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Preface

It is not necessary to make a long introduction in order to justify that the mathe-
matical theory of hysteresis gives a useful tool for solving concrete engineering prob-
lems in various branches of applied research. A sufficient evidence is presented in the
monographs that recently appeared or will appear in the near future (Krasnosel’skii
and Pokrovskii (1983), Mayergoyz (1991), Visintin (1994), Brokate and Sprekels (to
appear)) which cover a broad area of the theory and applications.

The present volume is mainly devoted to mathematical aspects of rate independent
plastic hysteresis in continuum dynamics. The results of Chapters II and III can however
be interpreted also in the framework of Maxwell’s equations in ferromagnetic media of
Preisach or Della Torre type. In any case, coupling hysteretic constitutive laws with
the equations of motion we are led to quasilinear hyperbolic equations with hysteretic
terms. This is a completely new branch of applied mathematics at the early stage where,
following Hrych (1991), one can say with not so much exaggeration that ”fabrication is
the most reliable reference”.

The situation is very different here from the theory of parabolic equations with hys-
teresis developed by Visintin in the 80’s (see Visintin (1994)) which is an extension
(sometimes very nontrivial) of the ideas and techniques derived from the general theory
of quasilinear parabolic equations and applied to specific hysteretic nonlinearities. This
is by no means the case of hyperbolic equations with hysteresis and the conclusion is
surprising: although the (quasilinear) equation of motion with a hysteretic constitu-
tive law preserves its hyperbolicity characterized by the finite speed of propagation, it
can be solved considerably more easily than quasilinear hyperbolic equations without
hysteresis by the methods of semilinear equations.

There is no simple and satisfactory explanation of this fact. We nevertheless make
here a comparison of the behavior of solutions to one-dimensional quasilinear wave equa-
tions with and without hysteresis. While the latter develop discontinuities (shocks) in
a finite time and weak solutions are not uniquely determined, so that additional physi-
cally motivated conditions have to be prescribed, hysteresis constitutive operators with
convex loops in the former case exhibit a higher order energy dissipation which enables
us to derive strong a priori estimates and pass to the limit in a suitable approxima-
tion scheme. From the geometrical point of view, if we represent the solutions of the
Riemann problem for the equation without hysteresis by their trajectories in the strain
- stress diagram, then shocks correspond to straight segments connecting two points
on the constitutive graph. We observe that shocks are always organized in such a way
that the corresponding trajectory is convex if the solution increases and concave if it
decreases. The maximal dissipation principle then selects the solution with the min-
imal convex/maximal concave trajectory. We can say that some kind of spontaneous
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hysteresis occurs even if no hysteresis is assumed in the constitutive law itself. If now
the constitutive law is given by a hysteresis operator with convex loops, it is natural to
expect that the solution will follow smoothly their convex/concave branches and shocks
have no reason to occur.

There are other interesting coincidences which would merit deeper understanding.
This is for instance the question of the role of the two maximal dissipation principles
in the rigid - plastic constitutive law (Sect. I.1) and in the Riemann problem (Sect.
IV.3) which are in some sense responsible for the generation of hysteresis. We also do
not comment on the fact that the Preisach operator itself is governed by a hyperbolic
equation, where the memory variable plays the role of time (Sect. II.3).

This book is intended to give a consistent and self-contained presentation of the
theory and its connection to other disciplines. In Chapter I we interpret hysteresis
within the classical approach to continuum mechanics and derive analytical properties
of hysteresis operators arising from rheological models. The efficiency of the hysteretic
description depends on the complexity of the memory structure. In Chapter II we study
the memory induced by scalar hysteresis models of Prandtl - Ishlinskii, Preisach, Della
Torre and two models for fatigue and damage.

The main and rather nontrivial feature of hysteresis operators consists in the fact
that they dissipate energy of two orders which relate to the area of closed hysteresis
loops and to the curvature of their branches, respectively. We derive corresponding
energy inequalities which enable us subsequently in Chapter III to construct solutions
to hyperbolic equations with hysteretic constitutive laws. Chapter IV gives a detailed
study of the Riemann problem with a not necessarily monotone nonlinearity without
hysteresis and shows how hysteresis appears in the physically relevant solutions. Chapter
V is an appendix, where we try to incorporate specific auxiliary functional-analytic
results into a larger theory in order to make them more accessible to the reader.

Statements and formulae in the text are numbered consecutively in each section.
References to results from other chapters are preceded by the roman number of the
chapter. Thus, for example, Proposition I.3.9 refers to Proposition 3.9 of Chapter I,
equation (3.26) means the corresponding formula in the chapter where the reference is
made etc.

The author is indebted to Professor Otto Vejvoda, Vladimı́r Lovicar and Ivan
Straškraba from Prague, Pierre-Alexandre Bliman from Paris, Martin Brokate from
Kiel and Augusto Visintin from Trento for stimulating discussions and encouragement.
The final redaction of the manuscript was made possible thanks to Dáša Berková and
Karel Horák from the Mathematical Institute of the Academy of Sciences of the Czech
Republic.

Prague, January 1995
P.K.
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I. Hysteresis operators in mechanics

The equation of motion of a deformable body Ω ⊂ RN for some N ∈ N, where N
denotes the set of positive integers and RN is the N -dimensional Euclidian space, is in
classical continuum mechanics (Landau, Lifschitz (1953)) considered in the form

(0.1) %
∂2ui

∂t2
=

N∑

j=1

∂σij

∂xj
+ gi, i = 1, . . . , N,

where x ∈ Ω, t > 0 are the space and time variables, respectively, u = (ui) is the
displacement vector, % is the density, σ = (σij) is the stress tensor and g = (gi) is
the applied force density, i, j = 1, . . . , N . The meaningful choice in applications is
usually N = 3. We shall see in Chapter III that well-posedness of equation (0.1) can
be obtained if it is coupled with initial and boundary conditions and with a suitable
constitutive law between the stress tensor σ = (σij) and strain tensor ε = (εij) defined
by the symmetric derivative of u, namely

(0.2) εij =
1
2

( ∂ui

∂xj
+

∂uj

∂xi

)
, i, j = 1, . . . , N.

While (0.1) is a general physical law, the constitutive relation characterizes specific
properties of a concrete material subject to time-dependent loading.

This chapter will mainly be devoted to the classification and mathematical properties
of constitutive operators corresponding to models of elasticity and plasticity with or
without hardening and fatigue effects.

We shall not treat in detail models for viscous, viscoelastic and viscoelastoplastic
materials. The first reason is that there exists already an extensive literature in this
area, for instance the modern monograph by Ionescu and Sofonea (1993), where an
interested reader can find a good information about the current state of research. On
the other hand, the objective of this book is to develop a theory of rate independent
constitutive operators which, coupled with the equation of motion, lead to hyperbolic
systems. The question of approximating equations of rate independent elastoplasticity
by vanishing viscosity models which was studied already for instance by Duvaut, Lions
(1972) and is still of high general interest will be briefly considered only in Chapter IV
in a special situation of the Riemann problem.

The first section introduces the basic physical concepts used in the plasticity theory
and their mathematical interpretation. In Section I.2 we recall some elements of convex
analysis. Sections I.3, I.4 then present analytical properties of constitutive operators,
in particular their dependence on given data.
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I.1 Rheological models

We denote by T the space of symmetric tensors ξ = (ξij), i, j = 1, . . . , N, N ∈ N,
endowed with the scalar product

〈
ξ, η

〉
=

∑N
i,j=1 ξijηij . The strain and stress tensors

ε and σ, respectively, are in general functions of the space variable x ∈ Ω ⊂ RN and
time variable t > 0 with values in T. We consider here only homogeneous media, where
the constitutive law is independent of the spatial variable x which thus plays the role
of a parameter.

Definition 1.1. A system consisting of

(i) a constitutive relation between ε and σ,(1.1)

(ii) a potential energy U > 0

is called a rheological element.
A rheological element is said to be thermodynamically consistent, if the quantity

(1.2) q̇ : =
〈
ε̇, σ

〉− U̇

called dissipation rate, where dot denotes the time derivative, is nonnegative in the

sense of distributions for all ε, σ, U satisfying conditions (i), (ii).

Example 1.2. The elastic element E .
In mechanics, elastic materials are characterized by a linear stress-strain relation and
by the complete reversibility of dynamical processes. In mathematical terminology, it is
assumed that there exists a matrix A = (Aijk`) over T such that

(1.3) σ = Aε or equivalently σij =
N∑

k,`=1

Aijk`εk`, i, j = 1, . . . , N.

Reversibility means that the potential energy U involves no memory and can be chosen
in such a way that the dissipation rate q̇ vanishes, i.e. the value of U(t) for each t > 0
depends only on the instantaneous value of ε(t) and U̇ =

〈
ε̇, Aε

〉
almost everywhere for

every absolutely continuous ε. This necessarily implies that the matrix A is symmetric
with respect to the scalar product

〈·, ·〉 and U has the form

(1.4) U =
1
2
〈
Aε, ε

〉

up to an additive constant. Indeed, for an arbitrary ε ∈ W 1,1(0, T ;T) and t ∈]0, T [
put ε̃(τ) := ε(0) + τ

t (ε(t)− ε(0)) for τ ∈ [0, t]. We can choose the initial value for U

arbitrarily, for instance U(0) : = 1
2

〈
Aε(0), ε(0)

〉
. We have by hypothesis

(1.5) U(t) = U(0) +
∫ t

0

〈 ˙̃ε(τ), Aε̃(τ)
〉
dτ =

1
2
〈
Aε(t), ε(t)

〉
+

1
2
〈
ε(t), (A−AT )ε(0)

〉
,
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where (AT )ijk` = Ak`ij , hence

U̇(t) =
〈
ε̇(t), Aε(t)

〉
+

1
2
〈
ε̇(t), (A−AT )(ε(0)− ε(t))

〉

and we easily conclude that the matrix A = AT is symmetric and (1.4) holds.
To guarantee that the stress-strain relation is one-to-one and the material law is

deterministic we assume that the matrix A is positive definite.
The elastic element is said to be isotropic, if the matrix A has the form

(1.6) A = 2µI + λJ,

where µ, λ are positive numbers called Lamé’s constants (see Rabotnov (1988)), I is
the identity matrix Iξ = ξ and J is the matrix of the symmetric bilinear form

〈
Jξ, η

〉
=

ξIηI . We denote by ξI : =
N∑

i=1

ξii the first invariant (trace) of a symmetric tensor ξ ∈ T
and by (ξdev)ij : = ξij− 1

N ξIδij , where δij is the Kronecker symbol, the deviatoric part
of ξ. We also introduce the deviatoric subspace Tdev : = {ξ ∈ T; ξI = 0} of T and its
orthogonal complement Tdiag : = {ξ ∈ T; ξij = λδij , λ ∈ R1, i, j = 1, . . . , N}.

Example 1.3. The viscous element V.
Modeling of rate dependent relaxation effects makes often use of the concept of viscosity
based on the hypothesis that there exist two coefficients η > 0, ζ > 0 of proportionality
between the deviators and first invariants of the stress and the strain rate, i.e.

(1.7) σdev = ηε̇dev, σI = ζε̇I .

The assumption that no reversible energy can be stored by the viscous element (U =
0) ensures its thermodynamical consistency.

Example 1.4. The rigid-plastic element R.
The basic concept in plasticity is the yield surface in the stress space which can be
described as the boundary ∂Z of a convex closed set Z ⊂ T.

The rigid-plastic behavior consists of two different phases characterized by the instan-
taneous value σ of the stress tensor. The material remains rigid as long as σ ∈ IntZ

(the interior of Z). In this case no deformation occurs and ε̇ = 0. The material
becomes plastic if σ reaches the boundary ∂Z of Z. Plasticity is governed by three
physical principles:

σ ∈ Z (the stress values do not exceed the threshold ∂Z),(1.8)

U = 0 (no reversible energy is stored),(1.9)
〈
ε̇, σ − σ̃

〉
> 0, ∀σ̃ ∈ Z (principle of maximal dissipation rate(1.10)

with respect to all admissible stress values).
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Geometrically, ε̇ has the direction of the outward normal cone, and condition (1.10)
is also called von Mises normality rule. We see that the variational inequality (1.10)
includes the rigid behavior (for σ ∈ IntZ it entails ε̇ = 0). In order to ensure the
thermodynamical consistency we assume 0 ∈ Z. In fact, it is natural to assume that
no deformation occurs for σ = 0. This is equivalent to the hypothesis 0 ∈ IntZ.

It has been observed that volume changes are negligible during plastic deformation
(Rabotnov (1988)). Combining constitutive relation (1.8) - (1.10) with the volume
invariance condition

(1.11) ε̇I = 0,

we conclude from Proposition 2.13 and Remark 3.10 below that Z has the form of a
cylinder

(1.12) Z = Z0 + Tdiag,

where Z0 ⊂ Tdev is a bounded convex closed set. The classical models of Tresca and
von Mises are special cases of (1.8)-(1.12) with Z0 a ball (von Mises) or Z0 : = {ξ ∈
Tdev;

N∑
k=1

|ξk| 6 r} for some r > 0 (Tresca), where {ξk} are the eigenvalues of the

symmetric matrix ξ = (ξij). Note that we have
N∑

k=1

ξk = 0 for ξ ∈ Tdev. The Tresca

set Z0 is usually represented for N = 3 by a hexagon in the plane ξ1 + ξ2 + ξ3 = 0.

Example 1.5. The rigid-plastic element with isotropic hardening J .
Following Nečas and Hlaváček (1981) we introduce a scalar hardening parameter α of
physical dimension of stress into the constitutive relations. We assume analogously as in
Example 1.4 that a bounded convex closed set Z0 ⊂ Tdev is given such that 0 ∈ IntZ0,
and we denote by M0 : Tdev → [0,∞[ the Minkowski functional associated to Z0 by
formula (2.9) below. Let further a concave nondecreasing function ϕ : [1,∞[→ [1,∞[
be given, ϕ(1) = 1.

We denote by T1 the space T×R1 endowed with the scalar product
[(

ξ
β

)
,
(

η
γ

)]
: =〈

ξ, η
〉

+ βγ and by Z1 the convex closed subset of T1 (see Fig. 1)

(1.13) Z1 : =
{(

ξ

α

)
∈ T1; α > 0, M0(ξdev) 6 ϕ(1 + α)

}
.

The constitutive relations are analogous to (1.8)-(1.10), namely
(

σ

α

)
∈ Z1,(1.14)

U = 0, α(0) = 0,(1.15) [(
ε̇

− 1
c α̇

)
,

(
σ

α

)
−

(
σ̃

α̃

)]
> 0 ∀

(
σ̃

α̃

)
∈ Z1,(1.16)
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where c > 0 is a given physical constant.
We immediately observe that choosing σ̃ = σ in (1.16) we obtain α̇(α−α̃) 6 0 ∀α̃ >

α, hence α̇ > 0.
Let Zα : =

{
ξ ∈ T;

(
ξ
α

) ∈ Z1

}
be the domain of admissible stresses for an instanta-

neous value α of the hardening parameter. We see that Zα increases without changing
its shape with increasing α (see Fig. 1)

O

α

Z

Zα

Fig. 1 �
Example 1.6. The brittle element B.

An application of the notion of brittleness to modeling of fatigue and damage will be
shown in Sect. II.5. To introduce the concept, we assume again the existence of a
convex open domain of rigidity IntZ ⊂ T in the stress space; as soon as the value σ

of the stress reaches the fragility surface ∂Z, the material breaks, the stress drops to 0
and we lose any control on the strain.

Under the same assumptions on Z as in Example 1.4 we denote by MZ the associated
Minkowski functional (see (2.9) below), by H the Heaviside function

(1.17) H(r) =

{
1 for r > 0,

0 for r 6 0

and we introduce the damage function d by the formula

(1.18) d(t) : = 1−H(1− ‖MZ(σ)‖[0,t]),

where we put ‖f‖[0,t] : = sup{|f(s)|; s ∈ [0, t]} for each function f : [0, T ] → R1 and
t ∈ [0, T ]. We see that d = 0 characterizes the rigid (unperturbed) state, d = 1
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corresponds to the irreversible damaged state. We define the constitutive relations in
the form, see Visintin (1994)

(1.19)

{
(1− d(t))ε(t) = 0,

d(t)σ(t) = 0.

It is natural to admit that no reversible energy can be stored by the brittle element,
so we put U = 0. The thermodynamical consistency will be discussed in Example 1.7
below.

Composition of rheological elements

A large variety of models for the behavior of materials can be obtained by composing
rheological elements from Examples 1.2 - 1.6 in series or in parallel.

Let G1, G2 be two rheological elements and let εi, σi, Ui be the strain, stress and
potential energy, respectively, corresponding to the element Gi, i = 1, 2.

The total strain ε, stress σ and potential energy U for the combination in parallel
G1|G2 and in series G1 −G2 are defined by the following natural relations

G1|G2 G1 −G2

ε = ε1 = ε2 ε = ε1 + ε2

σ = σ1 + σ2 σ = σ1 = σ2

U = U1 + U2 U = U1 + U2

Fig. 2: Rheological elements

Ee Rf Vg Jh Bi
Composition of rheological elements

in parallel G1|G2 in series G1 −G2

G1

G2j G1 G2k
in analogy with the theory of electrical circuits. It is easy to see that every combination
of thermodynamically consistent elements is thermodynamically consistent.
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Example 1.7. The parallel elasto-brittle element E|B.
According to general rheological principles, the constitutive law has the form

ε = εe = εb,

σ = σe + σb,

U =
1
2
〈
ε, σe

〉
,

where εe, σe and εb, σb are strain and stress tensors corresponding to the elastic and
brittle element, respectively. We therefore have

(1.20)





σe = Aε,

ε(t)H(1− ‖MZ(σb)‖[0,t]) = 0,

σb(t)(1−H(1− ‖MZ(σb)‖[0,t])) = 0

with the same notation as in Examples 1.2, 1.6. One immediately notices that these
identities are contradictory if MZ(σ(0)) > 1. Indeed, we have either MZ(σb(0)) < 1,
hence ε(0) = σe(0) = 0 and σb(0) = σ(0), which is a contradiction, or MZ(σb(0)) > 1,
hence σb(0) = 0, which is a contradiction, too. A similar contradiction is obtained
for any t ∈]0, T [ whenever sup{|MZ(σ(s))|; s ∈ [0, t[} < 1 and MZ(σ(t+)) > 1. To
preserve the consistency, we assume

(1.21) MZ(σ(0)) < 1, σ : [0, T ] → T is continuous.

Assuming (1.21) we obtain from (1.20) σe(t)H(1 − ‖MZ(σb)‖[0,t]) = 0, hence σb(t) =
σ(t)H(1− ‖MZ(σb)‖[0,t]) = σ(t)H(1− ‖MZ(σ)‖[0,t]).

The constitutive law can therefore be written in operator form

(1.22)

{
ε(t) = A−1σ(t)[1−H(1− ‖MZ(σ)‖[0,t])],

U(t) = 1
2

〈
A−1σ(t), σ(t)

〉
[1−H(1− ‖MZ(σ)‖[0,t])]

with input σ ∈ C([0, T ];T) and output ε ∈ L∞(0, T ;T). Formulas (1.22) are now
meaningful without any restriction on σ(0).

Let us verify that constitutive equations (1.22) define a thermodynamically consistent
element. We choose an absolutely continuous input σ and an arbitrary time interval
]t1, t2[⊂ [0, T ]. The total dissipation is given by the formula

D : = q(t2−)− q(t1+) =
〈
ε, σ

〉
t→t2− −

〈
ε, σ

〉
t→t1+

−
∫ t2

t1

〈
ε, σ̇

〉
dt− U(t2−) + U(t1+).

We distinguish 3 cases.
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a) ‖MZ(σ)‖[0,t] < 1 for all t ∈]t1, t2[. Then ε(t) = U(t) = 0 in [0, t2[, hence D = 0.
b) ‖MZ(σ)‖[0,t1] > 1. Then ε(t) = A−1σ(t), U(t) = 1

2

〈
A−1σ(t), σ(t)

〉
in ]t1, t2[ with

the same conclusion.
c) ∃t0 ∈]t1, t2[ : ‖MZ(σ)‖[0,t0] = 1, σ(t) ∈ IntZ for t ∈ [0, t0[. Then we have

ε(t) = U(t) = 0 for t ∈ [0, t0[ and D = 1
2

〈
A−1σ(t0), σ(t0)

〉
> 0.

We therefore have q̇ > 0 in the sense of distributions, hence the element E/B is
thermodynamically consistent.

Example 1.8. Elastoplastic models E −R, E/R.
There are good reasons for rewriting constitutive variational inequalities in plasticity
in operator form. This enables us to distinguish clearly between input and output
quantities: while the input can be controlled, the output can be determined by solving
the constitutive equation.

Let us compare the constitutive relations for two elastoplastic models E − R, E|R.
We denote by εe, σe and εp, σp the strain and stress on the elastic and rigid-plastic
element, respectively.

E/R E −R
ε = εe = εp ε = εe + εp

σ = σe + σp σ = σe = σp

σe = Aε σ = Aεe

σp ∈ Z σ ∈ Z〈
ε̇, σp − σ̃

〉
> 0 ∀σ̃ ∈ Z

〈
ε̇p, σ − σ̃

〉
> 0

U = 1
2

〈
ε, σe

〉
U = 1

2

〈
εe, σ

〉

Recall that Z ⊂ T is a given convex closed set, 0 ∈ IntZ. We see that both models
are governed by a variational inequality of the same type, namely

(1.23)
E/R :

〈
A−1(σ̇ − σ̇p), σp − σ̃

〉
> 0

E −R :
〈
A−1(Aε̇− σ̇), σ − σ̃

〉
> 0

}
∀σ̃ ∈ Z.

The solvability of such equations is ensured by the following Theorem whose detailed
proof (in a more general setting) will be given in Sect. I.3 below. Definition and
general information about the space W 1,1(0, T ; X) of absolutely continuous Hilbert
space valued functions is given in Chapter V.
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Theorem 1.9. Let X be a real separable Hilbert space endowed with a scalar

product
〈
., .

〉
X

. Let Z ⊂ X be a convex closed set, 0 ∈ Z and let x0 ∈ Z be

a given element. Then for every function u ∈ W 1,1(0, T ;X) there exists a unique

x ∈ W 1,1(0, T ; Z) satisfying the variational inequality

(1.24)
〈
u̇(t)− ẋ(t), x(t)− x̃

〉
X

> 0 a.e. ∀x̃ ∈ Z

and the initial condition

(1.25) x(0) = x0.

We now define the solution operators S,P : Z ×W 1,1(0, T ; X) → W 1,1(0, T ; X) of
the problem (1.25), (1.24) by the formula

(1.26) S(x0, u) := x, P(x0, u) := u− S(x0, u).

According to Krasnosel’skii and Pokrovskii (1983), the operators S,P are called stop
and play, respectively (see Fig. 3). The set Z is called the characteristic of S and P.

O u

x

−A

A

−r

r

x = S(0, u)
 O u

ξ

−A

A

−r
r

ξ = P(0, u)�
Fig. 3: Input-output diagram for the stop and play in the case dim X = 1, Z = [−r, r],
u(t) = A sin ωt for A > r > 0.

Exercise 1.10. Prove that the constitutive relations for the elastoplastic models
above can be written in the form
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E/R : ε = A−1P(σp
0 , σ), U =

1
2
〈
A−1 P(σp

0 , σ),P(σp
0 , σ)

〉
,

E −R : σ = S(σ0, Aε), U =
1
2
〈
A−1 S(σ0, Aε),S(σ0, Aε)

〉
,

where S,P are the stop and play in X = T endowed with the scalar product〈
ξ, η

〉
X

: =
〈
A−1ξ, η

〉
, and σp

0 , σ0 are given initial output values.
It is clear that the roles of input and output in the models E/R and E −R cannot

be reversed.

The definition immediately suggests that the stop has the

(1.27) Semigroup property : For u ∈ W 1,1(0, T ; X), s ∈]0, T [ and t ∈ [0, T − s] put
us(t) := u(s + t). Then for every x0 ∈ Z we have

S(x0, u)(t + s) = S(S(x0, u)(s), us)(t).

An operator F acting in some function space R(0, T ; X) of functions [0, T ] → X is
called

(1.28) Rate independent, if for every u ∈ R(0, T ; X) and every nondecreasing map-
ping α of [0, T ] onto [0, T ] such that uα(t) : = u(α(t)) belongs to R(0, T ;X)
we have

F (uα)(t) = F (u)(α(t)) for all t ∈ [0, T ],

(1.29) Causal, if F (u)(t) = F (v)(t) for all t ∈ [0, t0] ⊂ [0, T ] whenever u(t) = v(t)
for all t ∈ [0, t0].

Rate independence and causality characterize hysteresis operators according to the
classification of Visintin (1994). By definition, the stop and play are hysteresis operators
in W 1,1(0, T ; X) (we shall see later in Sect. I.3 that they can be extended to the space of
continuous functions C([0, T ];X)). We notice on Fig. 3 that the input-output diagram
for the stop and play forms simple hysteresis loops. More complicated loop structures
including internal loops can be observed in scalar multiyield models with a more complex
memory structure (Prandtl-Ishlinskii, Preisach, Della Torre, cf. Sect. II.3); we however
do not pursue the question of hierarchy of loops here. Instead, we describe in Sect. II.2
the scalar hysteresis memory by means of the memory sequence associated to the input
which is independent of the concrete choice of the hysteresis operator.

We now show how stop and play can be used for modeling the phenomena of kinematic
and isotropic hardening in elastoplastic materials, cf. Lemaitre, Chaboche (1985).
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Kinematic hardening

Let us consider the model E − (E/R) (see Fig. 4). The general rheological rules yield

σ = σe + σp

ε = εe + εp

σe = Aεp

σ = Bεe

σp ∈ Z〈
ε̇p, σp − σ̃

〉
> 0 ∀σ̃ ∈ Z

U = 1
2

(〈
εe, σ

〉
+

〈
εp, σe

〉)
,

σ, εe

σe, εp

σp, εp� O

σp

ε̇p

σ̇e

Z

Fig. 4�
where A,B are given constant symmetric positive definite matrices and Z ⊂ T is a
convex closed set, 0 ∈ IntZ. For t ∈ [0, T ] put

(1.30) Z(t) : = Z + σe(t).

Then σ(t) ∈ Z(t) for all t ∈ [0, T ]. We can imagine that relation (1.30) defines a
translation of Z in the stress space T driven by the elastic component σe of the stress
without changing shape and size. This phenomenon is called kinematic hardening and
is typical for metals, see Lemaitre and Chaboche (1985).

The evolution of σe is governed by the variational inequality

(1.31)
〈
A−1σ̇e, σp − σ̃

〉
> 0, ∀σ̃ ∈ Z.

Inequality (1.31) can be interpreted as a normality condition for the hardening rate σ̇e

with respect to the scalar product
〈
., .

〉
A

: =
〈
A−1., .

〉
; both the hardening rate σ̇e and

the plastic strain rate ε̇p have the outward normal direction to ∂Z at the point σ, but
with respect to different scalar products (see Fig.4).

With the intention to deal with several scalar products in T we introduce the sub-
script A for the play PA and stop SA corresponding to the scalar product

〈
., .

〉
A
.

Using Exercise 1.10 we can express the constitutive law for the model E −(E /R) in
the form

(1.32) ε = B−1σ + A−1 P
A

(σp
0 , σ)

with input σ and output ε. We now prove that the constitutive operator B−1+A−1 PA

is invertible. Identity (1.34) below gives an equivalent expression for (1.32) with input
ε and output σ.
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Lemma 1.11. Let σp
0 ∈ Z be given and let A,C be given constant matrices such

that A,CA are symmetric and positive definite. Put Â : = A + CA. Then for all

σ ∈ W 1,1(0, T ;T) we have

(1.33) Ŝ
A

(σp
0 , σ + C P

A
(σp

0 , σ)) = S
A

(σp
0 , σ).

P r o o f. Put x : = SA(σp
0 , σ), y : = SÂ(σp

0 , σ + C PA(σp
0 , σ)). Then y = SÂ(σp

0 ,
(I+C)σ−Cx), where I is the identity matrix. Putting σ̃ : = 1

2 (x+y) in the variational
inequalities 〈

A−1(σ̇ − ẋ), x− σ̃
〉

> 0
〈
Â−1((I + C)σ̇ − Cẋ− ẏ), y − σ̃

〉
> 0

and using the identity Â−1 + Â−1C = A−1 we conclude
〈
ẋ − ẏ, x − y

〉
Â

6 0, hence
x = y. ¤

We now apply Lemma 1.11 with C = BA−1 to the constitutive equation (1.32). We
obtain

Ŝ
A

(σp
0 , Bε) = S

A
(σp

0 , σ) for Â = A + B,

hence (I + BA−1)σ = Bε + BA−1 SÂ(σp
0 , Bε), or equivalently

(1.34) σ = (A−1 + B−1)−1ε + BÂ−1 Ŝ
A

(σp
0 , Bε) = Bε−BÂ−1 P̂

A

(σp
0 , Bε),

where ε is the input and σ is the output.
In the particular case B = I, A = 1

γ I for some γ > 0 we obtain PA = PÂ = PI and
the inversion formula

(1.35) (I + γ P
I
(x0, .))−1 = I − γ

1 + γ
P
I
(x0, .)

holds for all x0 ∈ Z, where I is the identity mapping in W 1,1(0, T ;X).

Exercise 1.12. Assume that the matrices A,B commute, i.e. AB = BA. Prove
that (1.34) is the constitutive equation of the model E1 /(E2−R) with

E
1

: σ = Ãε, Ã = (A−1 + B−1)−1,

E
2

: σ = B̃ε, B̃ = B2(A + B)−1,

R : Z̃ = B(A + B)−1(Z), σ ∈ Z̃,
〈
ε, σ − σ̃

〉
> 0 ∀σ̃ ∈ Z̃.
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H i n t. Use the identity CSA(x0, u) = S̃CAC(Cx0, Cu) for each positive definite
symmetric matrix C, where S̃ is the stop with characteristic Z̃ = C(Z).

The commutativity hypothesis AB = BA is satisfied for instance if both elastic ele-
ments are isotropic. In this case the models E −(E /R) and E /(E −R) are equivalent.

Isotropic and kinematic hardening

Let us consider now the model E −(E /J ). With the notation taken from Example
1.5, the constitutive relations are analogous to the model E −(E /R), namely

(
σ

0

)
=

(
σe

−α

)
+

(
σp

α

)
,

(
σp

α

)
∈ Z1

(
ε

− 1
cα

)
=

(
εe

0

)
+

(
εp

− 1
cα

)
, σ = Bεe, σe = Aεp,

[(
ε̇p

− 1
c α̇

)
,

(
σp

α

)
−

(
σ̃

α̃

)]
> 0 ∀

(
σ̃

α̃

)
∈ Z1,(1.36)

where A,B are symmetric positive definite matrices.
Let A1, B1 : T1 → T1 be the linear mappings defined by the identities A1

(
ξ
α

)
:=(

Aξ
cα

)
, B1

(
ξ
α

)
: =

(
Bξ
cα

)
. We have

[
A−1

1

((
σ̇
0

)− (
σ̇p

α̇

))
,
(
σp

α

)− (
σ̃
α̃

)]
> 0 ∀(σ̃

α̃

) ∈ Z1, hence
(
σp

α

)
= S1

((
σp
0
0

)
,
(
σ
0

))
,
(

σe

−α

)
= P1

((
σp
0
0

)
,
(
σ
0

))
, where S1,P1 are the stop and play in

T1 endowed with scalar product
[
A−1

1 ·, ·] with characteristics Z1, with a given initial
condition

(
σp
0
0

) ∈ Z1. The constitutive equation has the form

(1.37)
(

ε

− 1
cα

)
= B−1

1

(
σ

0

)
+ A−1

1 P
1

((
σp

0

0

)
,

(
σ

0

))
.

We derive now some consequences of the constitutive equation.

Lemma 1.13. Let σ ∈ W 1,1(0, T ;T) be given and assume σ(0) = σp
0 = 0. Let ε, α

be given by the equation (1.37). Then we have

(1.38) ϕ(1 + α(t)) = max{1, ‖M0(σ
p
dev)‖[0,t]},

where ϕ,M0 are as in (1.13) and σp
dev is the deviatoric part of the plastic stress σp.

P r o o f. We have
(
σp(t)
α(t)

) ∈ Z1 for all t ∈ [0, T ], hence M0

(
σp

dev(t)
)

6 ϕ(1 + α(t))
by definition. The fact that α is nondecreasing (cf. (1.16)) entails ‖M0(σ

p
dev)‖[0,t] 6

ϕ(1 + α(t)). In the case ‖M0(σ
p
dev)‖[0,t] < 1 we obviously have α(t) = 0 and (1.38)

holds. Let us assume now 1 6 ‖M0(σ
p
dev)‖[0,t] < ϕ(1 + α(t)) for some t ∈]0, T [. Then

there exists τ ∈]0, t[ such that α̇(τ) > 0 and ‖M0(σ
p
dev)‖[0,τ ] < ϕ(1 + α(τ)), hence(

σp(τ)
α(τ)

) ∈ IntZ1. From (1.36) we conclude α̇(τ) = 0, which is a contradiction. ¤
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We associate to the model E −(E /J ) the potential energy U = 1
2

(〈
εe, σ

〉
+

〈
εp, σe

〉)
.

The dissipated energy q(t) is then equal to the plastic work
∫ t

0

〈
ε̇p(τ), σ(τ)

〉
dτ and is

related to α(t) by the following identity.

Proposition 1.14. Let the assumptions of Lemma 1.13 hold. Put r := inf{β >

0; ϕ′(1+β) = 0} ∈ [0,∞]. Let Φ : [0, r] → [0,∞[ be the function Φ(p) : =
∫ p

0
ϕ(1+β)

cϕ′(1+β)dβ.

Then we have α(t) ∈ [0, r] for all t ∈ [0, T ] and

(1.39) q(t) = Φ(α(t)) provided α(t) ∈ [0, r[.

P r o o f. Assume α(t) > r for some t ∈]0, T [. Then there exists τ < t such that
α̇(τ) > 0 and α(τ) > r. Putting σ̃ : = σp(τ), α̃ = r we have ϕ(1 + α̃) = ϕ(1 + α(τ)),
hence

(
σ̃
α̃

) ∈ Z1 and (1.36) yields α̇(τ) 6 0, which is a contradiction.
Identity (1.39) can be equivalently written in the form

(1.40) q̇(t) = α̇(t)
ϕ(1 + α(t))

cϕ′(1 + α(t))
a.e. provided α(t) < r.

