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ON SOME BOUNDARY VALUE PROBLEMS FOR SECOND ORDER

NONLINEAR DIFFERENTIAL EQUATIONS

Zuzana Došlá, Brno,1 Mauro Marini, Serena Matucci, Florence2

(Received October 15, 2009)

Abstract. We investigate two boundary value problems for the second order differential
equation with p-Laplacian

(a(t)Φp(x
′))′ = b(t)F (x), t ∈ I = [0,∞),

where a, b are continuous positive functions on I . We give necessary and sufficient conditions
which guarantee the existence of a unique (or at least one) positive solution, satisfying one
of the following two boundary conditions:

i) x(0) = c > 0, lim
t→∞

x(t) = 0; ii) x
′(0) = d < 0, lim

t→∞

x(t) = 0.
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1. Introduction

Consider the second order nonlinear differential equation

(1.1) (a(t)Φp(x
′))′ = b(t)F (x), t ∈ I = [0,∞),
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where a, b are continuous and positive functions on I, Φp(u) = |u|p−2u, p > 1, and

F is a continuous function on R such that uF (u) > 0 for u 6= 0 and

(1.2) lim
u→0

F (u)

Φp(u)
= L, 0 6 L < ∞.

We study the existence and uniqueness of positive decreasing solutions of (1.1) on

the whole half-line, satisfying

(1.3) x(0) = c, lim
t→∞

x(t) = 0,

or

(1.4) x′(0) = d, lim
t→∞

x(t) = 0,

where c > 0 and d < 0 are constants.

Boundary value problems (BVPs) associated with (1.1) appear in studying ra-

dial solutions for nonlinear elliptic systems with the p-Laplacian operator ∆pv =

div(|∇v|p−2∇v), and have been extensively considered in literature; see, e.g., the

papers [2], [6], [12], [13], the monograph [1], and references therein.

As usual, by a solution of (1.1) we mean a function x which is continuously dif-

ferentiable together with its quasiderivative x[1], x[1](t) = a(t)Φp(x
′(t)), and satisfies

(1.1) on I. In view of (1.2), using some results by Chanturia [8], [9] (see also [4,

Theorem 6]), (1.1) has solutions x such that

(1.5) x(t)x′(t) < 0 for t ∈ [0,∞)

(the so called Kneser solutions). The problem whether these solutions converge to

zero as t → ∞ and are unique in some sense depends on the convergence of the

integral limits

J1 = lim
T→∞

∫ T

0

Φp∗

( 1

a(t)

)

Φp∗

(
∫ t

0

b(s) ds

)

dt,

J2 = lim
T→∞

∫ T

0

Φp∗

(

1

a(t)

)

Φp∗

(

∫ T

t

b(s) ds

)

dt,

where p∗ is the conjugate number to p, i.e., p∗ = p/(p − 1). When J1 = ∞ and

J2 < ∞, Kneser solutions of (1.1) tend to a nonzero constant, while, when J2 = ∞,

any Kneser solution tends to zero ([8, Theorem 1], [4, Theorem 6]). Moreover, in

both cases, for any c 6= 0 there exists a unique Kneser solution x satisfying x(0) = c
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([3, Theorem 4]). Finally, if J1 + J2 < ∞, Kneser solutions converging to zero or to

a nonzero constant coexist ([4, Theorem 2]).

Our aim here is to complete this result by considering the solvability and unique-

ness of the BVPs (1.1), (1.3) and (1.1), (1.4) when

A∞ =

∫

∞

0

Φp∗

( 1

a(t)

)

dt < ∞.

The following relation between A∞, J1, J2 will be useful.

Lemma 1.1. If A∞ < ∞, then either J1 < ∞ or J1 = J2 = ∞.

2. Statement of the main result

Our main result is

Theorem 2.1. Assume A∞ < ∞. Then the BVPs (1.1), (1.3) and (1.1), (1.4)

have at least one positive solution x for any c > 0 and d < 0, respectively. Moreover,

x satisfies on I the inequality

(2.1) x(t) 6
c

A∞

∫

∞

t

Φp∗

( 1

a(s)

)

ds,

or

(2.2) x(t) 6 −Φ∗

p(a(0))d

∫

∞

t

Φ∗

p

( 1

a(s)

)

ds,

respectively. In addition, if F is nondecreasing, then this solution is unique.

