤ ∞. (2.10)

Remark 2.4 There are other forms of Poincaré’s inequality that come handy in what follows:

∫
E

∣∣∣∣∣v − 1

|ΓE|

∫
ΓE

v dSx

∣∣∣∣∣
q

dx
<∼ hq

∫
E
|∇xv|q dx, for any ΓE ⊂ ∂E (2.11)

∫
ΓE

∣∣∣∣∣v − 1

|ΓE|

∫
ΓE

v dSx

∣∣∣∣∣
q

dSx
<∼ hq−1

∫
E
|∇xv|q dx, for any ΓE ⊂ ∂E, (2.12)

1 ≤ q <∞.
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In order to establish the consistency of the numerical approximation of the heat flux term in
(1.3), we shall need another projection

ΠB
h : C(Ωh) → Qh(Ωh), ΠB

v [v]|E = v(xE), E ∈ Eh.

Obviously,
‖v − ΠB

h [v]‖L∞(Ωh)
<∼ h‖∇xv‖L∞(Ωh;R3) for any Lipschitz v. (2.13)

Next, we introduce the Crouzeix-Raviart finite element spaces (see for instance Brezzi and Fortin
[1]):

Vh(Ωh) =
{
v ∈ L2(Ωh)

∣∣∣ v|E = affine function, E ∈ Eh,
∫
Γ
[[v]] dSx = 0 for any Γ ∈ Γh,int

}
,

(2.14)

Vh,0(Ωh) =
{
v ∈ Vh

∣∣∣ ∫
Γ
v dSx = 0 for any Γ ∈ Γh,ext

}
, (2.15)

and the projection

ΠV
h : W 1,q(Ωh) → Vh(Ωh),

∫
Γ
ΠV

h [v] dSx =
∫
Γ
v dSx for any Γ ∈ Γh.

For a differential operator D, we denote

Dhv|E = D(v|E) for any v differentiable on each element E ∈ Eh.

It is easy to check that∫
Ωh

divhΠ
V
h [u] w dx =

∫
Ωh

divhu w dx for any w ∈ Qh(Ωh), (2.16)

and ∫
Ω
∇hv · ∇hΠ

V
h [ϕ] dx =

∫
Ω
∇hv · ∇xϕ dx for all v ∈ Vh,0(Ω), ϕ ∈ W 1,2

0 (Ω), (2.17)

see Karper [15, Lemma 2.11]. Moreover, as a direct consequence of the shape regularity of the mesh,
we record the error estimates∥∥∥v − ΠV

h [v]
∥∥∥

Lq(Ωh)
+ h

∥∥∥∇h

(
v − ΠV

h [v]
)∥∥∥

Lq(Ωh;R3)

<∼ hm ‖∇mv‖Lq(Ωh;R3m ) , m = 1, 2, 1 < q <∞,

(2.18)
for any v ∈ Wm,q(Ωh), see Crouzeix and Raviart [4], Karper [15, Lemma 2.7].
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2.2.3 Upwind

We introduce the standard upwind operator Up[r,u] defined on a face Γ as

Up[r,u] = rin[ũ · n]+ + rout[ũ · n]−, (2.19)

where we have denoted

[c]+ = max{c, 0}, [c]− = min{c, 0}, ṽ =
1

|Γ|

∫
Γ
v dSx.

Such a definition makes sense as soon as r ∈ Qh(Ωh), u ∈ Vh(Ωh;R
3) and Γ ∈ Γh,int.

After a bit tedious but straightforward manipulation carried over in full detail in [10, Section 2.4,
formula (2.17)], we deduce the formula∫

Ωh

ru · ∇xφ dx =
∑

Γ∈Γh,int

∫
Γ
Up[r,u][[F ]] dSx (2.20)

+
∑

E∈Eh

∑
ΓE⊂∂E

∫
ΓE

(F − φ) [[r]] [ũ · n]− dSx +
∑

E∈Eh

∑
ΓE⊂∂E

∫
ΓE

φr(u− ũ) · n dSx

+
∫
Ωh

(F − φ)rdivhu dx

for any r, F ∈ Qh(Ωh), u ∈ Vh,0(Ωh;R
3), φ ∈ C1(Ωh).

Finally, we recall Jensen’s inequality in the form∑
ΓE⊂∂E

∫
ΓE

|ṽ|q dSx
<∼

∑
ΓE⊂∂E

∫
ΓE

|v|q dSx, 1 ≤ q <∞ (2.21)

for any v ∈ C(E), E ∈ Eh, together with

∑
Γ∈Γh

∫
Γ
|v − ṽ|2 dSx

<∼ h
∫
Ωh

|∇hv|2 dx for any v ∈ Vh,0(Ωh;R
3) (2.22)

that follows directly from Poincarè’s inequality (2.11).

2.2.4 Lp − Lq estimates and traces

Since the mesh is shape regular, we can derive the following estimates by a scaling argument. First,
we have

‖v‖q
Lq(∂E)

<∼ 1

h

(
‖v‖q

Lq(E) + hq‖∇xv‖q
Lq(E;R3)

)
, 1 ≤ q <∞ for any v ∈ C1(E); (2.23)
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whence

‖w‖q
Lq(∂E)

<∼ 1

h
‖w‖q

Lq(E) for any 1 ≤ q <∞, w ∈ Pm, (2.24)

where Pm denotes the space of polynomials of order m.
Similarly, we obtain

‖w‖Lp(E)
<∼ h3( 1

p
− 1

q )‖w‖Lq(E) 1 ≤ q < p ≤ ∞, w ∈ Pm, (2.25)

and, by virtue of the inequality,(∑
ap

i

)1/p
≤
(∑

aq
i

)1/q
whenever p ≥ q,

we deduce

‖w‖Lp(Ωh) ≤ ch3( 1
p
− 1

q )‖w‖Lq(Ωh) 1 ≤ q < p ≤ ∞, for any w|E ∈ Pm(E), E ∈ Eh. (2.26)

There is an analogue of (2.25) and (2.26) for piecewise smooth functions of the time variable
t ∈ (0, T ) for the discretization of order ∆t. Specifically, we have

‖w‖Lp(∆t)
<∼ (∆t)(

1
p
− 1

q )‖w‖Lq(∆t) 1 ≤ q < p ≤ ∞, (2.27)

and, therefore

‖w‖Lp(0,T )
<∼ (∆t)(

1
p
− 1

q )‖w‖Lq(0,T ) 1 ≤ q < p ≤ ∞ (2.28)

for any w that is constant on any time segment [j∆t, (j + 1)∆t] contained in [0, T ].