To prove (1.40) we distinguish two cases.

a) α̇(t) = 0.
Put σ̃ : = (1 + a)σp(t) and α̃ : = α(t) + b for a > 0 sufficiently small and b > 0

sufficiently large such that M0(σ̃dev)−ϕ(1+ α̃) = (1+ a)
(
M0(σ

p
dev(t))−ϕ(1+α(t))

)
+

(1 + a)ϕ(1 + α(t)) − ϕ(1 + α(t) + b) 6 0, hence
(

σ̃
α̃

) ∈ Z1. From inequality (1.36) we
infer a

〈
ε̇p, σp

〉
6 0, hence q̇(t) = 0.

b) α̇(t) > 0.
The play depends continuously on the characteristic with respect to the Haus-

dorff distance (see Sect. I.3 below). It therefore suffices to assume that ϕ and M0

are smooth functions. We have
(
σp(t)
α(t)

) ∈ ∂Z1 and according to (1.36), the vec-

tor
( ε̇p(t)

− 1
c α̇(t)

)
has the direction of the outward normal vector n : =

(grad M0(σ
p
dev(t))

−ϕ′(1+α(t))

)
,

i.e.
( ėp(t)

− 1
c α̇(t)

)
= α̇(t)

cϕ′(1+α(t))n. This yields q̇(t) =
〈
ε̇p(t), σp(t)

〉
=

〈
ε̇p(t), σp

dev(t)
〉

=
α̇(t)

cϕ′(1+α(t))

〈
gradM0(σ

p
dev(t)), σ

p
dev(t)

〉
. We have

〈
grad M0(σ

p
dev), σ

p
dev

〉
= M0(σ

p
dev) by

Exercise 2.10(iii) and M0(σ
p
dev(t)) = ϕ(1 + α(t)) by hypothesis, hence identity (1.40)

holds. ¤

As a consequence of Proposition 1.14, we see that the isotropic hardening can be
equivalently characterized by the plastic work (or dissipation) q. For this reason it is
sometimes referred to as work hardening, see Nečas and Hlaváček (1981), Lemaitre and
Chaboche (1985).
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Multiyield models

Models of plasticity involving a single yield surface cannot provide a satisfactory de-
scription of the real material behavior. In concrete experiments, the transition between
the elastic and the plastic regime is smooth. If we neglect relaxation effects and assume
that the process is rate independent, the most natural way to proceed is to combine
a continuum of plastic elements which are not all active (i.e. in the plastic regime)
at the same time. We briefly describe three standard models in this category, namely
the Prandtl-Ishlinskii model of stop type, Prandtl-Ishlinskii model of play type and the
Mróz model. We shall see in Sect. II.3 that all these models are equivalent in the
one-dimensional case.

Example 1.15. Prandtl-Ishlinskii model of stop type.
Following Visintin (1994), we call Prandtl-Ishlinskii model of stop type the rheological
element defined by the formula E0 |

∏
r∈D

(Er −Rr), where
∏

r∈D

denotes the (possibly

uncountable) combination in parallel parametrized by elements of an index set D with
measure µ. The sum in the rheological equation is formally replaced by the integration
with respect to the measure µ. Combining the rheological equations

(1.41) σ = σe + σp, σp =
∫

D

σr dµ(r), ε = εe
r + εp

r ,

the elastic constitutive laws

(1.42) σe = Aε, σr = Arε
e
r, ∀r ∈ D

with symmetric positive definite matrices A, {Ar; r ∈ D}, and the rigid-plastic varia-
tional inequalities

(1.43) σr ∈ Zr,
〈
ε̇p
r , σr − σ̃r

〉
> 0, ∀σ̃r ∈ Zr, ∀r ∈ D,

where {Zr; r ∈ D} is a given system of convex closed sets in T with 0 ∈ IntZr, we
can use the results of Exercise 1.10 to derive formally the constitutive law in operator
form

σ = Aε +
∫

D
S
r
(σ0

r , Arε)dµ(r),(1.44)

U =
1
2
〈
Aε, ε

〉
+

1
2

∫

D

〈
A−1

r S
r
(σ0

r , Arε),S
r
(σ0

r , Arε)
〉
dµ(r),(1.45)

where {σ0
r ; r ∈ D} is the given initial distribution of stresses at each individual element

Er −Rr and Sr is the stop with characteristic Zr.
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Example 1.16. Prandtl-Ishlinskii model of play type.
The dual model to the one considered in the previous Example 1.15 is characterized by
the formula E − ∑

r∈D
Er |Rr, where

∑
r∈D

denotes the combination in series. Similarly as

above, we combine the rheological equations

(1.46) ε = εe + εp, εp =
∫

D

εr dµ(r), σ = σe
r + σp

r ∀r ∈ D,

the elastic constitutive laws

(1.47) εe = A−1σ, εr = A−1
r σe

r ∀r ∈ D

and the rigid-plastic variational inequalities

(1.48) σp
r ∈ Zr,

〈
ε̇r, σ

p
r − σ̃r

〉
> 0 ∀σ̃r ∈ Zr ∀r ∈ D

to derive the constitutive equation in operator form

ε = A−1σ +
∫

D

A−1
r P

r
(σp

or, σ)dµ(r),(1.49)

U =
1
2
〈
A−1σ, σ

〉
+

1
2

∫

D

〈
A−1

r P
r
(σp

or, σ),P
r
(σp

or, σ)
〉
dµ(r),(1.50)

where {σp
or; r ∈ D} is the initial distribution of plastic stresses and Pr is the play with

characteristic Zr.
Constitutive laws (1.44), (1.49) involve a memory which is completely described by

the system {Sr; r ∈ D} or {Pr; r ∈ D} of stops and plays, respectively. More precisely,
the value of the output for t > t0 is uniquely determined by the value of the input for
t > t0 and by the distribution of stops and plays at t = t0. This follows from the
fact that stop and play are solution operators of variational inequalities. It is therefore
justified to introduce the concept of memory state functions.

ψS(r, t) : = S
r
(σ0

r , Arε)(t),(1.51)

ψP(r, t) : = P
r
(σp

or, σ)(t)(1.52)

which characterize the instantaneous state of the system.

The efficiency of the hysteresis approach in plasticity is related to the possibility to
find a simple memory structure (i.e. to describe the evolution of ψS , ψP without solving
infinite systems of variations inequalities). This has been done in the uniaxial case (see
Chapter II); in the multiaxial case no particular memory structure has been discovered
yet except for trivial cases where Zr are parallelepipeds. This restricts considerably the
possibilities of practical application of the multidimensional Prandtl-Ishlinskii operator.
One way how to overcome this difficulty is shown in the next example.
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Example 1.17. The model of Mróz.
The idea of Mróz (1967) was to consider the family {Zr} of finitely many characteristics
of von Mises type

(1.53) Zr : = (Br(0) ∩ Tdev) + Tdiag

where Br(0) is the ball in T centered at 0 with radius r > 0. The concept was then
extended to the whole system {Zr; r > 0} by Chu (1984).

The rheological structure of the model is essentially analogous to the Prandtl-
Ishlinskii model of play type. Equations (1.46), (1.47) are assumed to hold, provided
µ in chosen to be the Lebesgue measure in ]0,∞[ and the matrices Ar have the form
Ar = h(r)A, where A is an isotropic matrix of the form (1.6) and h ∈ L1

loc(0,∞) is a
nonnegative function.

The Prandtl-Ishlinskii variational inequality (1.48) can be decomposed into two im-
plications:

σp
r ∈ IntZr ⇒ σ̇e

r = 0,(1.54)

σp
r ∈ ∂Zr ⇒ σ̇e

r ∈ NZr (σ
p
r ),(1.55)

where NZr (σ
p
r ) is the normal cone to Zr at σp

r .
The model of Mróz preserves property (1.54), i.e. no plastic deformation occurs in the

elastic domain. Denoting by Zr(t) : = Zr + σe
r(t) the ball (or cylinder, more precisely)

centered at σe
r(t) with radius r, we obtain similarly as in Example 1.11

(1.56) σ(t) ∈ Zr(t) ∀r > 0, ∀t ∈ [0, T ].

The boundary part (1.55) of the maximal dissipation principle is replaced with the
nonintersection condition

(1.57) Zr(t) ⊂ Zs(t) ∀r < s, ∀t ∈ [0, T ],

which represents the main distinctive feature of the Mróz model.
We do not deal with mathematical details here. A more complete information about

geometrical and analytical properties of the model can be found in Brokate, Dressler,
Krejč́ı (to appear/a) or Krejč́ı (1993/c). We just note that conditions (1.46), (1.47),
(1.53), (1.54), (1.56), (1.57) coupled with the volume invariance condition

(1.58) εr ∈ Tdev or equivalently σe
r ∈ Tdev ∀r > 0

determine a well defined constitutive relation with input σ and output ε in suitable
function spaces.

The memory state function

(1.59) ϕ :]0,∞[×[0, T ] → Tdev : (r, t) 7→ σe
r(t)
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describes the kinematic hardening and possesses a relatively simple memory structure.
This is particularly appreciated in numerical computations. Moreover, putting

(1.60) U(t) :=
1
2

∫ ∞

0

〈
A−1ϕ(r, t), ϕ(r, t)

〉
h(r) dr

we obtain a thermodynamically consistent model.
The Mróz model can easily be generalized to the case where Z ∩Tdev is an ellipsoid

of the form {σ ∈ Tdev;
〈
Ã−1σ, σ

〉
6 1} with a non necessarily isotropic positive definite

symmetric matrix Ã. To preserve the thermodynamical consistency we must use the
same matrix Ã in (1.47) and (1.60). We see that the shape of the yield surface and the
elastic constitutive law cannot be chosen independently of each other.

In analogy to the Prandtl-Ishlinskii model, it is possible to define a “Mróz model of
stop type” with input ε and output σ by the relations

(i) σ = σ0 +
∫ ∞

0

σrh(r) dr,(1.61)

(ii) ε = εe
r + εp

r ,

(iii) σr = Aεe
r,

(iv) σr ∈ rZ,

(v) Zr(t) := εp
r(t) + rA−1Z,

(vi) ε(t) ∈ IntZr(t) ⇒ ε̇p
r(t) = 0.

coupled with the nonintersection condition (1.57). The Mróz models of play and stop
type are equivalent in the sense that they generate mutually inverse constitutive opera-
tors similarly as scalar Prandtl-Ishlinskii operators in Chapter II. Note that for general
multidimensional Prandtl-Ishlinskii operators this is an open problem.

Originally (Mróz (1967), Chu (1984)) the condition εp =
∫∞
0

εr dr used to be replaced
with a global normality condition analogous to (1.55), namely

(1.62) σp
r ∈ ∂Zr ⇒ ε̇p ∈ NZr (σ

p
r )

(the nonintersection condition (1.57) guarantees that NZr (σ
p
r ) is independent of r,

hence the implication is meaningful). It turns out that this model does not exclude
the existence of perpetual motion (see Example 3.2 of Brokate, Dressler, Krejč́ı (to
appear/a) which violates the second law of thermodynamics. The Mróz model coupled
with the normality condition (1.62) thus becomes thermodynamically inconsistent. It
is therefore natural to conclude that the normality condition cannot be regarded as
an independent physical property: it is or is not a mathematical consequence of the
constitutive law.
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I.2 Geometry of convex sets

The aim of this section is to recall some basic elements of analysis of convex sets in
a Hilbert space. Most of the results are well-known. We present them in order to fix
the notation and to keep the presentation consistent (for more information we refer the
reader to the monographs Rockafellar (1970) and Aubin, Ekeland (1984)). The only
concept which is probably new is the complementary function of a convex set (Def. 2.4
below) which plays an important role in the study of vector-valued hysteresis operators
with unbounded characteristics that occur e.g. in identity (1.37).

Throughout the section, X denotes a real separable Hilbert space endowed with a
scalar product

〈·, ·〉 and norm |x|X : =
〈
x, x

〉1/2. By Z we denote a convex closed
subset of X such that 0 ∈ Z. We fix the number

(2.1) m : = dist(0, ∂Z) : = inf {|z|X ; z ∈ ∂Z} > 0.

It is clear that m > 0 if and only if 0 ∈ IntZ.

We start with a simple lemma.

Lemma 2.1. For each x ∈ X there exists a unique z ∈ Z such that |x − z|X =
dist(x,Z) = min {|x− y|X ; y ∈ Z}.

P r o o f. Let x ∈ X be given. Put p : = inf {|x− y|X ; y ∈ Z} and let {yn} ⊂ Z be
a sequence such that |x− yn|X → p. Using the identity

(2.2) |u− v|2X + |u + v|2X = 2(|u|2X + |v|2X)

for u = x− yn, v = x− yk we obtain

1
2
|yn − yk|2X = |x− yn|2X + |x− yk|2X − 2

∣∣∣∣x−
yn + yk

2

∣∣∣∣
2

X

6 |x− yn|2X + |x− yk|2X − 2p2,

hence {yn} is a convergent sequence and it suffices to put z : = lim
n→∞

yn. Uniqueness

follows from identity (2.2). ¤

Using Lemma 2.1 we can define the projections Q : X → Z, P : = I − Q (I is the
identity) associated to Z by the formulae

(2.3) Qx ∈ Z, |Px|X = dist(x,Z) for x ∈ X.

We shall make extensive use of the following properties of P, Q.
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Lemma 2.2. For every x, y ∈ X we have

(i)
〈
Px, Qx− z

〉
> 0 ∀z ∈ Z,

(ii)
〈
Px− Py, Qx−Qy

〉
> 0,

(iii)
〈
Px, x

〉
> m|Px|X + |Px|2X with m given by (2.1),

(iv) Q(x + αPx) = Qx ∀α > −1.

P r o o f. (i) For z ∈ Z, z 6= Qx and γ ∈]0, 1[ we have |x−γz−(1−γ)Qx|2X > |Px|2X ,
hence 2

〈
Px,Qx− z

〉
+ γ|Qx− z|2X > 0 and the assertion follows easily. Statement (ii)

is an obvious consequence of (i). We obtain (iii) from (i) by putting z : = m
|Px|X Px if

x /∈ Z, the case x ∈ Z is trivial. To prove (iv) we notice that for all z ∈ Z we have
|x+αPx−z|2X = |Qx−z|2X +(1+α)2|Px|2X +2(1+α)

〈
Px, Qx−z

〉
, hence the minimum

of |x + αPx− z|X is attained for z = Qx. ¤

It is perhaps not necessary to emphasize that statement (i) of Lemma 2.2 is a Hilbert
space version of the Hahn-Banach Convex Separation Theorem. We pass now to a more
detailed study of geometrical properties of convex sets.

Recession cone

Definition 2.3. A nonempty closed convex set C ⊂ X is called a closed cone, if the

implication x ∈ C ⇒ αx ∈ C holds for all x ∈ X and α > 0.

Definition 2.4. Let Z ⊂ X be a convex closed set, 0 ∈ IntZ. The set

(2.4) CZ : = {x ∈ Z; αx ∈ Z ∀α > 0}

is called the recession cone of Z and the function KZ : [0,∞[→ [0,∞[ defined by the

formula

(2.5) KZ(r) : = sup{dist(x,CZ); x ∈ Z ∩Br(0)} for r > 0

is called the complementary function of Z, where Br(x0) : = {x ∈ Z; |x − x0|X 6 r}
denotes the ball centered at x0 with radius r.

Proposition 2.5. Let Z ⊂ X be a convex closed set with 0 ∈ IntZ and with the

recession cone CZ and complementary function KZ . Then

(i) x + y ∈ Z ∀x ∈ CZ , ∀y ∈ Bm(0),
(ii) KZ is nondecreasing in [0,∞[, KZ(0) = 0, KZ(s)

s > KZ(r)
r for all 0 < s < r,

(iii) if dim X < ∞, then

(2.6) lim
r→∞

KZ(r)
r = 0.
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P r o o f. (i) Since Z is closed, it suffices to assume 0 < |y|X < m. Put γ : = |y|X
m ∈

]0, 1[. For x ∈ CZ we have xγ : = 1
1−γ x ∈ CZ ⊂ Z, yγ : = 1

γ y ∈ Bm(0) ⊂ Z, hence
x + y = (1− γ)xγ + γyγ ∈ Z.

(ii) The function KZ is obviously nondecreasing, KZ(0) = 0. Let us fix positive
numbers r > s and ε > 0 and an element xε ∈ Z such that |xε|X 6 r,KZ(r) 6
dist(xε, CZ) + ε. We have either |xε|X 6 s and KZ(s) > KZ(r)− ε or |xε|X > s and

s
|xε|X xε ∈ Z, KZ(s) > dist

(
s

|xε|X xε, CZ

)
= s

|xε|X dist(xε, CZ) > s
|xε|X (KZ(r) − ε). For

ε → 0+ we obtain in both cases KZ(s)
s > KZ(r)

r .
(iii) We see that the limit of KZ(r)

r as r → ∞ exists. Assume that it is positive,
say lim

r→∞
KZ(r)

r = ε > 0. For each r > 0 there exists zr ∈ Z ∩ Br(0) such that

ar : = |zr|X > dist(zr, CZ) = KZ(r) > εr. We have in particular ar → ∞ as r → ∞.
There exists y ∈ X and a sequence rn →∞ such that y = lim

n→∞
zrn

arn
, |y|X = 1. For an

arbitrary α > 0 and for n sufficiently large the element α
arn

zrn belongs to Z, hence

y ∈ CZ . By hypothesis we have |zrn − arny|X > εrn, hence
∣∣∣ zrn

arn
− y

∣∣∣
X

> ε, which is a
contradiction. ¤

We immediately see that CZ = {0} if Z is bounded. The converse is true provided
dim X < ∞ as a consequence of Proposition 2.5(iii) and is false if dim X = ∞. It
suffices to consider the example of the convex “infinite-dimensional cube” Z : = {x ∈
X; |〈x, ek

〉| 6 1 ∀k ∈ N}, where {ek} is an orthonormal basis in X.

Let us note that for r > s > 0 we have by Proposition 2.5 (ii) KZ(r) − KZ(s) 6
KZ(r)

r (r − s), hence KZ is Lipschitz.
Property (iii) in Proposition 2.5 is crucial for the extension of the vector stop and play

to the space of continuous functions. We therefore introduce the following terminology.

Definition 2.6. A convex closed set Z ⊂ X is called a recession set if 0 ∈ IntZ

and the complementary function KZ satisfies (2.6).

Indeed, every convex closed set Z ⊂ X with 0 ∈ IntZ is a recession set if dim X <

∞. This is not true for infinitely dimensional spaces, but the system of recession sets
still contains for instance all sets of the form Z = C + ZB , where C is a cone and ZB

is bounded, 0 ∈ IntZB .

Definition 2.7. Let A,B ⊂ X be two closed subsets of X. The Hausdorff distance
H(A,B) of A and B in X is defined by the expression

H(A, B) : = max {sup{dist(y, A); y ∈ B}, sup{dist(x,B); x ∈ A}} .

The complementary function depends continuously on the convex set Z with respect
to the Hausdorff distance.
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Lemma 2.8. Let Z, Z̃ be convex closed subsets of X such that Bm(0) ⊂ Z and

H(Z, Z̃) = : ε < m. Then

(i) Bm−ε(0) ⊂ Z̃,

(ii) CZ = CZ̃ ,

(iii) |KZ(r)−KZ̃(r)| 6 ε ∀r > 0.

P r o o f. (i) Assume that for some x ∈ Bm−ε(0) we have dist(x, Z̃) = |P̃ x|X > 0,
where P̃ , Q̃ are the projections associated to Z̃ by (2.3). Using Lemma 2.2(iv) for
α = ε

|P̃ x|X we obtain dist(x+αP̃x, Z̃) = |P̃ (x+αP̃x)|X = (1+α)|P̃ x|X = ε+|P̃ x|X > ε

and x + αP̃x ∈ Bm(0) ⊂ Z, which is a contradiction.
(ii) It suffices to prove CZ ⊂ Z̃. Let x ∈ CZ be given. For every n ⊂ N there exists

z̃n ∈ Z̃ such that |z̃n − nx|X 6 ε + 1
n . This yields 1

n z̃n → x ∈ Z̃.
(iii) Using (ii) we denote by C the recession cone CZ = CZ̃ . Let PC , QC be the

projections associated to C by (2.3).
For an arbitrary δ > 0 we find x̃δ ∈ Z̃ ∩ Br(0) such that dist(x̃δ, C) = |PC x̃δ|X >

KZ̃(r) − δ. Put xδ : = Qx̃δ ∈ Z. We have by hypothesis ε > dist(x̃δ, Z) = |Px̃δ|X =
|xδ − x̃δ|X and |xδ|X 6 |x̃δ|X 6 r as a consequence of Lemma 2.2 (i) for z = 0. From
Lemma 2.2 (ii) it follows |PCxδ − PC x̃δ|X 6 |xδ − x̃δ|X 6 ε and we conclude

(2.7) KZ(r) > dist(xδ, C) = |PCxδ|X > KZ̃(r)− δ − ε.

We similarly prove the counterpart to (2.7), namely KZ̃(r) > KZ(r)− δ− ε. Letting δ

tend to 0 we obtain the assertion. ¤

Lemma 2.9. Let the hypotheses of Lemma 2.8 hold and let P,Q, P̃ , Q̃ be as above.

Then for all x, y ∈ X we have

(2.8) max
{
|Px− P̃ y|X , |Qx− Q̃y|X

}
6 |x− y|X +

[
ε(|x|X + |y|X)

]1/2
.

P r o o f. Let z ∈ Z, z̃ ∈ Z̃ be such that |Qx − z̃|X 6 ε, |Q̃y − z|X 6 ε. The
inequalities

〈
Px,Qx−z

〉
> 0,

〈
P̃ y, Q̃y− z̃

〉
> 0 entail

〈
Px− P̃ y, Qx− Q̃y

〉
>

〈
Px, z−

Q̃y
〉

+
〈
P̃ y, z̃ −Qx

〉
, hence

|Px− P̃ y|2X 6
〈
Px− P̃ y, x− y

〉
+ ε(|Px|X + |P̃ y|X)

|Qx− Q̃y|2X 6
〈
Qx− Q̃y, x− y

〉
+ ε(|Px|X + |P̃ y|X)

and (2.8) follows. ¤
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Another useful concept in applications (see Sect.I.1) is the Minkowski functional MZ

(also called gauge, cf. Rockafellar (1970)) associated to a convex closed set Z with
0 ∈ IntZ by the formula

(2.9) MZ(x) : = inf
{

r > 0;
1
r
x ∈ Z

}
forx ∈ X.

The proof of the following properties of the Minkowski functional is left to the reader.

Exercise 2.10. Prove that
(i) MZ(rx) = rMZ(x) ∀r > 0, ∀x ∈ X;
(ii) MZ(x + y) 6 MZ(x) + MZ(y) ∀x, y ∈ X;
(iii) Let ∂MZ denote the subdifferential of MZ . Then

〈
w, x

〉
= MZ(x) for all x ∈ X

and w ∈ ∂MZ(x);
(iv) CZ = {x ∈ X; MZ(x) = 0}, Z = {x ∈ X; MZ(x) 6 1};
(v) MZ is a norm in X if and only if Z = −Z and CZ = {0};
(vi) The space X endowed with the norm MZ is a Banach space if and only if Z is

bounded;
(vii) The space X endowed with the norm MZ is a Hilbert space if and only if there

exists a bounded linear selfadjoint strictly positive operator A : X → X such that
Z = {x ∈ X;

〈
Ax, x

〉
6 1}.

Tangent and normal cones

A natural generalization of normal vectors and tangent hyperplanes which in general
are not uniquely determined, is the concept of normal cone NZ(x) and tangent cone
TZ(x) to a convex closed set Z ⊂ X at a point x ∈ Z. They are defined by the formula

(2.10)

{
NZ(x) : = {y ∈ X;

〈
y, x− z

〉
> 0 ∀z ∈ Z},

TZ(x) := {w ∈ X;
〈
w, y

〉
6 0 ∀y ∈ NZ(x)}.

It is easy to check for each x ∈ Z using Lemma 2.2 that every element u ∈ X can
be decomposed in a unique way into the sum u = v + w of the normal component
v ∈ NZ(x) and the tangential component w ∈ TZ(x) such that

〈
v, w

〉
= 0.

For x ∈ IntZ we obviously have NZ(x) = {0}, TZ(x) = X. One might expect
that for x ∈ ∂Z the normal cone should contain nonzero elements. The example
Z : = {x ∈ X; |〈x, ek

〉| 6 1
k ∀k ∈ N}, where {ek} is an orthonormal basis, shows that

this conjecture is false, since 0 ∈ ∂Z and NZ(0) = {0}. In regular cases this cannot
happen.

Proposition 2.11. Let IntZ 6= ∅. Then for every x ∈ ∂Z we have NZ(x)\{0} 6= ∅.
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P r o o f. Let {zn; n ∈ N} ⊂ X \ Z be a sequence such that lim
n→∞

|zn − x|X = 0.

Put εn : = |Pzn|X > 0, yn : = zn + 1
εn

Pzn. We have εn 6 |zn − x|X and Lemma
2.2(iv) yields Qyn = Qzn, Pyn = (1 + 1

εn
)Pzn. By Lemma 2.2(i) we further have

|Qyn − x|2X = |Qzn − x|2X = |zn − x|2X − |Pzn|2X − 2
〈
Pzn, Qzn − x

〉
6 |zn − x|2X and

(2.11)
〈
Pyn, Qyn − z

〉
> 0 ∀z ∈ Z, ∀n ∈ N.

Passing to subsequences we can assume that {Pyn} converges weakly to an element ξ

which belongs to NZ(x) by (2.11). It remains to verify that ξ 6= 0. We fix an arbitrary
ball Bδ(x0) ⊂ IntZ. Putting z : = x0 + δ

1+εn
Pyn in (2.11) we obtain δ 6

〈
ξ, x− x0

〉
,

hence ξ 6= 0. ¤

It seems justified with respect to applications in plasticity (see Example 1.4) to men-
tion the important particular case of cylinders in X.

Definition 2.12. Let Y ⊂ X be a closed subspace of X, let Y ⊥ be its orthogonal

complement and let Z̃ ⊂ Y be a convex closed set. Then the set Z : = Z̃ + Y ⊥ is

called a cylinder in X.

Proposition 2.13. A convex closed set Z ⊂ X is a cylinder of the form Z = Z̃+Y ⊥

with Z̃ ⊂ Y if and only if NZ(x) ⊂ Y for all x ∈ Z.

P r o o f. The “only if” part is trivial. To prove the converse we put Z̃ : = Z ∩ Y

and choose arbitrarily u ∈ Z̃ and w ∈ Y ⊥. From Lemma 2.2(i) we infer
〈
P (u +

w), Q(u + w) − u
〉

> 0, hence |P (u + w)|2X 6
〈
P (u + w), w

〉
. On the other hand, we

have P (u+w) ∈ NZ(Q(u+w)) ⊂ Y , and we conclude
〈
P (u+w), w

〉
= |P (u+w)|2X = 0.

Consequently, Z̃ + Y ⊥ ⊂ Z and equality follows from the convexity of Z. ¤

Remark 2.14. Cylinders of the form Z = Z̃ + Y ⊥ with Z̃ ⊂ Y are characterized
by the condition Px ∈ Y for all x ∈ X. Denoting by P̃ , Q̃ the projections associated
to Z̃ in Y we obtain for every x ∈ X of the form x = u + w, u ∈ Y, w ∈ Y ⊥ the
identities Px = P̃ u, Qx = Q̃u + w.

Strict convexity

In general, the boundary ∂Z of a convex closed set Z ⊂ X can contain straight
segments. We recall two criteria for their existence. It is easy to verify that ∂Z contains
a segment of length r > 0 if one of the following conditions is satisfied.

A. Internal criterion: There exist x, y ∈ ∂Z, |x− y|X = r, 1
2 (x + y) ∈ ∂Z.

B. External criterion: There exists z ∈ ∂Z and a sequence {wn; n ∈ N} ⊂ X \TZ(z)
such that |wn|X = 1, lim

n→∞
wn = w, z + rw ∈ ∂Z.
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The terminology is justified by the fact that we always have 1
2 (x+y) ∈ Z for x, y ∈ Z

and z + rw /∈ Z for z ∈ ∂Z, w ∈ X \ TZ(z) and r > 0.
According to these criteria we introduce the functions α, δ : [0,∞[→ [0,∞[ by the

formulae

(2.12)

{
δ(r) := inf

{
dist

(
1
2 (x + y), ∂Z

)
; x, y ∈ Z, |x− y|X = 2r

}
,

α(r) : = inf {|P (z + rw)|X ; z ∈ ∂Z, w ∈ X \ TZ(z), |w|X = 1} ,

where P is the projection (2.3). We naturally have δ(r) = +∞ if 2r > diam Z : =
sup{|x − y|X ;x, y ∈ Z} (the diameter of Z) and δ(r) 6

∣∣ 1
2 (x + y)− x

∣∣
X

= r for
0 6 r < 1

2 diam Z. Choosing an arbitrary x ∈ X \ Z we obtain α(r) 6
∣∣P (Qx +

r
|Px|X Px)

∣∣
X

= r by Lemma 2.2.
The case dim X = 1 is trivial (then δ(r) = r for r < 1

2 diam Z, α(r) = r for all
r > 0), as well as the case IntZ = ∅ (then δ(r) = α(r) = 0 for r < 1

2 diam Z).

Proposition 2.15. Let Z ⊂ X be a convex closed set, IntZ 6= ∅. Then for all

0 6 p < r we have

(i) α(p)
p 6 α(r)

r ,

(ii) δ(p)
p 6 δ(r)

r ,

(iii) α(r) 6 δ(r).

P r o o f. (i) Let 0 6 p < r and ε > 0 be given. Put γ : = p
r . We fix z ∈ ∂Z and

w ∈ X \ TZ(z), |w|X = 1 such that |P (z + rw)|X < α(r) + ε. For v : = (1 − γ)z +
γQ(z + rw) ∈ Z we have

α(p) 6 |P (z + pw)|X 6 |z + pw − v|X = γ|P (z + rw)|X <
p

r
(α(r) + ε)

hence (i) holds.
(ii) It suffices to assume δ(r) < ∞. We find x, y ∈ Z and z ∈ ∂Z such that

|x− y|X = 2r and

(2.13)
∣∣∣x + y

2
− z

∣∣∣
X
− ε

2
6 dist

(x + y

2
, ∂Z

)
6 δ(r) +

ε

2
.

Put x̂ : = γx+(1−γ)z, ŷ : = γy+(1−γ)z with γ as above. Then x̂, ŷ ∈ Z, |x̂−ŷ|X = 2p

and δ(p) 6
∣∣ x̂+ŷ

2 − z
∣∣
X

= γ
∣∣x+y

2 − z
∣∣
X

6 p
r (δ(r) + ε).

(iii) Let x, y, z, ε be as in (ii). We fix an arbitrary ψ ∈ NZ(z), |ψ|X = 1 and assume〈
ψ, x− y

〉
> 0 (otherwise we interchange x and y). Put vε : = x−y

2 + εψ ∈ X \ TZ(z).
Then α(r) 6

∣∣P (
z + r

|vε|X vε

)∣∣
X

6
∣∣z + r

|vε|X vε − x
∣∣
X

6
∣∣z − x+y

2

∣∣
X

+
∣∣εψ − (

1 −
r

|vε|X
)
vε

∣∣
X

6
∣∣z − x+y

2

∣∣
X

+ ε. Letting ε tend to 0 we obtain (iii) from (2.13). ¤
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We see that both α, δ are nondecreasing in their domains. One can derive by ele-
mentary means further interesting properties of these functions. Details are left to the
reader as an exercise.

Exercise 2.16. Let Z ⊂ X be a closed convex domain with a nonempty interior.
Prove that
(i) δ(r) 6 1

2α(2r + 2δ(r)) for r ∈ [0, 1
2 diam Z[,

(ii) α(r)− α(p) 6 r − p for 0 6 p < r,
(iii) if dimX > 2, then for every x ∈ IntZ, c : = dist(x, ∂Z) and r ∈ [0, c] we have

2cδ(r) 6 r2 + δ2(r);
(iv) if δ(r) > 0 for some r ∈]0, 1

2 diam Z[, then diam Z 6 r
δ2(r) (r

2 + δ2(r)).

H i n t. (i) Assume α(2r + 2δ(r)) < 2δ(r) − ε for some r > 0, ε > 0. Find x ∈
∂Z, w ∈ ∂B1(0) ∩ (

X \ TZ(x)
)

such that
∣∣P (

x + (2r + 2δ(r))w
)∣∣

X
< 2δ(r) and put

z := Q
(
x + (2r + 2δ(r))w

)
. Then z ∈ Z, |x − z|X > 2r, x + (r + δ(r))w 6∈ Z, hence∣∣x + (r + δ(r))w − x+z

2

∣∣
X

> δ(r) which is a contradiction.
(ii) Use the Lipschitz continuity of P which follows from Lemma 2.2(ii).
(iii) Let zε ∈ ∂Z be such that |zε − x|X 6 c + ε. Find w ∈ B1(0) such that〈

w, zε − x
〉

= 0 and put u± := x +
√

c2 − r2 zε−x
|zε−x|X ± rw. Then u± ∈ Bc(x) ⊂ Z,

|u+ − u−|X = 2r and δ(r) 6
∣∣zε − u++u−

2

∣∣
X

.
(iv) Assume s := 1

2 |x − y|X > r
2δ2(r)

(
r2 + δ2(r)

)
for some x, y ∈ Z. Then s > r,

hence δ(s) > s
r δ(r) > 1

2δ(r)

(
r2 + δ2(r)

)
> r. By (iii) we have 2δ(s)δ(r) 6 r2 + δ2(r)

which is a contradiction.

The upper bound for diam Z in Exercise 2.16(iv) does not seem to be optimal. If Z

is a ball, then we obtain for instance diamZ = 1
δ(r) (r

2 + δ2(r)). We can nevertheless
conclude that Z is unbounded if and only if α(r) = 0 for all r > 0. The opposite
situation is of some interest in applications.

Definition 2.17. A convex closed set Z ⊂ X is said to be strictly convex, if α(r) > 0
for all r > 0.

Proposition 2.18. Let Z ⊂ X be a strictly convex set, dim X > 2, Bm(x) ⊂ Z

for some x ∈ IntZ. Then α−1 : [0,∞[→ [0,∞[ is locally Lipschitz in ]0,∞[ , and we

have lim
s→∞

α−1(s)
s = 1, α−1(s) > √

ms for all s > 0.