R em a r k 1. As already claimed, when J1 < ∞, J2 = ∞ or J1 = J2 = ∞, the

solvability of the BVP (1.1), (1.3) follows also from previous results in [4], [8].

Theorem 2.1 completes also the characterization of the so-called minimal set of

(1.1), introduced in [5] as the set of solutions x satisfying (1.5) and lim
t→∞

x(t) = 0.

Moreover, Theorem 2.1 plays a crucial role in solving the BVP

{

(a(t)Φp(x
′))′ = b̃(t)F (x), t ∈ I,

x(0) = x(∞) = 0, x(t) > 0, t ∈ (0,∞),

where b̃ is a continuous function which changes sign on I, see [10].
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The approach that we use is based on a comparison result concerning the principal

solutions of the corresponding half-linear differential equation

(2.3) (a(t)Φp(x
′))′ = b(t)Φp(x),

and on a general fixed point theorem for operators defined in a Fréchet space by

Schauder’s linearization device ([7, Theorem 1.3]). In particular, this result reduces

the existence of solutions of a BVP for differential equations on noncompact intervals

to the existence of suitable a priori bounds and is useful mainly when the fixed point

operator, associated with the BVP, is not known in an explicit form. We recall it in

the form that will be used in the sequel.

Theorem 2.2. Consider the BVP

(2.4)

{

(a(t)Φp(x
′))′ = b(t)F (x), t ∈ I,

x ∈ S,

where S is a nonempty subset of the Fréchet space C[0,∞) of the continuous real

functions defined in [0,∞).

Let F be a restriction to the diagonal of a real continuous function G defined on

R
2, that is F (c) = G(c, c) for any c ∈ R. Let there exist a nonempty, closed, convex

and bounded subset Ω ⊂ C[0,∞) such that for any u ∈ Ω, the BVP

{

(a(t)Φp(x
′))′ = b(t)G(u(t), x(t)), t ∈ I,

x ∈ S,

admits a unique solution xu. Let T be the operator T (u) = xu. Assume

i1) T (Ω) ⊂ Ω;

i2) if {un} ⊂ Ω is a sequence converging in Ω and T (un) → x, then x ∈ S.

Then the BVP (2.4) has at least one solution.

3. A comparison result for half-linear equations

This section is devoted to the properties of principal solutions of the half-linear

equation (2.3). It is known, see, e.g., [6], that any nontrivial solution x of (2.3)

satisfies either x(t)x′(t) > 0 for large t or x(t)x′(t) < 0 for t > 0. Moreover, following

Mirzov, or Elbert and Kusano, see, e.g., [11, Chapter 4.2], a solution u of (2.3) is

called a principal solution of (2.3) if for every solution x of (2.3) such that x 6= λu,

λ ∈ R,
u′(t)

u(t)
<

x′(t)

x(t)
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for large t. The set of principal solutions is nonempty and principal solutions are

determined uniquely up to a constant factor. In [5], a complete characterization of

principal solutions of (2.3) is given. In particular, the following properties will be

used in the sequel.

Theorem 3.1. i1) Among all solutions x of (2.3) such that x(0) = x0 6= 0, or

x′(0) = x′

0 6= 0, there exists a unique principal solution.

i2) Any principal solution u of (2.3) satisfies u(t)u′(t) < 0 for t > 0 and either

lim
t→∞

u(t) 6= 0 if J1 = ∞ and J2 < ∞, or lim
t→∞

u(t) = 0 otherwise.

i3) Let u be a solution of (2.3). If lim
t→∞

u(t) = 0, then u is a principal solution.

Now we give a comparison result for principal solutions of the half-linear differen-

tial equations

(a(t)Φp(x
′))′ = b1(t)Φp(x),(3.1)

(a(t)Φp(y
′))′ = b2(t)Φp(y),(3.2)

where bi, i = 1, 2 are positive continuous functions for t ∈ I. The following result

extends [4, Theorem 5].

Theorem 3.2. Consider the equations (3.1), (3.2), and assume

(3.3) b1(t) 6 b2(t) for t ∈ I.

Let x̄ and y be positive principal solutions of (3.1) and (3.2), respectively, such that

either x̄(0) = y(0) = c > 0 or x̄′(0) = y′(0) = d < 0. Then

y(t) 6 x̄(t) for t > 0.

