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Abstract. We show that dynamical systems in inverse problems are sometimes foliated
if the embedding dimension is greater than the dimension of the manifold on which the
system resides. Under this condition, we end up reaching different leaves of the foliation if
we start from different initial conditions. For some of these cases we have found a method
by which we can asymptotically guide the system to a specific leaf even if we start from an
initial condition which corresponds to some other leaf. We demonstrate the method by two
examples. In the chosen cases of the harmonic oscillator and Duffing’s oscillator we find
an alternative set of equations which represent a collapsed foliation, such that no matter
what initial conditions we choose, the system would asymptotically reach the same desired
sub-manifold of the original system. This process can lead to cases for which a system
begins in a chaotic region, but is guided to a periodic region and vice versa. It may also
happen that we could move from an orbit of one period to an orbit of another period.
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1. Introduction

The main purpose of this paper is to modify some foliated dynamical systems so

that their trajectories eventually reach certain pre-specified sub-manifold. Formal

definition of foliation is given in [1]. An n dimensional foliated manifold is composed

of disjoint d dimensional (n > d) sub-manifolds. Each of these sub-manifolds is called

a leaf of the foliation. Each leaf is a connected and invariant manifold. A common

example of a topological foliation is a fiber bundle. Reference [2] gives an interesting

example which has some relevance to dynamical systems. If G is a Lie group and H

is a subgroup obtained by exponentiating a closed subalgebra of the Lie algebra of

G, then G is foliated by cosets of H [2].
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We define a dynamical system as foliated when its state phase portrait (plot of

multiple trajectories corresponding to different initial conditions) is foliated. We can

illustrate this by considering the example of a harmonic oscillator with a differential

equation
dx0

dt
= x1,

dx1

dt
= −x0.

Let us consider solutions of this equation for all possible initial conditions. Thus, for

example, if we choose x0 = 3 and x1 = 4 as the initial condition our solution will

be a circle of radius 5. It is clear that any sets of initial conditions, sum of whose

squares add up to 25 will lead to solutions which lie on the same circle. However,

if the sum of the squares adds up to, say 30, we will get a circle which is concentric

to the first one but of a larger radius. Now if we consider all possible solutions, it is

clear that we have a set of concentric circles. These circles are one of the simplest

examples of foliation.

In this paper we look at some n dimensional dynamical systems that are foli-

ated by the choice of initial conditions. In these cases each leaf of the foliation is

d dimensional (n > d). For each leaf there is an equivalence class of initial condi-

tions such that if we start from any point of that equivalence class, the resulting

trajectory will remain confined to a d dimensional sub-manifold shared by all other

initial conditions in that class. Now if we start from a point of some different equiv-

alence class of initial conditions, we would be confined to a different leaf. Our

goal is to modify the dynamical system so that from wherever we start we always

reach or converge to the same pre-specified leaf. An important constraint is that

the original system and the modified system should remain identical on the target

leaf. This is because the data that we wish to model in many cases, originates only

on that leaf and the model must achieve stability while remaining faithful to the

data.

This kind of problem arises when we embed a system in a higher dimension. For

getting equations from time series data it is very common to embed the system

in a higher dimension [3]. One of the most promising methods in this respect is

Taken’s embedding [4]. We have shown in reference [5] how embedding might create

a foliated dynamical system. Foliation can also arise if the differential equation

of a dynamical system is extended as, for example, in the case of applications to

cryptography [6]. A related situation arises in reference [7]. In reference [7] some

general conditions are found that lead to spatially localized periodic oscillations in

networks of coupled oscillators. For conservative systems periodic solutions typically

form a one-parameter family. To specify a single periodic solution, one extra equation

is required which yields an overdetermined system. Reference [8] shows an algorithm

by which this problem can be solved. In this paper we propose a method by which for
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some dynamical systems we can asymptotically guide the trajectory to a pre-specified

sub-manifold.

