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Abstract. In this paper, we consider the longitudinal and transversal vibrations of
the masonry beams and arches. The basic motivation is the seismic vulnerability anal-
ysis of masonry structures that can be modeled as monodimensional elements. The
Euler–Bernoulli hypothesis is employed for the system of forces in the beam. The axial
force and the bending moment are assumed to consist of the elastic and viscous parts.
The elastic part is described by the no–tension material, i.e., the material with no
resistance to tension and which accounts for the cases of limitless, as well as bounded
compressive strength. The adaptation of this material to beams has been developed in
[14], [17]. The viscous part amounts to the Kelvin–Voigt damping depending linearly
on the time derivatives of the linearized strain and curvature. The dynamical equa-
tions are formulated and a mathematical analysis of them is presented. Specifically,
following [4], the theorems of existence, uniqueness and regularity of the solution of the
dynamical equations are recapitulated and specialized for our purposes, to support the
numerical analysis applied previously in [8]. As usual, for that the Galerkin method
has been used. As an illustration, two numerical examples (slender masonry tower
and masonry arch) are presented in this paper with the applied forces corresponding
to the acceleration in the earthquake in Emilia Romagna in May 29, 2012.
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arches; coupling phenomena; Galerkin method
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1 Introduction

Recent years have seen increasing interest in conducting vulnerability analyses
of masonry buildings, due to the need to preserve the historical heritage. De-
spite the great research efforts, accurate modeling of the dynamic behavior of
masonry structures still represents an open problem. The difficulties are due
mainly to the heterogeneities of the masonry and the characteristics of the con-
stituent materials with their differing mechanical responses under tension and



compression. Particularly interesting results have been obtained by using the
so-called no-tension or masonry-like material which, with the proper numerical
techniques, has been successfully applied to the study of the static of several
masonry buildings [7]. However, due to the complexity of the dynamic analyses
of continuous masonry-like bodies, a constitutive equation for slender masonry
structures that can be represented by one-dimensional elements has been for-
mulated [17]. This non-linear elastic constitutive equation expresses the inter-
nal forces (normal force and bending moment) as functions of the generalized
strains (linear extension and change of curvature of the beams’ axis), under the
assumption that the material has no resistance to tension in the longitudinal
direction and it accounts for the cases of limitless, as well as bounded compres-
sive strength. This allows us to determine the cracked and crushed regions of
each section (see Figures 6.5 and ?? below). Moreover, it is worth noting that
with this unidimensional model, the solution to equilibrium problem is unique
not only for the stress but also for the displacement field [10]. The constitutive
equation, first developed for rectangular cross-section beams, has been general-
ized to the case of hollow, rectangular cross-sections. The model, applied at first
to static problems [15], has revealed to be suitable for conducting non-linear dy-
namic analyses of slender masonry structures with simple geometry and flexural
behavior like towers, bell towers and arches [8]. Coupling phenomena between
transverse and axial vibrations, which are recognized as an important factor
in the seismic behavior of slender structures are also taken into account, as
they are embedded in the constitutive equation. To include the damping of the
structure, a linear viscous term is introduced in the equation of motion.

A comparison between the results obtained with non-linear static analysis
(push-over) and incremental dynamic analysis has revealed that the first may
underestimate the damage caused by an earthquake [16] (at least if they are
conducted by imposing lateral loads). Because the constitutive equation used,
the model is not able to predict the collapse of the structure due to the shear
stresses or the strength degradation under cycling loading. On the other hand,
the shear force can be determined and compared to shear resistance (as for
the other generalized forces along the beam (see Figure 6.4). Hence, a safety
verification can be conducted according to many seismic codes ([3], [11]).

Moreover, since the model accounts for the material’s non-linear behavior
in all sections of the structure, it can be useful to obtain measures of local
and global damage. Such measures can be meaningful, even if the assumed
constitutive equation of the material does not allow a complete account of the
irreversibility of the damage process.

In this paper, in order to support the use of the numerical analysis, we prove,
under suitable hypotheses, the existence, uniqueness, regularity and continuous
dependence on data of the solution of the equation of motion for our viscous
masonry beam. We also state general result on the convergence of the Galerkin
method. In Section 2 and in the Appendix some properties of the constitutive
equation of the masonry beam are described. In Section 3 we introduce the
space functions to be employed in Section 4, where, following [4], the theorems
of existence, uniqueness and regularity of the solution of the equation of motion
are recapitulated and specialized for our purpose. In Section 5 the abstract
results are applied to the study of viscous masonry beams. Finally, a brief
account of the numerical method is given in Section 6 where we present two
application examples. As usual, for that the Galerkin method has been used.
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2 Viscous masonry beams

We consider a general (possibly) curved beam with the initial curvature χ. We
parametrize the material points of the beam by the natural (arc length) param-
eter s ∈ I, where I ⊂ R is a closed interval, the reference configuration of the
beam. Thus χ is a function of s, and we assume that χ is continuously differen-
tiable. We express general time-dependent fields over the beam as functions of
s and of time t. We denote the differentiation with respect to s by an attached
prime and the differentiation with respect to time by a superimposed dot. We
denote by S = [0, T ] the interval of time, where T > 0 is arbitrary, and consider
the motion of the beam for times from S. The tangential and radial displace-
ments of the beam are denoted by w and v, respectively, so that the displacement
of the point s ∈ I at time t ∈ S is (w(t, s), v(t, s)). The pair u = (w(·, ·), v(·, ·))
is called the displacement function of the beam. The generalized strain ê(u) of
a displacement u is

ê(u)(t, x) = (ε(t, x), κ(t, x))

with1

ε = w′ − χv, κ = −(v′′ − (χw)′). (2.1)

These are the (linearized) strain and the change of curvature of the axis of the
beam, respectively, that are heuristically deduced in [1].