P r o o f. First assume x̄(0) = y(0) = c > 0. The argument is similar to the one

given in [4, Theorem 5]. Set

w(t) = x̄(t) − y(t).

We claim that w does not have a negative minimum. Let T > 0 be a point of a

negative minimum for w and set

(3.4) H(t) = a(t) (Φp(x̄
′(t)) − Φp(y

′(t))) .

Hence, H(T ) = 0. Since

(3.5) H ′(t) 6 b2(t) (Φp(x̄(t)) − Φp(y(t))) ,
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we have H ′(t) < 0 in a right neighborhood IT of T and so H(t) < 0 for t ∈ IT , that

is, in view of (3.4), w is decreasing on IT , and this is a contradiction.

We claim that w(t) > 0 for t > 0. Assume there exists t1 > 0 such that w(t1) < 0.

Since w(0) = 0 and w does not have negative minima, we have lim
t→∞

w(t) < 0. Thus,

lim
t→∞

y(t) > 0. Since y is a principal solution, by Theorem 3.1.i2) and using (3.3)

we obtain J1 = ∞ and J2 < ∞. Thus, Lemma 1.1 gives A∞ = ∞, and from [4,

Lemma 3] we have lim
t→∞

x[1](t) = 0, so lim
t→∞

H(t) = 0. From (3.5) we get H ′(t) < 0

for t > t1, and so H(t) > 0 for large t, i.e. w is eventually increasing. This is a

contradiction because w would have a negative minimum, and so the assertion is

proved when x̄(0) = y(0) = c > 0.

Now assume x̄′(0) = y′(0) = d < 0. By Theorem 3.1.i1) the principal solutions x̄,

y are positive for t > 0. Let z be the principal solution of (3.1) such that z(0) =

y(0). In virtue of the first part of the proof, we have y(t) 6 z(t) for t > 0. Hence,

d = y′(0) 6 z′(0). Since both x̄ and z are principal solutions of (3.1), there exists

λ 6= 0 such that z = λx̄. Thus, we have

0 > d = y′(0) 6 z′(0) = λx̄′(0) = λd,

which gives 0 < λ 6 1 and the assertion again follows. �

4. Proof of the main result

P r o o f of Theorem 2.1. S t e p 1. First we prove that the BVP (1.1), (1.3) is

solvable for any c > 0. Let z be the principal solution of the half-linear differential

equation

(a(t)Φp(z′))′ = Mcb(t)Φp(z)

such that z(0) = c, where

(4.1) Mc = sup
06u6c

F (u)

Φp(u)
.

Let Ω be the subset of C[0,∞) given by

Ω = {u ∈ C[0,∞) : z(t) 6 u(t) 6 c} ,

and for any u ∈ Ω consider the BVP

(a(t)Φp(y
′))′ = b(t)

F (u(t))

Φp(u(t))
Φp(y),(4.2)

y(0) = c > 0, y(t) > 0, y′(t) < 0, lim
t→∞

y(t) = 0.(4.3)
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Fix u ∈ Ω. Since A∞ < ∞, by Lemma 1.1 and Theorem 3.1 i1), i2), the principal

solution yu of (4.2) such that yu(0) = c satisfies (4.3). Moreover, yu is the unique

solution of the BVP (4.2), (4.3). Indeed, assume that (4.2), (4.3) admits another

solution different from yu, say ỹu. Since lim
t→∞

ỹu(t) = 0, by Theorem 3.1.i3) the

solution ỹu should be a principal solution, which is a contradiction. Hence the BVP

(4.2), (4.3) is uniquely solvable for any u ∈ Ω.

Let T be the operator which associates with any u ∈ Ω the unique solution yu of

(4.2), (4.3). Since yu is a positive principal solution, from Theorem 3.1.i1) we have

y′

u(t) < 0, so yu(t) 6 c. Moreover, from (4.1) we get

F (u(t))

Φp(u(t))
6 Mc,

and Theorem 3.2 gives

(4.4) z(t) 6 yu(t),

that is T (Ω) ⊂ Ω.

Let {un} be a convergent sequence in Ω and let lim T (un) = x. We prove that

x ∈ S, where S is the set of functions y ∈ C[0,∞) satisfying (4.3). Set

wu(t) =
c

A∞

∫

∞

t

Φp∗

( 1

a(s)

)

ds − yu(t).