2.2.5 Discrete Sobolev spaces

For v ∈ Qh(Ωh), let

‖v‖2
H1

Qh
(Ωh) =

∑
Γ∈Γh,int

∫
Γ

[[v]]2

h
dSx

be a discrete analogue of the Sobolev gradient norm. Similarly, we introduce

‖v‖2
H1

Vh
(Ωh) =

∫
Ω

(
|∇hv|2

)
dx for v ∈ Vh(Ωh).

Recall that ∑
Γ∈Γh,int

∫
Γ
[[v]]2 dSx

<∼ h‖v‖2
H1

Vh
(Ωh) for any v ∈ Vh(Ωh), (2.29)

see Gallouet et al. [12, Lemma 2.2].
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We report a discrete analogue of the standard Sobolev embedding relations:

‖v‖L6(Ωh)
<∼
(
‖v‖H1

Qh
(Ωh) + ‖v‖L2(Ωh)

)
, v ∈ Qh(Ωh), (2.30)

see Chenais-Hillairet, Droniou [2, Lemma 6.1], and

‖v‖L6(Ωh)
<∼ ‖v‖H1

Vh
(Ωh), v ∈ Vh,0(Ωh), (2.31)

see Gallouet et al. [12, Lemma 3.2].
Finally, let [v]δ = v∗ωδ denote the spatial regularization by a convolution with a family of smooth

kernels, specifically,

ωδ(y) =
1

δ3
ω
(
y

δ

)
, ω ∈ C∞

c ({x ∈ R3 | |x| < 1}), ω ≥ 0, ω(y) = ω(|y|),
∫

R3
ω(y) dy = 1.

We have ∫
{x∈Ωh | dist[x,∂Ωh]>δ}

|∇x[v]δ|2 dx
<∼ h

δ
‖v‖2

H1
Qh

(Ωh) for any v ∈ Qh(Ωh), (2.32)

and ∫
Ωh

|∇x[v]δ|2 dx
<∼ h

δ
‖v‖2

H1
Vh

(Ωh) for any v ∈ Vh,0(Ωh) (2.33)

provided 0 < δ ≤ h, see Christiansen et al. [3, Proposition 5.67]. Note that the functions from Vh,0

can be extended to be zero outside Ωh so that the regularization is well defined.

3 Numerical scheme, main result

The numerical scheme is formally the same as in [10], the only difference is that the numerical
domains Ωh depend on the discretization step h. For this reason, it is convenient the initial data %0,
ϑ0, u0 to be defined on the whole space R3, u0 vanishing outside Ω.

We set

%0
h = ΠQ

h [%0] ∈ Qh(Ωh), ϑ
0
h = ΠQ

h [ϑ0] ∈ Qh(Ωh), u0
h = ΠQ

h [u0] ∈ Qh(Ωh;R
3). (3.1)

We fix the time step ∆t ≈ h and introduce the discrete time derivative

Dtb
k
h =

bkh − bk−1
h

∆t
.

The numerical solutions [%k
h, ϑ

k
h,u

k
h]h>0, k = 1, 2, . . .,

%k
h, ϑ

k
h ∈ Qh(Ωh), uk

h ∈ Vh,0(Ωh;R
3)
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are defined successively by means of the numerical method:

Continuity method

∫
Ωh

Dt%
k
hφ dx−

∑
Γ∈Γh,int

∫
Γ
Up[%k

h,u
k
h] [[φ]] dSx + hα

∑
Γ∈Γh,int

∫
Γ
[[%k

h]][[φ]] dSx = 0 (3.2)

for all φ ∈ Qh(Ωh), with a parameter 0 < α < 1;
Momentum method

∫
Ωh

Dt(%
k
hû

k
h) · φ dx−

∑
Γ∈Γh,int

∫
Γ
Up[%k

hû
k
h,u

k
h] · [[φ̂]] dSx (3.3)

+
∫
Ωh

[
µ∇hu

k
h : ∇hφ+ λdivhu

k
hdivhφ

]
dx−

∫
Ωh

p(%k
h, ϑ

k
h)divhφ dx

+hα
∑

Γ∈Γh,int

∫
Γ
[[%k

h]]
{
ûk

h

}
· [[φ̂]] dSx = 0

for any φ ∈ Vh,0(Ωh;R
3);

Thermal energy method

cv

∫
Ωh

Dt(%
k
hϑ

k
h)φ dx− cv

∑
Γ∈Γh,int

∫
Γ
Up[%k

hϑ
k
h,u

k
h] [[φ]] dSx +

∑
Γ∈Γh,int

∫
Γ

1

dΓ

[[K(ϑk
h)]] [[φ]] dSx (3.4)

=
∫
Ωh

[
µ|∇hu

k
h|2 + λ|divhu

k
h|2
]
φ dx−

∫
Ωh

%k
hϑ

k
hdivhu

k
hφ dx

for any φ ∈ Qh(Ωh).

Remark 3.1 The terms proportional to hα are needed for technical reasons explained in detail in
[10, Section 7.3]. They represent numerical counterparts of the artificial viscosity regularization used
in [8, Chapter 7] and were introduced by Eymard et al. [6] to prove convergence of the momentum
method. Note that they can be “eliminated” from the scheme by using the “dissipative” upwind
operator introduced in [9].

Before stating our main result, it is convenient to extend the numerical solution to be defined for

13



any t ∈ R. To this end, we set

%h(t, ·) = %0
h, ϑh(t, ·) = ϑ0

h, uh(t, ·) = u0
h for t ≤ 0,

%h(t, ·) = %k
h, ϑh(t, ·) = ϑk

h, uh(t, ·) = uk
h for t ∈ [k∆t, (k + 1)∆t), k = 1, 2, . . . ,

and, accordingly, the discrete time derivative of a quantity vh is

Dtvh(t, ·) =
vh(t)− vh(t−∆t)

∆t
, t > 0.