Perhaps the most important application of this method is to the problems of

Mathematical Modeling. In this field it is often required to arrive at a set of dif-

ferential equations or maps that fit a given observational data. In many problems

the data points lie in a low dimensional manifold, but the model is of necessity of

a higher dimension in which that low dimensional manifold is embedded. There

are two problems with this. First is that the data can validate only the behavior

which corresponds to the sub-manifold. Therefore these models can be seen as not

being faithful to the data. The second problem, which is actually a possible conse-

quence of the first, is that the predicted behavior of these equations can often be

unstable. Under this circumstance we need to stabilize the system and confine it to

a proper sub-manifold. Another important application is demonstrated at the end

of this paper. This is to the problem of controlling chaos. In the next section we

discuss how we can modify a foliated system so that the foliation would be collapsed.

In the subsequent sections, we demonstrate practical application of these ideas by

choosing, at first, a very simple example of the harmonic oscillator, followed by a

case of a dynamical system generated by Duffing’s oscillator. In each case we find

a modification of the system such that no matter what initial conditions we choose,

the system would asymptotically reach a specific leaf of the foliation. Our choice of

the 4 dimensional form of Duffing’s oscillator is an unusual one. It contains some

leaves which are periodic and some which are chaotic. We show that we can control

the system to go from periodic to chaotic or from chaotic to periodic.

2. Modifying dynamical system when foliation

is created by embedding

It has been shown that if we embed a dynamical system into higher dimension it

may create a foliation [5]. Let us consider the 2D system

(2.1)
dx0

dt
= x1,

dx1

dt
= f(x0, x1)

We want to embed it in 3D

(2.2)
dx0

dt
= x1,

dx1

dt
= f(x0, x1),

dx2

dt
=

df

dt
.

If we integrate the last equation of (2.2) we get x2 = f(x0, x1)+a2−f(a0, a1), where

(a0, a1, a2) are the initial conditions. Now for a given (a0, a1), a2 may not be the

same as f(a0, a1). So we get a foliation as a2 varies. For each a2, we get a leaf of
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the foliation. Now we want to modify system (2.2) in such a way that this foliation

gets collapsed. Let us consider the set of equations

(2.3)
dx0

dt
= x1,

dx1

dt
= f(x0, x1),

dx2

dt
=

df(x0, x1)

dt
+ λ(x2 − f(x0, x1)),

where λ is less than 0.

Let g(x0, x1, x2) = x2 − f(x0, x1). So,

dg

dt
=

dx2

dt
−

df

dt
= λg.

Hence, g(t) = g(0)eλt. Now λ is less than 0, so g tends to 0 as t tends to infinity.

Therefore, if we obtain a numerical solution for this system and observe its long term

behavior, we find that we eventually reach the leaf x2 − f(x0, x1) = 0, whatever our

initial conditions are. On the other hand, in case of the system (2.2) initial conditions

decide which leaf we are going to reach.

3. Guiding trajectories of harmonic oscillator to a specific leaf

We have discussed in Section 1 that the harmonic oscillator

(3.1)
dx0

dt
= x1,

dx1

dt
= −x0

is a foliated dynamical system. The choice of the initial condition gives rise to a leaf

S1. For example, if we choose x0 = 3 and x1 = 4 as initial condition we would get a

circle of radius 5. Now, if we choose some other initial condition we once again begin

tracing the same circle, only if the sum of squares of the initial conditions add up

to 25. In general, however, we generate many different concentric circles, as we keep

choosing a variety of initial conditions and keep finding the trajectories generated

by them. Our goal is to modify the system in such a way that we always reach a

pre-specified circle, say, g(x0, x1) = x2

0 + x2

1 − 25 = 0 even if our initial condition lies

outside of the circle. Let us consider the system

(3.2)
dx0

dt
= x1 + λ1gx0,

dx1

dt
= −x0 + λ2gx1

with g = x2

0
+x2

1
−25 and with both λ1 and λ2 negative. Multiplying the first equation

of (3.2) by x0 and the second equation of (3.2) by x1 we get (d/dt)(x2
0 + x2

1 − 25) =

2g(λ1x
2

0
+ λ2x

2

1
), i.e. dg/dt = λg, where λ = 2(λ1x

2

0
+ λ2x

2

1
).

So λ is a function of x0 and x1 and hence it is a function of time t. Integrating

the above equation we get g = g(0) exp(
∫

t

0
λdt).
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The Jacobian matrix of this system at the origin is

(

−25λ1 1

−1 −25λ2

)

.