Internal forces consist of the axial force N and the bending moment M .
These are the sums of the corresponding viscous and elastic parts Nv, Ne Mv

Me,
N = Nv + Ne, M = Mv + Me.

For the viscous axial force and viscous bending moment we postulate the con-
stitutive equations

Nv = Nv(ε̇, κ̇), Mv = Mv(ε̇, κ̇),

with the linear dependencies on ε̇, κ̇. The coefficients of proportionality of the
linear maps Nv and Mv are the generalized viscosity coefficients of the masonry
body. We shall assume that these viscosities are positive definite in the sense
that

Nv(ε̇, κ̇)ε̇ + Mv(ε̇, κ̇)κ̇ ≥ c|(ε̇, κ̇)|2 (2.2)

for some c > 0 and all (ε̇, κ̇) ∈ R
2 where | · | denotes the euclidean norm on R

2.
For some parts of the regularity theory we need also the generalized symmetry
of the coefficients of viscosity in the sense that

Nv(ε̇1, κ̇1)ε̇2 + Mv(ε̇1, κ̇1)κ̇2 = Nv(ε̇2, κ̇2)ε̇1 + Mv(ε̇2, κ̇2)κ̇1 (2.3)

for every (ε̇1, κ̇1) ∈ R
2, (ε̇2, κ̇2) ∈ R

2. The simplest example of the maps Nv and
Mv meeting the requirements (2.2) and (2.3) are

Nv(ε̇, κ̇) = αε̇, Mv(ε̇, κ̇) = βκ̇

for all (ε̇, κ̇) ∈ R
2 where α and β are positive constants.

The elastic part of the response is assumed to be of the format

Ne = Ne(ε, κ), Me = Me(ε, κ)

1Equations (2.1) correct the corresponding equations in [10].
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with specified response functions Ne and Me. We assume that the beam is
made of a masonry material. Several constitutive models are available for this
situation. If the beam is made of a no-tension material with infinite com-
pressive strength, then the response functions take the form adopted in [14],
[10, Eq. (17)]. If the beam is rectangular with solid cross-section and if it is
modelled as a no-tension material with limited compressive strength, then the
constitutive equation is more complicated; it is described in [17, Section 2] and
recapitulated here in the Appendix. Even more complicated is the response
for hollow, rectangular cross-section beams made of a no-tension material with
limited compressive strength. It is described in [8, Section 2]. Our treatment
of the existence and regularity theory in Section 4 covers all these cases, as will
be explained later.

If q and p denote the longitudinal and transversal forces distributed along
the beam, the equations of motion for axial and transverse displacements read

mẅ = N ′ − χM ′ + q,

mv̈ = M ′′ + χN + p,

}

(2.4)

where m is the mass per unit length of beam. In the treatment of the existence
and regularity theory below we shall formulate the weak version of these equa-
tions. These are based on the Virtual Power Principle. It takes the following
form in the static case:

∫ l

0

(Nε + Mκ) ds =

∫ l

0

(qw + pv) ds (2.5)

for every sufficiently smooth displacement field (w, v) which satisfies the bound-
ary conditions. Let us now outline the derivation of the equilibrium equations
corresponding to the dynamic equations (2.4) from this Virtual Power Principle.

From (2.1) and (2.5) by integrating by parts we deduce

,

∫ l

0
(qw + pv) ds =

∫ l

0
(N(w′ − χv) + M(−v′′ − (χw)′)) ds =

[Nw]l0 −
∫ l

0
N ′wds−

∫ l

0
Nχv ds− [Mv′]l0 +

∫ l

0

M ′v′ ds− [Mχw]l0 +

∫ l

0

M ′χw ds =

[Nw]l0 − [M(v′ + χw )]l0 + [M ′v]l0 −
∫ l

0
N ′w ds−

∫ l

0
Nχv ds−

∫ l

0
M ′′v ds +

∫ l

0
M ′χw ds.

In view of the boundary conditions (and because we assume that there are no
concentrated forces and couples) we obtain

[Nw]l0 = 0, [M ′v]l0 = 0, [M(v′ + χw )]l0 = 0, (2.6)

and then
∫ l

0

(qw + pv) ds =

∫ l

0

(−N ′ + χM ′)w ds +

∫ l

0

−(Nχ + M ′′)v ds.

From the arbitrariness of w and v we obtain the equilibrium equations

N ′ − χM ′ + q = 0,

M ′′ + χN + p = 0.

}

(2.7)

These are the static analogs of (2.4).