The main result of the present paper reads as follows:

Theorem 3.1 Let Ω ⊂ R3 be a bounded domain of class C1 approximated by a family of polyhedral
domains {Ωh}h>0 in the sense specified in (1.11), where each Ωh admits a tetrahedral mesh satisfying
the hypotheses introduced in Section 2.2.1. Suppose that µ > 0, λ = µ/3 + η > 0, and that the
pressure p = p(%, ϑ) and the heat conductivity coefficient κ = κ(ϑ) comply with (1.6), (1.7). Let
[%h, ϑh,uh]h>0 be a family of numerical solutions resulting from the scheme (3.1 - 3.4), with

∆t ≈ h

such that
%h > 0, ϑh > 0 for all h > 0.

Then, at least for a suitable subsequence,

%h → % weakly-(*) in L∞(0, T ;Lγ(Ω)) and strongly in L1((0, T )× Ω),

ϑh → ϑ weakly in L2(0, T ;L6(Ω)),

uh → u weakly in L2(0, T ;L6(Ω;R3)), ∇huh → ∇xu weakly in L2((0, T )× Ω;R3×3),

where [%, ϑ,u] is a weak solution of the Navier-Stokes-Fourier system (1.1 – 1.10) in (0, T ) × Ω in
the sense of Definition 2.1.

The rest of the paper is basically devoted to the proof of Theorem 3.1. As many steps are
essentially the same as in [10] we omit technicalities and focus only on the necessary modifications
to accommodate the variable numerical domains.
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4 Renormalization

The proof of convergence of the numerical method (3.1 – 3.4) mimicks the principal steps of the
existence theory developed in [8] based, among other things, on suitable renormalization of both the
equation of continuity (1.1) and the heat equation (1.3). At the level of numerical solutions, we can
deduce the following (see [10, Sections 4.1, 4.2]):

1. Renormalized continuity method.

∫
Ωh

Dtb(%
k
h)φ dx−

∑
Γ∈Γh,int

∫
Γ
Up[b(%k

h),u
k
h] [[φ]] dSx +

∫
Ωh

φ
(
b′(%k

h)%
k
h − b(%k

h)
)

divhu
k
h dx (4.1)

= −
∫
Ωh

∆t

2
b′′(ξk

%,h)

(
%k

h − %k−1
h

∆t

)2

φ dx−hα
∑

Γ∈Γh,int

∫
Γ
φ b′′(ηk

%,h)[[%
k
h]]

2 dSx

−1

2

∑
Γ∈Γh,int

∫
Γ
φ b′′(ηk

%,h)[[%
k
h]]

2|ũk
h · n| dSx

for any φ ∈ Qh(Ωh), b ∈ C2(0,∞), where

ξk
%,h ∈ co{%k−1

h , %k
h} on each element E ∈ Eh, η

k
%,h, η

k
%,h ∈ co{%k

h, (%
k
h)

out} on each face Γ ∈ Γh,int.

2. Renormalized thermal energy method.

cv

∫
Ωh

Dt

(
%k

hχ(ϑk
h)
)
φ dx− cv

∑
Γ∈Γh,int

∫
Γ
Up(%k

hχ(ϑk
h),u

k
h) [[φ]] dSx (4.2)

+
∑

Γ∈Γh,int

∫
Γ

1

dΓ

[[K(ϑk
h)]] [[χ′(ϑk

h)φ]] dSx

=
∫
Ωh

(
µ|∇hu

k
h|2 + λ|divhu

k
h|2
)
χ′(ϑk

h)φ dx−
∫
Ωh

χ′(ϑk
h)%

k
hϑ

k
hdivhu

k
hφ dx

−cv
∆t

2

∫
Ωh

χ′′(ξk
ϑ,h)%

k−1
h

(
ϑk

h − ϑk−1
h

∆t

)2

φ dx

+
cv
2

∑
E∈Eh

∑
ΓE⊂∂E

∫
ΓE

φχ′′(ηk
ϑ,h)[[ϑ

k
h]]

2(%k
h)

out[ũk
h · n]− dSx

−hαcv
∑

Γ∈Γh,int

∫
Γ
[[%k

h]] [[
(
χ(ϑk

h)− χ′(ϑk
h)ϑ

k
k

)
φ]] dSx
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for any φ ∈ Qh(Ωh), χ ∈ C2(0,∞), with

ξk
ϑ,h ∈ co{ϑk−1

h , ϑk
h}, ηk

ϑ,h ∈ co{ϑk
h, (ϑ

k
h)

out}.

Finally, exactly as in [10, Section 4.3] we may use (4.1), (4.2) and the momentum method (3.3)
to deduce:

• Total energy balance.

Dt

∫
Ωh

[
1

2
%k

h|ûk
h|2 + cv%

k
hϑ

k
h +

a

γ − 1

(
%k

h

)γ
+ b%k

h log(%k
h)

]
dx (4.3)

+
∆t

2

∫
Ωh

A ∣∣∣∣∣%k
h − %k−1

h

∆t

∣∣∣∣∣
2

+ %k−1
h

∣∣∣∣∣ ûk
h − ûk−1

h

∆t

∣∣∣∣∣
2
 dx

−
∑

E∈Eh

∑
ΓE⊂∂E

∫
ΓE

(%k
h)

out[ũk
h · n]−

∣∣∣∣ûk
h −

(
ûk

h

)out
∣∣∣∣2

2
dSx

+
A

2

∑
Γ∈Γh,int

∫
Γ

(
hα + |ũk

h · n|
)

[[%k
h]]

2 dSx ≤ 0

with A = min
%>0

{
aγ%γ−2 +

b

%

}
> 0.

5 Stability

Similarly to [10, Section 5] we derive uniform bounds on the family of numerical solutions independent
of the step h.

5.1 Mass conservation and energy bounds

Taking φ ≡ 1 in the continuity method (3.2) we obtain∫
Ωh

%h(t, ·) dx =
∫
Ωh

%0
h dx ≈

∫
Ω
%0 dx for any h > 0, (5.1)

meaning the total mass is conserved by the scheme.
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The total energy balance (4.3) gives rise to

∫
Ωh

[
1

2
%h|ûh|2 + cv%hϑh +

a

γ − 1
(%h)

γ + b%h log(%h)

]
(τ, ·) dx (5.2)

≤
∫
Ωh

[
1

2
%h|ûh|2 + cv%hϑh +

a

γ − 1
(%h)

γ + b%h log(%h)

]
(τ, ·) dx

≤
∫
Ωh

[
1

2
%0

h|û0
h|2 + cv%

0
hϑ

0
h +

a

γ − 1

(
%0

h

)γ
+ b%0

h log(%0
h)

]
dx ≡ E0,h, E0,h

<∼ 1.