The eigenvalues are the solutions of the equation x2+25(λ1+λ2)x+(625λ1λ2+1) = 0.

The sum of the two eigenvalues is −25(λ1 + λ2) which is positive and the product of

the two eigenvalues is (625λ1λ2+1) which is also positive. Hence both the eigenvalues

of the Jacobian matrix of this system at the origin are greater than 0. So the

origin is a repeller of this system. Since λ1 and λ2 are negative, x0 and x1 are not

simultaneously 0 and the origin is a repeller, the value of λ will be strictly less than

0. Hence
∫

t

0
λdt tends to −∞ as t tends to ∞. So g tends to 0 as t tends to infinity.

As a consequence we eventually reach the leaf g = 0, even when we start outside the

leaf.

Empirically in the Runge Kutta method we choose x0 = 2 and x1 = 3 as the

initial condition and the values of λ1 and λ2 are −0.2 and −0.3 respectively. In the

case of the harmonic oscillator (3.1) we reach a circle of radius 3.6, but in system

(3.2) when we start from the same initial condition we reach a circle of radius 5, i.e.

g = 0 (Fig. 1). In fact, in system (3.2) we always converge to g = 0 whatever our

initial conditions are.

−4 −2 0 2 4
−5

0

5

−5 0 5
−5

0

5

Figure 1. Left: trajectory of harmonic oscillator when initial condition is (2, 3), right: tra-
jectory of modified harmonic oscillator when initial condition is (2, 3).

4. Guiding trajectories of Duffing system to a specific leaf

Duffing equation is a 2 dimensional non-autonomous system given by the equation

(4.1)
dy0

dt
= y1,

dy1

dt
= −cy1 − ky0 − δy3

0 + F cos(ωt + α).

It is known to us that this equation shows chaos for the following values of the

parameters: c = 0.044964, k = 0, δ = 1, ω = 0.44964, α = 0 and F = 1.02 [7]. It is

well known that keeping the other parameters fixed, if we change F we see that the
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system is periodic when F is 0.2 while if F is 1.02 this system becomes chaotic (as

empirically we have found in Figure 2).

−2 −1 0 1 2
−2

0

2

−1 −0.5 0 0.5 1
−0.5

0

0.5

Figure 2. Left: Duffing oscillator when F is 1.02, right: Duffing oscillator when F is 0.2.

As F varies we get different trajectories in the state space picture of Duffing. So

we can treat F as a parameter of foliation. We will show that we can modify this

system in such a way that we can eventually reach a specific periodic orbit even if

we start from an orbit which has chaotic behavior. It has been shown that the 2

dimensional non-autonomous Duffing equation can be extended to a 4 dimensional

autonomous equation [6]. The equation is

dy0

dt
= y1,

dy1

dt
= y2,

dy2

dt
= y3,(4.2)

dy3

dt
= −cy3 − ky2 − 3δy2

0y2 − 6δy0y
2

1 − ω2y2 − ω2cy1 − ω2ky0 − ω2δy3

0

Since dy1/dt = y2, from (4.1) we get

(4.3) F cos(ωt + α) = y2 + cy1 + ky0 + δy3

0 .

By differentiating (4.3) we get

(4.4) Fω sin(ωt + α) = −cy2 − ky1 − 3δy2

0
y1 − y3

We can have an arbitrary choice of initial condition for y0 and y1 in system (4.2).

But we have to select the initial condition for y2 and y3 by using the relations (4.3)

and (4.4). If Y0, Y1, Y2 and Y3 are the values of y0, y1, y2 and y3 at t = 0, these

relations yield

Y2 = F cos(α) − (cY1 + kY0 + δY 3

0 ), Y3 = −Fω sin(α) + (−cY2 − kY1 − 3δY 2

0 Y1).

In this paper we want to propose an alternative form of the 4 dimensional Duffing

equation. From (4.1) we get

F cos(ωt + α) =
dw1

dt
+ cw1 + kw0 + δw3

0.
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We define w2 as w2 = F cos(ωt + α). Then dw1/dt = w2 − (cw1 + kw0 + δw3

0
),

and if we further let w3 = dw2/dt = −ωF sin(ωt + α), then dw3/dt = −ω2w2.