P r o o f. Proposition 2.15 (i) entails α(r) − α(p) > α(p)
p (r − p) for all r > p > 0,

hence α−1 is locally Lipschitz in ]0,∞[. We obviously have r > α(r) > r − diam Z,
hence lim

s→∞
α−1(s)

s = 1. To conclude, notice that Exercise 2.16(iii) and Proposition

2.15(iii) yield mα(r) 6 r2 for r ∈ [0, m] and the trivial inequality α(r) 6 r < 1
mr2 for

r > m completes the proof. ¤
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I.3 The play and stop operators

The elementary hysteresis operators called stop and play have already been intro-
duced in Sect. I.1. The rigorous construction presented here is slightly different from
the approach of Krasnosel’skii and Pokrovskii (1983) and Visintin (1987). We admit
the infinitely dimensional case and we start with nonsmooth input functions. More
precisely, we define the inputs and outputs in the space C([0, T ];X) ∩ BV (0, T ;X)
of continuous functions of bounded variation with values in a Hilbert space X. We
further prove that the play and stop operators can be extended to continuous (but not
necessarily bounded) operators from C([0, T ];X) to C([0, T ]; X) and that they depend
continuously on the characteristic Z. The play operator has an interesting smoothen-
ing property in C([0, T ]; X), namely that the total variation of the output remains
bounded. The restriction of these operators to Sobolev-type spaces W 1,p(0, T ;X) (for
details about vector-valued absolutely continuous functions see Chapter V) is shown to
be continuous if 1 6 p < ∞ and discontinuous for p = +∞. We consider also the
problem of periodicity if the input is periodic and derive two energy inequalities.

The first step consists in proving the following generalization of Theorem 1.9.

Theorem 3.1. Let a real separable Hilbert space X, a convex closed set Z ⊂ X

with 0 ∈ Z, an element x0 ∈ Z and a function u ∈ C([0, T ];X) ∩ BV (0, T ; X) be

given. Then there exists a unique ξ ∈ C([0, T ];X) ∩ BV (0, T ;X) and x ∈ C([0, T ];Z)
such that

(i) x(t) + ξ(t) = u(t) ∀t ∈ [0, T ],(3.1)

(ii) x(0) = x0,

(iii)
∫ T

0

〈
x(t)− ϕ(t), dξ(t)

〉
> 0 ∀ϕ ∈ C([0, T ]; Z),

where
〈·, ·〉 is the scalar product in X.

The integral in (3.1)(iii) is the Riemann-Stieltjes integral (see Sect. V.1). Theorem
1.9 will turn out to be the consequence of Theorem 3.1 after we prove the regularity in
Proposition 3.9.

Exercise 3.2. Prove that condition (3.1)(iii) is equivalent to

(3.2)
∫ t

s

〈
x(τ)− ψ(τ), dξ(τ)

〉
> 0 ∀ψ ∈ C([s, t];Z) for all 0 6 s < t 6 T.
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H i n t. For 0 < s < t < T, ψ ∈ C([s, t];Z) and δ ∈]0, min{s, T − t}[ put

ϕδ(τ) : =





x(τ) for τ ∈ [0, s− δ] ∪ [t + δ, T ],

ψ(τ) for τ ∈ [s, t],

x(s− δ) + τ−s+δ
δ

(
ψ(s)− x(s− δ)

)
, τ ∈]s− δ, s[,

x(t + δ) + t+δ−τ
δ

(
ψ(t)− x(t + δ)

)
, τ ∈]t, t + δ[.

Use formulae V(1.22), V(1.23) to prove that

∫ t

s

〈
x(τ)− ψ(τ), dξ(τ)

〉
>

∫ t+δ

t

〈
x(t + δ)− x(τ), dξ(τ)

〉−
∫ s

s−δ

〈
x(τ)− x(s− δ), dξ(τ)

〉

+
1
δ

∫ s

s−δ

〈
ψ(s)− x(s− δ), ξ(s)− ξ(τ)

〉
dτ +

1
δ

∫ t+δ

t

〈
ψ(t)− x(t + δ), ξ(τ)− ξ(t)

〉
dτ

and pass to the limit as δ → 0+.

P r o o f of Theorem 3.1. The uniqueness is easy. Indeed, let (x, ξ) and (y, η) be
two solutions of (3.1). Putting ϕ = 1

2 (x + y) we obtain for all t ∈ [0, T ]

∫ t

0

〈
x(τ)− y(τ), d(ξ − η)(τ)

〉
= −

∫ t

0

〈
ξ(τ)− η(τ), d(ξ − η)(τ)

〉
> 0

and formula V(1.21) yields ξ = η, x = y.
The solution will be constructed by a simple time-discretization scheme. For a fixed

n ∈ N we define

(3.3) uj : = u

(
jT

n

)
, j = 0, . . . , n.

Let P, Q be the projections defined by formula (2.3). We construct the sequences

(3.4)

{
xj : = Q(xj−1 + uj − uj−1), j = 1, . . . , n,

ξj : = uj − xj , j = 0, . . . , n.

We have ξj − ξj−1 = P (xj−1 + uj − uj−1) and Lemma 2.2(i) yields

(3.5)
〈
ξj − ξj−1, xj − z

〉
> 0 ∀z ∈ Z, ∀j ∈ {1, . . . , n}.

Putting z := xj−1 and M : = Var
[0,T ]

u we immediately obtain from (3.5)

(3.6)
n∑

j=1

|ξj − ξj−1|X 6 M.
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We now define piecewise linear functions u(n), ξ(n), x(n) ∈ W 1,1([0, T ]; X) by the
formula

(3.7)





u(n)(t) : = uj−1 + n
(

t
T − j−1

n

)
(uj − uj−1),

ξ(n)(t) : = ξj−1 + n
(

t
T − j−1

n

)
(ξj − ξj−1),

x(n)(t) : = xj−1 + n
(

t
T − j−1

n

)
(xj − xj−1)

for t ∈ [ (j−1)T
n , jT

n

[
and j = 1, . . . , n continuously extended to t = T .

Let µu be the modulus of continuity of u defined by V(1.19). For every τ ∈] (j−1)T
n , jT

n

[
and z ∈ Z we have by (3.5) and Lemma (2.2)(i)

〈
ξ̇(n)(τ), x(n)(τ)− z

〉
> − n

T

〈
ξj − ξj−1, xj − xj−1

〉
> − n

T

〈
ξj − ξj−1, uj − uj−1

〉

> − n

T
µu

(T

n

)|ξj − ξj−1|X

and estimate (3.6) yields

(3.8)
∫ t

0

〈
x(n)(τ)− ϕ(τ), dξ(n)(τ)

〉
> −Mµu

(T

n

)

for all n ∈ N, t ∈ [0, T ] and ϕ ∈ C([0, T ];Z).
The proof of Theorem 3.1 will be complete if we prove that

(3.9) {ξ(n);n ∈ N} is a uniformly convergent sequence.

Indeed, in this case it suffices to use formula (3.8) and Theorem V.1.26, since the
sequence {u(n)} is uniformly convergent and Var

[0,T ]
ξ(n) 6 M by (3.6).

To prove (3.9) we choose arbitrarily n, ` ∈ N and put ϕ(τ) : = 1
2

(
x(n)(τ) + x(`)(τ)

)
.

From (3.8) we infer

(3.10)
∫ t

0

〈
ξ̇(n)(τ)− ξ̇(`)(τ), x(n)(τ)− x(`)(τ)

〉
dτ > −M

(
µu

(T

n

)
+ µu

(T

`

))
,

hence by inequality V(1.20)

1
2

∣∣ξ(n)(t)− ξ(`)(t)
∣∣2
X

6
∣∣u(n) − u(`)

∣∣
∞

(
Var
[0,T ]

ξ(n) + Var
[0,T ]

ξ(`)
)

+ M
(
µu

(T

n

)
+ µu

(T

`

))
.

The sequence {ξ(n)} is therefore fundamental in C([0, T ], X), hence (3.9) holds and
Theorem 3.1 is proved. ¤



30

Definition 3.3. Let u ∈ C([0, T ]; X)∩BV (0, T ; X) be a given function and let Z ⊂
X be a convex closed set, 0 ∈ Z. Let (x, ξ) be the solution of (3.1). We define the values

P(x0, u),S(x0, u) of the play and stop operators P,S : Z×C([0, T ];X)∩BV (0, T ; X) →
C([0, T ];X)∩BV (0, T ; X), respectively, by the formula

(3.11) P(x0, u) : = ξ, S(x0, u) := x.

Remark 3.4. The initially unperturbed state (“virginal state” in the terminology of
Visintin (1984)) is characterized by the choice x0 = Qu(0) of the initial condition (3.1)
(ii). In this case we use the simplified notation

(3.12) P(u) : = P(Qu(0), u), S(u) : = S(Qu(0), u).

We next study the dependence of P,S on Z in terms of the Hausdorff distance of
sets in X (cf. Def. 2.7).

Proposition 3.5. Let u, v ∈ C([0, T ];X)∩BV (0, T ;X) be given functions, let Z, Z̃

be given convex closed sets such that their Hausdorff distance ε := H(Z, Z̃) is finite,

0 ∈ Z ∩ Z̃ and let x0 ∈ Z, x̃0 ∈ Z̃ be given. Let P, P̃ be the play operators corre-

sponding to Z, Z̃, respectively.

Put ξ : = P(x0, u), η : = P̃(x̃0, v), x : = u− ξ, y : = v − η. Then for 0 6 s < t 6 T

we have

(3.13) |ξ(t)− η(t)|2X 6 |ξ(s)− η(s)|2X + 2(ε + |u− v|∞)
(
Var
[s,t]

ξ + Var
[s,t]

η
)
.

P r o o f. Let Q,P, Q̃, P̃ be the projections (2.3) corresponding to Z, Z̃, respectively.
For τ ∈ [s, t] put ψ(τ) : = Q̃(x(τ)), ϕ(τ) : = Q(y(τ)). We have |ψ(τ) − x(τ)|X 6 ε,
|ϕ(τ)− y(τ)|X 6 ε and the inequalities

∫ t

s

〈
x(τ)− ϕ(τ), dξ(τ)

〉
> 0,

∫ t

s

〈
y(τ)− ψ(τ), dη(τ)

〉
> 0

entail ∫ t

s

〈
x(τ)− y(τ), d(ξ − η)(τ)

〉
> −ε

(
Var
[s,t]

ξ + Var
[s,t]

η
)

and the rest follows from Exercise V.1.24. ¤

Continuous inputs

Theorem 3.7 below enables us to extend the stop and play to the space C([0, T ]; X).
The idea of the proof is due to A.A. Vladimirov (see Krasnosel’skii, Pokrovskii (1983)
for dimX < ∞ and Z bounded) and relies on the following Lemma.
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Lemma 3.6. Let B ⊂ C([0, T ];X) be a compact set. Let Z̃ ⊂ X be a recession

set (see Def. 2.6) with Bm(0) ⊂ Z̃ and let r > 0 be given. Then there exists M > 0
such that for every u ∈ B∩BV (0, T ; X), every convex closed set Z ⊂ X such that

H(Z, Z̃) < m
2 and every x0 ∈ Z ∩Br(0) we have

(3.14) Var
[0,T ]

P(x0, u) 6 M,

where P is the play operator corresponding to Z.

P r o o f. Let Ξ be the system of sets Z satisfying the hypotheses of Lemma 3.6.
Every Z ∈ Ξ is a recession set and Bm

2
(0) ⊂ Z by Lemma 2.8.

We find u1, . . . , uN ∈ B such that B ⊂
N⋃

k=1

{u ∈ C([0, T ];X); |u − uk|∞ < γ} for

γ : = m
12 and fix δ > 0 such that max{µuk

(δ); k = 1, . . . , N} < γ.

We first prove that for every u ∈ B∩BV (0, T ; X), Z ∈ Ξ, x0 ∈ Z and 0 6 s < t 6 T

such that |t− s| < δ we have

(3.15) Var
[s,t]

P(x0, u) 6 2
m

K2
Z(| S(x0, u)(s)|X).

Put ξ : = P(x0, u), x : = S(x0, u). We find x̂ ∈ CZ such that |x(s) − x̂|X 6
KZ(|x(s)|X) and put for τ ∈ [s, t]

ψ(τ) : = x̂ + u(τ)− u(s) +
m

4
ϕ(τ)

for some ϕ ∈ C([s, t];X), |ϕ|∞ 6 1.
We have |ψ(τ)− x̂|X 6 m

2 for all τ ∈ [s, t], hence ψ ∈ C([s, t];Z). Inequality (3.2)
and Exercise V.1.24 then entail

m

4

∫ t

s

〈
ϕ(τ), dξ(τ)

〉
6

∫ t

s

〈
u(s)− x̂− ξ(τ), dξ(τ)

〉
=

1
2
|x(s)− x̂|2X −

1
2
|u(s)− x̂− ξ(t)|2X ,

and inequality (3.15) follows from Theorem V.1.30.
Putting R : = T

δ + 1 we obtain from (3.15)

(3.16) Var
[0,T ]

ξ 6 2R

m
K2

Z(|x|∞).

Inequality (3.13) for v = η = ε = 0 yields |ξ|2∞ 6 |u(0) − x0|2X + 2|u|∞ Var
[0,T ]

ξ, and

from Lemma 2.8(iii) we infer

|x|2∞ 6 4
(|u|∞ + r

)2 +
4R

m
2|u|∞

(
KZ̃(|x|∞) +

m

2
)2

The set B is bounded, hence the last inequality provides an upper bound for |x|∞
independent of u ∈ B and Z ∈ Ξ. Inequality (3.14) then follows from (3.16) and
property (2.6) of recession sets. ¤
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Lemma 3.6 immediately implies that for each u ∈ C([0, T ]; X) and x0 ∈ Z the value
of P(x0, u) ∈ C([0, T ]; X)∩BV (0, T, X) and S(x0, u) ∈ C([0, T ];Z) can be defined in a
unique way provided Z is a recession set (this is no restriction if dim X < ∞). Indeed,
for any sequence {un; n ∈ N} ⊂ C([0, T ]; X)∩BV (0, T ;X) such that lim

n→∞
|u−un|∞ = 0

we conclude from (3.14)

(3.17) Var
[0,T ]

P(x0, un) 6 M

and (3.13) yields

(3.18) | P(x0, un)− P(x0, uk)|2∞ 6 |un(0)− uk(0)|2X + 4M |un − uk|∞
for all k, n ∈ N. The sequence {P(x0, un)} is therefore fundamental in C([0, T ];X)
and its limit is independent of the concrete choice of the sequence {un}. We therefore
can define

(3.19) P(x0, u) := lim
n→∞P(x0, un).

By Proposition V.1.18(ii) we have

(3.20) Var
[0,T ]

P(x0, u) 6 M,

hence P maps Z × C([0, T ];X) into C([0, T ];X) ∩BV (0, T ; X).

The following two continuity results are straightforward consequences of the above
considerations and the density of BV (0, T ; X) ∩ C([0, T ]; X) in C([0, T ]; X).

Theorem 3.7. Let the hypotheses of Lemma 3.6 be satisfied. Let Ξε be a system

of recession sets Z ⊂ X such that H(Z, Z̃) 6 ε
2 for some ε < m

2 . Then there exists a

constant M > 0 such that for all u, v ∈ B, Z1, Z2 ∈ Ξε and x0
i ∈ Zi ∩Br(0), i = 1, 2

we have

(3.21) | P
1
(x0

1, u)− P
2
(x0

2, v)|∞ 6 M(ε + |u− v|∞)1/2 + |u− v|∞ + |x0
1 − x0

2|X ,

where P1,P2 are the plays corresponding to Z1, Z2, respectively.

Corollary 3.8. Let
{
un; n ∈ N ∪ {0}} ⊂ C([0, T ];X) be a given sequence of

functions, let
{
Zn;n ∈ N ∪ {0}} be a given sequence of recession sets such that

lim
n→∞

|un − uo|∞ = 0, lim
n→∞H(Zn, Zo) = 0 and let x0

n ∈ Zn be given initial val-

ues, x0
o = lim

n→∞
x0

n. Put ξn : = Pn(x0
n, un) for n ∈ N ∪ {0}, where Pn is the play

corresponding to Zn. Then lim
n→∞

|ξn − ξo|∞ = 0.

Notice that the unperturbed initial values defined in Remark 3.4 satisfy the conver-
gence condition by Lemma 2.9.
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Regularity

One can expect that play and stop operators act in Sobolev spaces W 1,p(0, T ; X).
Before passing to the continuity result we formulate rigorously the normality rule men-
tioned in Sect. I.1.

Proposition 3.9. Let Z ⊂ X be a convex closed set with 0 ∈ Z, let x0 ∈ Z be

a given initial value and let u ∈ W 1,p(0, T ;X) be given for some p ∈ [1, +∞]. Then

ξ : = P(x0, u), x : = S(x0, u) belong to W 1,p(0, T ;X) and satisfy

(i)
〈
ξ̇(t), x(t)− z

〉
> 0 a.e. ∀z ∈ Z,(3.22)

(ii)
〈
ξ̇(t), ẋ(t)

〉
= 0 a.e.

P r o o f. For arbitrary 0 6 s < t 6 T and τ ∈ [s, t] put ψ(τ) = x(s) in (3.2).
Then Lemma V.1.25 and formulas V(1.22), V(1.25) yield

1
2
|ξ(t)− ξ(s)|2X 6

∫ t

s

〈
u(τ)− u(s), dξ(τ)

〉
=

∫ t

s

〈
ξ(t)− ξ(τ), u̇(τ)

〉
dτ

6 max
s6τ6t

|ξ(t)− ξ(τ)|X
∫ t

s

|u̇(τ)|X dτ ,

hence |ξ(t) − ξ(s)|X 6 2
∫ t

s
|u̇(τ)|X dτ for all 0 6 s < t 6 T . This implies ξ ∈

W 1,p(0, T ; X) and by Lemma V.1.25 we have
∫ t

s

〈
ξ̇(τ), x(τ) − ψ(τ)

〉
dτ > 0 for all

ψ ∈ C([s, t];Z) and 0 6 s < t 6 T , which is equivalent to (3.22)(i). To prove (3.22)(ii)
it suffices to put z : = x(t± h) in (3.22)(i) and let h tend to 0. ¤

Remarks 3.10.
(i) Formulae (3.22) admit a simple geometrical interpretation in terms of the normal

and tangential cones NZ , TZ introduced in (2.10). If u is absolutely continuous, then
ξ̇(t) ∈ NZ(x(t)) and ẋ(t) ∈ TZ(x(t)) a.e., so u̇ = ξ̇ + ẋ is the (unique) orthogonal
decomposition of u̇ into the normal and tangential component.

(ii) Putting x := S(x0, u), y := S(y0, v) for given x0, y0 ∈ Z, u, v ∈ W 1,1(0, T ;X)
we immediately obtain from (3.22)(i)

(3.23)
1
2

d

dt

∣∣x(t)− y(t)
∣∣2
X

6
〈
x(t)− y(t), u̇(t)− v̇(t)

〉
a.e.,

consequently

(3.24) |x(t)− y(t)|X 6 |x0 − y0|X + 2
∫ t

0

|u̇(τ)− v̇(τ)|Xdτ ∀t ∈ [0, T ].
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This immediately implies that the mapping S : Z × W 1,1(0, T ; X) → C([0, T ];X) is
Lipschitz.

Theorem 3.12 below concerns the continuity of the play and stop as mappings Z ×
W 1,p(0, T ; X) → W 1,p(0, T ; X) for 1 6 p < +∞ and their continuous dependence on
Z. We first prove that the piecewise linear approximations (3.7) converge strongly in
W 1,1(0, T ;X).

Proposition 3.11. Let the hypotheses of Proposition 3.9 be fulfilled for p = 1 and

let u(n), ξ(n), x(n) be defined by (3.7). Then lim
n→∞

|ξ(n) − ξ|1,1 = 0, where ξ = P(x0, u)

and | · |1,1 is the norm in W 1,1(0, T ;X).

P r o o f. Inequality (3.5) entails

(3.25)
〈
ξ̇(n)(t), ẋ(n)(t)

〉
> 0 a.e.

Put y(n) : = ξ(n) − x(n), y : = ξ − x. We have by (3.22)(ii) and (3.25)

|ẏ(n)(t)|X 6 |u̇(n)(t)|X , |ẏ(t)|X = |u̇(t)|X a.e.

The hypotheses of Theorem V.1.15 are now satisfied for vo : = ẏ, vn : = ẏ(n), go : = |u̇|X ,
gn : = |u̇(n)|X (in particular, hypothesis (i) follows from (3.9)) and we conclude

lim
n→∞

|y(n) − y|1,1 = 0, hence lim
n→∞

|ξ(n) − ξ|1,1 = 0.

¤

Theorem 3.12. Let
{
Zn; n ∈ N ∪ {0}} be a sequence of convex closed sets in X

such that 0 ∈
∞⋂

n=0
Zn, lim

n→∞H(Zo, Zn) = 0 and let {x0
n} be a sequence of initial values

such that x0
o = lim

n→∞
x0

n. Let
{
un; n ∈ N ∪ {0}} ⊂ W 1,p(0, T ; X) be a sequence such

that lim
n→∞

|un−uo|1,p = 0 for some p ∈ [1,+∞[. Put ξn : = Pn(x0
n, un) for n ∈ N∪{0},

where Pn is the play corresponding to Zn. Then lim
n→∞

|ξn − ξo|1,p = 0.

P r o o f. Put δn := H(Zo, Zn), xn : = un−ξn. Inequality (3.22)(i) and the argument
of the proof of Proposition 3.5 yield

〈
ẋn− ẋo, xn−xo

〉
6

〈
xn−xo, u̇n− u̇o

〉
+δn(|u̇n|X +

|u̇o|X) a.e., hence |xn − xo|∞ → 0, |ξn − ξo|∞ → 0 as n →∞. For yn : = ξn − xn we
further obtain from (3.22)(ii)

|ẏn(t)|X = |u̇n(t)|X a.e. for all n ∈ N ∪ {0}.

Similarly as in the proof of Proposition 3.11 we use Theorem V.1.15 to prove that
lim

n→∞
|ξn − ξ|1,1 = 0. The assertion of Proposition V.1.13 for gn : = |u̇n|X , vn : = ẏn

then completes the proof for p > 1. ¤
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A counterpart to Theorem 3.12 does not hold for p = +∞ even if dim X = 1. It
suffices to consider Z = [−1, 1], T = 1 and the sequence un(t) : =

(
1+ 1

n

)
t for t ∈ [0, 1],

n ∈ N with u0(t) : = t, x0
n : = 0. We then have

ξ0(t) ≡ 0, ξn(t) : =

{
0 for t ∈ [

0, n
n+1

]
,

(
1 + 1

n

)
t− 1 for t ∈ ]

n
n+1 , 1

] for n ∈ N,

hence |un − u0|1,∞ → 0, |ξn − ξ0|1,∞ > 1.

We shall see in Chapter II that for dim X = 1 the operators P,S are Lipschitz
continuous in C([0, T ]; X) and in W 1,1(0, T ; X). Better continuity results will also be
obtained in Section I.4 in the vector case provided Z has a special shape.

In general, the situation is more complicated. The following example similar to those
which occur in models of plasticity with isotropic hardening of the type (1.37) shows
that the play operator (3.12) does not necessarily map bounded sets in C([0, T ];X) into
bounded sets. The operator F : = I + P thus provides an elegant example of general
interest in functional analysis such that both F and F−1 = I− 1

2 P (cf. identity (1.35))
are continuous and unbounded in C([0, T ];X).

Example 3.13. Put X : = R2, Z : = {(a, b) ∈ X; 1 > b > g(a)}, where g(a) : =
e−a−1 − 1, ξn : = P(un), xn : = un − ξn, un(t) :=

(
0

cos nπt

)
for t ∈ [0, 2] and n ∈ N.

Let ΓU : = {(a, b) ∈ Z; b = 1}, ΓL : = {(a, b) ∈ Z; b = g(a)} denote the upper and lower
boundary of Z, respectively.

Fig. 5

0 a

b

b = g(a)

−1

1

−1

ẋn

ξ̇n u̇n

�
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In component form we can write xn(t) =
(
αn(t)
βn(t)

)
. For xn(t) ∈ IntZ we have ẋn(t) =

u̇n(t) and for xn(t) ∈ ΓU we have ẋn(t) = 0 by Remark 3.10, so αn is nonconstant
only if xn(t) ∈ ΓL. In this case ẋn(t) is the tangential component of u̇n(t), hence,

(3.26) α̇n(t) cosh(αn(t) + 1) = −1
2

d

dt
(cos nπt).

Put ak : = αn

(
2k−1

n

)
. There exists τk ∈ ]

2k
n , 2k+1

n

[
such that αn(t) = ak for t ∈[

2k−1
n , τk

]
, cosnπτk = g(ak) and in

]
τk, 2k+1

n

[
equation (3.26) holds. After integration

we obtain
sinh(ak+1 + 1)− sinh(ak + 1) =

1
2
(
1 + g(ak)

)
=

1
2
e−ak−1,

hence ak+1 > ak for all k and lim
k→∞

ak = +∞. We therefore have lim
n→∞

αn

(
2 − 1

n ) =

lim
n→∞

an = +∞ and the sequence {xn; n ∈ N} is unbounded in C([0, 2];X).

Periodic inputs

An interesting particular case arises if the input function u is periodic. We denote
by W 1,1

ω the space of absolutely continuous ω-periodic functions u : R1 → X, i.e.
such that u(t + ω) = u(t) for all t ∈ R1, endowed with the norm of W 1,1(0, ω; X).
Example 3.13 above shows that the outputs P(u),S(u) are not necessarily periodic.
We nevertheless have the following asymptotic periodicity result.

Theorem 3.14. Let u ∈ W 1,1
ω be given, let Z ⊂ X be a convex closed set with

0 ∈ IntZ and let x0 ∈ Z be given. Assume that the trajectory {x(t); t ∈ [0,+∞[} ⊂
Z of x = S(x0, u) is precompact. Then there exists x∗ ∈ W 1,1

ω such that

lim
t→∞

|x(t)− x∗(t)|X = 0.

P r o o f. We denote as usual ξ : = P(x0, u). We have
〈
ξ̇(t), x(t) − x(t + ω)

〉
> 0,〈

ξ̇(t + ω), x(t + ω)− x(t)
〉

> 0 a.e., hence d
dt |x(t + ω)− x(t)|2X 6 0.

Put r : = lim
t→∞

|x(t + ω)− x(t)|X . By hypothesis, there exists x ∈ Z and a sequence

{nj ; j ∈ N} ⊂ N such that lim
j→∞

|x(njω)− x|X = 0. Put

(i) xj(t) : = x(t + njω) for t > 0,(3.27)

(ii) x∗ : = S(x, u).

Then
〈
ẋj(t)− ẋ∗(t), xj(t)− x∗(t)

〉
6 0 a.e., hence

(3.28) |xj(t)− x∗(t)|X 6 |x(njω)− x|X .
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We therefore have for all t > 0

|x∗(t + ω)− x∗(t)|X = lim
j→∞

|x(t + njω + ω)− x(t + njω)|X = r.

For ξ∗(t) := u(t) − x∗(t) this yields
〈
ξ̇∗(t + ω) − ξ̇∗(t), x∗(t + ω) − x∗(t)

〉
= 0, a.e.,

consequently
〈
ξ̇∗(t + ω), x∗(t + ω) − x∗(t)

〉
=

〈
ξ̇∗(t), x∗(t) − x∗(t + ω)

〉
= 0 a.e. We

now obtain from (3.27)(ii), (3.22)(i)
〈
ξ̇∗(t), x∗(t+ω)−z

〉
> 0,

〈
ξ̇∗(t+ω), x∗(t)−z

〉
> 0

for all z ∈ Z. As in the proof of Proposition 3.9 we conclude
〈
ξ̇∗(t), ẋ∗(t + ω)

〉
=〈

ξ̇∗(t + ω), ẋ∗(t)
〉

= 0, hence by (3.22)(ii)

|ẋ∗(t)− ẋ∗(t + ω)|2X = −〈
ξ̇∗(t)− ξ̇∗(t + ω), ẋ∗(t)− ẋ∗(t + ω)

〉
= 0 a.e.

For all t > 0 the last identity entails x∗(t + ω)− x∗(t) = x∗(ω)− x, and in particular
|x∗(nω) − x|X = nr. The trajectory of x∗ is bounded due to the inequality (3.28),
hence r = 0. We therefore have x∗ ∈ W 1,1

ω . Inequality (3.28) then yields

|x(t)− x∗(t)|X 6 |x(njω)− x|X for t > njω,

hence the assertion of Theorem 3.14 holds. ¤

Energy inequalities

The natural definition in Exercise 1.10 of the potential energy associated to the
play and stop has the form UP(t) := 1

2 | P(x0, u)(t)|2X , US(t) := 1
2 | S(x0, u)(t)|2X , re-

spectively. We then have for all u ∈ W 1,1(0, T ;X) and almost all t ∈]0, T [

(3.29)

{〈
d
dt P(x0, u)(t), u(t)

〉− U̇P(t) > 0,
〈
u̇(t),S(x0, u)(t)

〉− U̇S(t) > 0.

The left-hand sides of these inequalities express the rate of dissipation. It can be in
some cases computed explicitly.

Example 3.15. (von Mises yield condition, see Example 1.4). Let Y ⊂ X be a
closed subspace of X and let Z be the infinite cylinder Z : = (Br(0) ∩ Y ) + Y ⊥ of
radius r > 0. In both cases in (3.29), the dissipation rate q̇(t) is given by the formula

(3.30) q̇(t) =
〈 d

dt
P(x0, u)(t),S(x0, u)(t)

〉
= r

∣∣ d

dt
P(x0, u)(t)

∣∣
X

.

as a special case of Lemma 4.12 below.
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Hysteresis operators arising from variational inequalities have an interesting feature
with important consequences, namely that they admit higher order energy inequalities.
This property is obvious for linear constitutive operators and very nontrivial for non-
linear operators, like the stop or play. We shall put much emphasis on this fact in
the following chapters in connection with hyperbolic equations on one hand and with
the geometry of constitutive laws on the other hand. The first general result in this
direction is the following.

Theorem 3.16. Let u ∈ W 1,∞(0, T ; X) be given such that u̇ ∈ W 1,1(0, T ; X). For

a convex closed Z ⊂ X with 0 ∈ Z and for some x0 ∈ Z put x(t) := S(x0, u)(t),
U2(t) := 1

2 |ẋ(t)|2X for a.e. t ∈]0, T [. Then we have

(3.31) U2(t)− U2(s) 6
∫ t

s

〈
ẋ(τ), ü(τ)

〉
dτ

for almost all 0 < s < t < T .

P r o o f. By (3.22)(i) we have for almost all τ ∈]0, T [ and δ ∈]0, T − τ [
〈
ẋ(τ)− u̇(τ), x(τ)− x(τ + δ)

〉
6 0,

〈
ẋ(τ + δ)− u̇(τ + δ), x(τ + δ)− x(τ)

〉
6 0,

hence
1
2

d

dt
|x(τ + δ)− x(τ)|2X 6

〈
x(τ + δ)− x(τ), u̇(τ + δ)− u̇(τ)

〉
.

We fix 0 < s < t < T such that by Proposition V.1.22 we have

ẋ(t) = lim
δ→0

x(t + δ)− x(t)
δ

, ẋ(s) = lim
δ→0

x(s + δ)− x(s)
δ

.

Then

(3.32) U2(t)− U2(s) 6 lim sup
δ→0+

∫ t

s

〈x(τ + δ)− x(τ)
δ

,
u̇(τ + δ)− u̇(τ)

δ

〉
dτ.

To prove that inequalities (3.31), (3.32) are equivalent, we use Proposition V.1.13 for
an arbitrary sequence δn ↓ 0+ and p = 1. We put

vn(τ) : =
1
δ2
n

〈
x(τ + δn)− x(τ), u̇(τ + δn)− u̇(τ)

〉

vo(τ) : =
〈
ẋ(τ), ü(τ)

〉
,

gn(τ) : = |ẋ|∞ 1
δn

∫ τ+δn

τ

|ü(σ)|Xdσ,

go(τ) : = |ẋ|∞|ü(τ)|X .

We have indeed |gn(τ)− go(τ)| 6 1
δn

∫ τ+δn

τ
|go(σ)− go(τ)|dσ, hence the hypotheses of

Proposition V.1.13 are satisfied as a consequence of Proposition V.1.14. Note that by
(3.22)(ii) we have |ẋ(τ)|X 6 |u̇(τ)|X 6 const. for a.e. τ ∈]0, T [. ¤
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I.4 Special characteristics

According to Theorem 3.7 in the previous section, the play and stop are 1
2 -Hölder

continuous on compact sets in C([0, T ];X). Krasnosel’skii and Pokrovskii (1983) al-
ready pointed out that these operators have better continuity properties for special
characteristics Z. In particular, they are uniformly continuous if Z is a strictly con-
vex cylinder and Lipschitz if Z is a polyhedron. We present here elementary proofs
of these results and prove that the play transforms uniformly convergent sequences in
C([0, T ];X) into strictly convergent sequences in C([0, T ]; X) ∩BV (0, T ;X) provided
∂Z is smooth (Proposition 4.11 below). The latter statement is a generalization of a
result of Visintin (1994) for dimX = 1.

For the sake of simplicity, we assume throughout this section that the initial conditions
(3.1)(ii) for the stop and play are chosen as in Remark 3.4.

Cylinders

In classical models of plasticity, the yield surfaces represented by the boundary ∂Z

of the convex characteristic Z have a cylindrical shape in the sense of Definition 2.12.
This enables us to reduce the dimension of the problem.

Proposition 4.1. Let Y ⊂ X be a closed subspace of X and let Y ⊥ be its

orthogonal complement. Let Z̃ ⊂ Y be a recession set, Z = Z̃ + Y ⊥. Let u ∈
C([0, T ];X), v ∈ C([0, T ];Y ) be given such that u(t)− v(t) ∈ Y ⊥ for all t ∈ [0, T ]. Let

P : C([0, T ];X) → C([0, T ];X), P̃ : C([0, T ];Y ) → C([0, T ]; Y ) be the play operators

corresponding to Z, Z̃, respectively, with initial conditions from Remark 3.4. Then

P(u) = P̃(v).

P r o o f. The assertion follows immediately from the time-discrete construction and
from Remark 2.14. ¤

Strictly convex cylinders

The uniform continuity of the play on a strictly convex cylinder is expressed by
Theorem 4.2 below (cf. also Proposition 2.18). By a strictly convex cylinder we mean
a set Z ⊂ X which admits a representation of the form

(4.1) Z = Z̃ + Y ⊥, where Z̃ ⊂ Y is strictly convex,

Y, Y ⊥ being complementary orthogonal closed subspaces of X.
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Theorem 4.2. Let Z ⊂ X be a strictly convex cylinder of the form (4.1) and let α

be the function associated to Z̃ by formula (2.12). Then for all u, v ∈ C([0, T ];X) we

have

(4.2) | P(u)− P(v)|∞ 6 α−1
(|u− v|∞

)
.