In particular, we deduce the uniform bounds:

supτ∈(0,T )‖
√
%hûh(τ, ·)‖L2(Ωh)

<∼ 1, (5.3)

supτ∈(0,T )‖%hϑh(τ, ·)‖L1(Ωh)
<∼ 1, (5.4)

supτ∈(0,T )‖%h[logϑh]
+(τ, ·)‖L1(Ωh)

<∼ 1, (5.5)

and
supτ∈(0,T )‖%h(τ, ·)‖Lγ(Ωh)

<∼ 1, (5.6)

independent of h→ 0.
We also record the bounds on the numerical dissipation:

∑
k≥0

∫
Ωh

[∣∣∣%k
h − %k−1

h

∣∣∣2 + %k−1
h

∣∣∣ûk
h − ûk−1

h

∣∣∣2] dx
<∼ 1, (5.7)

−
∑

E∈Eh

∑
ΓE⊂∂E

∫ T

0

∫
ΓE

(%h)
out[ũh · n]−

∣∣∣ûh − (ûh)
out
∣∣∣2 dSx dt

<∼ 1 (5.8)

and ∑
Γ∈Γh,int

∫ T

0

∫
Γ
(|ũh · n|+ hα) [[%h]]

2 dSx dt
<∼ 1. (5.9)

5.2 Entropy bounds

The bounds resulting from the dissipation mechanism encoded in (3.3), (3.4) are obtained by taking
χ = log, φ = 1 in the renormalized thermal energy method (4.2). Using the fact that∫

Ωh

%k
hdivhu

k
h dx ≤ −

∫
Ωh

Dt

(
%k

h log(%k
h)
)

dx (5.10)
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(cf. (4.1)), we arrive at

cv

∫
Ωh

Dt

(
%k

h log(ϑk
h)
)

dx−
∫
Ωh

Dt

(
%k

h log(%k
h)
)

dx ≥ (5.11)

−
∑

Γ∈Γh,int

∫
Γ

1

dΓ

[[K(ϑk
h)]] [[(ϑk

h)
−1]] dSx +

∫
Ωh

(
µ|∇hu

k
h|2 + λ|divhu

k
h|2
) 1

ϑk
h

dx

+
∆t

2
cv

∫
Ωh

(ξk
ϑ,h)

−2%k−1
h

(
ϑk

h − ϑk−1
h

∆t

)2

dx

−1

2
cv

∑
E∈Eh

∑
ΓE⊂∂E

∫
ΓE

(ηk
ϑ,h)

−2
(
ϑk

h −
(
ϑk

h

)out
)2 (

%k
h

)out
[ũk

h · n]− dSx

−hαcv
∑

Γ∈Γh,int

∫
Γ
[[%k

h]] [[log(ϑk
h)]] dSx,

where the parameters appearing in the numerical dissipation are the same as in (4.1), (4.2).
Now, exactly as in [10, Section 5], inequality (5.11), together with the bounds already established,

gives rise to the following estimates:

sup
τ∈(0,T )

‖%h log(ϑh)(τ, ·)‖L1(Ωh)
<∼ 1, (5.12)

∫ T

0

∫
Ωh

1

ϑh

|∇huh|2 dx dt
<∼ 1, (5.13)

∑
Γ∈Γh,int

∫ T

0

∫
Γ

[[ϑβ
h]]2

dΓ

dSx dt
<∼ 1, 0 ≤ β ≤ 1,

∑
Γ∈Γh,int

∫ T

0

∫
Γ

[[log(ϑh)]]
2

dΓ

dSx dt
<∼ 1, (5.14)

and
‖ϑh‖L2(0,T ;L6(Ωh)) + ‖ log(ϑh)‖L2(0,T ;L6(Ωh))

<∼ 1. (5.15)

We have also bounds on the numerical dissipation:

∑
k≥0

∫
Ωh

(ξk
ϑ,h)

−2%k−1
h

(
ϑk

h − ϑk−1
h

)2
dx

<∼ 1, ξk
ϑ,h ∈ co{ϑk−1

h , ϑk
h}, (5.16)

−
∑

E∈Eh

∑
ΓE⊂∂E

∫ T

0

∫
ΓE

(ηϑ,h)
−2[[ϑh]]

2 (%h)
out [ũh · n]− dSx dt

<∼ 1, ηϑ,h ∈ co{ϑh, ϑ
out
h }. (5.17)
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5.3 Temperature estimates

Revisiting the thermal energy balance (4.2) for χ(ϑk
h) = (ϑk

h)
β, 0 < β < 1, and with the test function

φ = 1, we obtain

−β
∑

Γ∈Γh,int

∫
Γ

1

dΓ

[[K(ϑh)]] [[(ϑh)
β−1]] dSx + βµ

∫
Ωh

ϑβ−1
h |∇huh|2 dx dt (5.18)

+cvβ(1− β)
∆t

2

∑
k=1

∫
Ωh

(ξk
ϑ,h)

β−2%k−1
h

(
ϑk

h − ϑk−1
h

∆t

)2

dx

+
cv
2
β(1− β)

∑
E∈Eh

∑
ΓE⊂∂E

∫
Γ
(ηk

ϑ,h)
β−2[[ϑk

h]]
2
(
%k

h

)out
[ũk

h · n]− dSx

<∼ cv

∫
Ωh

Dt(%
k
h(ϑ

k
h)

β) dx+ β
∫
Ωh

%k
h(ϑ

k
h)

βdivhu
k
h dx+ hαcv(1− β)

∑
Γ∈Γh,int

∫
Γ
[[%k

h]] [[(ϑk
h)

β]] dSx.