So we get a new system

dw0

dt
= w1,

dw1

dt
= w2 − (cw1 + kw0 + δw3

0
),(4.5)

dw2

dt
= w3,

dw3

dt
= −ω2w2.

It will be equivalent to (4.1) if at t = 0 we take w2 = F cos(α), w3 = −ωF sin(α).

Hence we can conclude that the system (4.5) with the initial condition (W0, W1,

W2, W3) is equivalent to the system (4.1) with the initial condition (Y0, Y1), where

W0 = Y0, W1 = Y1, W2 = F cos(α), W3 = −ωF sin(α), and F is the same as in (4.1).

From the definition of the initial conditions W2 and W3 we get W 2

2
+ W 2

3
/ω2 = F 2.

System 4.5 will show chaotic behavior if we choose F , and hence (W 2
2 + W 2

3 /ω2) as

1.02, and it will show periodic behavior when F is 0.2. So the choice of our initial

conditions (W2 and W3) decides which leaf we will reach. Now let us consider the

system

(4.6)
dw0

dt
= w1,

dw1

dt
= w2 − (cw1 + kw0 + δw3

0
),

dw2

dt
= w3 + λ1w2

(

w2

2
+

w2
3

ω2
− G2

)

,

dw3

dt
= −ω2w2 + λ2w3

(

w2

2 +
w2

3

ω2
− G2

)

,

with G = 0.2 and both λ1 and λ2 negative.

Let g = w2

2
+ w2

3
/ω2

− G2. So by virtue of (4.6) we can write

dw2

dt
= w3 + λ1w2g,

dw3

dt
= −ω2w2 + λ2w3g.

Multiplying the first equation by w2 and the second equation by w3/ω2 we get

d

dt

(

w2

2 +
w2

3

ω2
− G2

)

= 2
(

λ1w
2

2 +
λ2w

2

3

ω2

)

g,

i.e. dg/dt = 2λg, where λ = λ1w
2
2 + λ2w

2
3/ω2. So λ is a function of w2 and w3

and hence it is a function of time t. Integrating the above equation we get g =

g(0) exp(
∫ t

0
λdt). The Jacobian matrix of this system at the origin is

(

−G2λ1 1

−1 −G2λ2

)

.

445



The eigenvalues are the solutions of the equation x2+G2(λ1+λ2)x+(G4λ1λ2+1) = 0.

The sum of the two eigenvalues is −G2(λ1 + λ2) which is positive and the product

of the eigenvalues is (G4λ1λ2 +1) which is also positive. Hence both the eigenvalues

of the Jacobian matrix of this system at the origin are greater than 0. So the

origin is a repeller of this system. Since λ1 and λ2 are negative, x0 and x1 are not

simultaneously 0 and the origin is a repeller, the value of λ will be strictly less than

0. Hence
∫

t

0
λdt tends to −∞ as t tends to ∞.

So g tends to 0 as t tends to infinity. As a consequence we eventually reach g = 0,

i.e. w2

2
+ w2

3
/ω2

− G2 = 0, even if the initial conditions W2 and W3 were chosen in

such a way that w2

2
+ w2

3
/ω2 = F 2, where F is not equal to G.

We run the Runge Kutta method for both systems (4.5) and (4.6). We take

F = 1.02 for both (4.5) and (4.6) for choosing the initial conditions W2 and W3.

We choose the rest of the parameters the same as before for both the systems. For

system (4.6) we take the value of λ1 to be −0.002 and the value of λ2 to be −0.003.

We take 107 points in the method. If we plot the first 2800 points we get rather

similar pictures for system (4.5) and system (4.6) as we can see in Figure 3. Then

we plot the last 60000 points and we can see in Figure 4 that in the case of (4.5) we

get a chaotic orbit, whereas in the case of (4.6) we get a periodic orbit.
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Figure 3. Left: initial behavior of the trajectory of system (4.5), right: initial behavior of
the trajectory of system (4.6).
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Figure 4. Left: in the end, system (4.6) shows periodic behavior, right: in the end, system
(4.5) still acts chaotically.