4



Remark 2.1. In [1] the equilibrium equation are given in the form

N ′ − χT + q = 0,

T ′ + χN + p = 0,

M ′ − T + m = 0











(2.8)

where T is the shear force and m are the distribuited couples along the axis of
the beam. For m = 0 we have T = M ′ by (2.8)3 and then equations (2.7) and
(2.8) are equivalent. Moreover, the boundary condition (2.6)2 and (2.6)3 can be
written as

[Tv]l0 = 0

[Mφ]l0 = 0,

respectively, where
φ = −(v′ + χw )

is the rotation of the axis of the beam [1].
We now return to the general dynamic case.
In view of the occurence of many possibilities of the boundary conditions,

we interpret them abstractly as a given linear subspace V of the space Z of all
possible (w, v) pairs of displacements in the same way as in [10]. Anticipating,
in the treatment of the existence theory we take for Z the product W 1,2(I) ×
W 2,2(I) of Sobolev spaces and so V ⊂ W 1,2(I) × W 2,2(I). In the example of a
beam clamped at the bottom we take

V = {(w, v) ∈ Z : w(0) = 0, v(0) = v′(0) = 0}.

We interpret the loads applied to the beam as a time-dependent linear functional
l = l(t) on the space Z of pairs of displacements.

3 Spaces of time–dependent functions

Let V be a separable Hilbert space, continuously and densely contained in a
Hilbert space H and let V ∗ be its dual, i.e., the space of all continuous linear
functionals on V. Identifying the dual of H with H itself, we have the inclusions

V ⊂ H ⊂ V ∗. (3.1)

We call every triple as in (3.1) the evolutionary triple.
Let Y be a Banach space with norm ‖ · ‖Y , let T > 0 and put S = [0, T ]. By

L2(S, Y ) we denote the space of all (classes of equivalence of) Bochner integrable
maps u : S → Y such that

‖u‖2 :=

∫

S

‖u(t)‖2
Y dt < ∞.

If f ∈ L2(S, Y ∗) then the duality pairing 〈u, f 〉 ≡ 〈f, u 〉 is defined by

〈u, f 〉 =

∫

S

〈u(t), f(t) 〉Y ×Y ∗ dt
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where 〈 ·, · 〉Y ×Y ∗ is the duality pairing between Y and Y ∗, i.e., for a given
t ∈ S, the value 〈u(t), f(t) 〉Y ×Y ∗

is the value of the linear functional f(t) on
the element u(t).

We denote by C(S, Y ) the set of all norm continuous maps u : S → Y.
A map u : S → Y is said to be strongly differentiable at t ∈ S if there exists

an element u̇(t) ∈ Y such that

lim
h→0

t+h∈S

‖((u(t + h) − u(t))/h − u̇(t)‖Y = 0.

The element u̇(t) is called the strong derivative of u at t. The function u : S → Y
is called strongly differentiable if it is strongly differentiable at every point of
the interval S. We denote by C1(S, Y ) the space of all maps u : S → Y that
are strongly differentiable and the derivative t 7→ u̇(t) is norm continuous on S.
Proceeding inductively, we define the strong derivatives of order m where m is
a positive integer, and we further denote by Cm(S, Y ) the set of all u : S → Y
which have strong derivatives of all orders ≤ m and these are norm continuous
functions on S.

A map u : S → Y is said to be weakly differentiable at the point t ∈ S, if
there exists an element u̇(t) ∈ Y satisfying the condition

lim
h→0

t+h∈S

〈 (u(t + h) − u(t))/h − u̇(t), f 〉Y ×Y ∗ = 0 for each f ∈ Y ∗.

The element u̇(t) is called the weak derivative of u. The function u : S → Y
is called weakly differentiable if it is weakly differentiable at every point of
the interval S. By induction we define the weak derivative of order m of u ∈
S → Y. We denote by Cm

w (S, X) the set of all functions u : S → Y possessing
demicontinuous weak derivatives of order ≤ m. Here a demicontinuous function
u : S → Y is a function such that the function t 7→ 〈u(t), f 〉 is continuous for
each f ∈ Y ∗.

If u ∈ L2(S, Y ), we say that u̇ ∈ L2(S, Y ) is a derivative of u in the sense of
distributions if we have

∫

S

u(t)φ̇(t) dt = −
∫

S

u̇(t)φ(t) dt

for every φ : R → R that is infinitely many times continuously differentiable and
has a support contained in (0, T ). The derivative in the sense of distributions,
if it exists, is uniquely determined as an element of L2(S, Y ), i.e., up to the set
of vanishing Lebesgue measure. More generally, if m is a positive integer we
define the derivative of order m in the sense of distributions u(m) ∈ L2(S, Y ) of
u ∈ L2(S, Y ) by

∫

S

u(t)φ(m)(t) dt = (−1)m

∫

S

u(m)(t)φ(t) dt

for every φ : R → R that is infinitely many times continuously differentiable
and has a support contained in (0, T ).
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4 Operator differential equations of the second

order

In this section we recapitulate and specialize the results of [4] relevant to our
purpose.