Arguing as in [10, Section 5.3] we deduce from (5.18) the following estimates:

−
∑

Γ∈Γh,int

∫
Γ

∫ T

0

1

dΓ

[[K(ϑh)]] [[(ϑh)
β−1]] dSx

<∼ 1 for all 0 < β < 1, (5.19)

∑
Γ∈Γh

∫ T

0

∫
Γ

[[ϑ
1+β

2
h ]]2

h
dSx

<∼ 1 for all 0 ≤ β < 1; (5.20)

whence, in accordance with (2.30),

‖ϑh‖Lp(0,T ;Lq(Ωh))
<∼ 1 for any 1 ≤ p < 3, 1 ≤ q < 9. (5.21)

Finally, returning to the thermal energy method (3.4) with φ = 1, we may use the previous
estimates to conclude ∫ T

0

∫
Ωh

|∇huh|2 dx dt
<∼ 1, (5.22)

and, in accordance with (2.31),

‖uh‖2
L2(0,T ;L6(Ωh;R3))

<∼ 1. (5.23)

6 Consistency and convergence

Our goal is to check that (i) the numerical method is consistent with the original weak formulation,
(ii) the numerical solutions converge, modulo a suitable subsequence, to a weak solution of the
problem as stated in Theorem 3.1.
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6.1 Consistency

To begin, we claim that the proof of consistency for the continuity method (3.2) and the momentum
method (3.3) is exactly the same as in [10, Sections 6.1, 6.2], where the upwind terms may be handled
by means of formula (2.20).

6.1.1 Continuity and momentum method

Taking ΠQ
h [φ], φ ∈ C∞

c (R3) as a test function in the continuity method (3.2) gives rise to∫
R3

[Dt%h − %huh · ∇xφ] dx =
∫

R3
R1

h(t, ·) · ∇xφ dx (6.1)

for any φ ∈ C∞
c (R3) provided %h, uh were extended to be zero outside Ωh. The remainder satisfies∥∥∥R1

h

∥∥∥
L2(0,T ;L

6γ
5γ−6 (R3;R3)

(R3;R3))

<∼ hβ for some β > 0, (6.2)

see [9, Section 6.1].
The choice ΠV

h [φ], φ ∈ C∞
c (Ω;R3) as a test function in the momentum balance (3.3) gives rise to∫
Ω
Dt(%hûh) · φ dx−

∫
Ω
(%hûh ⊗ uh) : ∇xφ dx (6.3)

+
∫
Ω

[µ∇huh : ∇xφ+ λdivhuhdivxφ] dx−
∫
Ω
p(%h, ϑh)divxφ dx =

∫
Ω

R2
h : ∇xφ dx

for any φ ∈ C∞
c (Ω;R3), where the remainder satisfies∥∥∥R2

h

∥∥∥
L1(0,T ;L

γ
γ−1 (Ω;R3×3))

<∼ hβ for some β > 0, (6.4)

see [9, Section 6.2].

Remark 6.1 As Ω ⊂ Ωh for any h and φ has compact support in Ω, all terms in (6.3) are well
defined.

6.1.2 Consistency for the thermal energy balance

Instead of working directly with the thermal energy method (3.4), we consider its renormalized
variant (4.2). Motivated by [10, Section 6.3], we take the nonlinearities χ belonging to the class

χ ∈ W 2,∞[0,∞), χ′(ϑ) ≥ 0, χ′′(ϑ) ≤ 0, χ(ϑ) = const for all ϑ > ϑχ. (6.5)
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We start by rewriting ∑
Γ∈Γh,int

∫
Γ

1

dΓ

[[K(ϑk
h)]] [[χ′(ϑk

h)φ]] dSx (6.6)

=
∑

Γ∈Γh,int

∫
Γ

1

dΓ

{φ} [[K(ϑk
h)]] [[χ′(ϑk

h)]]dSx +
∑

Γ∈Γh,int

∫
Γ

1

dΓ

{
χ′
(
ϑk

h

)}
[[K(ϑk

h)]] [[φ]]dSx

for any φ ∈ Qh(Ωh).
Next, take φ ∈ C2(R3) such that

∇xφ · n = 0 on ∂Ω

and use ΠB
h [φ] as a test function in the renormalized thermal energy method (4.2). In view of (6.6),

we obtain

cv

∫
Ωh

Dt

(
%k

hχ(ϑk
h)
)

ΠB
h [φ] dx− cv

∑
Γ∈Γh,int

∫
Γ
Up(%k

hχ(ϑk
h),u

k
h) [[ΠB

h [φ] ]] dSx (6.7)

+
∑

Γ∈Γh,int

∫
Γ

1

dΓ

{
χ′
(
ϑk

h

)}
[[K(ϑk

h)]] [[ΠB
h [φ] ]]dSx

=
∫
Ωh

(
µ|∇hu

k
h|2 + λ|divhu

k
h|2
)
χ′(ϑk

h)Π
B
h [φ] dx−

∫
Ωh

χ′(ϑk
h)ϑ

k
h%

k
hdivhu

k
hΠ

B
h [φ] dx

−hαcv
∑

Γ∈Γh,int

∫
Γ
[[%k

h]] [[
(
χ(ϑk

h)− χ′(ϑk
h)ϑ

k
k

)
ΠB

h [φ] ]] dSx + 〈Dh, φ〉 ,

where

〈Dh(t), φ〉 = −
∑

Γ∈Γh,int

∫
Γ

1

dΓ

{
ΠB

h [φ]
}

[[K(ϑk
h)]] [[χ′(ϑk

h)]]dSx

−cv
∆t

2

∫
Ωh

χ′′(ξk
ϑ,h)%

k−1
h

(
ϑk

h − ϑk−1
h

∆t

)2

ΠB
h [φ] dx

+
cv
2

∑
E∈Eh

∑
ΓE⊂∂E

∫
ΓE

ΠB
h [φ]χ′′(ηk

ϑ,h)[[ϑ
k
h]]

2
(
%k

h

)out
[ũk

h · n]− dSx.

As χ satisfies (6.5), it is easy to check that

〈Dh(t), φ〉 ≥ 0 whenever φ ≥ 0.

Moreover, applying (6.7) with φ = 1 we get

0 ≤ 〈Dh(t), 1〉 ≤ hαcv
∑

Γ∈Γh,int

∫
Γ
[[%k

h]] [[
(
χ(ϑk

h)− χ′(ϑk
h)ϑ

k
k

)
]] dSx
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+
∫
Ωh

χ′(ϑk
h)ϑ

k
h%

k
hdivhu

k
h dx+ cv

∫
Ωh

Dt

(
%k

hχ(ϑk
h)
)

dx

where the three integrals on the right-hand side are controlled by the estimates (5.4), (5.6), (5.9),
(5.14), and (5.22). We may therefore conclude that

0 ≤ 〈Dh(t), φ〉
<∼ R3

h(t)‖φ‖L∞(Ωh), ‖R3
h‖L1(0,T )

<∼ 1 whenever φ ≥ 0. (6.8)

Remark 6.2 Note that (6.8) as well as other estimates derived in this section depend on the struc-
tural properties of the function χ postulated in (6.5).