In system (4.5) we take F = 1.02 and it shows chaos. In system (4.6) we also take

F = 1.02, so initially it shows a trajectory similar to that of system (4.5). But as
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we have taken both λ1 and λ2 negative, w
2

2
+ w2

3
/ω2

− G2 tends to 0 eventually. As

a consequence, the long term behavior of the system is governed not by the value

of F , but by the value of G and since we have chosen in this example G = 0.2, the

long term behavior is similar to that generated by the system (4.5) when F for that

system is 0.2. At F = 0.2 the conventional Duffing system (given by equation (4.5))

is periodic, so system (4.6) ends up showing periodic behavior. Thus, the main

interesting characteristic of system (4.6) is that it initially shows similarity with a

system which is chaotic, but in the end it converges to a periodic orbit.

5. Conclusion

In this paper we have discussed what is a foliation and how it appears in practical

problems. We have shown how we can guide a trajectory of a foliated dynamical

system to a specific leaf of the foliation. We have demonstrated this method by

taking the examples of the harmonic oscillator and Duffing’s oscillator. In each

of these cases we find an alternative set of equations which represent a collapsed

foliation, such that no matter what initial conditions we choose, the system would

asymptotically reach the same desired sub-manifold. We have shown that this can

be achieved while making sure that the original system and the modified system

remain identical on the target leaf. This is because the data that we wish to model,

in many cases originates only on that leaf and the model must achieve stability while

remaining faithful to the data.

In the case of the Duffing system, as the parameter F varies we get different

trajectories. These different trajectories show different qualitative behavior. Some

of them are periodic whereas some of them are chaotic. We have shown how we

can create a trajectory which acts chaotically at the beginning but eventually shows

periodic behavior. So one of the important aspects of this method is that it shows

control of chaos. Thus it is very easy to synthesize cases for which a system begins

in a chaotic region, but is guided to a periodic region and vice versa. It may also

happen that we could move from an orbit of one period to an orbit of another period.

A c k n ow l e d gm e n t. We thank Prof.Mythily Ramaswami of TIFR for useful

comments. We also thank Kishor Bhat of NIAS and Rajdip Mukherjee of IISC for

helping us in preparing the manuscript. This work is supported by Department of

Science and Technology, India.

447



References

[1] D.V.Anosov: Foliation. Encyclopedia of Mathematics (Michiel Hazewinkel, ed.). Kluwer
Academic Publishers, 2001.

[2] I.Moerdijk, J.Mrcun: Introduction to foliations and Lie groupoids. Cambridge Studies
in Advanced Mathematics 91 (2003), 318–320.

[3] N.H. Packard, J. P. Crutchfield, J. D.Farmer, R. S. Shaw: Geometry from a Time Series.
Physical Review Letter 45 (1980), 712–715.

[4] F.Takens: Detecting Strange Attractors in Turbulence (D.A.Rand and L. S.Young,
eds.). Lecture Notes in Mathematics 898, 1981, pp. 366–381. zbl

[5] P.G.Vaidya, S.Majumder: Embedding in higher dimension causes ambiguity for the
problem of determining equation from data. European Physics Journal, special topic
165 (2008), 15–24.

[6] P.G.Vaidya, S. Angadi: A Computational Procedure to Generate a Difference Equations
from Differential Equation. New Progress in Difference Equations Proceedings of the 6th
ICDEA in Augsburg, 2003, pp. 539–548.

[7] J.Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurca-
tions of Vector Fields. Springer, New York, 1983. zbl

[8] J.A. Sepulchre, R. S.MacKay: Localized oscillations in conservative or dissipative net-
works of weakly coupled autonomous oscillators. Nonlinearity 10 (1997), 679–713. zbl

[9] P.Pokorny: Continuation of Periodic Solutions of Dissipative and Conservative Systems:
Application to Elastic Pendulum. Math. Probl. Eng. 2009, Article ID 104547, p. 15, doi:
10.1155/2009/104547.

Authors’ addresses: Prabhakar G.Vaidya, National Institute of Advanced Studies, In-
dian Institute of Science Campus, Bangalore, 560012, India, e-mail: pgvaidya@gmail.com;
Swarnali Majumder, National Institute of Advanced Studies, Indian Institute of Science
Campus, Bangalore, India, e-mail: swarnali.majumder48@gmail.com.

448

http://www.emis.de/MATH-item?0513.58032
http://www.emis.de/MATH-item?0515.34001
http://www.emis.de/MATH-item?0905.39004