Hence, wu(0) = lim
t→∞

wu(t) = 0. Using an argument similar to the one given in the

first part of the proof of Theorem 3.2, it is easy to verify that wu(t) > 0 on I, i.e.,

(4.5) yu(t) 6
c

A∞

∫

∞

t

Φp∗

( 1

a(s)

)

ds.

Indeed, if wu(t) becomes negative for some t, then wu has a point T > 0 of negative

minimum. Thus,

(4.6) a(T )Φp(y
′

u(T )) = −Φp

( c

A∞

)

.

Consider the function

Hu(t) = −Φp

( c

A∞

)

− a(t)Φp(y
′

u(t)).

Since H ′

u(t) = −b(t)Φp(yu(t)) and, in view of (4.6), Hu(T ) = 0, we have Hu(t) < 0

for t > T. Thus, w′

u(t) < 0 for t > T, which is a contradiction and so (4.5) holds.
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In virtue of (4.4) and (4.5), x ∈ S and the condition i2) of Theorem 2.2 is satisfied.

By applying Theorem 2.2 with

(4.7) G(u, v) =

{

F (u)Φp(v)/Φp(u), if u 6= 0,

LΦp(v), if u = 0,

where L is given in (1.2), the BVP (1.1), (2.1) is solvable for any c > 0, so the same

holds for the BVP (1.1), (1.3).

S t e p 2. Now we prove that the BVP (1.1), (1.4) is solvable for any d < 0. Set

(4.8) D = Φ∗

p(a(0))|d|A∞, MD = sup
06u6D

F (u)

Φp(u)
.

Let v be the principal solution of the half-linear differential equation

(a(t)Φp(v
′))′ = MDb(t)Φp(v)

such that v′(0) = d. Let Ω2 be the subset of C[0,∞) given by

Ω2 = {u ∈ C[0,∞) : v(t) 6 u(t) 6 D} .

For any u ∈ Ω2, consider the BVP given by (4.2) and

(4.9) y′(0) = d < 0, y(t) > 0, lim
t→∞

y(t) = 0.

Fix u ∈ Ω2. Since A∞ < ∞, by Lemma 1.1 and Theorem 3.1.i1), i2), the principal

solution yu of (4.2) such that y′

u(0) = d satisfies (4.9). Moreover, following the same

argument as the one in Step 1, yu is the only solution of this BVP. Hence, (4.2),

(4.9) is uniquely solvable for any u ∈ Ω.

Let T be the operator which associates with any u ∈ Ω the unique solution yu of

(4.2), (4.9). Since yu is a positive principal solution, and

0 6
F (u(t))

Φp(u(t))
6 MD

for every u ∈ Ω2, Theorem 3.2 gives v(t) 6 yu(t). Since yu is a positive principal

solution, Theorem 3.1.i1) implies that its quasiderivative is negative increasing, i.e.,

a(t)Φp(y
′

u(t)) > a(0)Φp(d).

Taking into account that lim
t→∞

yu(t) = 0, by integration we obtain

(4.10) yu(t) 6 −Φ∗

p(a(0))d

∫

∞

t

Φ∗

p

( 1

a(s)

)

ds,
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which gives, in view of (4.8), yu(t) 6 D, that is T (Ω) ⊂ Ω. In view of v(t) 6 yu(t)

and (4.10), the condition i2) of Theorem 2.2 is satisfied, where S is the set of functions

y ∈ C[0,∞) satisfying (4.9). Now, by applying Theorem 2.2 with G given in (4.7),

the problem (1.1), (1.4) is solvable for any d < 0 and, in view of (4.10), this solution

satisfies (2.2).

S t e p 3. In order to complete the proof, it remains to show that the BVPs (1.1),

(1.3) and (1.1), (1.4) are uniquely solvable. Let x̄, y be two solutions of (1.1), (1.3)

and set w(t) = x̄(t) − y(t). Using the same argument as the one given in the proof

of Theorem 3.2 and the monotonicity of F , we obtain that w has neither a positive

maximum nor a negative minimum. Thus, w(t) ≡ 0 on I which gives the assertion.

The uniqueness of the BVP (1.1), (1.4) follows by using a similar argument, with

minor changes. The details are left to the reader. �
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