P r o o f. It suffices to assume Y = X (by Proposition 4.1) and u, v ∈ W 1,1(0, T ;X)
(by density). Put ξ : = P(u), η : = P(v), x : = u− ξ, y : = v− η, V (t) : = max

{|ξ(t)−
η(t)|X ; α−1(|u − v|∞)

}
for t ∈ [0, T ]. Then V is absolutely continuous. Assume that

for some t ∈]0, T [ we have V̇ (t) > 0. Then

(4.3) |ξ(t)− η(t)|X > α−1(|u− v|∞)

and d
dt |ξ(t)− η(t)|2X = 2

〈
ξ̇(t)− η̇(t), ξ(t)− η(t)

〉
> 0.

At least one of the expressions
〈
ξ̇(t), ξ(t)−η(t)

〉
,
〈
η̇(t), η(t)− ξ(t)

〉
must therefore be

positive. Let us choose for instance
〈
ξ̇(t), ξ(t)− η(t)

〉
> 0. This implies ξ̇(t) 6= 0, hence

by Remark 3.10 we have x(t) : = u(t) − ξ(t) ∈ ∂Z and ξ(t) − η(t) ∈ X \ TZ

(
x(t)

)
.

From the definition of the function α it follows

α(|ξ(t)−η(t)|X) 6 |P (
x(t)+ξ(t)−η(t)

)|X 6 |x(t)+ξ(t)−η(t)−y(t)|X = |u(t)−v(t)|X

which contradicts (4.3). We conclude V̇ (t) 6 0 a.e., consequently

(4.4) |ξ(t)− η(t)|X 6 max
{|ξ(0)− η(0)|X , α−1(|u− v|∞)

}

for all t ∈ [0, T ] and the assertion follows from the choice of initial conditions. ¤

Example 4.3. If Z (or more precisely Z̃) is the ball BR(0) with radius R > 0 (the
model of von Mises, cf. Examples 1.4 and 3.15), then P is globally 1

2 -Hölder continuous
by Theorem 4.2, since the function α has the form

(4.5) α(r) =
√

(R2 + r2)−R for r > 0.

To verify that the exponent 1
2 is optimal it suffices to consider the case X = R2, u(t) : =

(R + h)
(
cos t
sin t

)
, v(t) : = R

(
cos t
sin t

)
for some fixed R > 0, h > 0 and for all t > 0 (see Fig.

6). We obviously have y = v, η = 0, |u − v|∞ = h, x(0) =
(
R
0

)
and |x(t)|X 6 R for

all t > 0. Put A : = {t > 0; |x(t)|X < R} and assume A 6= ∅. Let ]a, b[⊂ A be an
arbitrary component of A. For t ∈ A we have by (3.22) ẋ(t) = u̇(t), hence

1
2

d2

dt2
|x(t)|2X =

d

dt

〈
u̇(t), x(t)

〉
= |u̇(t)|2X +

〈
x(t), ü(t)

〉
> h(R + h) > 0.
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It follows from this last inequality and from the hypothesis |x(a)|X = R that〈
u̇(a), x(a)

〉
< 0, hence a > 0 and there exists ε > 0 such that

〈
u̇(t), x(t)

〉
< 0

for a.e. t ∈]a− ε, a[. Inequality (3.22)(i) then yields

1
2

(
R2 − |x(a− ε)|2X

)
=

∫ a

a−ε

〈
ẋ(t), x(t)

〉
dt 6

∫ a

a−ε

〈
u̇(t), x(t)

〉
dt < 0,

which is a contradiction. We therefore have A = ∅ and ẋ(t) is the tangential component
of u̇(t) at the point x(t) for all t > 0, i.e.

ẋ(t) = u̇(t)− 1
R2

〈
u̇(t), x(t)

〉
x(t) for all t > 0.

We easily compute x in the form x(t) = R
(
cos(t+%(t))
sin(t+%(t))

)
, where % is the solution of the

differential equation

%̇(t) =
R + h

R
cos %(t)− 1, %(0) = 0.

O

R + h

R u(t)

x(t)

%(t)

Fig. 6 �
An explicit formula for % has the form %(t) = 2 arctan

(√
h

2R+h tanh
(√

2Rh+h2

2R t
))

,

hence %0 : = lim
t→∞

%(t) = 2 arctan
√

h
2R+h and |ξ(t) − η(t)|X = |x(t) − u(t)|X =

(
R2 +

(R + h)2 − 2R(R + h) cos %(t)
)1/2. The optimal estimate is obtained for t → ∞ and

equals
(
(R + h)2 −R2

)1/2; it is therefore identical to (4.2), (4.5).
The above example provides also an illustration to Theorem 3.14. We obtain in this

case x∗(t) = R
(
cos(t+%0)
sin(t+%0)

)
.
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Polyhedrons

Definition 4.4. Let n1, . . . , np be given unit vectors and β1, . . . , βp given positive

numbers, p ∈ N. Then the convex closed set

Z : =
{
x ∈ X;

〈
x, ni

〉
6 βi ∀i ∈ {1, . . . , p}}

is called a polyhedron.

The linear hull of the system {n1, . . . , np} denoted by Y : = Lin{n1, . . . , np} is a
closed subspace of X with N : = dim Y 6 p.

We introduce the quantities

(i) ε : = max
{〈

w, niN

〉
; w ∈ Lin{ni1 , . . . , niN−1}, |w|X = 1,(4.6)

Lin{ni1 , . . . , niN } = Y
}

,

(ii) Ψ(s) : =
1

1− ε2
(1 + s2 + 2εs) for s > 0,

(iii) L1 : = 1, Lk+1 : =
√

Ψ(Lk) for k > 1.

This subsection will be devoted to the proof of the following Lipschitz estimate.

Theorem 4.5. For every u, v ∈ C([0, T ]; X) we have

| P(u)− P(v)|∞ 6 LN |u− v|∞.

It is not known whether the constant LN is optimal in general except for the trivial
case N = 1. The optimality for N = 2 follows from the next example.

Example 4.6 (see Fig. 7). In X = R2 we choose n1 : =
(
cos γ
sin γ

)
, n2 : =

(
cos γ
− sin γ

)
, β1 =

β2 := cos γ for some γ ∈]π
4 , π

2 [. For all t > 0 we define v(t) : =
(
1
0

)
and

u(t) :=

{
v(t) + n1 sin t for t ∈ [2kπ, (2k + 1)π[,

v(t) + n2 sin t for t ∈ [(2k + 1)π, (2k + 2)π[,
k = 0, 1, . . . ,

hence |u− v|∞ = 1.
With the notation of (4.6) we obtain ε = − cos 2γ, L2 = 1

cosγ . In our concrete situa-
tion we have P(v)(t) = 0 and putting n̂1 : =

(− sin γ
cos γ

)
, n̂2 : =

(− sin γ
− cos γ

)
, ξ : = P(u), x : =

u − ξ, Ẑ : = {z ∈ X;
〈
z, n̂i

〉
6 (L2 − 1) sin γ, i = 1, 2} we prove by induction (details
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O1− L2 1

γ

n1

n2

Fig. 7 �
are left to the reader) that x(t) remains in Z ∩ Ẑ for all t > 0. From Theorem 3.14 it
follows that x is asymptotically periodic with x∗(t) = u(t)− (

L2
0

)
. The minimal upper

bound for | P(u)− P(v)|∞ is therefore equal to |x∗ − u|∞ = L2.

Before proving Theorem 4.5 we start with three auxiliary Lemmas which are due to
V. Lovicar, see Picek (1991). Note that by Theorem 4.1 it suffices to assume X = Y .

Lemma 4.7. Let Z be a polyhedron from Definition 4.4. For z ∈ Z put Γ(z) : ={
k ∈ {1, . . . , p}; 〈z, nk

〉
= βk

}
, C(z) :=

{
w ∈ X; w =

∑
k∈Γ(z)

aknk, ak > 0
}
. Then

C(z) = NZ(z), where NZ(z) is the normal cone (2.10).

P r o o f. We obviously have C(z) ⊂ NZ(z). The set C(z) is a convex closed
cone and we can associate to it the projections Qz, Pz according to formula (2.3). Let
w ∈ NZ(z) be arbitrary. We have by definition

〈
Pzw, Qzw − ϕ

〉
> 0 ∀ϕ ∈ C(z),(4.7)

〈
w, z − ψ

〉
> 0 ∀ψ ∈ Z.(4.8)

For k ∈ Γ(z) we have Qzw + nk ∈ C(z), and (4.7) yields
〈
Pzw, nk

〉
6 0. For k ∈

{1, . . . , p} \ Γ(z) we have
〈
z, nk

〉
< βk. In both cases we obtain z + δPzw ∈ Z for

some sufficiently small δ > 0. Putting ψ : = z + δPzw we infer from (4.8) and Lemma
2.2(iii) |Pzw|2X 6

〈
Pzw, w

〉
6 0, hence w ∈ C(z). ¤

Lemma 4.8. Let Z be as above and let u, v ∈ W 1,1(0, T ; X) be given. For t ∈ [0, T ]
put ξ(t) := P(u)(t), η(t) : = P(v)(t), x(t) := u(t) − ξ(t), y(t) : = v(t) − η(t), g(t) : =
ξ(t) − η(t), G(t) := |g(t)|X . Then for every j ∈ Γ(x(t)) we have

〈
nj , g(t)

〉
6 |u(t) −

v(t)|X and for every i ∈ Γ(y(t)) we have
〈
ni, g(t)

〉
> −|u(t)− v(t)|X .

P r o o f. For j ∈ Γ(x(t)) we have nj ∈ NZ(x(t)), hence
〈
nj , g(t)

〉
6

〈
nj , u(t) −

v(t)
〉

6 |u(t)− v(t)|X and similarly for i ∈ Γ(y(t)). ¤
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Lemma 4.9. Assume that under the hypotheses of Lemma 4.8 the derivatives

ξ̇(t), η̇(t) exist for some t ∈]0, T [ and that G(t) > 0, Ġ(t) > 0. Then there exists either

j ∈ Γ(x(t)) such that
〈
nj , g(t)

〉
> 0 or i ∈ Γ(y(t)) such that

〈
ni, g(t)

〉
< 0.

P r o o f. By hypothesis we have d
dtG

2(t) = 2
〈
ξ̇(t) − η̇(t), ξ(t) − η(t)

〉
> 0, hence

either
〈
ξ̇(t), g(t)

〉
> 0 or

〈
η̇(t), g(t)

〉
< 0. We have ξ̇(t) ∈ NZ(x(t)), η̇(t) ∈ NZ(y(t))

and it suffices to use Lemma 4.7. ¤

We now pass to the proof of Theorem 4.5.

P r o o f of Theorem 4.5. We may assume that u, v ∈ W 1,1(0, T ; X), X = Y . Let
r > |u− v|∞ be arbitrarily chosen and let Pi1,...,ik

: X → Lin{ni1 , . . . , nik
} denote the

orthogonal projection of X onto Lin{ni1 , . . . , nik
}. We introduce a Lyapunov function

V : X → R1 by the formula

(4.9) V (x) : = max{L2
Nr2, L2

kr2 − |Pi1,...,ik
x|2X + |x|2X , |x|2X}

where the maximum is taken over all k = 1, . . . , N−1 and over all linearly independent
systems {ni1 , . . . , nik

} ⊂ {n1, . . . , np}. Let us note that each of the functions x 7→
L2

kr2 − |Pi1,...,ik
x|2X + |x|2X = L2

kr2 + |(I − Pi1,...,ik
)x|2X , where I is the identity, is

convex, hence V is convex. In particular V (g(t)) is absolutely continuous.
It suffices to prove

(4.10)
d

dt
V (g(t)) 6 0 almost everywhere.

Indeed, assuming (4.10) we infer |g(t)|2X 6 V (g(t)) 6 V (g(0)) 6 L2
Nr2 using the fact

that |g(0)|X < r.
It remains to verify inequality (4.10). Assume that for some t ∈]0, T [ the derivatives

ξ̇(t), η̇(t) exist and d
dtV (g(t)) > 0. We necessarily have V (g(t)) > L2

Nr2.
Assume first V (g(t)) = |g(t)|2X = G2(t). Lemmas 4.8, 4.9 then entail that there

exists ` ∈ Γ(x(t)) ∪ Γ(y(t)) such that
∣∣〈n`, g(t)

〉∣∣ < r, and the inequality V (g(t)) >
L1r

2 − 〈
n`, g(t)

〉2 + |g(t)|2X > |g(t)|2X contradicts the hypothesis.
There exists therefore k ∈ {1, . . . , N − 1} and a linearly independent system

{ni1 , . . . , nik
} ⊂ {n1, . . . , np} such that

(4.11) V (g(t)) = L2
kr2 − |Pi1,...,ik

g(t)|2X + |g(t)|2X .

The assumption d
dtV (g(t)) > 0 yields

〈
ġ(t), (I − Pi1,...,ik

)g(t)
〉

> 0. We can assume〈
ξ̇(t), (I − Pi1,...,ik

)g(t)
〉

> 0 (otherwise we interchange the roles of u and v). Lemmas
4.7, 4.8 ensure the existence of some ik+1 ∈ Γ(x(t)) such that

(4.12) r >
〈
nik+1 , g(t)

〉
>

〈
nik+1 , Pi1,...,ik

g(t)
〉
.
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This implies in particular that nik+1 /∈ Lin{ni1 , . . . , nik
}. We find v ∈ Lin{ni1 , . . . , nik

},
|v| = 1 and real numbers a, b such that

(4.13) Pi1,...,ik+1g(t) = a nik+1 + b v.

Put δ : =
〈
nik+1 , v

〉 ∈ [−ε, ε]. By definition of the projection we have

(4.14) |Pi1,...,ik
g(t)|X > |〈g(t), v

〉| = |aδ + b|.

On the other hand, inequality (4.12) yields

(4.15) r > a + bδ > a|Pi1,...,ik
nik+1 |2X + bδ,

hence a > 0. From (4.14), (4.15) it follows a(1−δ2) < r−bδ−aδ2 6 r+|δ||Pi1,...,ik
g(t)|X

and

|Pi1,...,ik+1g(t)|2X = a2 + b2 + 2abδ = (aδ + b)2 + a2(1− δ2)(4.16)

< |Pi1,...,ik
g(t)|2X +

1
1− δ2

(
r + |δ||Pi1,...,ik

g(t)|X
)2

6 r2Ψ
(1

r
|Pi1,...,ik

g(t)|X
)
.

By hypothesis (4.11) we have |Pi1,...,ik
g(t)|X < Lkr, and (4.16) entails

L2
k+1r

2 − |Pi1,...,ik+1g(t)|2X > r2
(
Ψ(Lk)−Ψ

(1
r
|Pi1,...,ik

g(t)|X
))

> L2
kr2 − |Pi1,...,ik

g(t)|2X ,

which contradicts assumption (4.11). Consequently, (4.10) holds and Theorem 4.5 is
proved. ¤

Smooth characteristics

We already know that the play P maps in general C([0, T ]; X) into C([0, T ];X) ∩
BV (0, T ; X). This mapping is discontinuous with respect to the strong topologies of
C([0, T ];X) and BV (0, T ; X) even in the simplest case dim X = 1. This can easily be
verified by the following construction.

Example 4.10. Put X : = R1, Z = [−1, 1], u0(t) : = 1 + t, un(t) := 1 + t + 1
n sin nt

for n ∈ N and t ∈ [0, 2π], ξn : = P(un), xn : = un− ξn for n ∈ N∪{0}. The functions
un are nondecreasing, xn(0) = 1. Proposition 3.9 yields xn(t) = 1 for all n ∈ N ∪ {0}
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and t ∈ [0, 2π], hence ξ0(t) = t, ξn(t) = t+ 1
n sin nt for n ∈ N, and we easily check that

lim
n→∞

|un − u0|∞ = 0, Var
[0,2π]

(ξn − ξ0) = 4.

In some cases it is possible to prove the continuity of the play with respect to the
topology of C([0, T ];X) ∩ BV (0, T ; X) induced by the strict metric ds(ξ, η) : = |ξ −
η|∞ + |Var

[0,T ]
ξ − Var

[0,T ]
η|, see Section III.2 of Visintin (1994) for the case dim X = 1.

We prove this result without restriction on X only for bounded characteristics with a
smooth boundary. The problem whether Proposition 4.11 below holds for an arbitrary
convex closed characteristic Z seems to be open.

Proposition 4.11. Let Z ⊂ X be a bounded convex closed set such that 0 ∈ IntZ,

for every x ∈ ∂Z there exists a unique outward normal n(x) and the mapping n :
∂Z → ∂B1(0) is continuous. Then for every sequence

{
ui; i ∈ N ∪ {0}} ⊂ C([0, T ];X)

such that lim
i→∞

|ui − u0|∞ = 0 we have lim
i→∞

Var
[0,T ]

P(ui) = Var
[0,T ]

P(u0).

The reader can check in a straightforward way that the mapping n : ∂Z → B1(0) is
automatically continuous provided dim X < ∞. For dim X = ∞ this need not be true.

In the example Z : =
{

x =
∑∞

k=1 xkek ∈ X; x1 >
[∑∞

k=2 x2
k + 2

k2 − 2
k

√
x2

k + 1
k2

]1/2}
,

where {ek} is an orthogonal basis in X, the points xγ
k := 1

k

[
(
√

1 + γ2 − 1)e1 + γek

]

belong to ∂Z for every γ 6= 0 and k ∈ N, xγ
k → 0 as k →∞. The normal cone NZ(0)

obviously contains −e1, since for every x ∈ Z we have
〈− e1, 0− x

〉
= x1 > 0. On the

other hand, each vector ν ∈ NZ(0) must satisfy
〈
ν,−xγ

k

〉
> 0 ∀k ∈ N, ∀γ 6= 0, hence

∣∣〈ν, ek

〉∣∣ 6
√

1 + γ2 − 1
|γ|

〈
ν,−e1

〉

and for γ → 0 we obtain n(0) = −e1. Since n(xγ
k) = 1√

1+2γ2
(−

√
1 + γ2e1 + γek),

letting k →∞ for a fixed γ 6= 0 we conclude that n is discontinuous at x = 0.

Proposition 4.11 is an easy consequence of the following Lemma.

Lemma 4.12. Let the assumptions of Proposition 4.11 be satisfied. Let ν : Z →
B1(0) be defined by the formula ν(0) : = 0, ν(x) : = MZ(x)n

(
x

MZ(x)

)
for x ∈ Z \{0},

where MZ is the Minkowski functional associated to Z by formula (2.9). Then for

every u ∈ C([0, T ];X) we have

(4.17) Var
[0,T ]

ξ =
∫ T

0

〈
ν(x(t)), dξ(t)

〉
,

where ξ = P(u), x = u− ξ.
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P r o o f of Lemma 4.12. Let us first assume u ∈ W 1,1(0, T ; X). Then ξ̇(t) = 0 if
x(t) ∈ IntZ, ξ̇(t) = |ξ̇(t)|X n(x(t)) if x(t) ∈ ∂Z, hence |ξ̇(t)|X =

〈
ν(x(t)), ξ̇(t)

〉
a.e.

and (4.17) holds.
Let now u ∈ C([0, T ]; X) be arbitrary and let {ui; i ∈ N} ⊂ W 1,1(0, T ;X) be

a sequence such that lim
i→∞

|ui − u|∞ = 0, and put ξi : = P(ui), xi : = ui − ξi. Let

0 = t0 < t1 < . . . < tN = T be an arbitrary partition of [0, T ]. The mapping ν

is continuous. By Lemma 3.6, Corollary 3.8 and Theorem V.1.26 we therefore have
Var
[0,T ]

ξi 6 const., lim
i→∞

Var
[0,T ]

ξi =
∫ T

0

〈
ν(x(t)), dξ(t)

〉
and

N∑

j=1

|ξ(tj)− ξ(tj−1)|X = lim
i→∞

N∑

j=1

|ξi(tj)− ξi(tj−1)|X 6
∫ T

0

〈
ν(x(t)), dξ(t)

〉
6 Var

[0,T ]
ξ,

hence (4.17) holds. ¤

P r o o f of Proposition 4.11. It suffices to apply formula (4.17), Lemma 3.6, Corol-
lary 3.8 and Theorem V.1.26. ¤

Remark 4.13. Formula (4.17) generalizes the energy identity (3.30) in Example
3.15, where we have ν(x) = 1

r x.
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II. Scalar models for hysteresis

In applications to plasticity, scalar hysteresis effects cannot be described simply by
putting N = 1 in the definition of the space T of symmetric N×N tensors in Chapter
I. The hypothesis I(1.11) of volume invariance would exclude any plasticity effects, since
for N = 1 we have T = Tdiag = R1. One has to proceed in the following way.

Let us consider for instance the elastoplastic models E −R, E |R as in Example I.1.8,
with characteristics Z of von Mises type, namely

(0.1) Z =
(
Br(0) ∩ Tdev

)
+ Tdiag,

where Br(0) is the ball in T centered at 0 with radius r > 0. We further assume
that the elastic element is isotropic with a matrix A given by formula I(1.6). Then the
inverse matrix A−1 has the form

(0.2) A−1 =
1
2µ

I − λ

2µ(3λ + 2µ)
J.

The constitutive law is governed by the variational inequalities I(1.23). Let us assume
that the input is uniaxial. For the model E |R this means

(0.3) σ(t) := a(t)σ0,

where a : [0, T ] → R1 is a scalar-valued function and σ0 ∈ ∂B1(0) ∩ Tdev is a fixed
unit vector. Putting σ̃ :=

〈
σp(t), σ0

〉
σ0 in the first inequality of I(1.23) we obtain

(0.4)
〈 1

2µ
ȧσ0 −A−1σ̇p, σp − 〈

σp, σ0

〉
σ0

〉
> 0 a.e.,

hence the projection σp(t) := σp(t)− 〈
σp(t), σ0

〉
σ0 of σp(t) satisfies

(0.5)
1
2

d

dt

〈
A−1σp(t), σp(t)

〉
6 0 a.e.

A further hypothesis that the initial output value σp(0) is proportional to σ0 then
entails σp(t) ≡ 0. The output σp is therefore uniaxial of the form σp(t) = b(t)σ0,
where b(t) ∈ [−r, r] is the solution of the scalar variational inequality

(0.6)
(
ḃ(t)− ȧ(t)

)(
b(t)− ϕ

)
6 0 a.e. ∀ϕ ∈ [−r, r].

A similar conclusion is obtained for the model E −R when assuming that the input
ε has a form analogous to (0.3).

This chapter is devoted to the study of mathematical properties of scalar models
of hysteresis which are related to the variational inequality (0.6). The main feature
of these models is a particular structure of memory which has important mathematical
consequences and, last but not least, represents in itself an important tool in engineering
computations related to fatigue and damage in elastoplastic materials.
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II.1 Scalar play and stop

The scalar play and stop are the main building blocks for a large class of hysteresis
models, such as Prandtl-Ishlinskii and Preisach models, Della Torre’s “moving” model
and various models for fatigue and damage that will be introduced later in this chapter.
This section is devoted to the investigation of analytical properties specific for the scalar
case. We obtain additional regularity results related to the total variation of both the
output and its derivative and we prove a conjecture of V. Tchernorutskii saying that
the play minimizes the total variation among all uniform approximations of a given
continuous function.

The most interesting feature of hysteresis models based on the play and stop is their
memory structure which will be described in Sect. II.2.

Lipschitz continuity

We restrict ourselves to plays and stops with symmetric characteristics Zr =
[−r, r], r > 0.

In Sect. I.3 we already proved that the system

(i) |xr(t)| 6 r ∀t ∈ [0, T ],(1.1)

(ii)
(
u̇(t)− ẋr(t)

)(
xr(t)− ϕ

)
> 0 a.e. ∀ϕ ∈ [−r, r],

(iii) xr(0) = x0
r

for a given input function u ∈ W 1,1(0, T ) and a given initial condition x0
r ∈ [−r, r]

has a unique solution xr ∈ W 1,1(0, T ). The stop and play operators Sr,Pr : [−r, r] ×
W 1,1(0, T ) → W 1,1(0, T ) are then defined as solution operators of problem (1.1) by the
formula

(1.2) S
r
(x0

r, u) := xr, P
r
(x0

r, u) : = u− xr.

Theorems I.3.12 and I.4.5 entail that the operators Sr(x0
r, ·),Pr(x0

r, ·) are continuous
in W 1,p(0, T ) for p ∈ [1,∞[ and admit a Lipschitz continuous extension to C([0, T ]).
In fact, we can prove more, namely

Proposition 1.1. For x0
r, y

0
r ∈ [−r, r] and u, v ∈ W 1,1(0, T ) put xr : = Sr(x0

r, u),
yr : = Sr(y0

r , v), ξr : = u− xr, ηr : = v − ur. Then we have

(i)
∫ T

0

|ξ̇r(t)− η̇r(t)|dt 6 |x0
r − y0

r |+
∫ T

0

|u̇(t)− v̇(t)|dt,

(ii) |ξr − ηr|∞ 6 max{|ξr(0)− ηr(0)|, |u− v|∞}.
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Before proving Proposition 1.1 we mention an auxiliary identity due to Brokate
(1989).

Lemma 1.2. Under the hypotheses of Proposition 1.1 we have for almost all t ∈]0, T [

(1.3) |ξ̇r(t)− η̇r(t)|+ d

dt
|xr(t)− yr(t)| =

(
u̇(t)− v̇(t)

)
sign

(
ξ̇r(t)− η̇r(t)

)
.

P r o o f. Put A+ : = {t ∈]0, T [; xr(t) > yr(t)}, A− : = {t ∈]0, T [; xr(t) < yr(t)},
A0 : = {t ∈]0, T [; xr(t) = yr(t)}. The inequalities ξ̇r(t)

(
xr(t) − ϕ

)
> 0, η̇r(t)

(
yr(t) −

ϕ
)

> 0 a.e. for all ϕ ∈ [−r, r] entail

(1.4)
(
ξ̇r(t)− η̇r(t)

)(
xr(t)− yr(t)

)
> 0 a.e.

For a.e. t ∈ A+ we therefore have ξ̇r(t) − η̇r(t) > 0 and (1.3) follows. The same
argument works in A−. For a.e. t ∈ A0 we have ẋr(t) = ẏr(t), hence ξ̇r(t) − η̇r(t) =
u̇(t)− v̇(t) and we conclude that (1.3) holds. ¤

P r o o f of Proposition 1.1. Inequality (i) follows immediately from Lemma 1.2.
The proof of (ii) is an elementary one-dimensional version of the proof of Theorems
I.4.2 or I.4.5 with a Lyapunov function V (t) : = max{|ξr(t) − ηr(t)|2, |u − v|2∞}. We
leave the details to the reader. ¤

Remark 1.3. For every 0 6 s < t 6 T we have with the same notation as above

(1.5) |ξr(t)− ξr(s)| 6 max{|u(τ)− u(s)|; τ ∈ [s, t]}.

This follows from Proposition 1.1(ii), where we put

v(τ) : =

{
u(τ) for τ ∈ [0, s]

u(s) for τ ∈ [s, t]
, T : = t.

It is particularly simple to solve Problem (1.1) if the input is monotone in an interval
[t1, t2] ⊂ [0, T ]. We then have

(1.6) xr(t) =

{
min{r, xr(t1) + u(t)− u(t1)} for t ∈]t1, t2] if u is nondecreasing,

max{−r, xr(t1) + u(t)− u(t1)} for t ∈]t1, t2] if u is nonincreasing.

Identity (1.6) is obvious if u is absolutely continuous in [t1, t2]; the general case
follows from the density of W 1,1(t1, t2) in C([t1, t2]).

Note that formula (1.6) is sometimes used as an alternative definition of the stop
(Krasnosel’skii, Pokrovskii (1983)) for piecewise monotone functions.
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Output variation

In Sections I.3 and I.4 we already pointed out regularization properties of the play op-
erator. The assumptions of Proposition I.4.11 are trivially fulfilled here, hence the play
operator maps C([0, T ]) continuously into BV (0, T ) endowed with the strict metric.
Furthermore, formula I(4.17) is of independent interest here and reads for u ∈ C([0, T ])
(cf. also Example I.3.15)

(1.7) Var
[0,T ]

ξr =
1
r

∫ T

0

xr(t)dξr(t)

or, in pointwise form for u ∈ W 1,1(0, T )

(1.8) |ξ̇r(t)| = 1
r
xr(t)ξ̇r(t) a.e.,

where ξr = Pr(x0
r, u), xr = Sr(x0

r, u).

This result can be improved in the following way.

Proposition 1.4. Let u ∈ C([0, T ]), r > 0 and x0
r ∈ [−r, r] be given. Let µu be

the continuity modulus of u defined by formula V(1.19). Put ξr : = Pr(x0
r, u), δr : =

inf{δ > 0; µu(δ) > 2r}. Then there exists an integer N 6 T
δr

+ 1 and a partition

0 = tN < tN−1 < . . . < t0 6 T such that ξr is monotone in [ti, ti−1] for i = 1, . . . , N

and constant in [t0, T ], |xr(ti)| = r for i = 0, . . . , N − 1 and

(1.9) Var
[0,T ]

ξr =
N∑

i=1

|u(ti−1)− u(ti)| − 2Nr + a0, where

a0 : =

{
r + x0

r if xr(tN−1) = r,

r − x0
r if xr(tN−1) = −r.

P r o o f. Put A± : = {t ∈ [0, T ];xr(t) = ±r} and t0 : = max{0, sup A±} with the
convention sup ∅ = −∞. If t0 = 0, then we put N : = 0. For t0 > 0 assume for instance
t0 ∈ A− and put recursively t2k−1 : = max{0, sup(A+ ∩ [0, t2k−2])}, t2k : = max{0,

sup(A− ∩ [0, t2k−1])} for k = 1, 2, . . . until tN = 0.
We first prove that ξr is monotone in each interval [ti, ti−1] and constant in [t0, T ].

Choosing i odd for instance, say i = 2k − 1, we obtain ]ti, ti−1[∩A+ = ∅, hence
xr(τ) ∈ [−r, r[ for all τ ∈]ti, ti−1[.

Let [s, t] ⊂]ti, ti−1[ be an arbitrary subinterval and put % : = min{r − xr(τ); τ ∈
[s, t]} > 0. From Exercise I.3.2 we obtain

∫ t

s

(xr(τ)− ψ(τ))dξr(τ) > 0 ∀ψ ∈ C([s, t]), |ψ|∞ 6 r.
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For ψ(τ) : = xr(τ)+% the last inequality yields ξr(t) 6 ξr(s), hence ξr is nonincreasing.
We similarly prove that ξr is nondecreasing in [t2k, t2k−1] and constant in [t0, T ], 0 >
ξr(t2k−2) − ξr(t2k−1) = u(t2k−2) − u(t2k−1) + 2r, 0 6 ξr(t2k−1) − ξr(t2k) = u(t2k−1) −
u(t2k)−2r. By definition of δr we have ti−1− ti > δr for i = 1, . . . , N −1. This yields
T > t0 − tN−1 > (N − 1)δr, hence N 6 T

δr
+ 1.

We therefore have

Var
[tN−1,t0]

ξr =
N−1∑

i=1

|u(ti−1)− u(ti)| − 2(N − 1)r

and formula (1.9) follows easily. ¤

By definition of the play we always have

(1.10) |ξr − u|∞ 6 r

for u ∈ C([0, T ]) and ξr : = Pr(x0
r, u). Proposition 1.3 says that the play operators

define a uniform approximation of u by piecewise monotone functions as r → 0+.
Tchernorutskii (1993) pointed out during the Trento Hysteresis Meeting that this ap-
proximation minimizes the total variation in the following sense.

Corollary 1.5. Let u ∈ C([0, T ]), r > 0 and x0
r ∈ [−r, r] be given and let η ∈

BV (0, T ) be a function such that η(0) = u(0)− x0
r, |η − u|∞ 6 r. Then

Var
[0,T ]

η > Var
[0,T ]

P
r
(x0

r, u).

P r o o f. Let 0 = tN < tN−1, < . . . < t0 6 T be the partition defined in Proposition
1.4. Then

Var
[0,T ]

η >
N∑

i=1

|η(ti−1)− η(ti)| >
N−1∑

i=1

|u(ti−1)− u(ti)| − 2(N − 1)r + |η(tN−1)− η(0)|.

We now have either xr(tN−1) = r and η(tN−1) − η(0) > u(tN−1) − r − u(0) + x0
r =

|ξr(tN−1)− ξr(tN )|, or xr(tN−1) = −r and η(0)−η(tN−1) > u(0)−x0
r−u(tN−1)− r =

|ξr(tN−1)− ξr(tN )| and identity (1.9) completes the proof. ¤

In Sect.I.3 we proved that the general Hilbert-space-valued play maps W 1,p into
W 1,p for 1 6 p 6 +∞ and is continuous in W 1,p only if 1 6 p < +∞ (Theorem
I.3.12). In the scalar case the play preserves more regularity: if the derivative of the
input has bounded variation, then the same holds for the output.
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Proposition 1.6. Let u ∈ W 1,∞(0, T ) be given such that there exists v ∈ BV (0, T ),
u̇ = v a.e. For r > 0 and x0

r ∈ [−r, r] put ξr : = Pr(x0
r, u). Then there exists

w ∈ BV (0, T ) such that ξ̇r = w a.e. and

(1.11) Var
[0,T ]

w 6 |v(0+)|+ Var
[0,T ]

v.

For the proof we need two auxiliary lemmas.

Lemma 1.7. Let v : [0, T ] → R1 be a given function. Assume that there exists

a closed set C ⊂ [0, T ] such that v(t) = 0 for t ∈ C. Let Ω be the open set

Ω := ]0, T [\C =
∞⋃

k=1

]ak, bk[ with ]ak, bk[ pairwise disjoint. Then the following two

conditions are equivalent.

(i) v ∈ BV (0, T ),

(ii) v
∣∣
[ak,bk]

∈ BV (ak, bk) ∀k ∈ N and

∞∑

k=1

Var
[ak,bk]

v < ∞.

If moreover one of the conditions (i), (ii) is satisfied, then

(1.12) Var
[0,T ]

v =
∞∑

k=1

Var
[ak,bk]

v

P r o o f. The implication (i) ⇒ (ii) is obvious. Indeed, for each m ∈ N we have∑m
k=1 Var

[ak,bk]
v 6 Var

[0,T ]
v, hence also

(1.13)
∞∑

k=1

Var
[ak,bk]

v 6 Var
[0,T ]

v.

