BLACK HOLE SPIN MEASUREMENTS IN AGN: WHERE DO WE STAND?

Matteo Guainazzi (ESA)

Subject

- □ This talk is about lies. There are three types thereof:
 - Small lies
 - Big Lies
 - □ Spectral fitting (I.Mc Hardy, 2004)

Outline

- □ Where do we stand with measuring spin in SMBHs?
- Why do we astrophysically care?
- What do the measurements available so far tell us?
- Future perspectives

Outline

- □ Where do we stand with measuring spin in SMBHs?
- Why do we astrophysically care?
- □ What do the measurements available so far tell us?
- □ Future perspectives

Published sample studies so far

- FERO+GREDOS
 - □ de la Calle-Pérez et al. (2010), A&A, 524, 50
 - Guainazzi et al. (2011), A&A, 531, 131 (no new BH spin)
- [The Nandra et al. XMM-Newton sample did not explicitly calculate the BH spin]
- Suzaku AGN spin Key Project + archive:
 - Orthodox: Brenneman et al. (2011), ApJ, 736, 103
 - □ Heterodox: Patrick et al., (2012), MNRAS in press

Current measurements

Systematic errors on a: disk structure

(Reynolds & Fabian 2008)

Two "ways" of measuring BH spin

(simulations based on Dovčiak et al. 2004) (Courtesy G.Miniutti)

Fe-line profile only
The hard X-ray band dominates

Full X-ray broadband spectrum
The soft X-ray band dominates

Systematic errors on a: spectral fitting

The difference still holds if a double reflector model is used by both authors (see the discussion in Sect.4.3.4 in Patrick et al. 2012)

Where is the problem (Patrick/Brenneman)?

- Soft excess
 - Comptonization versus blackbody
 - Full versus partial covering warm absorbers
- Mixture of physical and phenomenological models:
 - wabs*3(warmabs)*(po+comptt+pexrav+zga(FeK α)+zga(FeK β)+ Σ zga

+reflconv*reflionx)

- Over-interpreting
- Analysis of some data
- Usage of observation-based time-averaged spectra, while what matter are the different spectral states
- □ There are sources which are simply too complicated

My contribution: NGC5506

(Guainazzi et al., 2010, MNRAS, 406, 201)

Multi-epoch, intensity-resolved analysis of all XMM-Newton/Suzaku spectra of NGC5506 on going

Similar approach on MCG-6-30-15 (complex, highly spectrally variable) in Miller et al., 2008, A&A, 43, 487

Outline

- □ Where do we stand with measuring spin in SMBHs?
- Why do we astrophysically care?
- What do the measurements available so far tell us?
- □ Future perspectives

Why do we care?

- SMBH spin distribution in the local Universe may carry the imprinting of the accretion history
- SMBH spin may ultimately power relativistic jets
- The detailed profile of relativistically broadened lines could test General Relativity
- SMBH spin may be telling us how energy can be extracted from a black hole
- BH high spin may driver of high-speed black hole recoil
- Generation of gravitational waves

Why do we care?

- SMBH spin distribution in the local Universe may carry the imprinting of the accretion history
- SMBH spin may ultimately power relativistic jets
- The detailed profile of relativistically broadened lines could test General Relativity
- SMBH spin may be telling us how energy can be extracted from a black hole
- BH high spin may driver of high-speed black hole recoil
- Generation of gravitational waves

BH spin and the accretion history

Theoretical distributions

Theoretical spin distributions

Observed distribution (so far)

BH spin and the accretion history

Theoretical distributions

$10^7 \ {\rm M_{\odot}} {<} {\rm M_{BH}} {<} 10^8 \ {\rm M_{\odot}}$ $10^6 \text{ M}_{\odot} < \text{M}_{BH} < 10^7 \text{ M}_{\odot}$ $\frac{(\mathrm{d}n/\mathrm{d}\alpha)}{0} n_{\mathrm{total}}$ 0.2 $10^9 \text{ M}_{\odot} < \text{M}_{\text{RH}} < 10^{11} \text{ M}_{\odot}$ $10^8 \text{ M}_{\odot} < \text{M}_{BH} < 10^9 \text{ M}_{\odot}$ 0.8 $(dn/d\alpha)/n_{total}$ (b) chaotic accretion prolonged accretion 0.2 0.2 0.8 0.4 0.8 0.6

Observed distribution (so far)

(Matt et al. 2011)

NuSTAR operational!

- 14/6 launch
- 28/6 first light

6 AGN to be observed simultaneously with **Suzaku**: IC4329A, NGC4151 and **XMM-Newton**: 3C120, Ark120, MCG-6-30-15 SwiftJ2127.4+5654

Thanks to the unprecedented sensitivity in the 10-80 keV range we hope to be able to solve the degeneracy between "reflection-" and "absorption-dominated" models as well as to constrain the continuum underneath the broad Fe K $_{\alpha}$ profile