Consider an evolutionary triple (3.1). We shall deal with the operator equa-
tions

ü(t) + Au̇(t) + Bu(t) = f(t) for almost every t ∈ S,

u(0) = a0, u̇(0) = a1, u ∈ C(S, V ), u̇ ∈ V,

}

(4.1)

where A and B are possibly nonlinear operators mapping V into V ∗, f ∈
L2(S, V ∗), a0 ∈ V and a1 ∈ H. Here ü ∈ L2(S, V ∗) is the second derivative
in the sense of distributions of u, considered as a map from S → V ∗, while u̇ is
the first derivative in the sense of distributions of u, considered as a map from
S to V ⊂ V ∗. Thus ü : S → V ∗ satisfies

∫

S

u(t)φ̈(t) dt =

∫

S

ü(t)φ(t) dt

for every φ : R → R that is infinitely many times continuously differentiable
and has a support contained in (0, T ) while u̇ : S → V satisfies

∫

S

u(t)φ̇(t) dt = −
∫

S

u̇(t)φ(t) dt

for every φ : R → R that is infinitely many times continuously differentiable and
has a support contained in (0, T ). Both these definitions are particular cases of
the general definition in Section 3, the first one with the choice Y = V ∗ and the
second with Y = V. We note that we have u̇ ∈ W where

W := {w ∈ L2(S, V ), ẇ ∈ L2(S, V ∗))} ⊂ C(S, H)

where the last inclusion follows from [4, Chapter IV, Theorem 1.17]. Thus the
initial condition u̇(0) = a1 ∈ H is meaningful. We note that (4.1) is a special
case of the second order operator differential equations considered in [4, Chapter
VII] where Volterra operators, i.e., those depending on the history of u up to t
are admitted and where the exponents p ≥ 2 are admitted in some results, but
not in the results pertinent to our development.

An operator A from V to V ∗ is said to be strongly monotone if

〈Au − Av, u − v 〉V ×V ∗ ≥ c‖u− v‖2
V

for all u, v ∈ V and some c > 0. An operator A from V to V ∗ is said to be
radially continuous if A(u + hv) → A(u) whenever h ∈ R satisfies h → 0 and
the assertion holds for every u, v ∈ V. An operator B from V to V ∗ is said to
be Lipschitz continuous if

‖Bu − Bv‖V ∗ ≤ c‖u − v‖V

for all u, v ∈ V and some c > 0.
Specializing [4, Theorem 1.2 and Remark 1.3, Chapter VII] to our situation

we obtain the following existence result.
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Theorem 4.2. Let A : V → V ∗ be a radially continuous strongly monotone op-
erator and let B : V → V ∗ be Lipschitz continuous operator. Then for arbitrary
a0 ∈ V, a1 ∈ H and f ∈ L2(S, V ∗) the problem (4.1) has exactly one solution.
For this solution we have u̇ ∈ W. Moreover, the solution depends continuously
on the data in the sense that the map (a0, a1) 7→ (u, u̇) is a continuous map
from V × H to C(S, V ) × C(S, H).

The existence of the solution is obtained via the application of the Galerkin
method that we now briefly outline.

Let {h1, h2, . . .} denote a linearly independent infinite sequence such that its
span is dense in V . The span of {h1, h2, . . .} is also dense in H as a consequence.
Let Hn denote the span of {h1, . . . , hn} with the scalar product induced by the
scalar product of H. We assume that the dual space H∗

n is identified with Hn. For
each operator D : V → V ∗ there exists an operator Dn : Hn → Hn satisfying

〈Dnu, v 〉V ×V ∗ = 〈Du, v 〉V ×V ∗ for each u, v ∈ Hn.

We shall use this possibility in particular for the operators A and B.
Let {a0n} be an arbitrary sequence of elements of Hn converging in V to a0.

Let, further, {a1n} be any sequence of elements of Hn converging to a1 in H.
Let, finally, fn ∈ L2(S, Hn) be defined by the relation

〈fn, v 〉 = 〈f, v 〉 for each v ∈ L2(S, Hn).

We consider the following Galerkin’s equations

ün + Anu̇n + Bnun = fn,

un(0) = a0n, u̇n(0) = a1n,

un ∈ C(S; Hn), u̇n ∈ L2(S, Hn).











(4.2)

Specializing [4, Lemma 2.2 and Theorem 2.2, Chapter VII] to our situation,
we obtain the following two assertions.

Lemma 4.3. Under the assumptions of Theorem 4.2 for each positive integer n
the problem (4.2) has exactly one solution un ∈ C1(S, Hn), having the property
that ün ∈ L2(S, Hn). The sequence {un} is bounded in C(S, V ) and the sequence
{u̇n} is bounded in C(S, H) and in L2(S, V ); the sequence Au̇n is bounded in
L2(S, V ∗).

Theorem 4.4. Assume that the hypotheses of Theorem 4.2 hold. Denote by
un the solutions of the Galerkin’s equations (4.2) and by u the solution of the
problem (4.1). Then for n → ∞ we have

a) un → u in C(S, V ),
b) u̇n → u̇ in C(S, H) and in L2(S, V );
c) Au̇n ⇀ Au̇ in L2(S, V ∗).

Next we are going to discuss the regularity of the dependence of the solution
on t. [4] gives two kinds of such results, the first type giving the regularity
on S under a special choice of the initial conditions and the second type for
general initial conditions but on intervals of the type [δ, T ] for any δ satisfying
0 < δ < T.

From [4, Theorem 3.2, Chapter VII] we derive the following result.
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Theorem 4.5. Let A : V → V ∗ be radially continuous and strongly monotone
and let the operator B : V → V ∗ be Lipschitz continuous and let f ∈ L2(S, V ∗)
be Lipschitz continuous, i.e.,

‖f(s) − f(t)‖V ∗ ≤ c|s− t| (4.3)

for every s, t ∈ S and some c > 0. Then for every a0, a1 ∈ V with Aa1 + Ba0 +
f(0) ∈ H the problem

ü(t) + Au̇(t) + Bu(t) = f(t) for each t ∈ S,

u(0) = a0, u̇(0) = a1, u ∈ C1(S, V ) ∩ C2
w(S, H)

}

has exactly one solution.

We here note that we apply [4, Theorem 3.2, Chapter VII] with the family
{A(t)}, t ∈ S, of that theorem equal to our time independent operator A and
with the family {B(t)}, t ∈ S, given by

B(t)w = Bw − f(t)

for each t ∈ S and w ∈ V. The function ρA of [4, Theorem 3.2, Chapter VII]
may be set equal to 0 and the function ρB may be given by ρB(τ ) = c for all
τ ≥ 0 where the constant c is as in (4.3). Then the hypotheses of [4, Theorem
3.2, Chapter VII] are satisfied and the conclusion gives Theorem 4.5.

We say that A : V → V ∗ is a potential operator if there exists a function
F : V → R such that A is the Gateaux derivative of F.

Theorem 4.6. Let the assumptions of Theorem 4.5 be satisfied and assume,
in addition, that A is a potential operator. Then for every a0 ∈ V, a1 ∈ H the
problem

ü(t) + Au̇(t) + Bu(t) = f(t), 0 < t ≤ T,

u(0) = a0, u̇(0) = a1, u ∈ C(S, V ),

u̇ ∈ C1
w([δ, T ], H)∩ C([δ, T ]; V ) ∩ W for each δ ∈ (0, T ]











has exactly one solution.

This result follows from [4, Theorem 3.4, Chapter VII], where we identify the
operator D : V → V ∗ of that theorem with our A and where we put the operator
C of [4, Theorem 3.4, Chapter VII] to be equal identicaly to 0.

5 Application of the abstract results to viscous

masonry beams

We take for V a closed subspace of W 1,2(I)×W 2,2(I), which is the same subspace
as equally denoted subspace in [10, Section 2]. This represents the boundary
conditions. We furthermore take the time-dependent loads l ∈ L2(S, V ∗). We
define H to be the closure in L2(I, R2) of the space V with the obvious inclusion
of V in H. Then

V ⊂ H ⊂ V ∗

9



forms an evolutionary triplet.
We define the operators A, B : V → V ∗ by

〈Aa, α 〉 =

∫

I

(Nv(ê(a)), Mv(ê(a)) · ê(α) ds

and

〈Ba, α 〉 =

∫

I

(Ne(ê(a)), Me(ê(a))) · ê(α) ds

for any a = (b, c) ∈ V and α = (β, γ) ∈ V . We denote the arguments of the
operators A and B by the neutral symbol a although in the application of A
and B to our differential equation the arguments will be a = u̇ = (ẇ, v̇) and
a = u = (w, v), respectively, where w and v are the longitudinal and transversal
displacements. Since we assume that the viscous response functions Nv and Mv

are linear, we see that A is a linear transformation from V to V ∗; clearly, it is
bounded. Finally, f ∈ L2(S, V ∗) is defined by

f(t) = l(t), t ∈ S.

To apply Theorem 4.2, we only need to assume the positive definite property
(2.2), which guarantees that A is a strongly monotone operator. That B is
Lipschitz continuous follows from the Lipschitz continuity of the maps Ne, Me.
This is proved in [10] for the case of a beam with infinite compressive strength.
In the cases of materials with finite compressive strength considered in [17,
Section 2] and [8, Section 2] this is verified by a detailed analysis of the response
functions described in the last two references. Thus under (2.2), we have a well-
defined global evolution of the viscous masonry beam. The same hypothesis also
suffices for the convergence of the Galerkin approximations in Theorem 4.4.

The regularity Theorem 4.5 for the special choice of the initial conditions
requires, besides (2.2), also the Lipschitz continuity of the dependence of the
loads on time.

Finally, the regularity Theorem 4.6 requires (2.2), the Lipschitz continuity
of the loads on time, and the symmetry property (2.3), which guarantees that
A is a potential operator with a quadratic potential.

6 Numerical examples

In this section, firstly we briefly describe the numerical method that has been
used to integrate the motion equations and then we present two numerical exam-
ples. In the first example we study a slender masonry tower while in the second
one we study a masonry arch. In both the cases, as dynamic action, we consider
a horizontal acceleration recorded during the recent Emilia Romagna earthquake
which occurred in May 29, 2012, having the magnitude 6.0, PGA= 2.89 m/s2,
and duration of 35.3 s. The accelerogram is depicted in Figure 6.1.
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Figure 6.1: Accelerogram of the input ground motion used in the examples.

The computations have been performed trough the code MADY which im-
plements the described numerical method [9].