Let us assume now that (ii) holds and let 0 = t0 < t1 < . . . < tN = T be an arbitrary
partition of [0, T ]. Put M :=

{
j ∈ {0, . . . , N}; tj 6∈ C

}
. For every j ∈ M \ {0, N}

there exists an interval ]akj , bkj [3 tj ; in the case 0 ∈ M put ak0 := 0, bk0 := min C and
similarly akN := max C, bkN := T if N ∈ M . To ensure that each interval ]akj , bkj [ is
counted exactly once we choose a set M ′ ⊂ M such that

⋃
j∈M

]akj , bkj [=
⋃

j∈M ′
]akj , bkj [,

akj 6= aki for i, j ∈ M ′, i 6= j.
We now construct the partition 0 = s0 < s1 < . . . < sK = T by putting

{s0, . . . , sK} := {tj ; j = 0, . . . , N} ∪ {akj , bkj ; j ∈ M ′}. If for some 0 < i1 < i2 < K
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and j ∈ M ′ we have si1 = bkj
, si2 = akj+1 , then necessarily v(si) = 0 for all

i1 6 i 6 i2. We thus obtain

(1.14)
N∑

j=1

|v(tj)− v(tj−1)| 6
K∑

i=1

|v(si)− v(si−1)| 6
∑

j∈M ′
Var

[akj
,bkj

]
v

for every partition tj and the converse of (1.13) follows. Lemma 1.7 is proved. ¤

Lemma 1.8. Let u ∈ W 1,∞(0, T ) be given such that there exists v ∈ BV (0, T ), u̇ =
v a.e. Then the right derivative u̇+(t) exists and is equal to v(t+) for all t ∈ [0, T [
and the left derivative u̇−(t) exists and is equal to v(t−) for all t ∈]0, T ].

P r o o f. It suffices to pass to the limit as h → 0+ in the formulas

1
h

(
u(t + h)− u(t)

)
=

1
h

∫ h

0

(
v(t + η)− v(t+)

)
dη + v(t+),

1
h

(
u(t)− u(t− h)

)
=

1
h

∫ h

0

(
v(t− η)− v(t−)

)
dη + v(t−).

¤

P r o o f of Proposition 1.6. Put C : =
{
t ∈ [0, T ] ; 0 ∈ Conv{v(t−), v(t+)}}. Then

C is closed and choosing a representative of v with minimal total variation we can
assume that

v(t) =





0 for t ∈ C,

1
2

(
v(t+) + v(t−)

)
for t ∈]0, T [\C,

v(0+) for t = 0,

v(T−) for t = T.

In each component ]ak, bk[ of the set Ω : = ]0, T [\C =
∞⋃

k=1

]ak, bk[ the function v does

not change sign. Consequently, u is strictly monotone in each interval [ak, bk] and the
value of ξr can be determined from formula (1.6). For t ∈ [ak, bk] we have

ξr(t) =

{
max{ξr(ak), u(t)− r} if u increases,

min{ξr(ak), u(t) + r} if u decreases

For each k ∈ N there exists τk ∈ [ak, bk] such that

ξ̇r(t) =

{
0 for a.e. t ∈]ak, τk[,

u̇(t) for a.e. t ∈]τk, bk[.
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Put w(t) := v(t) for t ∈ ⋃
k∈N

]τk, bk[, w(t) : = 0 otherwise. Notice that for almost all

t ∈ C we have v(t+) = v(t−) = 0 and Lemma 1.8 entails u̇(t) = 0; inequality (1.5)
then yields ξ̇r(t) = 0 for a.e. t ∈ C, hence ξ̇r(t) = w(t) a.e.

In each interval [ak, bk] we have

Var
[ak,bk]

w = |v(τk)|+ Var
[τk,bk]

v 6 |v(ak)|+ Var
[ak,bk]

v

with v(ak) = 0 whenever ak > 0.
Consequently,

∞∑

k=1

Var
[ak,bk]

w 6 |v(0+)|+
∞∑

k=1

Var
[ak,bk]

v

and it suffices to use Lemma 1.7. ¤

II.2 Memory of the play-stop system

The concept of memory in connection to hysteresis operators is related to the fact that
the instantaneous output value may depend not only on the instantaneous input value
and the initial condition, but also on other input values in the history of the process.
For the scalar play-stop system it is possible to characterize explicitly the memory in
the form of memory sequences associated to each input and each initial configuration.
Below, we give a precise meaning to these concepts and we prove a formula (Proposition
2.5) which enables us to compute the output value from the memory sequence without
solving variational inequalities. The knowledge of the memory structure of the play-stop
system will have important consequences for Preisach-type operators in Sect. II.3.

Already Madelung (1905) formulated axiomatic rules for the behavior of scalar hys-
teretic systems (we refer the reader to the monograph Brokate, Sprekels (to appear),
where the connection between Madelung’s rules and Preisach-type hysteresis operators
is explained in detail). It has been discovered only recently (Krasnosel’skii, Pokrovskii
(1983), Krejč́ı (1989), (1991/a), Brokate (1990)) that the play - stop system provides
a unified approach to Preisach-type models, scalar Prandtl - Ishlinskii models and
Madelung’s rules.

We start with a superposition formula due to M. Brokate (Brokate, Sprekels (to
appear)) which has no counterpart in the vector case.
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Lemma 2.1. Let u ∈ C([0, T ]) and r, s ∈]0,∞[ be given. For x0
r ∈ [−r, r], y0

s ∈
[−s, s] put ξr : = Pr(x0

r, u), ηs : = Ps(y0
s , ξr), ηr+s : = Pr+s(x0

r + y0
s , u). Then ηs =

ηr+s.

P r o o f. It suffices to assume u ∈ W 1,1(0, T ). By definition we have for almost
every t ∈]0, T [ and every ϕ ∈ [−1, 1]

(i) η̇r+s(t)
(
u(t)− ηr+s(t)− (r + s)ϕ

)
> 0,(2.1)

(ii) ξ̇r(t)
(
u(t)− ξr(t)− rϕ

)
> 0,

(iii) η̇s(t)
(
ξr(t)− ηs(t)− sϕ

)
> 0.

The normality rule I(3.22)(ii) here reads η̇s(ξ̇r − η̇s) = 0 a.e., and (2.1)(ii) entails

(2.2) η̇s(t)
(
u(t)− ξr(t)− rϕ

)
> 0 a.e. ∀ϕ ∈ [−1, 1].

The sum of (2.1)(iii) and (2.2) yields

(2.3) η̇s(t)
(
u(t)− ηs(t)− (r + s)ϕ

)
> 0 a.e. ∀ϕ ∈ [−1, 1].

We obviously have |u − ηs|∞ 6 |u − ξr|∞ + |ξr − ηs|∞ 6 r + s like in (1.10), hence
putting ϕ : = 1

2(r+s)

(
2u(t)− ηs(t)− ηr+s(t)

)
in (2.1)(i) and (2.3) we obtain

(
η̇r+s(t)− η̇s(t)

)(
ηr+s(t)− ηs(t)

)
6 0 a.e.

The choice of initial conditions ensures that ηr+s(0) = ηs(0) = u(0) − x0
r − y0

s , hence
ηs ≡ ηr+s. ¤

As an immediate consequence of Lemma 2.1 we have

Corollary 2.2. For every r, s ∈]0,∞[, x0
r ∈ [−r, r], x0

r+s ∈ [x0
r − s, x0

r + s] and

u ∈ C([0, T ]) we have

|ξr+s − ξr|∞ 6 s,

where ξr : = Pr(x0
r, u), ξr+s : = Pr+s(x0

r+s, u).

It is clear by definition (more precisely, by existence and uniqueness of solutions of
the variational problem (1.1)) that the evolution of the output for t > t0 is uniquely
determined by the input values for t > t0 and the initial output value for t = t0. The
curve λt0 :]0,∞[→ R1 : r 7−→ Pr(x0

r, u)(t0) thus expresses the instantaneous memory
created during the interval [0, t0]. Its structure is described below in Proposition 2.5.
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Assuming that the initial configuration {x0
r; r > 0} is chosen in such a way that

|x0
r+s − x0

r| 6 s for all r > 0, s > 0, we infer from Corollary 2.2 that for every u ∈
C([0, T ]), r, s ∈]0,∞[ and t ∈ [0, T ] we have |λt(r + s)− λt(r)| 6 s.

It is therefore natural to define the configuration space

(2.4) Λ : = {λ ∈ W 1,∞(0,∞) ;
∣∣∣dλ(r)

dr

∣∣∣ 6 1 a.e.}

of memory configurations λ, and its subspaces

(2.5) ΛR := {λ ∈ Λ ; λ(r) = 0 for r > R}, Λ0 :=
⋃

R>0

ΛR.

We now introduce a more convenient notation. For λ ∈ Λ, u ∈ C([0, T ]) and r > 0
put

(2.6) pr(λ, u) : = P
r
(x0

r, u),

where x0
r is given by the formula

(2.7) x0
r : = Qr

(
u(0)− λ(r)

)

and Qr : R1 → [−r, r] is the projection

(2.8) Qr(x) : = sign(x) min{r, |x|}.

For the sake of consistency put p0(λ, u) : = u. We immediately see that pr(−λ,−u) =
−pr(λ, u) for all r, λ and u. Moreover, the operator pr : Λ× C([0, T ]) → C([0, T ]) is
Lipschitz in the following sense.

Lemma 2.3. For every u, v ∈ C([0, T ]), λ, µ ∈ Λ and r > 0 we have

(2.9) |pr(λ, u)− pr(µ, v)|∞ 6 max
{|λ(r)− µ(r)|, |u− v|∞

}
.

P r o o f. Put ξr : = pr(λ, u), ηr : = pr(µ, v). Proposition 1.1(ii) yields

(2.10) |ξr − ηr|∞ 6 max
{|ξr(0)− ηr(0)|, |u− v|∞

}
,

where ξr(0) = u(0) − Qr

(
u(0) − λ(r)

)
, ηr(0) = v(0) − Qr

(
v(0) − µ(r)

)
. Assume for

instance u(0)− λ(r) > v(0)− µ(r). The function Qr is nondecreasing and Q′r(z) 6 1
for a.e. z ∈ R1, hence ξr(0)−ηr(0) 6 u(0)−v(0), ηr(0)− ξr(0) 6 µ(r)−λ(r) and (2.9)
follows from (2.10). ¤
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To an arbitrary λ ∈ Λ0 we associate a function mλ : R1 → [0, +∞[ by the formula

(2.11) mλ(v) := min{r > 0 ; |v − λ(r)| = r}.

The function r 7→ r − |v − λ(r)| is nondecreasing. This immediately implies that
|v − λ(r)| > r for r ∈ [0,mλ(v)[, |v − λ(r)| 6 r for r ∈ [mλ(v), +∞[; the function mλ

is increasing and left-continuous in [λ(0),+∞[ and decreasing and right-continuous in
] − ∞, λ(0)], mλ

(
λ(0)

)
= 0. For λ ∈ Λ0, u ∈ C([0, T ]) and t ∈ [0, T ] we define the

quantity

(2.12) M(λ, u, t) := max
{
mλ

(
u(τ)

)
; τ ∈ [0, t]

}
.

It is clear that the function t 7→ M(λ, u, t) is nondecreasing and left-continuous in [0, T ]
for fixed λ and u. The following lemma is substantial for the memory description of
stops and plays.

Lemma 2.4. Assume M(λ, u, t) = mλ(u(t)) for some λ ∈ Λ0, u ∈ C([0, T ]) and

t ∈ [0, T ]. Then

(2.13) pr(λ, u)(t) =





λ(r) for r > M(λ, u, t),

u(t) + r for r < M(λ, u, t) if u(t) < λ(0),

u(t)− r for r < M(λ, u, t) if u(t) > λ(0).

P r o o f. We first prove Lemma 2.4 for u ∈ W 1,1(0, T ). Put ξr : = pr(λ, u) and
r̄ : = M(λ, u, t). By (2.6)-(2.8) we have ξr(0) = λ(r) for r > r̄. Assume that ξr(t) 6=
λ(r) for some r > r̄. Then there exists τ ∈]0, t[ such that

either (i) ξ̇r(τ) > 0, ξr(τ) > λ(r)

or (ii) ξ̇r(τ) < 0, ξr(τ) < λ(r).

The variational inequality (1.1) implies ξr(τ) = u(τ) − r in the case (i) and ξr(τ) =
u(τ) + r in the case (ii), hence r < |u(τ)− λ(r)|, which contradicts the definition of r̄.
We therefore have ξr(t) = λ(r) for all r > r̄, r̄ = |u(t)− ξr̄(t)|.

The case r̄ = 0 is trivial. For r̄ > 0 we have u(t) = r̄ + λ(r̄) if u(t) > λ(0), u(t) =
−r̄ + λ(r̄) if u(t) < λ(0), and for r ∈]0, r̄[ Corollary 2.2 entails

r̄ − r > |ξr̄(t)− ξr(t)| > |ξr̄(t)− u(t)| − |ξr(t)− u(t)| > r̄ − r,

hence
ξr(t) =

r

r̄
λ(r̄) +

r̄ − r

r̄
u(t) = u(t)− r

r̄

(
u(t)− λ(r̄)

)
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and the assertion follows.
Let now u ∈ C([0, T ]) be arbitrary and assume M(λ, u, t) = mλ(u(t)) for some t.

We find a sequence {un} ⊂ W 1,1(0, T ) such that |un − u|∞ → 0 as n →∞, min
[0,t]

un =

min
[0,t]

u, max
[0,t]

un = max
[0,t]

u, un(t) = u(t). Then M(λ, un, t) = mλ(un(t)) = mλ(u(t)) and

it suffices to pass to the limit in formula (2.13) for un as n →∞. ¤

The general situation mλ(u(t)) 6 M(λ, u, t) will be treated in the following way. For
u ∈ C([0, T ]), λ ∈ Λ0 and t ∈ [0, T ] put

(2.14)

{
r̄ : = M(λ, u, t),

t̄ : = max{τ ∈ [0, t] ; mλ(u(τ)) = r̄},

(2.15)

{
t0 : = t̄, r0 : = r̄ if u(t̄) = λ(r̄)− r̄,

t1 : = t̄, r1 : = r̄ if u(t̄) = λ(r̄) + r̄,

and continue recursively by putting

(2.16)





t2k+1 := max
{
τ ∈ [t2k, t];u(τ) = max{u(σ); σ ∈ [t2k, t]}}, k = (0), 1, 2, . . . ,

t2k := max
{
τ ∈ [t2k−1, t];u(τ) = min{u(σ); σ ∈ [t2k−1, t]}

}
, k = 1, 2, . . . ,

rj+1 := (−1)j

2

(
u(tj+1)− u(tj)

)
, j = (0), 1, 2, . . .

until t2k+1 = t or t2k = t.

One of the following two possibilities occurs.
A. The sequence {(tj , rj)} is infinite, u(t) = lim

j→∞
u(tj), lim

j→∞
rj = 0;

B. The sequence {(tj , rj)} is finite, t = tn. In this case we put rj : = 0 for j > n+1.

In the sequel, the sequence {(tj , rj)} is called memory sequence of u at the point t

with respect to the initial configuration λ and denoted by MSλ(u)(t).

Proposition 2.5. Let u ∈ C([0, T ]), λ ∈ Λ0, r > 0 and t ∈ [0, T ] be given, and let

MSλ(u)(t) = {(tj , rj)} be the memory sequence (2.15),(2.16). Then we have

(2.17) pr(λ, u)(t) =

{
λ(r) for r > r̄,

u(tj) + (−1)jr for r ∈ [rj+1, rj [, j = (0), 1, 2, . . .

Let us make a remark before proving Proposition 2.5. Formula (2.17) shows that the
increasing sequence {u(t2k)} of local minima and decreasing sequence {u(t2k+1)} of
local maxima is precisely what the system {pr(λ, u)(t); r > 0} keeps in memory. The
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O r3 r2 r1

r̄ = r0 ru(t) = u(t3)

u(t0)

u(t2)

u(t1)

v

v = λ(r)

v = pr(λ, u)(t)

Fig. 8 �
instantaneous output values are determined by these sequences and the rest of the input
history for τ ∈ [0, t] \ {tj} is irrelevant (see Fig. 8). A similar memory structure can
be observed in the vector case for the model of Mróz (see Brokate, Dressler, Krejč́ı (to
appear/a)), but not for vector plays and stops in general.

P r o o f of Proposition 2.5. Assume for instance r̄ = r1, t̄ = t1 (the other case is
analogous). For r > 0 put λ1(r) : = pr(λ, u)(t1). We have mλ

(
u(t1)

)
= M(λ, u, t) =

M(λ, u, t1) = r1 and Lemma 2.4 yields

λ1(r) =

{
λ(r) for r > r1,

u(t1)− r for r < r1.

We are done if t = t1; otherwise, for j = 2, 3, . . . put λj(r) := pr(λ, u)(tj) and assume

(2.18) λj(r) =





λ(r) for r > r1,

u(ti) + (−1)ir for r ∈ [ri+1, ri[, i = 1, . . . , j − 1,

u(tj) + (−1)jr for r ∈ [0, rj [

for some j > 1, tj < t. We now prove that (2.18) holds for j + 1.
Put uj(τ) := u(τ + tj) for τ ∈ [0, T − tj ]. By (2.16) we have 0 6 (−1)j

(
uj(τ) −

uj(0)
)

6 2rj+1 for τ ∈ [0, t− tj ], hence for r ∈ [rj+1, rj [ it follows from (2.18)

|uj(τ)− λj(r)| = |r − (−1)j
(
uj(τ)− uj(0)

)| 6 r.

For r ∈]0, rj+1[ we similarly obtain |uj(tj+1−tj)−λj(r)| > r, hence M(λj , uj , t−tj) =
mλj

(
uj(tj+1 − tj)

)
= rj+1. Lemma 2.4 and the semigroup property I(1.27) then entail

λj+1(r) = pr(λj , uj)(tj+1 − tj) =

{
λj(r) for r > rj+1,

u(tj+1) + (−1)j+1r for r ∈]0, rj+1[,

and the induction argument completes the proof. ¤
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Corollary 2.6. Let λ ∈ ΛR and u ∈ C([0, T ]) be given. For t ∈ [0, T ] and r > 0
put λt(r) := pr(λ, u)(t). Then for every t ∈ [0, T ] we have

(i) λt ∈ ΛR̂, where R̂ = max{R, |u|∞},
(ii) λt(r) = λ(r) for r > M(λ, u, t),
(iii) λt(0) = u(t),
(iv)

∣∣ ∂
∂r λt(r)

∣∣ = 1 for a.e. r ∈]0,M(λ, u, t)[.

P r o o f. Statements (ii)-(iv) follow immediately from Proposition 2.5. To prove (i)
we just note that for r > max{R, |u|∞} we have |u(t) − λ(r)| = |u(t)| < r, hence
M(λ, u, t) 6 max{R, |u|∞} for all t ∈ [0, T ]. ¤

In Sect. I.3 (Theorem I.3.14) we proved that the vector play and stop are asymptoti-
cally periodic on periodic inputs. The scalar case is again much simpler. Let us denote
by Cω for a given period ω > 0 the space of continuous functions u : R1 → R1 such
that u(t+ω) = u(t) for all t ∈ R1. We immediately see that the function t 7→ mλ

(
u(t)

)

is ω-periodic in R1 and M(λ, u, ·) defined by (2.12) is constant in [ω, +∞[. We state
explicitly the following Corollary of Proposition 2.5.

Corollary 2.7. Let u ∈ Cω and λ ∈ Λ0 be given. Then for every r > 0 and t > ω

we have pr(λ, u)(t + ω) = pr(λ, u)(t).

Differentiability

Despite the regularity of the play, it is clear that the derivative ξ̇r(t) of the output
ξr = pr(λ, u) of the play with input u ∈ C([0, T ]) and initial configuration λ ∈ Λ0 at
a given point t ∈]0, T [ need not exist even if u̇(t) exists. Indeed, this is not the case if
u̇(t) = 0, since formula (1.5) then implies ξ̇r(t) = 0. On the other hand, if u̇(t) exists,
then the right and left derivatives ξ̇+

r (t), ξ̇−r (t) always exist and can be computed from
the memory formula (2.17) in the following way.

Proposition 2.8. Let λ ∈ Λ0, u ∈ C([0, T ]) and t ∈]0, T [ be given such that

u̇(t) 6= 0 exists. Then there exist %1(t) > %0(t) > 0 such that

(2.19) ξ̇−r (t) =

{
0 for r > %0(t),

u̇(t) for r < %0(t),
ξ̇+
r (t) =

{
0 for r > %1(t),

u̇(t) for r 6 %1(t).

P r o o f. It suffices to assume u̇(t) > 0; otherwise we use the fact that the operator
pr is odd and pass from (λ, u) to (−λ,−u).
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Assume first M(λ, u, t) = mλ

(
u(t)

)
= : r̄. The assumption u̇(t) > 0 entails

u(t) = λ(r̄) + r̄. If the set A : = {τ ∈ [0, t[; u(τ) = u(t)} is nonempty, then we de-
fine t1 : = max A, t2 : = max

{
τ ∈ [t1, t]; u(τ) = min{u(σ); σ ∈ [t1, t]}

}
similarly as in

(2.16). We put

(2.20) %0(t) : =

{
r̄ if A = ∅
1
2

(
u(t)− u(t2)

)
if A 6= ∅ , %1(t) := max{r > 0; u(t) = λ(r)+r}

and claim that (2.19) holds.
We have to consider separately several cases.

A. r > %1(t)
There exists δ > 0 sufficiently small such that |u(τ)− λ(r)| < r for all τ ∈ [t, t + δ[,

hence M(λ, u, τ) < r and Lemma 2.4 yields ξr(τ) = λ(r) for τ ∈ [t, t+δ[, in particular
ξ̇+
r (t) = 0.

B. 0 < r 6 %1(t)
We choose δ > 0 such that 0 < u(τ) − u(t) < 2r for all τ ∈]t, t + δ[. We have by

hypothesis u(t) = λ
(
%1(t)

)
+ %1(t), hence u(τ) > λ

(
%1(t)

)
+ %1(t) and the memory

sequence MSλ(u)(τ) =
{
(t̂j , r̂j)

}
j>1

satisfies r̂1 = M(λ, u, τ) > %1(t), t̂1 ∈]t, τ ], r̂j < r

for all j > 2. By Proposition 2.6 we have ξr(τ) = u(t̂1) − r, ξr(t) = u(t) − r, hence
ξr(τ)−ξr(t)

τ−t = u(t1)−u(t)
τ−t . Letting δ tend to 0 and using obvious inequalities u(t1)−u(t)

t1−t >
u(t1)−u(t)

τ−t > u(τ)−u(t)
τ−t we obtain ξ̇+

r (t) = u̇(t).

C. %0(t) = r̄, r > %0(t).
We have mλ

(
u(τ)

)
6 r̄ for all τ ∈ [0, t]. Proposition 2.5 implies ξr(τ) = λ(r) for

τ 6 t, hence ξ̇−r (t) = 0.

D. %0(t) < r̄, r > %0(t).
We define auxiliary functions λ2(%) : = ξ%(t2) for % > 0, u2(τ) : = u(t2 + τ) for τ ∈

[0, t− t2]. For % ∈ [%0(t), r̄] Proposition 2.5 entails λ2(%) = u(t1)− % = u(t)− %, hence
|u2(τ)−λ2

(
%0(t)

)| = |%0(t)−
(
u(t)−u(τ +t2)

)| 6 %0(t) for all τ ∈ [0, t−t2]. This yields
mλ2

(
u2(τ)

)
6 %0(t) and using once more Proposition 2.5 and the semigroup property

we obtain ξr(τ + t2) = pr(λ2, u2)(τ) = λ2(r) with the same conclusion as in C.

E. r < %0(t), A = ∅,
∣∣u(τ)− λ

(
%0(t)

)∣∣ < %0(t) for all τ ∈ [0, t[.
We choose τ1 ∈ [0, t] such that u(τ) > λ(r)+r for all τ ∈ [τ1, t]. Put r̂ : = M(λ, u, τ1)

∈]r, %0(t)[, τ2 : = max{τ ∈ [0, t]; u(τ) 6 λ(r̂) + r̂} ∈ [τ1, t[. We now fix τ3 ∈ [τ2, t[ such
that 0 < u(t)−u(τ) < 2r for all τ ∈]τ3, t[. For such τ we therefore have MSλ(u)(τ) =
{(t̂j , r̂j)}j>1 with t̂1 ∈]τ2, τ [, r̂1 ∈]r̂, %0[, r̂j < r for j > 2. From Proposition 2.5 it
follows ξr(τ) = u(t̂1) − r, ξr(t) = u(t) − r and we argue as in B for τ1 → t to obtain
ξ̇−r (t) = u̇(t).
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F. r < %0(t), A = ∅, ∃t0 < t : u(t0) = λ(%0(t))− %0(t).
Putting λ0(%) := ξ%(t0) for % > 0 and u0(τ) := u(τ + t0) for τ ∈ [0, t − t0] we

apply the argument of E to u0 using the semigroup property similarly as in D.

G. r < %0(t), A 6= ∅.
We argue as in F for u2(τ) := u(τ + t2) and λ2(%) : = ξ%(t2).

To complete the proof, it remains to consider the case mλ

(
u(t)

)
< M(λ, u, t). The

assumption u̇(t) > 0 entails t = t2k+1 for some k > 0, where {(tj , rj)} = MSλ(u)(t).
The above argument applied to u2k(τ) : = u(τ + t2k), λ2k(%) : = ξ%(t2k) gives the as-
sertion for

(2.21) %0(t) : =

{
r2k+1 if A2k = ∅,
1
2

(
u(t)− u(t̂2k+2)

)
if A2k 6= ∅ , %1(t) : = r2k+1,

where we denote A2k : = {τ ∈ [t2k, t[; u(τ) = u(t)}, t̂2k+1 : = max A2k and t̂2k+2 : =
max

{
τ ∈ [t̂2k+1, t]; u(τ) = min{u(σ); σ ∈ [t̂2k+1, t]}

}
. ¤

Corollary 2.9. Let u ∈ W 1,1(0, T ) and λ ∈ Λ0 be given and let L ⊂]0, T [ be

the set of Lebesgue points of u̇. Put L∗ : = {t ∈ L; u̇(t) 6= 0} and for r > 0 denote

L∗r : = {t ∈ L∗; r ∈ [%0(t), %1(t)]}, where %0, %1 are as in Proposition 2.8. Then we have

(i) meas L∗r = 0,

(ii) meas{t ∈ L∗; %0(t) < %1(t)} = 0.

P r o o f. Put ξr(t) : = pr(λ, u)(t) for t ∈ [0, T ] and r > 0. According to Proposition
2.8, the set L∗r has an empty intersection with the set of Lebesgue points of ξr and
ξr ∈ W 1,1(0, T ) by Proposition 1.1, hence meas L∗r = 0. To prove (ii) we denote
Ω := {t ∈ L∗; %0(t) < %1(t)}, Ωn : = {t ∈ L∗; %1(t) − %0(t) > 1

n} for n ∈ N. We have

Ωn ⊂
∞⋃

k=1

L∗k
n

and Ω =
∞⋃

n=1
Ωn, hence meas Ω = 0. ¤

Monotonicity

The trivial inequality (1.4) will have important consequences in the next chapter,
where it enables us to use monotonicity techniques for solving partial differential equa-
tions with hysteretic constitutive operators. We prove here a less trivial complement to
inequality (1.4) which shows that this inequality is strict in a certain sense.

Proposition 2.10. Let λ, µ ∈ Λ0 and u, v ∈ W 1,1(0, T ) be given such that λ(0) =
u(0), µ(0) = v(0). For r > 0 put ξr : = pr(λ, u), ηr : = pr(µ, v), xr : = u−ξr, yr : = v−
ηr. Then the following three conditions are equivalent.
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(i) For every r > 0 we have
(
ξ̇r(t)− η̇r(t)

)(
xr(t)− yr(t)

)
= 0 a.e.

(ii) For every r > 0, t ∈ [0, T ] and δ ∈ [0, 1] we have pr

(
δλ+(1−δ)µ, δu+(1−δ)v

)
(t) =

δξr(t) + (1− δ)ηr(t).
(iii) For every t ∈ [0, T ] we have

ξr(t)− ηr(t) =

{
λ(r)− µ(r) for r > R(t),

λ
(
R(t)

)− µ
(
R(t)

)
for r ∈]0, R(t)[,

where R(t) := max{M(λ, u, t),M(µ, v, t)}.

Remark 2.11. Assertion (iii) of Proposition 2.10 for r → 0+ says that the difference
u(t)−v(t) depends only on the value of the nondecreasing function R(t). If in particular
both u and v are ω-periodic, then u(t)− v(t) is constant for t > ω.

The assumption λ(0) = u(0), µ(0) = v(0) is not restrictive. If λ, µ, u, v are arbitrar-
ily given, then putting λ0(r) : = pr(λ, u)(0), µ0(r) := pr(µ, v)(0) we have pr(λ, u)(t) =
pr(λ0, u)(t), pr(µ, v)(t) = pr(µ0, v)(t) for all r > 0 and t ∈ [0, T ], so we may replace
λ, µ with λ0, µ0.

P r o o f of Proposition 2.10.
(i) ⇒ (ii):

Using the inequalities ξ̇r(t)(xr(t)−ϕ) > 0, η̇r(t)
(
ηr(t)−ϕ

)
> 0 a.e. for all ϕ ∈ [−r, r]

we infer from (i) for every r > 0

ξ̇r(t)
(
xr(t)− ηr(t)

)
= η̇r(t)

(
ηr(t)− xr(t)

)
= 0 a.e.,

hence
ξ̇r(t)

(
ηr(t)− ϕ

)
> 0, η̇r(t)

(
xr(t)− ϕ

)
> 0 a.e. ∀ϕ ∈ [−r, r].

For every δ ∈ [0, 1], r > 0 and ϕ ∈ [−r, r] we thus have

ξ̇r(t)
(
δxr(t) + (1− δ)yr(t)− ϕ

)
> 0, η̇r(t)

(
δxr(t) + (1− δ)yr(t)− ϕ

)
> 0 a.e.,

and in particular

(
δξ̇r(t) + (1− δ)η̇r(t)

)(
δxr(t) + (1− δ)yr(t)− ϕ

)
> 0 a.e.

From (1.1), (1.2), (2.6), (2.7) we directly obtain (ii).

(ii) ⇒ (iii).
For r > R(t) Corollary 2.6 yields ξr(t) = λ(r), ηr(t) = µ(r), hence (iii) holds.
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Let now r < R(t) be arbitrarily chosen and let us suppose that ∂
∂r ξr(t), ∂

∂r ηr(t)
exist and ∂

∂r

(
ξr(t)− ηr(t)

) 6= 0. Then for δ ∈]0, 1[ we obtain from (ii)

∣∣∣ ∂

∂r
pr

(
δλ + (1− δ)µ, δu + (1− δ)v

)
(t)

∣∣∣ < 1.

Corollary 2.6 (iv) then entails r > M
(
δλ + (1 − δ)µ, δu + (1 − δ)v, t

)
, hence |δu(τ) +

(1− δ)v(τ)− δλ(r)− (1− δ)µ(r)| 6 r for all τ ∈ [0, t].
By hypothesis r < R(t) there exists τ ∈ [0, t] such that either |u(τ)− λ(r)| > r or

|v(τ)− µ(r)| > r. In the latter case we have for instance

r > |δu(τ) + (1− δ)v(τ)− δλ(r)− (1− δ)µ(r)|
> |v(τ)− µ(r)| − δ|u(τ)− v(τ)− λ(r) + µ(r)|

which is a contradiction for δ sufficiently small. We therefore have ∂
∂r ξr(t) = ∂

∂r ηr(t)
for a.e. r ∈]0, R(t)[ and (iii) follows.

(iii) ⇒ (i).
Let r > 0 be arbitrarily chosen. The function t 7→ R(t) is nondecreasing in [0, T ].

Put Ar : = {t ∈ [0, T ]; R(t) > r} and tr : = inf Ar if Ar 6= ∅, tr = T if Ar = ∅. Then
for t ∈ [0, tr[ we have by (iii) ξr(t) − ηr(t) = u(t) − v(t), hence xr(t) = yr(t), for
t ∈]tr, T [ we have ξr(t)− ηr(t) = λ(r)− η(r), hence ξ̇r(t) = η̇r(t). In both cases (i) is
fulfilled.

Proposition 2.10 is proved. ¤

Another useful inequality which belongs to this subsection is due to Hilpert (1989)
and reads as follows.

Proposition 2.12. For λ, µ ∈ Λ0, u, v ∈ W 1,1(0, T ) and r > 0 put ξr : = pr(λ, u),
ηr : = pr(µ, v). Then we have

(2.22)
(
ξ̇r(t)− η̇r(t)

)
sign

(
u(t)− v(t)

)
> ∂

∂t
|ξr(t)− ηr(t)| a.e.

P r o o f. Inequality (1.4) has the form (ξ̇r − η̇r)(u− v − ξr + ηr) > 0 a.e. The sign
function is nondecreasing, therefore (ξ̇r− η̇r) sign(u−v) > (ξ̇r− η̇r) sign(ξr−ηr), which
is nothing but (2.22). ¤
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II.3 Multiyield scalar hysteresis models

We apply here the results of the two previous sections to the analysis of more complex
hysteresis operators, namely those of Prandtl-Ishlinskii, Preisach and Della Torre. Main
emphasis is put on the structure of memory and analytical properties in the space of
continuous functions.

Prandtl-Ishlinskii operators

Rheological constructions of vector-valued Prandtl-Ishlinskii operators were intro-
duced in Sect. I.1. The distinction between operators of stop type and play type plays
a substantial role in the study of energy dissipation properties. At this stage we can
adopt the following definition which includes both concepts.

Definition 3.1. Let a constant a > 0 and a function h ∈ BVloc(0,∞) be given,

h(0+) = a. Put

(3.1) ϕ(r) : =
∫ r

0

h(s) ds for r > 0.

Then the operator Fϕ : Λ0 × C([0, T ]) → C([0, T ]) defined by the formula

(3.2) F
ϕ

(λ, u) = au +
∫ ∞

0

pr(λ, u) dh(r), λ ∈ Λ0, u ∈ C([0, T ]),

where pr is the play operator (2.6), is called a Prandtl-Ishlinskii operator generated by

the function ϕ and ϕ is called the generator of the operator Fϕ.

The Stieltjes integral in (3.2) is finite due to the assumption λ ∈ Λ0 and Corollary
2.6(i) which ensure that pr(λ, u) vanishes for r sufficiently large.

From inequality (1.5) it follows that the mapping t 7→ Fϕ(λ, u)(t) is continuous.
Moreover, the operator Fϕ is locally Lipschitz in Λ0×C([0, T ]) in the following sense.

Proposition 3.2. Let ϕ satisfy the hypotheses of Definition 3.1 and let R > 0 be

given. For r > 0 put Vh(r) := Var
[0,r]

h. Then for every λ, µ ∈ ΛR and u, v ∈ C([0, T ])

such that |u|∞, |v|∞ 6 R we have

(3.3) (i)
∣∣F

ϕ
(λ, u)−F

ϕ
(µ, v)

∣∣
∞ 6

∫ R

0

|λ(r)−µ(r)| dVh(r)+
(
a+Vh(R)

)|u− v|∞.

If moreover h is nonnegative and nonincreasing, then

(ii)
∣∣F

ϕ
(λ, u)−F

ϕ
(µ, v)

∣∣
∞ 6 h(0+)|λ− µ|∞ + 2ϕ

(|u− v|∞
)
.
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P r o o f. It suffices to use Lemma 2.3 and the elementary inequality | ∫ R

0
f(r) dh(r)|

6
∫ R

0
|f(r)| dVh(r) for f ∈ C([0, R]). In the case of h nonincreasing we put ξr :=

pr(λ, u), ηr := pr(µ, v), xr := u − ξr, yr := v − ηr. By (2.9),(2.6),(1.2) we have |xr −
yr|∞ 6 min

{
2r, |u−v|∞+max{|λ(r)−µ(r)|, |u−v|∞}

}
6 |λ(r)−µ(r)|+2 min

{
r, |u−

v|∞
}

and the assertion follows from the inequality
| Fϕ(λ, u)−Fϕ(µ, v)|∞ 6 h(∞)|u− v|∞ − ∫∞

0
|xr − yr|∞dh(r).

¤

The Prandtl-Ishlinskii operator preserves the memory structure in the following sense.

Proposition 3.3. Let ϕ satisfy the hypotheses of Definition 3.1 with h(r) > 0 for

r > 0, lim
r→∞

ϕ(r) = +∞. For λ ∈ Λ0 and u ∈ C([0, T ]) put w : = Fϕ(λ, u) and

(3.4) µ(s) : = −
∫ ∞

ϕ−1(s)

λ′(r) h(r) dr for s > 0,

where ϕ−1 is the inverse function to ϕ and λ′ = dλ
dr . Let t ∈ [0, T ] be arbitrarily

chosen and let MSλ(u)(t) = {(tj , rj)} be the corresponding memory sequence.

Then µ ∈ Λ0, MSµ(w)(t) = {(tj , ϕ(rj)} and

(3.5) ps(µ,w)(t) = −
∫ ∞

ϕ−1(s)

∂

∂r
pr(λ, u)(t)h(r) dr ∀s > 0.

P r o o f. We first note that an equivalent formula for w(t) reads

(3.6) w(t) = −
∫ ∞

0

∂

∂r
pr(λ, u)(t) h(r) dr

by Remark V.1.31.
Let t̄, r̄ be given by (2.14), i.e. u(t̄)− λ(r̄) = Sr̄, where S = sign

(
u(t̄)− λ(0)

)
and

for every q < r̄ we have

(3.7)
∫ r̄

q

(
1 + Sλ′(r)

)
dr = S

(
u(t̄)− λ(q)− Sq

)
> 0.

Lemma 2.4 yields w(t̄) = µ
(
ϕ(r̄)

)
+ Sϕ(r̄) and for q < r̄ we obtain from (3.4), (3.7)

S
(
w(t̄)− µ

(
ϕ(q)

))
= ϕ(q) +

∫ r̄

q

(
1 + Sλ′(r)

)
h(r) dr > ϕ(q),

hence ϕ(r̄) = mµ

(
w(t̄)

)
, sign

(
w(t̄)− µ(0)

)
= sign

(
u(t̄)− λ(0)

)
.
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For all τ ∈ [0, t] and r > r̄ we have pr(λ, u)(τ) = λ(r) by Theorem 2.5; formula
(3.6) then entails

∣∣w(τ)− µ
(
ϕ(r̄)

)∣∣ =
∣∣∣
∫ r̄

0

∂

∂r
pr(λ, u)(τ)h(r) dr

∣∣∣ 6 ϕ(r̄),

consequently ϕ(r̄) = M(µ,w, t), the pair
(
t̄, ϕ(r̄)

)
is the first point of MSµ(w)(t) and

∂
∂sps(µ,w)(t̄)

∣∣
s=ϕ(r)

= ∂
∂r pr(λ, u)(t̄) for a.e. r > 0.

Assume now that for some tk < t we have MSµ(w)(tk) =
{(

tj , ϕ(rj)
)
; j 6 k

}
. For

r, s > 0 and τ ∈ [0, t− tk] put λk(r) : = pr(λ, u)(tk), µk(s) := ps(µ,w)(tk), uk(τ) : =
u(τ + tk), wk(τ) : = Fϕ(λk, uk)(τ). By Proposition 2.5 we have µ′k(s) = λ′k

(
ϕ−1(s)

)

for all s > 0, hence µk(s) = − ∫∞
ϕ−1(s)

λ′k(r)h(r) dr. Applying the above argument to
uk, wk, λk, µk in [0, t − tk] we obtain MSµ(w)(tk+1) =

{(
tj , ϕ(rj)

)
; j 6 k + 1

}
as a

consequence of the semigroup property of the play. A standard induction procedure
completes the proof. ¤

We immediately see that if ϕ is the identity ϕ(r) = r, then Fϕ(λ, u) = u for
all λ ∈ Λ0 and u ∈ C([0, T ]). The following superposition formula is an immediate
consequence of identity (3.5).

Corollary 3.4. If ϕ,ψ are functions satisfying the hypotheses of Proposition 3.3,

then for all u ∈ C([0, T ]) and λ ∈ Λ0 we have

F
ψ

(
µ,F

ϕ
(λ, u)

)
= F

ψ◦ϕ
(λ, u),

F
ϕ−1

(
µ,F

ϕ
(λ, u)

)
= u,

where µ is given by (3.4) and ψ ◦ ϕ(r) := ψ
(
ϕ(r)

)
.

Remarks 3.5.
(i) Play and stop with threshold r0 belong to the class of Prandtl-Ishlinskii operators

for ϕ(r) = max{0, r − r0}, ϕ(r) = min{r, r0}, respectively.
(ii) Superposition and inversion formulas in Corollary 3.4 show that every group Γ

with respect to superposition of generators ϕ : [0,∞[→ [0,∞[ generates a group
Γ̃ = {Fϕ(0, ·); ϕ ∈ Γ} of Prandtl-Ishlinskii operators C([0, T ]) → C([0, T ]) which
is isomorphic to Γ. The choice λ ≡ 0 of trivial initial configuration corresponds
to the “virginal state”, cf. Remark I.3.4.

(iii) The distinction between Prandtl - Ishlinskii operators of stop type and play type
can be characterized in terms of generators: a convex function ϕ generates an
operator of play type, a concave ϕ generates an operator of stop type.
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Preisach operator

The classical model of ferromagnetism due to Preisach (1935) is based on the concept
of delayed switching element or relay with values +1 (the switch is “on”) and −1
(the switch is “off”). It can be described by an operator Rv,r : {−1, 1} × C([0, T ]) →
BV (0, T ) with input u (magnetic field) and output s (magnetization), depending on
two parameters v ∈ R1 (interaction field) and r > 0 (critical field of coercivity) and
defined formally as follows (see Fig. 9).

O u

s

v − r v v + r

−1

1

Fig. 9 �
Let R2

+ denote the set {(v, r) ∈ R2; r > 0}. For given parameters (v, r) ∈ R2
+, input

u ∈ C([0, T ]), initial magnetization s0 ∈ {−1, 1} and time t ∈ [0, T ] put

S(t) := {τ ∈ [0, t]; |u(τ)− v| = r},

and τt : = max S(t) provided S(t) 6= ∅. We then define

(3.8) Rv,r(s0, u)(0) :=





+1 if u(0) > v + r,

−1 if u(0) 6 v − r,

s0 if u(0) ∈]v − r, v + r[,

(3.9) Rv,r(s0, u)(t) : =

{
Rv,r(s0, u)(0) if S(t) = ∅,
1
r

(
u(τt)− v

)
if S(t) 6= ∅.

The number of switching points t ∈ [0, T ] where the value of Rv,r(s0, u) switches
from −1 to +1 or vice versa is obviously finite and a similar estimate as in Proposition
1.4 holds. Moreover, Rv,r(s0, u) is right continuous in [0, T [.

In applications, it is convenient to use the following representation of the relay by
means of the system {pr; r > 0} of play operators.

Lemma 3.6. Let λ ∈ Λ0 and u ∈ C([0, T ]) be given. For (v, r) ∈ R2
+ put

sλ(v, r) : = −1 if v > λ(r), sλ(v, r) = +1 if v < λ(r). Then for every t ∈ [0, T ]



70

and (v, r) ∈ R2
+, v 6= pr(λ, u)(t) we have

Rv,r

(
sλ(v, r), u

)
(t) =

{
+1 if v < pr(λ, u)(t),

−1 if v > pr(λ, u)(t).

For interpreting Lemma 3.6 we can use Fig. 8. At each instant t ∈ [0, T ] the curve
v = pr(λ, u)(t) describes the interface in the (v, r)-plane between the region below,
where all switches Rv,r are on and above, where all switches are off.

P r o o f of Lemma 3.6. We make use of the memory representation of the play
in Theorem 2.5. Assume first mλ

(
u(t)

)
= M(λ, u, t) := r̄. For r > r̄ we have

pr(λ, u)(t) = λ(r) and λ(r) − r 6 u(τ) 6 λ(r) + r for all τ ∈ [0, t]. Choosing
v > λ(r) we thus have u(τ) − v < r for all τ ∈ [0, t] and sλ(v, r) = −1, hence
Rv,r

(
sλ(v, r), u

)
(τ) = −1 for all τ ∈ [0, t]. For v < λ(r) we similarly have u(τ)− v >

−r and Rv,r(sλ(v, r), u)(τ) = +1 for all τ ∈ [0, t].
The case r < r̄ is analogous. Assume for instance u(t) = λ(r̄) + r̄ > λ(r) + r. We

then have pr(λ, u)(t) = u(t) − r > u(τ) − r for all τ ∈ [0, t]. For v > pr(λ, u)(t) we
obtain v > λ(r) and u(τ) − v < r for all τ ∈ [0, t], hence Rv,r

(
sλ(v, r), u

)
(t) = −1

similarly as above. For v < pr(λ, u)(t) we have u(t) − v > r and two cases can
occur. If S(t) = ∅, then u(0) − v > r and if S(t) 6= ∅, then u(τt) − v = r. In both
situations we have by definition Rv,r

(
sλ(v, r), u

)
(t) = +1. We proceed analogously if

u(t) = λ(r̄)− r̄. In the case mλ

(
u(t)

)
< M(λ, u, t) we construct the memory sequence

MSλ(u)(t) =
{
(tj , rj)

}
and use the above argument by induction over j with tj+1

instead of t and λj(r) = pr(λ, u)(tj) instead of λ(r) as in the proof of Theorem 2.5.
¤

The output w(t) of the Preisach model is formally defined as an average over all
elementary switches with a given density function ψ ∈ L1

loc(R2
+) by the formula (see

Krasnosel’skii, Pokrovskii (1983), Visintin (1984), Brokate, Visintin (1989), Mayergoyz
(1991))

(3.10) w(t) :=
1
2

∫∫

R2
+

Rv,r

(
sλ(v, r), u

)
(t)ψ(v, r) dv dr.

To justify the integration we adopt the following hypotheses.

Assumption 3.7.
(i) The antisymmetric part ψa(v, r) : = 1

2

(
ψ(v, r) − ψ(−v, r)

)
of ψ satisfies ψa ∈

L1(R2
+).

(ii) The integral in (3.10) is considered in the sense of principal value.
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Using Lemma 3.6 and putting

(3.11) g(v, r) : =
∫ v

0

ψ(z, r) dz for (v, r) ∈ R2
+

we rewrite formula (3.10) in the form

(3.12) w(t) = C +
∫ ∞

0

g
(
pr(λ, u)(t), r

)
dr,

with C = − ∫∞
0

∫∞
0

ψa(v, r) dv dr.

Notice that the integral in (3.12) is meaningful independently of Assumption 3.7, since
pr(λ, u)(t) = 0 for r sufficiently large and g(0, r) = 0 for all r > 0. Furthermore, by
(1.5) and the absolute continuity of Lebesgue’s integral the function w in (3.12) is
continuous. This justifies the following definition.

Definition 3.8. Let ψ ∈ L1
loc(R2

+) be given and let g be defined by (3.11). Then

the Preisach operator W : Λ0 × C([0, T ]) → C([0, T ]) generated by the function g is

defined by the formula

(3.13) W(λ, u)(t) :=
∫ ∞

0

g
(
pr(λ, u)(t), r

)
dr

for λ ∈ Λ0, u ∈ C([0, T ]) and t ∈ [0, T ].

Remark 3.9. It is clear that the Prandtl-Ishlinskii operator (3.2) with a = 0 and
h ∈ W 1,1

loc (0,∞) belongs to the class of Preisach operators for ψ(v, r) = h′(r). On
the other hand, the Preisach operator can be used in elastoplasticity for modeling non-
linear counterparts to the Prandtl-Ishlinskii model of play type corresponding to the
rheological formula

∑
r>0

Nr|Rr, where Rr is the (scalar) rigid-plastic element with con-

straint Zr = [−r, r] and Nr is the nonlinear elastic element with constitutive equation
ε = g(σ, r). The thermodynamical admissibility of the element Nr is ensured by choos-
ing the potential energy

(3.14) Ur = G(σ, r) := σg(σ, r)−
∫ σ

0

g(v, r) dv.

The constitutive equation of the model
∑
r>0

Nr|Rr then has the form ε = W(λ, σ)

with the Preisach operator (3.13) for a suitably chosen distribution of initial plastic
stresses. General rheological principles of Sect. I.1 suggest to define the potential
energy associated to the Preisach operator W by the integral

(3.15) U(λ, u)(t) : =
∫ ∞

0

G
(
pr(λ, u)(t), r

)
dr.

Mathematical consequences of this definition will be given in the next section.
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We require in the sequel that the following hypothesis is fulfilled.

Assumption 3.10. There exist β0, β1 ∈ L1
loc(0,∞), β1(r) > β0(r) > 0 a.e.,

b0 : =
∫∞
0

β0(r)dr < ∞ such that

β1(r) > ψ(v, r) > −β0(r) for a.e. (v, r) ∈ R2
+.

For R > 0 put b1(R) :=
∫ R

0
β1(r) dr.

The following continuity result is analogous to Proposition 3.2 and we leave the proof
to the reader.

Proposition 3.11. Let Assumption 3.10 be satisfied and let R > 0 be given. Then

for every λ, µ ∈ ΛR and u, v ∈ C([0, T ]) such that |u|∞, |v|∞ 6 R the Preisach

operator (3.13) satisfies

|W(λ, u)−W(µ, v)|∞ 6
∫ R

0

|λ(r)− µ(r)|β1(r) dr + b1(R)|u− v|∞.

We now pass to the description of memory related to Preisach operators. We fix a
number b > b0 and define an auxiliary function f : R2

+ → R1 as the solution of the
hyperbolic Cauchy problem

(3.16)





∂2f
∂r2 − ∂2f

∂v2 = g(v, r)

f(v, 0) = 0
∂f
∂r (v, 0) = bv,

where the “memory” variable r > 0 plays the role of “time”. We obviously have

(3.17) f(v, r) = brv +
1
2

∫ r

0

∫ v+r−%

v−r+%

g(z, %) dz d%.

The main result is Proposition 3.14 below as a counterpart to Proposition 3.3. We
start with two lemmas.

Lemma 3.12. Let Assumption 3.10 hold and let λ ∈ Λ0 be given. Then the function

(3.18) ϕλ(r) : =
∂f

∂v
(v, r)

∣∣∣
v=λ(r)

for r > 0

with f, g satisfying (3.17),(3.11) has the following properties.
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(i) ϕλ(0) = 0,

(ii) (b− b0)(r2 − r1) 6 ϕλ(r2)− ϕλ(r1) 6
(
b + b1(r2)

)
(r2 − r1) for all r2 > r1.

P r o o f. We have

ϕλ(r2)− ϕλ(r1) = b(r2 − r1) +
1
2

∫ r1

0

∫ λ(r2)+r2−%

λ(r1)+r1−%

ψ(v, %) dv d% +

+
1
2

∫ r1

0

∫ λ(r1)−r1+%

λ(r2)−r2+%

ψ(v, %) dv d% +
1
2

∫ r2

r1

∫ λ(r2)+r2−%

λ(r2)−r2+%

ψ(v, %) dv d%

and Lemma 3.12 follows from Assumption 3.10. ¤

Lemma 3.13. Let the hypotheses of Lemma 3.12 with b > b0 be fulfilled and let

µ : [0,∞[→ R1 be defined by the formula

(3.19) µ(s) : =
∂f

∂r
(v, r)

∣∣∣
v=λ(r)

+
∫ ∞

r

g(λ(%), %) d% for s > 0, r = ϕ−1
λ (s).

Then µ ∈ Λ and the implication

(3.20) |λ′(r)| = 1 ⇒ µ′
(
ϕλ(r)

)
= λ′(r)

holds for all r > 0 such that λ′(r) exists. If moreover we assume

(3.21)
∫ r

0

∫ r−%

0

ψa(v, %) dv d% = 0 for r sufficiently large,

then µ ∈ Λ0.

P r o o f. For an arbitrary s > 0 and r = ϕ−1
λ (s) we have

µ(s) + s = µ(0) + b
(
λ(r) + r − λ(0)

)
+

∫ r

0

(
g(λ(r) + r − %, %)− g(λ(%), %)

)
d%,

µ(s)− s = µ(0) + b
(
λ(r)− r − λ(0)

)
+

∫ r

0

(
g(λ(r)− r + %, %)− g(λ(%), %)

)
d%

and Assumption 3.10 entails

0 6 (b− b0)
(
λ(r2) + r2 − λ(r1)− r1

)
6 µ(s2) + s2 − µ(s1)− s1(3.22)

6
(
b + b1(r2)

)(
λ(r2) + r2 − λ(r1)− r1

)
,

0 6 (b− b0)
(
r2 − λ(r2)− r1 + λ(r1)

)
6 s2 − µ(s2)− s1 + µ(s1)(3.23)

6
(
b + b1(r2)

)(
r2 − λ(r2)− r1 + λ(r1)

)
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for all r2 > r1 and si = ϕλ(ri), i = 1, 2.
Using Lemma 3.12 we rewrite inequalities (3.22), (3.23) in the form

0 6 b− b0

b + b1(r2)

(
1± λ(r2)− λ(r1)

r2 − r1

)
6 1± µ(s2)− µ(s2)

s2 − s1
(3.24)

6 b + b1(r2)
b− b0

(
1± λ(r2)− λ(r1)

r2 − r1

)
,

hence µ ∈ Λ and (3.20) holds.
It remains to check that µ(s) = 0 for s sufficiently large provided (3.21) holds. We

find r̃ such that for r > r̃ we have λ(r) = 0. For s > ϕλ(r̃) and r = ϕ−1
λ (s) we have

µ(s) =
∫ r

0

∫ r−%

0
ψa(v, %) dv d% and the assertion follows easily. ¤

We now apply Lemmas 3.12, 3.13 to the time-dependent situation. The result is
analogous to Proposition 3.3.

Proposition 3.14. Let g, f, λ, µ be as in Lemmas 3.12, 3.13 and let u ∈ C([0, T ])
and t ∈ [0, T ] be given with memory sequence MSλ(u)(t) = {(tj , rj)}. Put w : = bu+
W(λ, u), where W is the Preisach operator (3.13), λt(%) : = p%(λ, u)(t) for % > 0 and

(3.25) µt(s) :=
∂f

∂r
(v, r)

∣∣∣
v=λt(r)

+
∫ ∞

r

g
(
λt(%), %

)
d% for s > 0, r = ϕ−1

λt (s)

Then MSµ(w)(t) =
{(

tj , ϕλt(rj)
)}

and for all s > 0 we have ps(µ,w)(t) = µt(s).

P r o o f. We first note that the function t 7→ ϕ−1
λt (s) is continuous for each fixed

s > 0. Indeed, putting r : = ϕ−1
λt (s) for some t ∈ [0, T ] we have for each τ 6= t by

Lemma 3.12

(b− b0)
∣∣ϕ−1

λτ (s)− ϕ−1
λt (s)

∣∣ 6 |s− ϕλτ (r)| = |ϕλt(r)− ϕλτ (r)| 6 b1(r)
∣∣λt(r)− λτ (r)

∣∣

and it suffices to use the estimate (1.5).
Let now (t̄, r̄) be the first point of MSλ(u)(t) and put s̄ : = ϕλ(r̄). For all τ ∈ [0, t]

and r > r̄ we have λτ (r) = λ(r), hence ϕλτ (r̄) = s̄. The identities

µ(s̄) + s̄− w(τ) = b
(
λ(r̄) + r̄ − u(τ)

)
+

∫ r̄

0

(
g(λ(r̄) + r̄ − %, %)− g(λτ (%), %)

)
d%,

µ(s̄)− s̄− w(τ) = b
(
λ(r̄)− r̄ − u(τ)

)
+

∫ r̄

0

(
g(λ(r̄)− r̄ + %, %)− g(λτ (%), %)

)
d%

yield s̄ = mµ(w)(t̄), |w(τ) − µ(s̄)| 6 s̄ for τ ∈ [0, T ], hence
(
t̄, ϕλt(r̄)

)
is the first

point of MSµ(w)(t). For s > s̄ we obviously have µτ (s) = µ(s) = ps(µ,w)(τ) for all
τ ∈ [0, t], for s < s̄ implication (3.20) applied to λt̄, µt̄ entails µt̄(s) = ps(µ,w)(t̄). We
now repeat the induction procedure over tj from the proof of Proposition 3.3. Details
are left to the reader. ¤
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Exercise 3.15. Let Fϕ be the Prandtl-Ishlinskii operator (3.2) with h′ ∈ L1
loc(0,∞)

and let W be the Preisach operator (3.13). Let the function ψ in (3.11) satisfy As-
sumption 3.10 and identity (3.21) and let f be given by (3.17). Let λ ∈ Λ0 be given
and let µ be as in Lemma 3.13. Put f̃(z, r) :=

∫ z

0
ϕ
(

∂f
∂v (v, r)

)
dv, g̃(z, r) : = ∂2f̃

∂r2 − ∂2f̃
∂z2 .

Let W̃ be the Preisach operator W̃(λ, u) : =
∫∞
0

g̃
(
pr(λ, u), r

)
dr.

Prove the superposition formula

(3.26) F
ϕ

(
µ, bu +W(λ, u)

)
= abu + W̃(λ, u)

for all u ∈ C([0, T ]).

H i n t . Use Proposition 3.14, formula (3.6) and the identities

−
∫ ∞

0

∂µt(s)
∂s

h(s) ds = −
∫ ∞

0

(∂2f

∂v2
(v, r) +

∂2f

∂r∂v
(v, r)

∂λt(r)
∂r

)
h
(∂f

∂v
(v, r)

)∣∣∣
v=λt(r)

dr,

∂

∂r

(∂f̃

∂r
(v, r)

∣∣∣
v=λt(r)

)
=

∂2f̃

∂r2
(v, r) +

∂2f

∂r∂v
(v, r)

∂λt(r)
∂r

h
(∂f

∂v
(v, r)

)∣∣∣
v=λt(r)

.

It can be shown that the superposition of two Preisach operators W1 ◦W2 is in
general not Preisach. Moreover, the inverse of bI +W(λ, ·), where I is the identity, is
Preisach if and only if W is Prandtl-Ishlinskii. We do not pursue this question here;
an interested reader can find more information in Krejč́ı (1991/a). On the other hand,
we prove below that the conditions in Proposition 3.14 are sufficient for the continuous
invertibility of the operator bI +W(λ, ·) in C([0, T ]).

Lemma 3.16. Let Assumption 3.10 hold and let λ ∈ Λ0, b > b0 be given. For

u1, u2 ∈ C([0, T ]) put wi : = bui +W(λ, ui), i = 1, 2. Then we have

|u1 − u2|∞ 6 2
b− b0

|w1 − w2|∞.

P r o o f. We choose t ∈ [0, T ] such that for instance u1(t)− u2(t) = |u1− u2|∞ > 0
and put

r∗ : = inf{r > 0; pr(λ, u1)(t) 6 pr(λ, u2)(t)},
s∗ : =

∂f

∂v
(v, r∗)

∣∣∣
v=pr∗ (λ,u1)(t)

=
∂f

∂v
(v, r∗)

∣∣∣
v=pr∗ (λ,u2)(t)

,

where f is given by (3.17). For µ defined by (3.19) we obtain from Proposition 3.14

ps∗(µ,wi)(t) =
∂f

∂r
(v, r∗)

∣∣∣
v=pr∗ (λ,ui)(t)

+
∫ ∞

r∗
g
(
pr(λ, ui)(t), r

)
dr, i = 1, 2.



76

The identities

w1(t)− w2(t) = b
(
u1(t)− u2(t)

)
+

∫ ∞

0

(
g
(
pr(λ, u1)(t), r

)− g
(
pr(λ, u2)(t), r

))
dr,

ps∗(µ, w1)(t)− ps∗(µ,w2)(t) =
∫ ∞

r∗

(
g
(
pr(λ, u1)(t), r

)− g
(
pr(λ, u2)(t), r

))
dr

entail

b
(
u1(t)− u2(t)

)
+

∫ r∗

0

∫ pr(λ,u1)(t)

pr(λ,u2)(t)

ψ(v, r) dv dr 6

6 w1(t)− w2(t) +
∣∣ps∗(µ,w1)(t)− ps∗(µ,w2)(t)

∣∣.

The assertion now follows from Assumption 3.10 and inequality (2.9). ¤

Theorem 3.17. Let Assumption 3.10 be fulfilled and let λ ∈ Λ0, b > b0 be given.

Then the operator bI +W(λ, ·) : C([0, T ]) → C([0, T ]) is invertible and its inverse is

Lipschitz continuous.

Theorem 3.17 will follow from Lemma 3.16 if we prove that for every w from a
dense subset of C([0, T ]) there exists u ∈ C([0, T ]) such that w = bu + W(λ, u).
A suitable candidate seems to be the subspace Cpm([0, T ]) ⊂ C([0, T ]) of continuous
piecewise monotone functions. We first investigate the behavior of the Preisach operator
on locally monotone inputs.

Lemma 3.18. Let Assumption 3.10 hold and let b > b0 be given. For λ ∈ Λ0 and

v ∈ R1 put

(3.27) Φλ(v) : =

{ ∫ v

λ(0)

[
b +

∫ mλ(z)

0
ψ(z − r, r) dr

]
dz if v > λ(0),

− ∫ λ(0)

v

[
b +

∫ mλ(z)

0
ψ(z + r, r) dr

]
dz if v < λ(0).

Then we have

(3.28) (b− b0)(v2 − v1) 6 Φλ(v2)− Φλ(v1) 6
(
b + κ(v1, v2)

)
(v2 − v1)

for all v1 < v2, where κ(v1, v2) : = max
{∫ mλ(vi)

0
β1(t) dr; i = 1, 2

}
.

Inequality (3.28) is a straightforward consequence of Assumption 3.10. Lemma 3.19
below shows the connection to the Preisach operator W.
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Lemma 3.19. Let Assumption 3.10 hold and let λ ∈ Λ0, b > b0 and u ∈ C([0, T ]) be

given such that u is monotone (nondecreasing or nonincreasing) in an interval [t̂, t̂+δ].
Put w : = bu + W(λ, u), λ̂(r) : = pr(λ, u)(t̂) for r > 0. Then for all t ∈ [t̂, t̂ + δ] we

have

(3.29) w(t) = w(t̂) + Φλ̂

(
u(t)

)
.

P r o o f. The semigroup property I(1.27) entails that we are in the situation of
Lemma 2.4, i.e. putting û(τ) := u(τ + t̂) for τ ∈ [0, δ] we have pr(λ, u)(τ + t̂) =
pr(λ̂, û)(τ), hence

pr(λ, u)(t) =





λ̂(r) for r > %(t),

u(t)− r for r < %(t) if u increases,

u(t) + r for r < %(t) if u decreases,

where %(t) := mλ̂(u(t)). This yields

w(t) = w(t̂) + b
(
u(t)− u(t̂)

)
+

{ ∫ %(t)

0

(
g(u(t)− r, r)− g(λ̂(r), r)

)
dr if u increases,

∫ %(t)

0

(
g(u(t) + r, r)− g(λ̂(r), r)

)
dr if u decreases,

and (3.29) follows easily. ¤

We now pass to the proof of Theorem 3.17.

P r o o f of Theorem 3.17. Let w ∈ Cpm([0, T ]) be monotone in each interval
[tj−1, tj ] of the partition 0 = t0 < t1 < . . . < tN = T . We construct a function
u ∈ Cpm([0, T ]) successively by putting

u(0) : = Φ−1
λ

(
w(0)− bλ(0)−

∫ ∞

0

g
(
λ(r), r

)
dr

)
,

u(t) : = Φ−1
λj

(
w(t)− w(tj)

)
for t ∈]tj , tj+1], j = 0, . . . , N − 1,

where λj(r) : = pr(λ, u)(tj) for r > 0. From Lemma 3.19 we infer w = bu +W(λ, u).
Since Cpm([0, T ]) is dense in C([0, T ]), Theorem 3.17 follows from Lemma 3.16. ¤

The remaining part of this section is devoted to a generalization of the Preisach model
for ferromagnetism.
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The Della Torre model

The model of Preisach (1935) was originally intended to describe the dependence of
the magnetization M in a ferromagnetic medium on the intensity of the magnetic field
H. The material is represented as a homogeneous mixture of dipoles with two possible
orientations ±1 obeying the switching rule (3.9) and distributed with a nonnegative
density ψ(v, r) as in formula (3.10). We have seen that the Preisach model leads to the
constitutive equation M = W(λ,H) in operator form with a given initial configuration
λ ∈ Λ0.

Della Torre (1966) proposed to include a feedback influence into the Preisach model
by assuming a modified implicit constitutive law (“moving model”)

(3.30) M = W(λ,H + αM)

with a real parameter α.
Under the hypotheses of Theorem 3.17 with β0 = 0 and β1 ∈ L1(0,∞), b1(∞) : =∫∞

0
β1(r) dr < ∞ we can rewrite identity (3.30) in input-output form by introducing

an auxiliary quantity Z : = H + αM . Then M = W(λ,Z) and H = Z − αW(λ,Z).
Theorem 3.17 ensures that for α < 1

b1(∞) the operator I − αW(λ, ·) is invertible

and its inverse
(
I − αW(λ, ·))−1 is Lipschitz in C([0, T ]). We conclude that (3.30) is

equivalent to

(3.31) M = W
α

(λ,H),

where Wα(λ, ·) : = W(λ, ·)◦(I−αW(λ, ·))−1 is a locally Lipschitz operator in C([0, T ]).
We immediately see that Wα is a rate independent operator, but it cannot be repre-

sented in general by a Preisach operator (see Brokate (1992)) except for the trivial case
where W is Prandtl-Ishlinskii.

While Preisach operators are thermodynamically consistent due to their rheological
structure, this is not obvious for the Della Torre operator Wα. We shall see in the next
section (Corollary 4.4) that a suitable choice of potential energy Uα for the constitutive
law (3.31) consists in putting

(3.32) Uα(λ,H) : = U
(
λ,

(
I − αW(λ, ·))−1(H)

)
− α

2
(
W
α

(λ,H)
)2

,

where U is the Preisach potential energy (3.15).
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II.4 Monotonicity and energy inequalities

This section is the most important with respect to applications. The energy estimates
and monotonicity relations that we derive here constitute the main tool for solving
hyperbolic equations with hysteresis operators in the next chapter. The interesting
fact that introducing hysteresis into hyperbolic equations makes the problem easier
originates in particular dissipation properties of hysteresis operators. We already noticed
in Theorem I.3.16 that besides the rheological potential energy the stop operator admits
a second order potential energy. We shall see that in the scalar case, the dissipation of
the second order energy is related to the convexity of hysteresis loops in the input-output
diagram and we derive a lower bound for the dissipation rate which is proportional to
the cube of the input derivative. We first use Proposition 2.8 to clarify how Preisach
type operators act on absolutely continuous inputs.

Lemma 4.1. Let a ∈ L1
loc(R2

+) be given such that the following conditions are

fulfilled.

(i) The function v 7→ a(v, r) is continuous for a.e. r > 0,

(ii) there exist c ∈ L∞loc(R1) and β1 ∈ L1
loc(0,∞) such that for a.e. r > 0 and all

v ∈ R1 we have

|a(v, r)| 6 c(v)β1(r).

Let further pr be the play defined by (2.6). For λ ∈ Λ0, u ∈ W 1,1(0, T ), r > 0
and t ∈ [0, T ] put ξr(t) : = pr(λ, u)(t) and w(t) :=

∫∞
0

∫ ξr(t)

0
a(v, r) dv dr. Then w ∈

W 1,1(0, T ) and for a.e. t ∈]0, T [ we have

(4.1) ẇ(t) =
∫ ∞

0

ξ̇r(t) a(ξr(t), r) dr.

P r o o f. With the notation of Corollary 2.9 put

(4.2) Lλ(u) : =
{
t ∈ L; u̇(t) = 0

} ∪ {
t ∈ L∗; %0(t) = %1(t)

}
.

Then meas
(
]0, T [\Lλ(u)

)
= 0 and for every t ∈ Lλ(u) we can pass to the limit as

δ → 0 in the identity

1
δ

(
w(t + δ)− w(t)

)
=

∫ ∞

0

1
δ

∫ ξr(t+δ)

ξr(t)

(
a(v, r)− a

(
ξr(t), r

))
dv dr +

+
∫ ∞

0

1
δ

(
ξr(t + δ)− ξr(t)

)
a
(
ξr(t), r

)
dr

using Lebesgue’s Dominated Convergence Theorem (Proposition V.1.13) and estimate
(1.5). ¤
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In the sequel we restrict the class of Preisach operators (3.13) by requiring more
regularity. In addition to Assumption 3.10 we assume

(i)
∂ψ

∂v
∈ L∞loc(R2

+)(4.3)

(ii) ψ(v, r) > 0 a.e.,

We immediately see that under the hypothesis (4.3)(i) the Preisach operator is locally
Lipschitz with respect to the norm in W 1,1(0, T ) in the following sense.

Proposition 4.2. Let ψ be a function fulfilling (4.3)(i) and Assumption 3.10. For

a given R > 0 put CR : = sup ess
{

∂ψ
∂v (v, r); |v|+ r 6 R

}
. Then for every λ1, λ2 ∈ ΛR

and u1, u2 ∈ W 1,1(0, T ) such that max
{
|ui|∞,

∫ T

0
|u̇i(t)|dt; i = 1, 2

}
6 R the outputs

wi : = W(λi, ui), i = 1, 2 of the Preisach operator (3.13) satisfy

∫ T

0

|ẇ1(t)− ẇ2(t)|dt 6 b1(R)
∫ T

0

|u̇1(t)− u̇2(t)| dt +(4.4)

+
(
b1(R) + R2CR

)(|λ1 − λ2|∞ + |u1 − u2|∞
)
.

P r o o f. Putting ξi
r : = pr(λi, ui) for r > 0, i = 1, 2 we obtain from Lemma 4.1

|ẇ1(t)− ẇ2(t)| 6
∫ R

0

∣∣ξ̇1
r (t)− ξ̇2

r (t)
∣∣ ψ(ξ1

r (t), r) dr +

+
∫ R

0

∣∣ξ̇2
r (t)

∣∣ ∣∣ψ(
ξ1
r (t), r

)− ψ
(
ξ2
r (t), r

)∣∣ dr

and the assertion follows from Proposition 1.1 and Assumption 3.10. ¤

Thermodynamical consistency

We now give a rigorous proof of the thermodynamical consistency of the Preisach
model which, as it was mentioned in Remark 3.9, formally follows from the rheological
construction. Recall that the Preisach potential energy U is given by (3.15), i.e.

(4.5) U(λ, u) : =
∫ ∞

0

G
(
pr(λ, u), r

)
dr,

where G(v, r) = vg(v, r) − ∫ v

0
g(z, r)dz =

∫ v

0
zψ(z, r)dz. We further introduce the

dissipation operator

(4.6) D(λ, u) :=
∫ ∞

0

rg
(
pr(λ, u), r

)
dr.
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Theorem 4.3. Let the Preisach operator W satisfy (4.3)(i),(ii) and Assumption

3.10 and let R > 0 be given. For arbitrary λ ∈ ΛR and u ∈ W 1,1(0, T ) such that

|u|∞ 6 R put w : = W(λ, u), U : = U(λ, u), D : = D(λ, u). Then we have

(i) U(t) > 1
2b1(R)w

2(t) ∀t ∈ [0, T ],

(ii) ẇ(t)u(t)− U̇(t) = |Ḋ(t)| a.e.

P r o o f. For a.e. (v, r) ∈ R2
+ we have by Assumption 3.10 vg(v, r) 6 v2β1(r),

consequently
sign(v)g(v, r)ψ(v, r) 6 β1(r)|v|ψ(r, v).

Integration with respect to v of this last inequality yields 1
2g2(v, r) 6 β1(r)G(v, r) a.e.,

and using Hölder’s inequality

w2(t) 6
(∫ R

0

1
β1(r)

g2
(
pr(λ, u)(t), r

)
dr

)( ∫ R

0

β1(r)dr
)

6 2U(t)b1(R)

we obtain (i).
Formula (ii) immediately follows from Lemma 4.1 and identity (1.8). Note that for

each t ∈ Lλ(u) (cf. (4.2)) all nonzero derivatives ξ̇r(t) have the same sign independent
of r as a consequence of Proposition 2.8. ¤

Theorem 4.3 enables us to prove that also the Della Torre model (3.30) - (3.32) is
thermodynamically consistent.

Corollary 4.4. Let the hypotheses of Theorem 4.3 hold and assume α1 : = 1
b1(∞) >

0. For arbitrary 0 6 α < α1, λ ∈ Λ0 and u ∈ W 1,1(0, T ) put

wα : = W
α

(λ, u) = W
(
λ, (I − αW(λ, ·))−1(u)

)
,

Uα : = U
α

(λ, u) = U
(
λ, (I − αW(λ, ·))−1(u)

)− α

2
w2

α,

Dα : = D
α

(λ, u) = D
(
λ, (I − αW(λ, ·))−1(u)

)
,

where U ,D are defined by (4.5), (4.6). Then we have

(i) Uα(t) > α1−α
2 w2

α(t) ∀t ∈ [0, T ],
(ii) ẇα(t)u(t)− U̇α(t) = |Ḋα(t)| a.e.

P r o o f. By Theorem 3.17 the operator I −αW(λ, ·) is invertible and its inverse is
Lipschitz in C([0, T ]). Put zα : =

(
I − αW(λ, ·))−1(u). Similarly as in Remark 1.3 we

obtain from Lemma 3.16 the estimate

|zα(t)− zα(s)| 6 2α1

α1 − α

∫ t

s

|u̇(τ)|dτ for all 0 < s < t < T

analogous to (1.5). We have in particular zα ∈ W 1,1(0, T ) and using zα as input in
the identities wα = W(λ, zα), u = zα − αwα, Uα = U(λ, zα)− α

2 w2
α, Dα = D(λ, zα) we

obtain the assertion directly from Theorem 4.3. ¤
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Remark 4.5. We see that for the models of Preisach and Della Torre the dissipation
rate q̇ in formula I(1.2) is given in terms of hysteresis operators of the same kind.
For the sake of completeness we give explicit energy dissipation formulas for Prandtl-
Ishlinskii operators (3.2). We restrict ourselves to the physically natural case where ϕ

is convex (operators of play type) or concave (operators of stop type).

Proposition 4.6. Let R, λ, u be as in Theorem 4.3 and let h ∈ BVloc(0,∞) be a

given nonnegative function. For r > 0 put ξr : = pr(λ, u), xr : = u − ξr. Then the

following two cases are thermodynamically consistent.

A. (Operators of play type) Assume that h is nondecreasing and put

w : = h(0)u +
∫ ∞

0

ξr dh(r), U : =
1
2
h(0)u2 +

1
2

∫ ∞

0

ξ2
r dh(r), D : =

∫ ∞

0

rξr dh(r).

Then we have

(4.8) ẇ(t)u(t)− U̇(t) = |Ḋ(t)| a.e.

B. (Operators of stop type) Let h be nonincreasing, and put

w : = h(∞)u−
∫ ∞

0

xr dh(r), U : =
1
2
h(∞)u2− 1

2

∫ ∞

0

x2
r dh(r), D : = −

∫ ∞

0

rξr dh(r).

Then we have

(4.9) w(t)u̇(t)− U̇(t) = |Ḋ(t)| a.e.

P r o o f. Lemma 4.1 is applicable here due to the linear dependence of the operator
on the play system. The rest of the proof is a special case of Theorem 4.3. ¤

Remark 4.7. Notice that the convexity of ϕ is not necessary for the thermodynam-
ical consistency of the Prandtl-Ishlinskii model. From Proposition 2.8 we easily derive
the necessary and sufficient condition in the form

∫ R

0
r dh(r) > 0 for operators of play

type and
∫ R

0
r dh(r) 6 0 for operators of stop type for every R > 0.

Thermodynamically consistent “Preisach models of stop type” correspond for instance
to operators of the form I − αW(λ, ·) or

(
I + αW(λ, ·))−1 with W,α satisfying the

assumptions of Corollary 4.4. The derivation of explicit energy inequalities in these
cases is left to the reader.
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Monotonicity

It is obvious that hysteresis operators are never monotone with respect to the scalar
product in L2. On the other hand, Proposition 4.8 below states that Preisach operators
are locally monotone (“piecewise monotone” in the terminology of Visintin (1994)) under
natural assumptions.

Proposition 4.8. Let the Preisach operator W satisfy (4.3)(i) and Assumption

3.10. Let b > b0, R > 0, λ ∈ ΛR and u ∈ W 1,1(0, T ) be given such that |u|∞ 6 R.

Put w : = bu +W(λ, u). Then

(4.10) (b− b0)u̇2(t) 6 ẇ(t)u̇(t) 6
(
b + b1(R)

)
u̇2(t) a.e.

P r o o f. By I(3.22)(ii) we have 0 6 ξ̇r(t)u̇(t) 6 u̇2(t) and (4.10) follows from Lemma
4.1. ¤

We immediately check that Della Torre’s operator is locally monotone in the above
sense. Another important concept of monotonicity based on inequality (1.4) is typical
for Prandtl-Ishlinskii operators and cannot be extended to more general Preisach-type
models. In fact, as a straightforward consequence of inequality (1.4) and Lemma 4.1 we
have

Theorem 4.9. Let h : [0,∞[→ [0,∞[ be a monotone function. For u1, u2 ∈
W 1,1(0, T ), λ1, λ2 ∈ Λ0 and r > 0 put ξ

(i)
r : = pr(λi, ui), x

(i)
r : = ui − ξ

(i)
r , wi : =

Fϕ(λi, ui) = h(0)ui +
∫∞
0

ξ
(i)
r dh(r), i = 1, 2, ũ := u1 − u2, w̃ := w1 − w2, ξ̃r :=

ξ
(1)
r − ξ

(2)
r , x̃r := x

(1)
r − x

(2)
r . Then

˙̃w(t)ũ(t) > 1
2

d

dt

[
h(0)ũ2(t) +

∫ ∞

0

ξ̃2
r (t) dh(r)

]
a.e. if h is nondecreasing,(4.11)

w̃(t) ˙̃u(t) > 1
2

d

dt

[
h(∞)ũ2(t)−

∫ ∞

0

x̃2
r(t) dh(r)

]
a.e. if h is nonincreasing.(4.12)

The case distinction in Theorem 4.9 corresponds again to operators of play type
and stop type, respectively. We now prove that for strictly convex (strictly concave)
generators ϕ inequalities (4.11), (4.12) are “almost strict”.

Theorem 4.10. Let the hypotheses of Theorem 4.9 be fulfilled and let h be strictly

monotone (increasing or decreasing). Suppose that the identity
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(i)
∫ T

0

˙̃w(t)ũ(t) dt =
1
2
h(0)

(
ũ2(T )− ũ2(0)

)
+

1
2

∫ ∞

0

(
ξ̃2
r (T )− ξ̃2

r (0)
)
dh(r)(4.13)

if h increases,

(ii)
∫ T

0

˙̃u(t)w̃(t) dt =
1
2
h(∞)

(
ũ2(T )− ũ2(0)

)− 1
2

∫ ∞

0

(
x̃2

r(T )− x̃2
r(0)

)
dh(r)

if h decreases

holds. Then

(4.14) u1(t)− u2(t) = λ0
1

(
R0(t)

)− λ0
2

(
R0(t)

)
,

where λ0
i (r) : = ξ

(i)
r (0), i = 1, 2 and R0(t) : = max{M(λ0

i , ui, t); i = 1, 2}.

P r o o f. Assumption (4.13) and inequalities (4.11), (4.12) yield respectively ei-
ther ˙̃w(t)ũ(t) = 1

2
d
dt

[
h(0)ũ2(t) +

∫∞
0

ξ̃2
r (t) dh(r)

]
or ˙̃u(t)w̃(t) = 1

2
d
dt

[
h(∞)ũ2(t)−∫∞

0
x̃2

r(t) dh(r)
]

for a.e. t ∈ ]0, T [, hence

(4.15)
∫ ∞

0

(
ξ̇(1)
r (t)− ξ̇(2)

r (t)
)(

x(1)
r (t)− x(2)

r (t)
)
dh(r) = 0 a.e.

Let now r > 0 be arbitrarily fixed. Analogously as in Corollary 2.9 we denote by L

the set of Lebesgue points of both u̇1, u̇2, and define the sets L∗i : = {t ∈ L; u̇i(t) 6=
0}, L∗ir : =

{
t ∈ L∗i ; r ∈ [

%
(i)
0 (t), %(i)

1 (t)
]}

, i = 1, 2. For each t ∈ L \ (L∗1r ∪ L∗2r )
such that (4.15) holds we find ε(t) > 0 such that ξ̇

(i)
% (t) = ξ̇

(i)
r (t), i = 1, 2 for all

% ∈]r − ε(t), r + ε(t)[. Inequality (1.4) and the strict monotonicity of h then imply

(
ξ̇(1)
r (t)− ξ̇(2)

r (t)
)(

x(1)
r (t)− x(2)

r (t)
)

= 0 a.e.

We thus verified that condition (i) of Proposition 2.10 is fulfilled and (4.14) follows
from Proposition 2.10 (iii) and Remark 2.11. ¤

Corollary 4.11. Let u1, u2 be absolutely continuous ω-periodic functions and let

w1, w2 be as in Theorem 4.10. Assume that h is strictly monotone and

∫ 2ω

ω

(
u̇1(t)− u̇2(t)

)(
w1(t)− w2(t)

)
dt = 0.

Then u1(t)− u2(t) = const. for all t ∈ R1.

P r o o f. The assertion follows from Corollary 2.7 and Theorem 4.10, where R0(t)
is constant in [ω,∞[ by definition (2.12) of M(λ, u, t). ¤
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The Prandtl-Ishlinskii operator exhibits a two-level monotonicity on periodic func-
tions: under the hypotheses of Corollary 4.11 with λ1 = λ2 we have

(
w1(t)− w2(t)

)(
u1(t)− u2(t)

)
> 0 ∀t ∈ [ω,∞[.

We formulate this result more precisely in the following way.

Proposition 4.12. Let λ ∈ ΛR and a Prandtl-Ishlinskii operator Fϕ satisfying the

hypotheses of Theorem 4.10 be given. Let u be an absolutely continuous ω-periodic

function and for c ∈ R1 put ϑ(u, c) := Fϕ(λ, u(·)+ c)(ω)−Fϕ(λ, u)(ω). Then for every

c ∈ R1 and t ∈ [ω,∞[ we have Fϕ(λ, u(·) + c)(t)− Fϕ(λ, u)(t) = ϑ(u, c) and putting

R̂ := max
{
R, |u|∞ + max{|c1|, |c2|}

}
we have for all c1 < c2

(i) 2ϕ
(c2 − c1

2
)

6 ϑ(u, c2)− ϑ(u, c1) 6 h(R̂)(c2 − c1) if h increases,(4.16)

(ii) 2ϕ
(c2 − c1

2
)

> ϑ(u, c2)− ϑ(u, c1) > h(R̂)(c2 − c1) if h decreases.

P r o o f. For c ∈ R1 put uc(t) := u(t) + c, ξc
r := pr(λ, uc). From inequality (1.4)

we obtain ∂
∂t |ξc2

r (t) − ξc1
r (t)|2 6 0 a.e. for all r > 0 and c2 > c1. The functions ξc

r

are ω-periodic for t > ω by Corollary 2.7, hence q(r, c) := ξc
r(t)− ξ0

r (t) is independent
of t for t > ω. By (2.6), (2.7) we have 0 6 ξc2

r (0) − ξc1
r (0) 6 c2 − c1, hence 0 6

q(r, c2)− q(r, c1) 6 c2 − c1 for all r > 0, c2 > c1. On the other hand, by Corollary 2.2
we have ξc2

r (t) − ξc1
r (t) > c2 − c1 − 2r for r ∈ [0, c2−c1

2 ] and inequalities (4.16) follow
from the identity ϑ(u, c) := h(0)c +

∫∞
0

q(r, c) dh(r). ¤

The Preisach operator is in general not monotone in the sense (4.11) due to the
nonlinear dependence on the play system. We nevertheless mention a weaker result.

Proposition 4.13. Let W be a Preisach operator (3.13) satisfying (4.3) and As-

sumption 3.10. For given u1, u2 ∈ W 1,1(0, T ) and λ1, λ2 ∈ Λ0 put ξ
(i)
r : = pr(λi, ui),

wi : = W(λi, ui) =
∫∞
0

g(ξ(i)
r , r) dr, i = 1, 2. Then for a.e. t ∈]0, T [ we have

(
ẇ1(t)− ẇ2(t)

)(
u1(t)− u2(t)

)
>

∫∞
0

(
ξ
(1)
r (t)− ξ

(2)
r (t)

)
∂
∂t

(
g(ξ(1)

r (t), r)− g(ξ(2)
r (t), r)

)
dr.

P r o o f. Put x
(i)
r : = ui − ξ

(i)
r for r > 0. We have ∂

∂tg(ξ(1)
r , r)(x(1)

r − x
(2)
r ) > 0,

∂
∂tg(ξ(2)

r , r)(x(2)
r − x

(1)
r ) > 0 a.e. by (4.3)(ii) and (1.1)(ii). The assertion then follows

from Lemma 4.1. ¤
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Second order energy inequalities

The concept of second order potential energy refers to geometrical properties of hys-
teresis loops rather than to the rheological structure of concrete hysteresis operators.
We therefore derive the energy inequalities for general rate-independent operators char-
acterized by the property I(1.28). We first represent rate-independent operators locally
by superposition operators.

Proposition 4.14. Let F : C([0, T ]) → C([0, T ]) be a rate-independent operator

and let u ∈ C([0, T ]) be a function which is monotone (nonincreasing or nondecreas-

ing) in [t1, t2] ⊂ [0, T ], u(ti) = ui, i = 1, 2. Then there exists a continuous func-

tion Φ : Conv{u1, u2} → R1 such that F (v)(t) = Φ
(
v(t)

)
for all t ∈ [t1, t2] and

for every function v ∈ C([0, T ]) which is monotone in [t1, t2] and v(t) = u(t) for

t ∈ [0, T ]\ ]t1, t2[. If moreover F maps W 1,1(0, T ) into W 1,1(0, T ) and is locally

monotone, then Φ is nondecreasing and absolutely continuous.

P r o o f. For u1 = u2 we have u(t) = u
(
β(t)

)
for every t ∈ [t1, t2] and every

nondecreasing mapping β of [t1, t2] onto [t1, t2], hence F (u) is constant in [t1, t2]. For
u1 6= u2 put

û(s) : =

{
u(s) for s ∈ [0, t1] ∪ [t2, T ],

u1 + (s− t1)u2−u1
t2−t1

for s ∈]t1, t2[,

α(t) : =

{
t for t ∈ [0, t1] ∪ [t2, T ],

t1 + (u(t)− u1) t2−t1
u2−u1

for t ∈]t1, t2[,

ŵ(s) : = F (û)(s) for s ∈ [0, T ].

Then u(t) = û
(
α(t)

)
and we easily check that Proposition 4.14 holds for Φ(v) : =

ŵ
(
t1 + (v − u1) t2−t1

u2−u1

)
. ¤

Remark 4.15. The function Φ in Proposition 4.14 will be called trajectory of F

along u in [t1, t2]. If moreover F is causal (cf.I(1.29)), then the assertion of Proposition
4.14 can be strengthened in the following way. For every u ∈ C([0, T ]) and t1 ∈ [0, T [
we can find a function Φ : R1 → R1 such that Φ(u(t1)) = F (u)(t1) and if a function
v ∈ C([0, T ]) satisfies v

∣∣
[0,t1]

= u
∣∣
[0,t1]

, v monotone in [t1, t1 + δ] for some δ > 0, then
for every t ∈ [t1, t1 + δ] we have F (v)(t) = Φ(v(t)). This is the case of the trajectories
Φλ of the Preisach operator given in Lemmas 3.18, 3.19.

We now recall some elementary results on monotone functions.

Lemma 4.16. Let ]a, b[⊂ R1 be a given interval and let h ∈ L∞loc(a, b) be a given

function. Then h is nondecreasing if and only if for every nonnegative function η ∈
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W 1,1(a, b) which vanishes outside a compact interval [a, b̄] ⊂]a, b[ we have

(4.17)
∫ b

a

h(v) η′(v) dv 6 0.

P r o o f. (i) Let h be nondecreasing and let η be given. For an arbitrary partition
a = v0 < v1 < . . . < vN = b̄ we define a piecewise linear approximation

(4.18) h̃(v) := h(vi−1) + (v − vi−1)
h(vi)− h(vi−1)

vi − vi−1
, v ∈ [vi−1, vi], i = 1, . . . , N.

Inequality (4.17) holds for h̃ and refining the partition we obtain an equibounded
sequence of nondecreasing functions which converges to h at each point of continuity,
so we may pass to the limit in (4.17).

(ii) Let (4.17) hold and let v1, v2 ∈]a, b[, v1 < v2 be arbitrary Lebesgue points of h.
For 0 < ε < min{1

2 (v2 − v1), v1 − a, b− v2} put

η′(v) : =





1
2ε for v ∈]v1 − ε, v1 + ε[,

− 1
2ε for v ∈]v2 − ε, v2 + ε[,

0 otherwise.

Then (4.17) yields 1
2ε

∫ v1+ε

v1−ε
h(v) dv 6 1

2ε

∫ v2+ε

v2−ε
h(v) dv for ε sufficiently small, hence

h(v1) 6 h(v2) and the proof is complete. ¤

Proposition 4.17. Let ]a, b[⊂ R1 be a bounded interval and let f ∈ L∞(a, b),
η ∈ W 1,1(a, b) be given functions, η(v) > 0 for all v ∈ [a, b].

(i) Assume that the function f(v)−Kv is nondecreasing for some K > 0. Then

∫ b

a

f(v) η′(v) dv 6 f(b−)η(b)− f(a+)η(a)−K

∫ b

a

η(v) dv,(4.19)

∫ b

a

η′(v)
f(v)

dv > η(b)
f(b−)

− η(a)
f(a+)

+ K

∫ b

a

η(v)
f2(v)

dv, provided f(a+) > 0.(4.20)

(ii) Assume that the function f(v) + Kv is nonincreasing for some K > 0. Then

∫ b

a

f(v) η′(v) dv > f(b−)η(b)− f(a+)η(a) + K

∫ b

a

η(v) dv,(4.21)

∫ b

a

η′(v)
f(v)

dv 6 η(b)
f(b−)

− η(a)
f(a+)

−K

∫ b

a

η(v)
f2(v)

dv, provided f(b−) > 0.(4.22)
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P r o o f. Part (ii) is obtained from (i) by symmetry. It therefore suffices to assume
that the function

(4.23) h(v) : =





f(v)−Kv, v ∈]a, b[,

f(b−)−Kb, v > b,

f(a+)−Ka, v 6 a

is nondecreasing in R1, and inequality (4.19) directly follows from (4.17) with η piece-
wise linearly extended to a function satisfying the hypotheses of Lemma 4.16 in a suf-
ficiently large interval. A similar argument can be applied to (4.20) provided we prove
that the function g(v) := 1

f(v) +K
∫ v

a
ds

f2(s) is nonincreasing in ]a, b[. This can be done
in the following way. Let h be given by (4.23). We construct piecewise linear approxi-
mations h̃ in [a, b] as in (4.18) and put f̃(v) := h̃(v)+Kv, g̃(v) : = 1

f̃(v)
+K

∫ v

a
ds

f̃2(s)
.

We have f̃ ′(v) > K a.e., hence g̃′(v) > 0 a.e. and passing to the limit as in the proof
of Lemma 4.16 we obtain the assertion. ¤

We are now ready to give a precise formulation of the second order energy inequalities.
Similarly as in Proposition 4.6, we consider separately the operators of “stop type” and
“play type” in Theorems 4.18, 4.19, respectively.

Theorem 4.18. Let F : C([0, T ]) → C([0, T ]) be a continuous rate independent

operator. Assume that there exist constants R > 0, bR > aR > 0, KR > 0 such that

for every u ∈ C([0, T ]), |u|∞ 6 R the trajectory Φ of F along u in a monotonicity

interval [t1, t2] has the following properties.

(i) Φ is absolutely continuous in J := Conv{u(t1), u(t2)}, aR 6 Φ′(v) 6 bR for a.e.

v ∈ IntJ ,

(ii) if u is nondecreasing in [t1, t2], then Φ(v) + 1
2KRv2 is concave in J ,

(iii) if u is nonincreasing in [t1, t2], then Φ(v)− 1
2KRv2 is convex in J .

Then for every u ∈ W 2,1(0, T ), |u|∞ 6 R we have

(i) w := F (u) ∈ W 1,∞(0, T ),(4.24)

(ii) the function P (t) : =
1
2
ẇ(t)u̇(t) belongs to BV (0, T ) and

aR

2
u̇2(t) 6 P (t) 6 bR

2
u̇2(t) a.e.,

(iii)
∫ t

s

ẇ(τ)ü(τ)dτ − P (t) + P (s) > 1
2
KR

∫ t

s

|u̇(τ)|3dτ

for almost all 0 < s < t < T.

Theorem 4.19. Let F : C([0, T ]) → C([0, T ]) be a continuous rate independent

operator. Assume that there exist constants R > 0, bR > aR > 0, KR > 0 such that
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for every u ∈ C([0, T ]), |u|∞ 6 R the trajectory Φ of F along u in a monotonicity

interval [t1, t2] has the following properties.

(i) Φ is absolutely continuous in J := Conv{u(t1), u(t2)}, aR 6 Φ′(v) 6 bR for a.e.

v ∈ IntJ ,

(ii) if u is nondecreasing in [t1, t2], then Φ(v)− 1
2KRv2 is convex in J ,

(iii) if u is nonincreasing in [t1, t2], then Φ(v) + 1
2KRv2 is concave in J .

Let u ∈ W 1,∞(0, T ) be a given function such that |u|∞ 6 R and w := F (u) ∈
W 2,1(0, T ). Then (4.24)(ii) holds and

(4.25)
∫ t

s

ẅ(τ)u̇(τ)dτ − P (t) + P (s) > 1
2
KR

∫ t

s

|u̇(τ)|3dτ

for almost all 0 < s < t < T .

Remark 4.20.
(i) Trajectories of a hysteresis operator is precisely what we observe on a hysteresis

diagram. A hysteresis loop is formed by one trajectory along an increasing input and
one along a decreasing input. Theorems 4.18, 4.19 concern the situation where the
part of the plane contained in the interior of each sufficiently small closed hysteresis
loop is a convex set (see Fig. 10). The two cases differ only by the orientation of the
boundary analogously as on Fig. 3. In another context Krasnosel’skii and Pokrovskii
(1983) similarly introduce hysterons with positive or negative spin.

(ii) We observe an analogy between (4.24)(iii) and (4.9), and between (4.25) and
(4.8). This is why we call (4.24)(iii), (4.25) “second order energy inequalities” and their
right-hand side term 1

2KR|u̇(t)|3 “lower bound for the dissipation rate”.

u

w

� u

w

�
Fig. 10: operators of stop type operators of play type
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We postpone the proof of Theorems 4.18, 4.19 and verify first that they can be applied
to hysteresis operators introduced in Sect. II.3.

Proposition 4.21. Let h ∈ BVloc(0,∞) be a given nonnegative function and let

F := Fϕ(λ0, ·) be the Prandtl-Ishlinskii operator (3.2) for some R > 0 and λ0 ∈ ΛR.

Put

H+(R) := sup
{

h(b)− h(a)
b− a

; 0 < a < b < R

}
,

H−(R) := inf
{

h(b)− h(a)
b− a

; 0 < a < b < R

}
.

If H+(R) 6 0, then the hypotheses of Theorem 4.18 are satisfied for KR : = − 1
2H+(R).

If H−(R) > 0, then the hypotheses of Theorem 4.19 are satisfied for KR : = 1
2H−(R).

P r o o f. Let u ∈ C([0, T ]) be given, |u|∞ 6 R. At each time t the configuration
λ(r) : = pr(λ0, u)(t) satisfies λ ∈ Λ0, λ(r) = 0 for r > R. We are in the situation of
Lemmas 3.18, 3.19, hence all trajectories of Fϕ(λ0, ·) have the form analogous to (3.27)

(4.26) Φ(v) = Φ
(
λ(0)

)
+

{ ∫ v

λ(0)
h
(
mλ(s)

)
ds for v > λ(0),

− ∫ λ(0)

v
h
(
mλ(s)

)
ds for v < λ(0),

and we immediately see that Φ satisfies condition (i) of Theorems 4.18, 4.19. Assume
now H−(R) > 0 and put KR : = 1

2H−(R). We have to prove

(4.27)

{
Ψ+(v) : = Φ(v)− 1

2KRv2 is convex in [λ(0), R],

Ψ−(v) : = Φ(v) + 1
2KRv2 is concave in [−R, λ(0)].

The functions h(r)− 2KRr, r − λ(r), r + λ(r) are nondecreasing, hence also

ζ+(r) := (h(r)− 2KRr) + KR

(
r − λ(r)

)
,

ζ−(r) := (h(r)− 2KRr) + KR

(
r + λ(r)

)
.

are nondecreasing and we have Ψ′±(v) = ζ±
(
mλ(v)

)
a.e. Since mλ is increasing in

[λ(0),∞[ and decreasing in ]−∞, λ(0)], we immediately obtain (4.27). The proof can
easily be adapted to the case H+(R) 6 0. We leave the details to the reader. ¤

Proposition 4.22. Let W be a Preisach operator satisfying Assumption 3.10 and

(4.3). Assume that there exists % > 0 such that

(4.28) A% : = inf ess{ψ(v, r); |v|+ r 6 %} > 0.

Then there exists R > 0 such that for every λ0 ∈ ΛR and b > 0 the operator

bI +W(λ0, ·) and the Della Torre operator bI +Wα(λ0, ·) for α > 0 sufficiently small

satisfy the hypotheses of Theorem 4.19.
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P r o o f. We choose R ∈]0, %[ sufficiently small such that

KR : =
1
2
AR −RCR > 0,

where CR is defined in Proposition 4.2. Lemmas 3.18, 3.19 for b0 = 0 and Assumption
3.10 entail that the trajectories of bI +W satisfy condition (i) of Theorem 4.19 with
aR = b and bR = b + b1(R). The proof for bI +W will be complete if we prove that
for every λ ∈ ΛR the trajectory (3.27) has the property (4.27).

We have Φ′λ(v) −KRv = ζ̃+

(
mλ(v)

)
for a.e. v > λ(0), Φ′λ(v) + KRv = ζ̃−

(
mλ(v)

)

for a.e. v < λ(0), where

ζ̃+(s) : = b +
∫ s

0

ψ
(
λ(s) + s− r, r

)
dr −KR

(
s + λ(s)

)
,

ζ̃−(s) : = b +
∫ s

0

ψ
(
λ(s)− s + r, r

)
dr −KR

(
s− λ(s)

)
.

For 0 < s1 < s2 < R we have by hypothesis

ζ̃+(s2)− ζ̃+(s1) =
∫ s2

s1

ψ
(
λ(s2) + s2 − r, r

)
dr −KR

(
λ(s2) + s2 − λ(s1)− s1

)
+

+
∫ s1

0

[
ψ

(
λ(s2) + s2 − r, r

)− ψ
(
λ(s1) + s1 − r, r

)]
dr

>
(
AR − 2(RCR + KR)

)
(s2 − s1) > 0

and analogously for ζ̃−, hence ζ̃± are nondecreasing and we argue as in the proof of
Theorem 4.21.

We similarly prove that the trajectories of the operator I − αW(λ, ·) are uniformly
concave if u increases and uniformly convex if u decreases. Since the trajectories of the
inverse operator are obtained by inversion of trajectories and superposition of operators
corresponds to superposition of trajectories, we obtain the assertion for the Della Torre
operator. ¤

The rest of this section is devoted to the proofs of Theorems 4.18, 4.19.

P r o o f of Theorem 4.18. For every piecewise linear approximation ũ of u and
almost every τ ∈]0, T [ we have by Proposition 4.14 |F (̇ũ)(τ)| 6 bR| ˙̃u(τ)|. Passing to
the limit we obtain |w(β) − w(α)| 6 bR

∫ β

α
|u̇(t)| dτ for every 0 < α < β < T , hence

w is Lipschitz. The properties of Φ imply the upper and lower bound for P (t). On
the other hand, if we prove (4.24)(iii), then P is the sum of one nonincreasing and
one absolutely continuous function, hence P ∈ BV (0, T ). It remains to check that
(4.24)(iii) holds.

Let s < t be Lebesgue points of ẇ and put A0 : = {τ ∈ [s, t]; u̇(τ) = 0}. The set
A0 is closed, since u̇ is absolutely continuous, and its complement A1 :]s, t[\A0 is a
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countable disjoint union A1 =
∞⋃

k=1

]αk, βk[ of open intervals. We have ẇ(τ) = 0 for a.e.

τ ∈ A0, hence

(4.29)

{ ∫ t

s
ẇ(τ)ü(τ)dτ =

∑∞
k=1

∫ βk

αk
ẇ(τ)ü(τ)dτ,

∫ t

s
|u̇(τ)|3dτ =

∑∞
k=1

∫ βk

αk
|u̇(τ)|3dτ.

In [αk, βk] the function u is strictly monotone, hence w has the form w(t) = Φk

(
u(t)

)
,

where Φk is a trajectory of F .

a) Let u increase in [αk, βk]. By hypothesis, the function Φk(v)+ 1
2KRv2 is concave

and after substitution we obtain

Ik : =
∫ βk

αk

ẇ(τ)ü(τ)dτ =
1
2

∫ u(βk)

u(αk)

Φ′k(v)
d

dv

(
u̇
(
u−1(v)

))2
dv.

We now apply Proposition 4.17 for f(v) = Φ′k(v), η(v) = 1
2

(
u̇
(
u−1(v)

))2
, K = KR.

From (4.21) we infer

(4.30) Ik > 1
2
Φ′k

(
u(βk)− )

u̇2(βk)− 1
2
Φ′k

(
u(αk) +

)
u̇2(αk) +

1
2
KR

∫ βk

αk

|u̇(τ)|3dτ.

b) Let u decrease in [αk, βk]. Then Φk(v)− 1
2KRv2 is convex and

Ik =
1
2

∫ u(αk)

u(βk)

Φ′k(v)
d

dv

(
u̇
(
u−1(v)

))2
dv.

Using inequality (4.19) for f, η as above we obtain

(4.31) Ik > 1
2
Φ′k

(
u(βk) +

)
u̇2(βk)− 1

2
Φ′k

(
u(αk)− )

u̇2(αk) +
1
2
KR

∫ βk

αk

|u̇(τ)|3dτ.

We have u̇(αj) = u̇(βk) = 0 for all j, k except possibly for the single case αj =
s, βk = t. Combining (4.30) with (4.31) we obtain

∞∑

k=1

Ik > 1
2
ẇ(t)u̇(t)− 1

2
ẇ(s)u̇(s) +

1
2
KR

∞∑

k=1

∫ βk

αk

|u̇(τ)|3dτ

and identities (4.29) complete the proof. ¤

P r o o f of Theorem 4.19. Let 0 < s < t < T be Lebesgue points of u̇. We proceed
analogously as in the proof of Theorem 4.18. The upper and lower bound for P (t) in
(4.24)(ii) is less obvious now; we use the fact that sequences of smooth inputs which
are strongly convergent in W 1,p generate weakly convergent sequences of outputs and
pass to the limit.
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To prove (4.25) put A0 : = {τ ∈ [s, t]; ẇ(τ) = 0}, and let ]αk, βk[ be an arbitrary
component of the set ]s, t[\A0. Both u and w are increasing in ]αk, βk[, w(τ) =
Φk

(
u(τ)

)
for τ ∈ [αk, βk].

a) Let u increase in [αk, βk]. Then Φk(v) − 1
2KRv2 is convex and by substitution

we obtain

Ik : =
∫ βk

αk

ẅ(τ)u̇(τ)dτ =
∫ u(βk)

u(αk)

d

dv

(
ẇ

(
u−1(v)

))
u̇
(
u−1(v)

)
dv.

The function %(v) : = ẇ
(
u−1(v)

)
is nonnegative and absolutely continuous in the in-

terval [u(αk), u(βk)], %(v) = Φ′k(v)u̇
(
u−1(v)

)
a.e. We can use inequality (4.20) for

f(v) = Φ′k(v), η(v) = 1
2%2(v), K = KR to obtain

Ik > ẇ2(βk)
Φ′k

(
u(βk)− ) − ẇ2(αk)

Φ′k
(
u(αk) +

) +
1
2
KR

∫ βk

αk

|u̇(τ)|3dτ.

b) Let u decrease in [αk, βk]. Then Φk(v) + 1
2KRv2 is concave and we have

Ik =
∫ u(αk)

u(βk)

d

dv

(
ẇ

(
u−1(v)

))
u̇
(
u−1(v)

)
dv.

Inequality (4.22) for f, η as above entails

Ik > ẇ2(βk)
Φ′k

(
u(βk) +

) − ẇ2(αk)
Φ′k

(
u(αk)− ) +

1
2
KR

∫ βk

αk

|u̇(τ)|3dτ.

and we argue as in the proof of Theorem 4.18. ¤

For the sake of completeness we mention the following variant of Theorems 4.18, 4.19.

Corollary 4.23. Let the operator F satisfy the hypotheses of Theorem 4.19. Then

for every u ∈ W 2,1(0, T ), |u|∞ 6 R assertions (4.24)(i),(ii) hold and (4.24)(iii) is

replaced with

(4.32) −
∫ t

s

ẇ(τ)ü(τ)dτ + P (t)− P (s) > 1
2
KR

∫ t

s

|u̇(τ)|3dτ

for almost all 0 < s < t < T .

P r o o f. We exactly follow the argument of the proof of Theorem 4.18, where in-
equality (4.19) is applied in case a) and (4.21) in case b). ¤

Remark 4.24. In Theorems 4.18, 4.19 we always have bR − aR > 2RKR. Indeed,
for a monotone input u such that u(0) = −R, u(T ) = R the hypotheses yield either
bR −RKR > Φ′(R)−RKR > Φ′(−R) + RKR > aR + RKR or bR −RKR > Φ′(−R)−
RKR > Φ′(R) + RKR > aR + RKR.
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II.5 Models for fatigue and damage

We discuss here briefly two rate-independent models for the accumulation of fatigue
in elastoplastic materials. Both admit a hysteretic interpretation and can be combined
with hyperbolic equations of motion.

The first model consists in a rheological combination of elasto-brittle-plastic elements
and leads to a generalization of the Preisach model with similar analytical properties
and energy inequalities. The fatigue is manifested by the decrease of the elasticity
modulus as a result of large amplitude loading.

The second model is based on the idea that the accumulation of fatigue due to a
large number of bounded amplitude oscillations obeys the same mathematical rules as
the accumulation of dissipated energy. In fact, it was shown in Brokate, Dressler, Krejč́ı
(to appear/b) that the rainflow method of evaluation leads to a damage functional
in the form of total variation of the output of a Preisach operator. We have seen in
Theorem 4.3 that the same holds for the total energy dissipation which has the form
Var
[0,T ]

D(λ, u), where D is the dissipation operator. We assume that the elasticity modulus

is a decreasing function of the dissipated energy and we observe that a singularity due
to the accumulated fatigue may occur in a finite time.

We do not deal with the rainflow method itself which has no connection to hyperbolic
equations. An interested reader can find a good information in Brokate, Sprekels (to
appear).

A nonlinear elasto-brittle-plastic model

The basic rheological elements for the construction of a nonlinear elasto-brittle-plastic
model are the nonlinear elastic element from Remark 3.9
N : ε = g(σ), U = G(σ) = σg(σ)− ∫ σ

0
g(v) dv,

the brittle element from Example I.1.6
Bh : ε(t)H(h− ‖σ‖[0,t]) = 0, σ(t)

[
1−H(h− ‖σ‖[0,t])

]
= 0, U = 0

with a fragility parameter h > 0, and the rigid-plastic element from Example I.1.4
Rr : σ ∈ [−r, r], ε̇(σ − σ̃) > 0 ∀σ̃ ∈ [−r, r], U = 0

with a yield point r > 0.

Let us assume now that a system {Nh,r; h, r > 0} of nonlinear elastic elements is
given with a constitutive law ε = g(σ, h, r) and potential energy Uh,r = G(σ, h, r) :=
σg(σ, h, r)− ∫ σ

0
g(v, h, r) dv. We define the rheological combination (see Sect. I.1)

(5.1) M
0
−

∑
r>0

M
r
|R

r
,

where Mr is the nonlinear multibrittle element

(5.2) M
r

= N
0,r
−

∑

h>0

N
h,r
| B

h
.
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Assuming that the constitutive function g fulfils the condition

(i) g is continuous in R1 × [0,∞[2 together with its derivatives
∂g

∂σ
,
∂2g

∂σ2
,(5.3)

(ii)
∂g

∂σ
(σ, h, r) > 0 ∀(σ, h, r) ∈ R1×]0,∞[2,

(iii) σ · g(σ, h, r) > 0 ∀σ 6= 0, h, r > 0,

we argue similarly as in Example I.1.7 to derive the constitutive relation for a single
elastobrittle element in the form

(5.4) N
h,r
| B

h
: ε(t) = g

(
σ(t)

[
1−H(h− ‖σ‖[0,t])

]
, h, r

)
,

consequently

(5.5) M
r

: ε(t) = g
(
σ(t), 0, r

)
+

∫ ‖σ‖[0,t]

0

g
(
σ(t), h, r

)
dh.

The constitutive relations for the model Mr |Rr therefore read

(5.6)

{
σ = σM + σR, σR ∈ [−r, r], σ̇M(σR − σ̃) > 0 ∀σ̃ ∈ [−r, r],

ε(t) = g
(
σM(t), 0, r

)
+

∫ ‖σ‖[0,t]

0
g
(
σM(t), h, r

)
dh.

Let us choose for the sake of simplicity the virgin initial configuration λ = 0 for the
stress σM. Then σM = pr(0, σ), where pr is the play operator (2.6). From Proposition
2.5 we infer ‖σM‖[0,t] = ‖pr(0, σ)‖[0,t] = max{0, ‖σ‖[0,t]−r}, and for the model (5.1)
we obtain a constitutive relation in operator form ε = G(σ), where

G(σ)(t) : = g
(
σ(t), 0, 0

)
+

∫ ‖σ‖[0,t]

0

g
(
σ(t), h, 0

)
dh+(5.7)

+
∫ ∞

0

g
(
pr(0, σ)(t), 0, r

)
dr +

∫∫

Ω(‖σ‖[0,t])

g
(
pr(0, σ)(t), h, r

)
dh dr,

with the notation Ω(R) : =
{
(h, r) ∈]0,∞[2; h + r < R

}
.

We analogously derive the corresponding formula for the potential energy

U(σ)(t) : = G
(
σ(t), 0, 0

)
+

∫ ‖σ‖[0,t]

0

G
(
σ(t), h, 0

)
dh+(5.8)

+
∫ ∞

0

G
(
pr(0, σ)(t), 0, r

)
dr +

∫∫

Ω(‖σ‖[0,t])

G
(
pr(0, σ)(t), h, r

)
dh dr,
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The operator G is obviously rate independent and maps C([0, T ]) into C([0, T ]) and
W 1,p(0, T ) into W 1,p(0, T ), 1 6 p 6 ∞. Its properties are analogous to those of the
Preisach operator. We have in particular

Theorem 5.1. Let g satisfy (5.3) and let R > 0 be given. Then

(i) there exists a constant c0(R) > 0 such that | G(σ1)−G(σ2)|∞ 6 c0(R)|σ1−σ2|∞
for every σ1, σ2 ∈ C([0, T ]), |σ1|∞, |σ2|∞ 6 R;

(ii) there exists a constant c1(R) > 0 such that | G(σ1)−G(σ2)|1,1 6 c1(R)|σ1−σ2|1,1

for every σ1, σ2 ∈ W 1,1(0, T ), |σ1|1,1, |σ2|1,1 6 R.

(iii) Assume that g(−v, h, r) = −g(v, h, r) for every (v, h, r) ∈ R1 × [0,∞[2. Then

for every σ ∈ W 1,1(0, T ) the energy dissipation law

(5.9) σ(t)
d

dt
G(σ)(t)− d

dt
U(σ)(t) =

d

dt
Y (‖σ‖[0,t]) +

∣∣ d

dt
D(σ)(t)

∣∣ a.e.

holds with a fatigue function

Y (x) =
∫ x

|σ(0)|
[ ∫ y

0
g(v, y, 0)dv +

∫ y

0

∫ y−r

0
g(v, y − r, r)dv dr

]
dy

which is nondecreasing in [|σ(0)|, |σ|∞] and a dissipation operator

D(σ)(t) =
∫∞
0

rg(pr(0, σ)(t), 0, r)dr +
∫∫

Ω(‖σ‖[0,t])

rg
(
pr(0, σ)(t), h, r

)
dh dr.

(iv) Assume that there exist % > 0, A% > 0 such that for |v| + h + r < % we have
∂g
∂v (v, h, r) > A% and ∂2g

∂v2 (v, h, 0) = 0. Then the trajectories of G satisfy the hypotheses

of Theorem 4.19.

P r o o f. The inequalities in (i) and (ii) are easy consequences of Proposition 1.1. In
(iii), a similar computation as in Lemma 4.1 yields for a.e. t

q̇(t) := σ(t)
d

dt
G(σ)(t)− d

dt
U(σ)(t) =

∫ ∞

0

r
∂g

∂v

(
ξr(t), 0, r

)|ξ̇r(t)|dr +

+
∫∫

Ω(‖σ‖[0,t])

r
∂g

∂v

(
ξr(t), h, r

)|ξ̇r(t)| dh dr +
d

dt
(‖σ‖[0,t])

[ ∫ σ(t)

0

g(v, ‖σ‖[0,t], 0)dv +

+
∫ ‖σ‖[0,t]

0

(
g(ξr(t), ‖σ‖[0,t]−r, r)σ(t)−G(ξr(t), ‖σ‖[0,t]−r, r)

)
dr

]
,

where we denote ξr : = pr(0, σ). We see that (5.9) holds if d
dt (‖σ‖[0,t]) = 0.

Assume now that d
dt (‖σ‖[0,t]) > 0. Then σ(t) = ±‖σ‖[0,t], ξr(t) = ±( ‖σ‖[0,t]−r

)

for r < ‖σ‖[0,t], and
∣∣∣ d

dt

∫∫

Ω(‖σ‖[0,t])

rg
(
ξr(t), h, r

)
dh dr

∣∣∣ =
∫∫

Ω(‖σ‖[0,t])

r
∂g

∂v

(
ξr(t), h, r

)|ξ̇r(t)| dh dr+

+
d

dt
(‖σ‖[0,t])

∫ ‖σ‖[0,t]

0

g
( ‖σ‖[0,t]−r, ‖σ‖[0,t]−r, r

)
dr.
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We therefore have

q̇(t) =
∣∣ d

dt
D(σ)(t)

∣∣ +
d

dt
(‖σ‖[0,t])

[ ∫ ‖σ‖[0,t]

0

g(v, ‖σ‖[0,t], 0) dv +

+
∫ ‖σ‖[0,t]

0

∫ ‖σ‖[0,t]−r

0

g
(
v, ‖σ‖[0,t]−r, r) dv dr

]

and (5.9) follows.
To verify (iv) we proceed as in the proof of Proposition 4.22. Putting b(s) :=∫ s

0
∂g
∂v (0, h, 0)dh, a := ∂g

∂v (0, 0, 0) we have

(5.10) G(σ)(t) =
(
a+b(‖σ‖[0,t])

)
σ(t)+

∫ ∞

0

g(ξr(t), 0, r)dr+
∫∫

Ω(‖σ‖[0,t])

g(ξr(t), h, r)dh dr.

Let σ be chosen in such a way that ‖σ‖∞ 6 R, where R is to be specified and assume
that σ increases in [t0, t1]. For λ(r) : = pr(0, σ)(t0) and t ∈ [t0, t1] Lemma 2.4 yields

G(σ)(t) = G(σ)(t0) + a
(
σ(t)− σ(t0)

)
+ b(‖σ‖[0,t])σ(t)− b(‖σ‖[0,t0])σ(t0)+(5.11)

+
∫ mλ(σ(t))

0

(
g
(
σ(t)− r, 0, r

)− g
(
λ(r), 0, r

))
dr +

+
∫ mλ(σ(t))

0

∫ ‖σ‖[0,t]−r

0

(
g
(
σ(t)− r, h, r

)− g
(
λ(r), h, r

))
dh dr.

Put σ0 : = ‖σ‖[0,t] ∈
[
σ(t0), R

]
. The trajectory Φ for v ∈ [σ(t0), R] has the form

Φ(v) = Φ
(
σ(t0)

)
+ a

(
v − σ(t0)

)
+

∫ v

0

∫ mλ(s)

0

∂g

∂v
(s− r, 0, r)dr ds+

+

{
b(σ0)

(
v − σ(t0)

)
+

∫ v

0

∫ mλ(s)

0

∫ σ0−r

0
∂g
∂v (s− r, h, r)dh dr ds for v 6 σ0,

b(v)v − b(σ0)σ(t0) +
∫ v

0

∫ mλ(s)

0

∫ v−r

0
∂g
∂v (s− r, h, r)dh dr ds for v > σ0.

Similarly as in the proof of Proposition 4.22 we show that if R > 0 and KR > 0
are chosen sufficiently small, then there exists a nondecreasing function ζ such that
Φ′(v) −KRv = ζ

(
mλ(v)

)
for v ∈]σ(t0), R[, and the assertion follows. The case where

σ decreases is analogous. ¤

Remark 5.2. For the constitutive law ε = G(σ) given by (5.10) the elasticity
modulus is equal to 1

a+b(‖σ‖[0,t])
, hence it decreases with increasing value of ‖σ‖[0,t].
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A differential model of fatigue

The model of fatigue in Theorem 5.1 does not explain the phenomenon of cyclic
fatigue, where a large number of bounded amplitude oscillations may produce singular-
ities (cracks). The analysis of the rainflow method of damage evaluation in Brokate,
Dressler, Krejč́ı (to appear/b) suggests that the dissipated energy might be considered
as a measure of fatigue in such cases. A more general physical discussion on this point
can be found in Chapter 7.3 of Lemaitre and Chaboche (1985).

The model presented here is a modification of a one-yield elastoplastic model with
kinematic hardening as on Fig. 4, where the elasticity modulus is a decreasing function
of the dissipated energy. We shall see that the corresponding constitutive operator is
rate independent with locally convex/concave trajectories like in Theorem 4.19 and,
moreover, with a possibly finite lifetime as a result of material fatigue.

Let us consider the constitutive equation

(5.12) ε(t) =
1
E

(
1 + αq2(t)

)
σ(t) + Apr(λ, σ)(t),

where E,α, A, r are given positive constants, pr(λ, ·) is the play operator with initial
configuration λ ∈ Λ and q(t) is the energy dissipated during the interval [0, t]. A
natural choice of potential energy

(5.13) U(t) : =
1

2E

(
1 + αq2(t)

)
σ2(t) +

A

2
p2

r(λ, v)(t)

leads formally to a differential equation for q, namely

(5.14) q̇ = ε̇σ − U̇ =
α

E
qq̇σ2 + Ar|ξ̇r|,

where ξr : = pr(λ, σ).
We assume in the sequel that the material is initially for t = 0 in an undeformed

and undamaged state, i.e.

(5.15) λ = 0, q(0) = 0.

Equation (5.14) has the form

(5.16) q̇ =
a

1− cqσ2

∣∣ξ̇r

∣∣,

where c : = α
E > 0, a : = Ar > 0.

We immediately see that identity 5.12 defines a thermodynamically consistent rate
independent constitutive law provided q is a solution of (5.16) and 1− cq(t)σ2(t) > 0.
A singularity occurs as soon as 1− cq(t−)σ2(t−) = 0.
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Our goal is to express (5.12) in terms of a continuous constitutive operator in the
space of continuous functions.

For σ ∈ C([0, T ]) put

(5.17) V (σ)(t) : = aVar
[0,t]

(ξr) =
a

r

∫ t

0

(
σ(τ)− ξr(τ)

)
dξr(τ).

We infer from Propositions 1.1, I.4.11 and Theorem V.1.26 that V (σ) is a nonde-
creasing continuous function and V : C([0, T ]) → C([0, T ]) is a continuous operator.
Equation (5.16) can be rewritten in the form

(5.18) q(t) =
∫ t

0

dV (σ)(τ)
1− cq(τ)σ2(τ)

.

Proposition 5.3. Let σ ∈ C([0, T ]) be given. Put D : = {(t, q) ∈ [0, T [×[0,∞[; 1−
cqσ2(t) > 0}. Then for each (t0, q0) ∈ D there exists t1 > t0 and a unique solution

q ∈ C([t0, t1]) of the equation

(5.19) q(t) = q0 +
∫ t

t0

dV (σ)(τ)
1− cq(τ)σ2(τ)

, t ∈ [t0, t1].

P r o o f. Put δ : = 1
2

(
1− cq0σ

2(t0)
)

> 0. We find t1 > t0 such that

(5.20) δcq0|σ2(t)− σ2(t0)|+ c|σ|2∞
(
V (σ)(t)− V (σ)(t0)

)
< δ2

for all t ∈ [t0, t1]. Let Zδ ⊂ C([t0, t1]) be the (convex) closed set

Zδ : =
{
u ∈ C([t0, t1]); u(t0) = q0, 1− cu(t)σ2(t) > δ ∀t ∈ [t0, t1]

}

and let Γ : Zδ → C([t0, t1]) be the operator

Γ(u)(t) : = q0 +
∫ t

t0

dV (σ)(τ)
1−cu(τ)σ2(τ) , t ∈ [t0, t1].

Using (5.20) we easily check that Zδ is nonempty (the constant function u(t) ≡ q0

belongs to Zδ) and that Γ is a contraction which maps Zδ into Zδ. The assertion now
follows from a standard fixed point argument. ¤

Corollary 5.4. For every σ ∈ C([0, T ]) there exists a unique maximal solution

q : [0, T ∗[→ [0,∞[ of equation (5.18). This solution is continuous and nondecreasing

in [0, T ∗[ and
(
T ∗, q(T ∗−)

) ∈ ∂D.

Corollary 5.4 immediately follows from Proposition 5.3. The following result on
continuous dependence of q on σ plays a substantial role in the sequel.
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Theorem 5.5. Let σ ∈ C([0, T ]) be given and let q : [0, T ∗[→ [0,∞[ be the

maximal solution of (5.18). For an arbitrary γ ∈]0, T ∗[ put

δ : = 1
2 min

[0,T∗−γ]

(
1− cq(t)σ2(t)

)
> 0.

Let {σn; n ∈ N} ⊂ C([0, T ]) be a sequence, lim
n→∞

|σn−σ|∞ = 0 and let qn : [0, T ∗n [→
[0,∞[ be the corresponding maximal solutions of (5.18). Then there exists n0 > 0 such

that for all n > n0 we have

(i) T ∗n > T ∗ − γ,

(ii) 1− cqn(t)σ2
n(t) > δ ∀t ∈ [0, T ∗ − γ],

(iii) lim
n→∞

‖qn − q‖[0,T∗−γ] = 0.

The proof of Theorem 5.5 relies on Gronwall’s inequality in the following form.

Lemma 5.6. Let w, ζ be nonnegative continuous functions in [0, T ], ζ(0) = 0, ζ

nondecreasing, and let M, N be nonnegative constants. Assume that

w(t) 6 M + N

∫ t

0

w(τ)dζ(τ) ∀t ∈ [0, T ].

Then w(t) 6 MeNζ(t) ∀t ∈ [0, t].

P r o o f of Lemma 5.6. From elementary identities

∫ s

0

e−Nζ(t)d

(∫ t

0

w(τ)dζ(τ)
)

=
∫ s

0

e−Nζ(t)w(t)dζ(t),

∫ s

0

(∫ t

0

w(τ)dζ(τ)
)

de−Nζ(t) = −N

∫ s

0

e−Nζ(t)

(∫ t

0

w(τ)dζ(τ)
)

dζ(t)

and from the integration-by-parts formula V(1.22) we obtain

∫ s

0

e−Nζ(t)w(t)dζ(t) = N

∫ s

0

e−Nζ(t)

(∫ t

0

w(τ)dζ(τ)
)

dζ(t) + e−Nζ(s)

∫ s

0

w(t)dζ(t)

and Lemma 5.6 follows easily. ¤

P r o o f of Theorem 5.5. For t ∈ [0, T ∗ − γ] and n ∈ N put

Mn(t) :=
∣∣∣
∫ t

0

d
(
V (σn)− V (σ)

)
(τ)

1− cq(τ)σ2(τ)

∣∣∣ +
c

2δ2

∫ t

0

q(τ)|σ2
n(τ)− σ2(τ)|dV (σn)(τ),

N :=
c

2δ2
sup{|σn|2∞; n ∈ N}.

For each n ∈ N we find a minimal γn ∈]0, T ∗n [ such that

1− cqn(t)σ2
n(t) > δ ∀t ∈ [0, T ∗n − γn].
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The quantities Mn, N were chosen in such a way that

|qn(t)− q(t)| 6 Mn(t) + N

∫ t

0

|qn(τ)− q(τ)| dV (σn)(τ)

holds for all 0 6 t 6 min{T ∗ − γ, T ∗n − γn} and Lemma 5.6 yields

(5.21) |qn(t)− q(t)| 6 ‖Mn‖[0,T∗−γ]e
NV (σn)(t).

We have 1 − cq(t)σ2(t) > 2δ for δ ∈ [0, T ∗ − γ] and lim
n→∞

‖Mn‖[0,T∗−γ] = 0; from

(5.21) we infer T ∗n−γn > T ∗−γ for n sufficiently large and the assertion follows easily.
¤

The right-hand side of (5.12) defines an operator F with domain C([0, T ])

(5.22) F (σ)(t) : =
1
E

(
1 + αq2(t)

)
σ(t) + Apr(0, σ)(t),

where q is the solution of equation (5.18).
From Theorem 5.5 we derive the following properties of the operator F .

Corollary 5.7. Let F be the operator (5.22). Then for every σ ∈ C([0, T ]) there

exists a critical time T ∗ ∈]0, T ] such that F (σ) is continuous in [0, T ∗[. Moreover, if

{σn; n ∈ N} ⊂ C([0, T ]) is a sequence such that lim
n→∞

|σn − σ|∞ = 0 and T ∗n ∈]0, T ] is

the critical time corresponding to σn, then

(i) lim inf
n→∞

T ∗n > T ∗,

(ii) F (σn) → F (σ) locally uniformly in [0, T ∗[.

We conclude this section with the formulation of sufficient conditions for the convex-
ity/concavity of the trajectories of F .

Proposition 5.8. Let F be the operator (5.22) and let σ ∈ C([0, T ]) be given such

that |σ|∞ 6 2r. Assume that σ is monotone (nonincreasing or nondecreasing) in an

interval [t1, t2] ⊂ [0, T ∗[, where T ∗ is the critical time. Then there exists a bounded

interval ]v1, v2[⊃ Conv{σ(t1), σ(t2)} and a Lipschitz continuous function Φ : [v1, v2] →
R1 such that

(i) Φ′(v) > 1
E for a.e. v ∈]v1, v2[,

(ii) Φ is convex in [σ(t1), v2] and concave in [v1, σ(t1)],
(iii) F (σ)(t) = Φ

(
σ(t)

)
for all t ∈ [t1, t2].
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P r o o f. The operator F is odd. It suffices therefore to assume that σ in-
creases in [t1, t2]. Then ξr(t) = pr(0, σ)(t) is given by formula (1.6), i.e. ξr(t) =
max{ξr(t1), σ(t)− r} for t ∈ [t1, t2]. We find t̄ ∈ [t1, t2] such that

ξr(t) =

{
ξr(t1), t ∈ [t1, t̄],

σ(t)− r, t ∈ ]t̄, t2].

For t̄ = t2 we trivially have q = const . in [t1, t2], hence Φ is affine; otherwise q has
the form q(t) = X

(
σ(t)

)
, where X is the solution of the problem

(i) X(v) = q(t1) for v ∈ [σ(t1), σ(t̄)],(5.23)

(ii)
dX

dv
=

a

1− cv2X
for v > σ(t̄).

The solution of equation (5.23)(ii) blows up for a finite value v → v∗−; we choose v2

arbitrarily in the interval [σ(t2), v∗[.
We have σ(t̄) = ξr(t1) + r and Corollary 2.6 entails |ξr(t1)| = |ξr(t1)− ξ|u|∞(t1)| 6

|u|∞ − r, hence σ(t̄) > 0. The function Φ has the form

(5.24) Φ(v) =
1
E

(
1 + αX2(v)

)
v + A max{σ(t̄), v} −Ar

for v ∈ [σ(t̄), v2] and we can check by a straightforward differentiation that Φ is convex.
The case of σ nonincreasing is obtained by symmetry. ¤

Remark 5.9. The situation is not the same here as in Theorem 4.19 because of
singularities which may occur in a finite time. On the other hand, one can easily
formulate a sufficient condition in terms of the constants a, c which guarantees that
the solution of (5.18) blows up before |σ(t)| attains the value 2r, so that the condition
|σ(t)| < 2r is automatically satisfied in [0, T ∗[, see Krejč́ı (1994).
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III. Hyperbolic equations with hysteretic
constitutive laws

The problem of coupling equation of motion I(0.1) with an elastoplastic constitutive
law is not new. The existence and uniqueness of solutions for the Prandtl-Reuss model
with a single yield surface has been established in Duvaut, Lions (1972), a multiyield
Prandtl-Ishlinskii model was considered by Visintin (1987). In both cases, the solution
is constructed via penalization method for semilinear hyperbolic variational inequalities
which corresponds to an approximation of the rate independent plasticity by a rate
dependent visco-plasticity. This technique strictly requires that the elastic part of the
constitutive law is linear.

We present here an alternative approach which consists in transforming the semilin-
ear variational inequality into a quasilinear equation with a hysteresis operator. This
enlarges considerably the variety of problems which can be solved, especially in situa-
tions, where some knowledge of the memory structure is available. The strong energy
inequalities for scalar hysteresis operators derived in the preceding chapter enable us
to treat the following questions related either to uniaxial problems or to multiaxial
problems with a componentwise scalar hysteretic constitutive law:
• stability with respect to quasilinear perturbations,
• global boundedness of solutions (nonresonance),
• asymptotic decay of solutions,
• existence of periodic solutions,
• asymptotic stability of periodic solutions

by methods which have been developed essentially for the theory of semilinear equations,
such as compactness and monotonicity methods of Lions (1969) based on Galerkin-type
or discrete approximations and classical methods in the theory of periodic solutions of
Vejvoda et al. (1981)

III.1 Construction of solutions

We show here two typical examples of equations of motion I(0.1) with a hysteretic
constitutive operator which can be solved by classical functional-analytic methods. For
constitutive operators with a specific monotonicity property one can use Minty’s trick
to establish the solvability of an initial-boundary value problem in the general vector
case. In scalar (uniaxial) models, no monotonicity is required any more and strong a
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priori estimates for solutions of the space-discretized system enable us to pass to the
limit. In both situations, the main tool is the second order energy inequality I(3.31),
II(4.25) for hysteresis operators. The hyperbolicity of the wave equation with hysteresis
is confirmed by the boundedness of the speed of propagation.

Monotonicity method

Similarly as in Sect.I.1 we denote by T the space of symmetric tensors N × N

endowed with the scalar product 〈ξ, η〉T : =
∑N

i,j=1 ξijηij and norm |ξ|T : = 〈ξ, ξ〉1/2
T .

The symbol 〈·, ·〉 is used for the scalar product 〈u, v〉 : =
∑N

i=1 uivi in RN .
We consider the system of the type I(0.1) with a normalized density % ≡ 1

(i) utt = D∗σ + q(x, t),(1.1)

(ii) ε = Du,

(iii) σ = F (ε),

(x, t) ∈ Ω×]0, T [, where Ω ⊂ RN is a given open bounded set with a smooth boundary,
T > 0 is a given number, D : W 1,2(Ω,RN ) → L2(Ω,T), D∗ : W 1,2(Ω;T) → L2(Ω,RN )
are differential operators given by the formulae

(1.2) (Du)ij : =
1
2

(
∂ui

∂xj
+

∂uj

∂xi

)
, (D∗σ)i : =

N∑

j=1

∂σij

∂xj
,

q(x, t) is a given function and F is a constitutive operator whose properties are specified
later. For the sake of simplicity we prescribe homogeneous Dirichlet conditions

(1.3) u(x, t) = 0 for (x, t) ∈ ∂Ω×]0, T [

on the boundary of Ω and initial conditions

(1.4) u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

To simplify the notation, we introduce the spaces H0 := L2(Ω;RN ), H0
T := L2(Ω;T),

Hk : = W k,2(Ω;RN ) for k > 1,
◦
H1 :=

◦
W 1,2(Ω;RN ), L :=

{
ε ∈ L2(0, T ; H0

T); εt ∈
L2(0, T ; H0

T)
}
. The standard L2-norms in H0,H0

T are denoted by | · |H0 , | · |H0
T
, re-

spectively. By Korn’s inequality (see Nečas, Hlaváček (1981)) we can define in H1,
◦
H1

equivalent norms |w|H1 : =
(
|w|2H0 + |Dw|2

H0
T

)1/2

, |w| ◦
H1

: = |Dw|H0
T
.

The general regularity theory for scalar elliptic equations (see Chap. 8 of Gilbarg,
Trudinger (1983)) is applicable without modification to the vector elliptic operator D∗D
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and we can define in H2 an equivalent norm |w|H2 : = (|w|2H0+|Dw|2
H0
T
+|D∗Dw|2H0)1/2.

The norm in L is chosen in a natural way

|ε|L : =

(
|ε(·, 0)|2H0

T
+

∫ T

0

|εt(·, t)|2H0
T
dt

)1/2

.

The operator F is assumed to act on L according to the formula

(1.5) F (ε)(x, t) := f
(
x, ε(x, ·))(t), (x, t) ∈ Ω× [0, T ],

where f(x, ·) : W 1,2(0, T ;T) → W 1,2(0, T ;T) for x ∈ Ω is a causal (see I(1.29))
operator with the following properties.

Assumption 1.1. There exist constants a, b, c > 0 and a causal operator V : Ω ×(
W 1,2(0, T ;T)

)2 → W 1,1(0, T ) such that for every (x, y, ε, ϑ) ∈ Ω×Ω×(
W 1,2(0, T ;T)

)2

we have

(i) |f(x, ε)t(t)|T 6 b|ε̇(t)|T a.e.,(1.6)

(ii) |f(x, ε)(T )− f(y, ϑ)(T )|2T 6 c
(
|x− y|2 + |ε(0)− ϑ(0)|2T+

+
∫ T

0

|ε̇(t)− ϑ̇(t)|2Tdt
)
,

(iii)
〈
f(x, ε)(t)− f(x, ϑ)(t), ε̇(t)− ϑ̇(t)

〉
T > d

dt
V(x, ε, ϑ)(t) a.e.,

(iv) V(x, ε, ϑ)(t) = V(x, ϑ, ε)(t) > 0, V(x, ε, ε)(t) = 0 ∀t ∈ [0, T ],

(v) | V(x, ε1, ϑ)(0)− V(y, ε2, ϑ)(0)| 6 c max {|ε1(0)|T, |ε2(0)|T, |ϑ(0)|T} ·
· (|x− y|+ |ε1(0)− ε2(0)|T) ,

(vi) if ε ∈ W 2,2(0, T ;T), then

∫ T

0

〈f(x, ε)τ , ε̈(τ)〉T dτ > a

2
|ε̇(T )|2T −

b

2
|ε̇(0)|2T.

Using Proposition I.3.9, Remark I.3.10 and Theorem I.3.16 we check that Assumption
1.1 is fulfilled for instance for

(1.7) f(x, ε) = (E − γ)ε + γ S
(
ϕ
(
x, ε(0)

)
, ε

)

for some E > γ > 0, where S is the stop operator I(3.11) with a Lipschitz continuous
initial configuration ϕ : Ω×T→ Z. Other examples of operators f can be constructed
in the class of Prandtl-Ishlinskii operators of stop type I(1.44).

The existence and uniqueness result reads as follows.
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Theorem 1.2. Let q ∈ L2(0, T ; H0), u0 ∈ H2 ∩
◦
H1, u1 ∈

◦
H1 be given such that

qt ∈ L1(0, T ; H0) and let Assumption 1.1 be fulfilled. Then there exists a unique

u ∈ L∞(0, T ;
◦
H1) such that utt ∈ L∞(0, T ;H0), Dut ∈ L∞(0, T ; H0

T), initial conditions

(1.4) are satisfied a.e. and the identity

(1.8)
∫

Ω

[ 〈utt(x, t)− q(x, t), w(x)〉+ 〈F (Du)(x, t), Dw(x)〉T
]
dx = 0

holds for every w ∈
◦
H1 and a.e. t ∈]0, T [.

Identity (1.8) is a weak formulation of (1.1) based on the integration formula for
regular functions

(1.9)
∫

Ω

[〈σ,Dw〉T + 〈D∗σ,w〉] dx =
N∑

i,j=1

∫

∂Ω

wiσijνjdx,

where ν = (ν1, . . . , νN ) is the unit outward normal vector to ∂Ω. Before proving
Theorem 1.2 we verify that the integral in (1.8) is meaningful.

Lemma 1.3. Let Assumption 1.1 hold. Then the operator F defined by (1.5) maps

L into L and for every ε, ϑ ∈ L we have

(1.10) sup
t∈[0,T ]

|F (ε)(·, t)− F (ϑ)(·, t)|H0
T

6 c|ε− ϑ|L.

P r o o f of Lemma 1.3. Let ε ∈ L be given and let Ω∗ ⊂ Ω be the set of all
x ∈ Ω such that ε(x, ·) ