Deterministic and stochastic modelling of biochemical processes An introduction and open problems

> Tomáš Vejchodský vejchod@math.cas.cz

Wolfson Centre for Mathematical Biology Mathematical Institute

Institute of Mathematics Academy of Sciences Czech Republic

AIME@CZ, Prague, 11–12 March 2014

How does the life function?

How does the life function?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Protein production

Feedback loops (transcription factors)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feedback loops (transcription factors)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Feedback loops (transcription factors)

Gene regulatory networks

Circadian rhythms in Drosophila [Xie, Kulasiri, 2007]

・ロト ・ 聞 ト ・ 画 ト ・ 画 ・ うくの

Gene regulatory networks

Neighbourhood of mating response genes in yeast [Rung, Schlitt, et_al, 2002]_

nac

(ロ)、(型)、(E)、(E)、 E) の(の)

- 1. Mathematical models of biochemical systems
- 2. Deterministic vs. stochastic models
- 3. Modelling and numerics

1. Mathematical models of biochemical systems

Deterministic model – law of mass action

Protein production

Chemical system

$$D \xrightarrow{\alpha_R} D + R \qquad R \xrightarrow{\delta_R} \emptyset$$
$$R \xrightarrow{\alpha_P} R + P \qquad P \xrightarrow{\delta_P} \emptyset$$

Mass action ODE $\frac{\mathrm{d}R}{\mathrm{d}t} = \alpha_R D - \delta_R R$ $\frac{\mathrm{d}P}{\mathrm{d}t} = \alpha_P R - \delta_P P$ Notation

 $D = D(t) \dots$ number of DNA molecules $R = R(t) \dots$ number of mRNA molecules $P = P(t) \dots$ number of Protein molecules

Initial condition D(0) = 1, R(0) = 0, P(0) = 0

Deterministic model - law of mass action

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

Stochastic model

Chemical system

$$D \xrightarrow{\alpha_R} D + R \qquad R \xrightarrow{\delta_R} \emptyset$$
$$R \xrightarrow{\alpha_P} R + P \qquad P \xrightarrow{\delta_P} \emptyset$$

Discrete space continuous time Markov process

- State at time t: [R, P](t)
- Change of state:

 $[R, P](t) \mapsto [R+1, P](t + dt)$ with probability $\alpha_R D dt$ $[R, P](t) \mapsto [R-1, P](t + dt)$ with probability $\delta_R R dt$ $[R, P](t) \mapsto [R, P+1](t + dt)$ with probability $\alpha_P R dt$ $[R, P](t) \mapsto [R, P-1](t + dt)$ with probability $\delta_P P dt$

Gillespie stochastic simulation algorithm

ロト 《聞 と 《臣 と 《臣 と 《臣 のへの)

ロト 《聞 と 《臣 と 《臣 と 《臣 のへの)

コンス型とスポンスポントが、アックの今

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = ∽ 9 < ⊙

◆□▶ ◆□▶ ◆□▶ ◆□▶ ◆□ ● ● ●

Stochastic model – analysis

Definition: $p_{n,m}(t) = \Pr[R(t) = n, P(t) = m]$ Chemical master equation (CME): $\frac{d}{dt}p_{n,m} = \alpha_R Dp_{n-1,m} - \alpha_R Dp_{n,m} + \delta_R(n+1)p_{n+1,m} - \delta_R np_{n,m} + \alpha_P np_{n,m-1} - \alpha_P np_{n,m} + \delta_P(m+1)p_{n,m+1} - \delta_P mp_{n,m} + \alpha_R np_{n,m-1} - \alpha_P np_{n,m} + \delta_P(m+1)p_{n,m+1} - \delta_P mp_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_P(m+1)p_{n,m+1} - \delta_P mp_{n,m}$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Stochastic model – analysis

Definition:
$$p_{n,m}(t) = \Pr[R(t) = n, P(t) = m]$$

Chemical master equation (CME):

$$\frac{d}{dt}p_{n,m} = \alpha_R Dp_{n-1,m} - \alpha_R Dp_{n,m} + \delta_R(n+1)p_{n+1,m} - \delta_R np_{n,m} + \alpha_P np_{n,m-1} - \alpha_P np_{n,m} + \delta_P(m+1)p_{n,m+1} - \delta_P mp_{n,m} + \alpha_R np_{n,m-1} - \alpha_P np_{n,m} + \delta_P(m+1)p_{n,m+1} - \delta_P mp_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R(n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R(n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R(n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R(n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m} + \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n$$

Definition:
$$p(x, y, t) \approx \Pr[R(t) = x, P(t) = y]$$

Chemical Fokker-Planck equation (CFPE):

$$\begin{aligned} \frac{\partial p}{\partial t} &= \operatorname{div}(\mathcal{A}\nabla p - \mathbf{b}p), \qquad (x, y) \in (0, \infty)^2 \\ \text{where} \\ \mathcal{A} &= \frac{1}{2} \begin{bmatrix} \alpha_R D + \delta_R x & 0 \\ 0 & \alpha_P x + \delta_P y \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \alpha_R D - \delta_R x + \delta_R/2 \\ \alpha_P x - \delta_P y + \delta_P/2 \end{bmatrix} \end{aligned}$$

(ロ)、(型)、(E)、(E)、 E のQで

Stochastic model – analysis

Definition:
$$p_{n,m}(t) = \Pr[R(t) = n, P(t) = m]$$

Chemical master equation (CME):

$$\frac{d}{dt}p_{n,m} = \alpha_R Dp_{n-1,m} - \alpha_R Dp_{n,m} + \delta_R(n+1)p_{n+1,m} - \delta_R np_{n,m} + \alpha_P np_{n,m-1} - \alpha_P np_{n,m} + \delta_P(m+1)p_{n,m+1} - \delta_P mp_{n,m} + \alpha_R np_{n,m-1} - \alpha_P np_{n,m} + \delta_P(m+1)p_{n,m+1} - \delta_P mp_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R(n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R(n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R(n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R(n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m-1} - \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n,m} + \alpha_R np_{n,m} + \delta_R (n+1)p_{n,m+1} - \delta_R np_{n,m} + \alpha_R np_{n$$

Definition: $p(x, y, t) \approx \Pr[R(t) = x, P(t) = y]$ Chemical Fokker-Planck equation (CFPE):

$$\frac{\partial p}{\partial t} = \operatorname{div}(\mathcal{A}\nabla p - \mathbf{b}p), \quad (x, y) \in (0, \infty)^{2}$$

where
$$\mathcal{A} = \frac{1}{2} \begin{bmatrix} \alpha_{R}D + \delta_{R}x & 0\\ 0 & \alpha_{P}x + \delta_{P}y \end{bmatrix}, \quad \mathbf{b} = \begin{bmatrix} \alpha_{R}D - \delta_{R}x + \delta_{R}/2\\ \alpha_{P}x - \delta_{P}y + \delta_{P}/2 \end{bmatrix}$$

Stochastic differential equations

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

2. Deterministic vs. Stochastic

Protein production

Stochastic bifurcations

[Vilar, Kueh, Barkai, Leibler, 2002]

Stochastic bifurcations

VKBL model: phase diagram $\delta_R = 0.2$

 $\delta_R = 0.05$

▲□▶ ▲□▶ ▲注▶ ▲注▶ … 注: のへ⊙

Stochastic bifurcations

VKBL model: Mean period vs. δ_R

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 3. Modelling and numerics
 - Model reduction
 - Stationary distribution by CME and FPE
 - High-dimensional problems

Model reduction – VKBL model of circadian rhythms

• Original model (9 species, 16 reactions) \Rightarrow 9 ODE

• Delayed quasi-steady state assumptions $(7 \times) \Rightarrow 2$ DDE

[T.V., Radek Erban, Philip Maini, 2014]

イロト イポト イヨト イヨト

- 3

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$p_s(\mathbf{x}) = \lim_{t \to \infty} p(\mathbf{x}, t)$$

(i) Histogram:

many realizations of stochastic simulation algorithm

$$p_s(\mathbf{x}) = \lim_{t \to \infty} p(\mathbf{x}, t)$$

(i) Histogram:

many realizations of stochastic simulation algorithm(ii) Stationary chemical master equation:

Example (Protein production):

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{p}_{n,m} = \alpha_R D\boldsymbol{p}_{n-1,m} - \alpha_R D\boldsymbol{p}_{n,m} + \delta_R(n+1)\boldsymbol{p}_{n+1,m} - \delta_R n\boldsymbol{p}_{n,m} \\ + \alpha_P n\boldsymbol{p}_{n,m-1} - \alpha_P n\boldsymbol{p}_{n,m} + \delta_P(m+1)\boldsymbol{p}_{n,m+1} - \delta_P m\boldsymbol{p}_{n,m} \\ n, m = 0, 1, 2, \dots \\ \frac{\mathrm{d}}{\mathrm{d}t}\mathbf{p} = A\mathbf{p}$$

$$\mathbf{0} = A\mathbf{p}$$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

$$p_s(\mathbf{x}) = \lim_{t \to \infty} p(\mathbf{x}, t)$$

(i) Histogram:

many realizations of stochastic simulation algorithm

(ii) Stationary chemical master equation: $A\mathbf{p} = \mathbf{0}$

- A is large, sparse
- -A is M-matrix
- ► $\mathbf{1}^T A = \mathbf{0}$

$$p_s(\mathbf{x}) = \lim_{t \to \infty} p(\mathbf{x}, t)$$

many realizations of stochastic simulation algorithm

(ii) Stationary chemical master equation: $A\mathbf{p} = \mathbf{0}$

I

- A is large, sparse
- ► -A is M-matrix
- $\bullet \mathbf{1}^T A = \mathbf{0}$

(iii) Stationary chemical Fokker-Planck equation: $0 = div(A\nabla p - \mathbf{b}p)$

- convection-diffusion equation
- no-flux boundary conditions
- might not be elliptic

Example 1: Protein production

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Example 2: VKBL model of circadian rhythms

• 9 chemical species \Rightarrow 9 dimensions !?

Curse of dimensionality: $\mathcal{O}(N^d)$

Tensor methods

 $\mathcal{O}(N^d) \approx \mathcal{O}(RNd)$

[Shuohao Liao, T.V., Radek Erban]

(日)、

э

Example

- cdc2 and cyclin interactions [J. Tyson, 1991]
- 6-dimensional chemical Fokker-Planck equation

[Shuohao Liao]

Conclusions

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Mathematical models in biochemistry
- Deterministic mass-action
- Stochastic Markov process
- CME and CFPE
- Stochastic bifurcations
- Model reduction
- Tensor methods for higher-dimensional problems

My collaborators: Radek Erban, Philip K. Maini, and Shuohao Liao

Marie Curie Fellowship, StochDetBioModel

EUROPEAN COMMISSION The research leading to these results has received funding from the People Programme (Marie Curie Actions) of the European Union's Seventh Framework Programme (FP7/2007-2013) under REA grant agreement no. 328008.

Thank you for your attention

Tomáš Vejchodský vejchod@math.cas.cz

Wolfson Centre for Mathematical Biology Mathematical Institute

Institute of Mathematics Academy of Sciences Czech Republic

AIME@CZ, Prague, 11-12 March 2014

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