Because for the discretization of the structures we use rectilinear beam ele-
ments, we rewrite equations (2.5) with χ = 0,

v̈ + M ′′ + p = 0, ü − N ′ − q = 0. (6.1)

If we multiply (6.1)1 and (6.1)2 by the test functions uf and ua, respectively,
which satisfy the appropriate boundary conditions, and integrate by parts, we
obtain

∫ l

0

u′′
fM ds−

∫ l

0

ufmv̈ ds +

∫ l

0

ufq ds = 0, (6.2)

∫ l

0

−u′
aN ds−

∫ l

0

uamẅ ds +

∫ l

0

uap ds = 0. (6.3)

In discretizing the structure into finite elements, conforming elements and Her-
mite shape functions have been selected in order to guarantee continuity of both
the transverse beam-axis displacement and its rotation, while linear shape func-
tions have been used for the axial displacement [12]. Therefore, for each node
there are three degrees of freedom: the axial and transverse displacement plus
the rotation.

Let us now denote the selected functions defined over the master element Ω̂
(i.e., for −1 ≤ ξ ≤ 1) as

Ψ̂01(ξ) =
1

4
(ξ − 1)2 (ξ + 2), Ψ̂02(ξ) =

1

4
(ξ + 1)2 (2 − ξ), (6.4)

Ψ̂11(ξ) =
1

4
(ξ − 1)2 (ξ + 1), Ψ̂12(ξ) =

1

4
(ξ + 1)2 (ξ − 1), (6.5)
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Φ̂1(ξ) =
1

2
(1 − ξ), Φ̂2(ξ) =

1

2
(1 + ξ) (6.6)

and let (̂ξ) and (̂ξ) be the vectors

ˆT =
{

0 Ψ̂01 Ψ̂11 0 Ψ̂02 Ψ̂12

}

, ˆT =
{

Φ̂1 0 0 Φ̂2 0 0
}

.

Moreover, denoting as (ζ) and (ζ) the vectors

T (ζ) =

{

0 Ψ01
le
2

Ψ11 0 Ψ02
le
2

Ψ12

}

, T (ζ) = {Φ1 0 0 Φ2 0 } ,

where ζ is the local coordinate along each mesh element, with origin at the first
node, and le is the element’s length. Lastly, denoting q as the vector of nodal
displacements of each element,

qT = {w1 v1 ϕ1 w2 v2 ϕ2} ,

the functions v(s, t) and w(s, t), as well as the test functions, can be approxi-
mated over each element at each time t as

v(s) = T (s)q(t), w(s) = T (s)q(t).

Therefore, by substituting into equation (6.2) and (6.3), for the i-th element E,
we obtain the discretized equations

ME q̈E + fEi − fEe = 0 (6.7)

where the total matrix of mass ME , the vector of the external forces fEe and the
vector of internal forces fEi are given by

ME =

∫ 1

−1

mT dξ +

∫ 1

−1

mT dξ,

fEe =

∫ 1

−1

p dξ +

∫ 1

−1

qdξ,

fEi = −
∫ 1

−1

′′M dξ +

∫ 1

−1

′N dξ.

By suitably assembling equation (6.7), we have determined the motion equa-
tions for the entire structure. The Newmark method is then used to integrate
the ordinary, non-linear differential equation over time, and the resulting non-
linear algebraic system can be solved via the Newton-Raphson iterative method.
As most of these techniques are standard, a detailed explanation is omitted.
Nevertheless, it should be noted that defining the stiffness matrix K̃E requires
calculating the derivatives of the generalized stress with respect to the general-
ized strain in each of the domain regions, since K̃E is given by

K̃E
s =

∂

∂q
(−

∫ 1

−1

′′M dξ +

∫ 1

−1

′N dξ).

Regarding the effects of viscous damping, these have been accounted for by
including in the motion equation a constant symmetric viscous damping matrix,
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C which is obtained as a linear combination of M and the initial elastic stiffness
matrix K, as per the Rayleigh assumption. Then the positive definite property
(2.2) and the symmetry property (2.3) are satisfied.

A comparison of some numerical results obtained via the proposed model
with the analytical solutions have been presented in [5], where an approximate
method has been used for explicitly solving the equations of motion. Other com-
parisons of results with those from the NOSA-ITACA code, which implements
a masonry-like material model, are reported in [6]. Furthermore, in the follow-
ing section a comparison with results obtained with the open source OpenSees
software [13] is also presented.

6.1 Masonry tower

Let us consider a free-standing masonry tower with height H = 45 m, having
a square section with external side b = 5.5 m and thickness t = 1.5 m. As the
constitutive equation we consider the relations set forth in [8, Section 2] for
hollow rectangular cross section, under the assumption that the material has
no resistance to tension and limited compressive strength, with the following
values of parameters: Young modulus E = 3 103 MPa, compressive strength
σo = −3.0 MPa and density γ = 1800 kg/m3. The assumed damping is 2%.