Now, the discrete time derivative can be written as∫
Ωh

Dt

(
%k

hχ(ϑk
h)
)

ΠB
h [φ] dx =

∫
Ωh

Dt

(
%k

hχ(ϑk
h)
)
φ dx+

∫
Ωh

Dt

(
%k

hχ(ϑk
h)
) (

ΠB
h [φ]− φ

)
dx,

where ∫
Ωh

Dt

(
%k

hχ(ϑk
h)
) (

ΠB
h [φ]− φ

)
dx =

∫
Ωh

%k
h − %k−1

h

∆t
χ(ϑk

h)
(
ΠB

h [φ]− φ
)

dx+
∫
Ωh

%k−1
h

χ(ϑk
h)− χ(ϑk−1

h )

∆t

(
ΠB

h [φ]− φ
)

dx.

As χ is bounded and ∆t ≈ h, we may use (2.13) to deduce∣∣∣∣∣
∫
Ωh

%k
h − %k−1

h

∆t
χ(ϑk

h)
(
ΠB

h [φ]− φ
)

dx

∣∣∣∣∣
<∼

∆t
∫
Ωh

(
%k

h − %k−1
h

∆t

)2

dx

1/2√
h‖∇xφ‖L∞(Ωh;R3),

where the right-hand side is controlled by (5.7).
Similarly, ∣∣∣∣∣

∫
Ωh

%k−1
h

χ(ϑk
h)− χ(ϑk−1

h )

∆t

(
ΠB

h [φ]− φ
)

dx

∣∣∣∣∣∣∣∣∣∣
∫
Ωh

√
%k−1

h

√
%k−1

h

χ(ϑk
h)− χ(ϑk−1

h )

∆t

(
ΠB

h [φ]− φ
)

dx

∣∣∣∣∣
<∼

∆t
∫
Ωh

%k−1
h

(
χ(ϑk

h)− χ(ϑk−1
h )

∆t

)2

dx

1/2√
h‖∇xφ‖L∞(Ωh;R3)‖%k−1

h ‖1/2
Lγ(Ωh),
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which can be bounded by means of (5.16). Indeed it is enough to check that

χ(A)− χ(B)
<∼ A−B

A
whenever A>B ≥ 0

as long as χ belongs to the class (6.5).
Summing up the previous estimates, we may infer that∣∣∣∣∫

Ωh

Dt (%hχ(ϑh))
(
ΠB

h [φ]− φ
)

dx
∣∣∣∣ <∼

√
h R4

h(t)‖∇xφ‖L∞(Ωh;R3), ‖R4
h‖L2(0,T )

<∼ 1. (6.9)

To handle the upwind term, we use formula (2.20) yielding

∑
Γ∈Γh,int

∫
Γ
Up[%k

hχ(ϑk
h),u

k
h] [[ΠB

h [φ] ]] dSx (6.10)

=
∫
Ωh

%k
hχ(ϑk

h)u
k
h · ∇xφ dx−

∑
E∈Eh

∑
ΓE⊂∂E

∫
ΓE

(
ΠB

h [φ]− φ
)

[[%k
hχ(ϑk

h)]][ũ
k
h · n]− dSx

+
∑

E∈Eh

∑
ΓE⊂∂E

∫
ΓE

%k
hχ(ϑk

h)φ(ũ− u) · n dSx +
∑

E∈Eh

∫
Eh

%k
hχ(ϑk

h)divhu
k
h

(
φ− ΠB

h φ
)

dx.

We write ∑
E∈Eh

∑
ΓE⊂∂E

∫
ΓE

(
ΠB

h [φ]− φ
)

[[%k
hχ(ϑk

h)]][ũ
k
h · n]− dSx =

∑
E∈Eh

∑
ΓE⊂∂E

∫
ΓE

(
ΠB

h [φ]− φ
)
%k

h[[χ(ϑk
h)]][ũ

k
h · n]− dSx

+
∑

E∈Eh

∑
ΓE⊂∂E

∫
ΓE

(
ΠB

h [φ]− φ
)

[[%k
h]]χ((ϑk

h)
out)[ũk

h · n]− dSx,

where, by means of Hölder’s and Jensen’s inequalities, the error estimates (2.13), and the trace
estimates (2.24), ∣∣∣∣∣∣

∑
E∈Eh

∑
ΓE⊂∂E

∫
ΓE

(
ΠB

h [φ]− φ
)

(%k
h)[[χ(ϑk

h)]][ũ
k
h · n]− dSx

∣∣∣∣∣∣
<∼ h3/2‖∇xφ‖L∞(Ωh;R3)

 ∑
Γ∈Γh,int

∫
Γ

[[χ(ϑk
h)]]

2

h
dSx

1/2 ∑
Γ∈Γh,int

∫
Γ
|%k

h|2|ũk
h · n|2 dSx

1/2

<∼ h3/2‖∇xφ‖L∞(Ωh;R3)

 ∑
Γ∈Γh,int

∫
Γ

[[χ(ϑk
h)]]

2

h
dSx

1/2 ∑
Γ∈Γh,int

∫
Γ
|%k

h|2|uk
h|2 dSx

1/2
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<∼ h‖∇xφ‖L∞(Ωh;R3)

 ∑
Γ∈Γh,int

∫
Γ

[[χ(ϑk
h)]]

2

h
dSx

1/2 ∑
E∈Eh

∫
E
|%k

h|2|uk
h|2dx

1/2

.

Now, the relations (5.6), (5.14), and (5.23) may be used to control both integrals on the right-hand
side in L2(0, T ).

Furthermore, as χ is bounded, the integral

∑
E∈Eh

∑
ΓE⊂∂E

∫
ΓE

(
ΠB

h [φ]− φ
)

[[%k
h]]χ((ϑk

h)
out)[ũk

h · n]− dSx

can be handled with the help of the energy estimate (5.9), (5.23) combined and with the error
estimate (2.13).

Finally, we observe that the remaining two integrals on the right-hand side of (6.10) can be
estimated by means of (2.11) and the available energy bounds (5.6), (5.22). Thus we conclude that∣∣∣∣∣∣

∑
Γ∈Γh

∫
Γ
Up[%k

hχ(ϑk
h),u

k
h] [[ΠB

h [φ] ]] dSx −
∫
Ωh

%k
hχ(ϑk

h)u
k
h · ∇xφ dx

∣∣∣∣∣∣ (6.11)

<∼ h
γ−2

γ R5
h(t)‖∇xφ‖L∞(Ωh;R3), ‖R5

h‖L1(0,T )
<∼ 1.

The most delicate part of the proof of consistency of the thermal energy method is the heat-flux
term. We need the following auxiliary result.

Lemma 6.1 Let φ ∈ C2(R3) such that ∇xφ · n|∂Ω = 0.
Then∣∣∣∣∣∣

∑
Γ∈Γh,int

∫
Γh

1

dΓ

[[v]] [[ ΠB
h [φ] ]]dSx +

∫
Ω
v∆φ dx

∣∣∣∣∣∣ <∼ h1/2
(
‖v‖H1

Qh
(Ωh) + ‖v‖L∞(Ωh)

)
‖φ‖C2(R3)

for any v ∈ Qh(Ωh).

Proof:
First, by Gauss-Green theorem,∫

Ωh

v∆φ dx =
∑

E∈Eh

∫
E
v∆φ dx =

∑
E∈Eh

∫
∂E
v∇xφ · n dSx

= −
∑

Γ∈Γh,int

∫
Γ
[[v]]∇xφ · n dSx +

∫
∂Ωh

v∇xφ · n dSx,
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where, furthermore,∣∣∣∣∫
Ωh

v∆φ dx−
∫
Ω
v∆φ dx

∣∣∣∣ ≤
∣∣∣∣∣
∫
Ωh\Ω

|v||∆φ| dx

∣∣∣∣∣ <∼ h‖v‖L∞(Ωh)‖φ‖C2(R3). (6.12)

Next, going back to the definition of the projection ΠB
h , we get∣∣∣∣∣∇xφ · n−

[[ΠB
h φ]]

dΓ

∣∣∣∣∣ <∼ h‖φ‖C2(Ω) on any face Γ,

and, by Hölder’s inequality,

∑
Γ∈Γh,int

∫
Γ
| [[v]] | dSx ≤

 ∑
Γ∈Γh,int

∫
Γ

[[v]]2

dΓ

dSx

1/2 ∑
Γ∈Γh,int

∫
Γ
dΓdSx

1/2

<∼ ‖v‖H1
Qh

(Ω)|Ω|1/2. (6.13)

Thus it remains to control the integral∫
∂Ωh

v∇xφ · n dSx.

To this end, write ∫
Ωh\Ω

v∆φ dx =
∑

E∈Eh,E 6⊂Ω

∫
E\Ω

v∆φ dx,

where the left-hand side is small in view of (6.12). Moreover, by Gauss-Green theorem,

∑
E∈Eh,E 6⊂Ω

∫
E\Ω

v∆φ dx =
∫

∂Ωh

v∇xφ · n dSx +
∑

E∈Eh,E 6⊂Ω

∫
∂(E\Ω)\∂Ωh

v∇xφ · n dSx.

Seeing that ∇xφ · n|∂Ω = 0 we may infer that

∑
E∈Eh,E 6⊂Ω

∫
∂(E\Ω)\∂Ωh

v∇xφ · n dSx = −
∑

Γ∈Γh,int, Γ⊂∂E, E 6⊂Ω

∫
Γ\Ω

[[v]]∇xφ · n dSx,

where, similarly to (6.13), ∣∣∣∣∣∣∣
∑

Γ∈Γh,int, Γ⊂∂E, E 6⊂Ω

∫
Γ\Ω

[[v]]∇xφ · n dSx

∣∣∣∣∣∣∣
<∼ ‖φ‖C1(R3)

 ∑
Γ∈Γh,int

∫
Γ

[[v]]2

dΓ

dSx

1/2
 ∑

Γ∈Γh,int, Γ⊂∂E, E 6⊂Ω

∫
Γ
dΓ dSx


1/2
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<∼ ‖φ‖C1(R3)‖v‖H1
Qh

(Ωh)

∣∣∣{x ∈ R3
∣∣∣ dist[x, ∂Ωh] < 2h

}∣∣∣1/2
≈ h1/2‖φ‖C1(R3)‖v‖H1

Qh
(Ωh).

Q.E.D.

Now, we are ready to deal with the diffusion term

∑
Γ∈Γh,int

∫
Γ

1

dΓ

{
χ′
(
ϑk

h

)}
[[K(ϑk

h)]] [[ΠB
h [φ]]]dSx.

Introducing a new function Kχ,
K ′

χ(ϑ) = χ′(ϑ)K ′(ϑ),

we rewrite the diffusive term with the help of the mean-value theorem as{
χ′
(
ϑk

h

)}
[[K(ϑk

h)]] = [[Kχ(ϑk
h)]] + ckh(x)[[ϑ

k
n]]2,

where ckh is uniformly bounded. Consequently, we get

∑
Γ∈Γh,int

∫
Γ

1

dΓ

{
χ′
(
ϑk

h

)}
[[K(ϑk

h)]] [[ΠB
h [φ]]]dSx

=
∑

Γ∈Γh,int

∫
Γ

1

dΓ

[[Kχ(ϑk
h)]] [[ΠB

h [φ]]]dSx +
∑

Γ∈Γh,int

∫
Γ
ckh

[[ϑk
h]]

2

dΓ

[[ΠB
h [φ]]]dSx.

Seeing that
|[[ΠB

h φ]]| ≤ h‖∇xφ‖L∞(Ωh;R3)

we can estimate the last integral using the entropy bounds (5.14), while the first integral can be
“replaced” by

∫
ΩKχ(ϑk

h)∆φ dx in view of Lemma 6.1.
Finally, observing that the remaining terms in (6.7) can be treated in a similar way, we sum up

the previous estimates to obtain∫
Ωh

Dt

(
%k

hχ(ϑk
h)
)
φ dx−

∫
Ωh

%k
hχ(ϑk

h)u
k
h · ∇xφ dx−

∫
Ω
Kχ(ϑk

h)∆φ dx (6.14)

=
∫
Ωh

(
µ|∇hu

k
h|2 + λ|divhu

k
h|2
)
χ′(ϑk

h)φ dx−
∫
Ωh

χ′(ϑk
h)ϑ

k
h%

k
hdivhu

k
hφ dx+ 〈Dh, φ〉+ hβ

〈
R6

h, φ
〉
,

for a certain β > 0, where ∣∣∣〈R6
h(t), φ

〉∣∣∣ <∼ R7
h(t)‖φ‖C2(R3), ‖R7

h‖L1(0,T )
<∼ 1. (6.15)
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Relation (6.14) holds for any test function φ ∈ C2(R2) such that ∇xφ ·n|∂Ω = 0, and any χ enjoying
the properties stated in (6.5). The quantity Dh is a bounded measure satisfying (6.8).

We conclude by a simple observation that (6.14) gives rise to∫
Ωh

Dt

(
%k

hχ(ϑk
h)
)
φ dx−

∫
Ω
%k

hχ(ϑk
h)u

k
h · ∇xφ dx−

∫
Ω
Kχ(ϑk

h)∆φ dx (6.16)

=
∫
Ω

(
µ|∇hu

k
h|2 + λ|divhu

k
h|2
)
χ′(ϑk

h)φ dx−
∫
Ω
χ′(ϑk

h)ϑ
k
h%

k
hdivhu

k
hφ dx+ 〈Dh, φ〉+ hβ

〈
R6

h, φ
〉
,

where the integrals over the complements Ωh \Ω were incorporated in Dh and R6
h. As for the discrete

time derivative, we claim that ∫ T

0
ψ(t)

∫
Ωh

Dt (%hχ(ϑh))φ dx dt (6.17)

= ψ(0)
∫
Ωh

%0
hχ(ϑ0

h)φ dx−
∫ T

0

∫
Ωh

(
ψ(t+ ∆t)− ψ(t)

∆t

)
%hχ(ϑh)φ dx

for any ψ ∈ C∞
c [0, T ), where, by the mean-value theorem,∣∣∣∣∣

(
ψ(t+ ∆t)− ψ(t)

∆t

)
− ∂tψ

∣∣∣∣∣ <∼ ∆t sup
s∈[0,T ]

|ψ′′(s)|.

Thus, with (6.17) in mind, we observe that (6.16) coincides with its analogue proved in [10,
Section 6.3, formula (6.25)].

6.2 Convergence

As observed above, the consistency formulation (6.3), (6.4), (6.16), and (6.17) is the same as in [10];
whence the proof of convergence can be carried over by means of the arguments specified in [10,
Section 7]. We have proved Theorem 3.1.

7 Unconditional convergence

If the initial data [%0, ϑ0,u0] are regular and the physical domain has sufficiently smooth boundary,
the Navier-Stokes-Fourier system is known to admit strong solutions, at least on a possibly short
time interval. If, for instance,

%0, ϑ0 ∈ W 3,2(Ω), %0 > 0, ϑ0 > 0, u0 ∈ W 3,2(Ω;R3) (7.1)
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are the initial data satisfying the relevant compatibility conditions, and if Ω is of class C2+ν , then the
problem (1.1 – 1.10) admits a (classical) solution

%, ϑ ∈ C([0, Tmax);W
3,2(Ω)), u0 ∈ C([0, Tmax);W

3,2(Ω;R3)) (7.2)

on a maximal time interval [0, Tmax), see Valli [17], [18] , Valli and Zajaczkowski [19].
On the other hand, as shown in [8, Chapter 7], the problem (1.1 – 1.10) endowed with the regular

initial data (7.1) possesses a global in time weak solution in the sense of Definition 2.1. Weak and
strong solutions emanating from the same initial data should coincide on their common existence time
interval. As a matter of fact, the answer is not completely straightforward, however, the following
result holds, see [7, Lemma 3.2].

Proposition 7.1 In addition to the hypotheses of Theorem 3.1, suppose that Ω ⊂ R3 is a bounded
domain of class C2+ν, and that the initial data satisfy (7.1). Let [%, ϑ,u] be a weak solution of the
Navier-Stokes-Fourier system (1.1 – 1.10) enjoying extra regularity

%, ϑ, divxu ∈ L∞((0, T )× Ω), u ∈ L∞((0, T )× Ω;R3).

Then [%, ϑ,u] coincides with the strong solution of the same problem as long as the latter exists.

It turns out that the weak solutions possessing the regularity claimed in Proposition 7.1 are in
fact strong. More specifically, we report the following assertion, see [7, Theorem 2.2]:

Proposition 7.2 Under the hypotheses of Proposition 7.1, let [%, ϑ,u] be a weak solution of the
Navier-Stokes-Fourier system, emanating from regular initial data satisfying (7.1), and enjoying the
extra regularity

%, ϑ, divxu ∈ L∞((0, T )× Ω), u ∈ L∞((0, T )× Ω;R3).

Then [%, ϑ,u] is a strong (classical) solution of the problem in (0, T )× Ω.

Combining the previous results with Theorem 3.1, we obtain the following statement concerning
unconditional convergence of the numerical scheme (3.1 – 3.4).

Theorem 7.1 In addition to the hypotheses of Theorem 3.1, suppose that Ω ⊂ R3 is a bounded
domain of class C2+ν, and the initial data satisfy (7.1). Let [%h, ϑh,uh]h>0 be a family of numerical
solutions constructed by means of the scheme (3.1 – 3.4) such that

%h > 0, ϑh > 0,

and, in addition,
%h, ϑh, |uh|, |divhuh| ≤M
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a.a. in (0, T )× Ω for a certain constant M independent of h.
Then

%h → % weakly-(*) in L∞(0, T ;Lγ(Ω)) and strongly in L1((0, T )× Ω),

ϑh → ϑ weakly in L2(0, T ;L6(Ω)),

uh → u weakly in L2(0, T ;L6(Ω;R3)), ∇huh → ∇xu weakly in L2((0, T )× Ω;R3×3),

where [%, ϑ,u] is the (unique) strong solution of the Navier-Stokes-Fourier system (1.1 – 1.10) in
(0, T )× Ω emanating from the initial data (7.1).
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[10] E. Feireisl, T. Karper, and A. Novotný. On a convergent numerical scheme for the full Navier-
Stokes-Fourier system. IMA J. Numer. Math., 2014. Submitted.

[11] G. Gallavotti. Foundations of fluid dynamics. Springer-Verlag, New York, 2002.
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