Figure 6.3 shows the behavior of the displacement of the top of the tower
as a function of time. To validate the model, the response obtained with the
OpenSees code is also reported in the Figure. For the analysis with OpenSees,
the tower has been modelled as a non-linear cantilever column with a fiber
section, so that the axial and flexural behavior are coupled, as in the case of the
model presented in the paper. The Elastic-No tension uniaxial material has been
chosen as stress-strain law to define the nonlinear behavior of the generic hollow
rectangular fiber section. As the OpenSees model is not able to account for a
bound of the masonry compressive strength, the result obtained via MADY
assuming a limitless compressive strength is also reported for reference. As
shown by the Figure, the results from the two models are in good agreement:
the displacement’s responses are only slightly out of phase with a small difference
in amplitude. The maximum value of the displacement obtained via MADY is
about .3 meters and it is reached at t = t̄ = 7.895 s. For t = t̄, the behavior
of the displacement, velocity and acceleration along the height of the tower are
shown in Figure 6.3, where their trends obtained via OpenSees at the time
step of the maximum displacement - are also plotted for comparison. Figure 6.4
shows the behavior of the bending moment, eccentricity e = M/N and shear
force T . It is interesting to note the trend of the bending moment. In fact, the
diagram presents an inflexion point along the structures height, which is usually
exhibited under dynamic actions. As extensively shown in [16], this trend is not
easily captured by (equivalent) static analyses. Finally, Figure 6.5 shows, for
t = t̄ and for each cross section, the percentage of cracked and crusched areas
that gives an estimation of the damage of the structure.
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Figure 6.2: Transversal displacement v(H, t) at the top of the tower as a function
of time.
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Figure 6.3: Transversal displacement v(s, t̄), velocity v̇(s, t̄) and acceleration v̈(s, t̄)
as a function of s, at t̄ = 7.895 s.
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Figure 6.4: Bending moment M(s, t̄), eccentricity e(s, t̄) and shear force T (s, t̄)
as a function of s, at t̄ = 7.895 s.
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Figure 6.5: Percentage of (a) cracked and (b) crushed area as a function of s,
at t̄ = 7.895 s.

6.2 Masonry arch

Let us consider a masonry circular arch with span l = 15 m, internal radius
R = 7.98 m, width d = 1 m, thickness 2h = 0.75 m and springing angle of 20◦ [2].
As the constitutive equation we consider the relations set forth in [17, Section 2]
for solid rectangular cross section, under the assumption that the material has
no resistance to tension and limited compressive strength (see the Appendix),
with the following values of parameters: Young modulus E = 1.5 104 MPa,
compressive strength σ0 = −5.0 MPa, density γ = 2200 Kg/m3 and damping
4%.
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Figure 6.6: Total displacement u =
√

w2 + v2 at the point P.

Figure 6.7: Deformation of the central line of the arch at t̄ = 5.615s.

Figure 6.8: Axial force N at t̄ = 5.615s. (Maximum value 2.879 105 N)
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Figure 6.9: Bending moment M at t̄ = 5.615s. (Maximum value 9.305 104 Nm)

Figure 6.10: Shear force T at t̄ = 5.615s. (Maximum value 7.15 104 N)

Figure 6.11: Line of trust at t̄ = 5.615s.

Figure 6.6 shows the total displacement u =
√

w2 + v2 at point the P at
an angular distance of 34◦ from the right springing, as a function of time. The
maximum value of u is about 3.4 10−3 m and it is reached at t = t̄ = 5.615 s.
For t = t̄, Figure 6.7 shows the strained center line and Figures 6.8, 6.9, 6.8
show the generalized stresses, axial force N , bending moment M and shear force
T , respectively. The maximum values of the generalized stresses are reached at
the right springing and they are Nmax = 2.879 105 N , Mmax = 9.305 104 Nm
and Tmax = 7.15 104 N . Finally, Figure 6.11 shows the line of trust which is
wholly contained in the “reduced arch”, i.e. an arch with thickness equal to
h(1 − N/2σ0hd), according to (7.1) (below).
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Figure 7.1: Partition of the generalized strains.

Again, the line of trust obtained dynamically shows a peculiar trend, that
is difficult to predict by applying the static loads usually used in seismic assess-
ments via simplified methods. Hence, the need for dynamic analysis is high-
lighted.

7 Appendix: The stored energy of a no-tension

beam with bounded compressive strength

In this Appendix we consider beams having rectangular cross section of height
2h, made of no-tension material with compressive Young modulus E and com-
pressive strenght σ0 < 0 [14], [17]. In the following, in order to use the dimen-
sionless quantities, we will write κ for hκ, φ for φ/EA, N for N/EA and M for
M/EAh, where A is the area of the section. Moreover we put ε0 = σ0/E.

Let us consider the partition of the generalized strains R
2 = Σ1 ∪Σ±

2 ∪Σ±
3 ∪

Σ±
4 ∪ Σ5 ∪ Σ6 (Fig. 7.1), where











































Σ1 = {e = (ε, κ) ∈ R
2; |κ| ≤ −ε, |κ| ≤ ε − ε0},

Σ±
2 = {e = (ε, κ) ∈ R

2;±κ < |ε|,±κ > ε0 − ε},
Σ±

3 = {e = (ε, κ) ∈ R
2;±κ < |ε − ε0|,±κ > ε},

Σ±
4 = {e = (ε, κ) ∈ R

2;±κ < ε,±κ > ε0 − ε},
Σ5 = {e = (ε, κ) ∈ R

2;±|κ| ≤ ε},
Σ6 = {e = (ε, κ) ∈ R

2;±|κ| ≥ ε − ε0},

and the subset Ω of the generalized stress R
2 (Fig. ??), Ω = Ω1 ∪ Ω±

2 ∪ Ω±
3 ∪
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Ω±
4 ∪ Ω5 ∪ Ω6 where















































Ω1 = {t = (N, M) ∈ Ω; N ≤ 0, |M | ≤ −N/3, |M | ≤ (N − ε0)/3},
Ω±

2 = {t = (N, M) ∈ Ω;±M < N/3,±M ≥ −4N2/3ε0 + N},
Ω±

3 = {t = (N, M) ∈ Ω;±M < (ε0 − N)/3,±M ≥ 4N2/3ε0 + 5N/3 − ε0/3},
Ω±

4 = {t = (N, M) ∈ Ω;±M < −4N2/3ε0 + 5N/3 − ε0/3,

± M < −4N2/3ε0 + N,±M ≥ −N2/ε0 + N},
Ω5 = 0,
Ω6 = {ε0, 0}.

We note that from the previous relations it follows that the eccentricity
e = M/N has to satisfy the inequality

|e| ≤ h(1 − N

Aσ0
). (7.1)

M

N

Ω−
4

Ω+
4

Ω1

Ω−
3

Ω+
3

Ω−
2

Ω+
2

Figure 7.2: Partition of the generalized stresses.

Let Φ : R
2 → R

2 be defined by

Φ(ε, κ) =



















































3ε2+κ2

6 if (ε, κ) ∈ Σ1,

(κ∓ε)3

6κ
if (ε, κ) ∈ Σ±

2 ,

± ε3+3ε2(±κ−ε0)+3ε(ε0±κ)2−ε3
0
−3κ2ε0±κ3

6κ
if (ε, κ) ∈ Σ±

3 ,

∓ ε0(3ε2−3ε(ε0±2κ)+ε2
0
+3κ2)

6κ
if (ε, κ) ∈ Σ±

4 ,

0 if (ε, κ) ∈ Σ5,

εε0 if (ε, κ) ∈ Σ6,

(7.2)

(ε, κ) ∈ R
2. It is easy to see that (7.2) is the energy function corresponding to

the constitutive equation given in [14], [17].
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Proposition 7.7. The function Φ is convex, continuously differentiable and
nonnegative with derivative DΦ = (N̂ , M̂) given by

(N̂ , M̂)(ε, κ) =



















































(ε, κ/3) if (ε, κ) ∈ Σ1,

(ε∓κ)2

12κ2 (∓3κ,±ε + 2κ) if (ε, κ) ∈ Σ±
2 ,

(
(ε−ε0±κ)2±4ε0κ

4κ
,

(ε−ε0+κ)2(±ε∓ε0−2κ)
12κ2 ) if (ε, κ) ∈ Σ±

3 ,

(∓ ε0(2ε−ε0−2κ)
4κ

,± ε0(3ε2−3εε0+ε2
0
−3κ2)

12κ2 ) if (ε, κ) ∈ Σ±
4 ,

(0, 0) if (ε, κ) ∈ Σ5,

(ε0, 0) if (ε, κ) ∈ Σ6

(ε, κ) ∈ R
2; one has D Φ(Σ1) = Ω1, DΦ(Σ±

2 ) = Ω±
2 , D Φ(Σ±

3 ) = Ω±
3 , D Φ(Σ±

4 ) =
Ω±

4 , D Φ(Σ5) = 0, D Φ(Σ6) = (ε0, 0). Moreover, Φ(ε, κ) ≤ c|(ε, κ)|2, |DΦ(ε, κ)| ≤
c|(ε, κ)| for some c ∈ R and all (ε, κ) ∈ R

2.

Acknowledgment This research was supported by the Regione of Toscana (project
“Tools for modeling and assessing the structural behavior of ancient construc-
tions: the NOSA-ITACA code”, PAR FAS 2007-2013). The research of M.
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8 Conclusion

The model presented in this work allows us to study the dynamic behavior of
slender masonry structures with predominantly flexural behavior. Although the
constitutive equation used is not sufficient to capture some important aspects
such as the collapse due to shear forces and the progressive degradation of the
material, the model provides important information on the effects of dynamic
loads applied to the structure as the examples presented show. The results
obtained are justified by the existence, uniqueness, regularity and continuous
dependence on data of the solution to the dynamic problem, that has been
proved under very general assumptions, as well as by the convergence of the
employed numerical method.
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[4] Gajewski, H.; Gröger, K.; Zacharias, K.: Nichtlineare Operatorgleichungen
und Operatordifferentialgleichungen. Berlin: Akademie–Verlag, 1974.

21



[5] Girardi, M.; Lucchesi, M.: Free flexural vibrations of masonry beam-
column. Journal of Mechanics of Materials and Structures 5-1 (2010)
143–159.

[6] Girardi, M.; Lucchesi, M.; Padovani, C.; Pasquinelli, G.; Pintucchi, B.;
Zani, N.: Numerical Methods for Slender Masonry Structures: A Compar-
ative Study. Proceedings, article n. 11826. Civil-Comp Press, 2012 (2012)
143–159.

[7] Lucchesi, M.; Padovani, C.; Pasquinelli, G.; Zani, N.: Masonry Construc-
tions: Mechanical Models and Numerical Applications. Berlin: Springer,
2008.

[8] Lucchesi, M.; Pintucchi, B.: A numerical model for non-linear dynamic
analysis of slender masonry structures. European Journal of Mechanics
A/Solids 26 (2007) 88–105.

[9] Lucchesi, M.; Pintucchi, B.; Zani, N.: The finite elements code MADY
for non-linear static and dynamic analysis of masonry structures. journal
volume (2013) pages
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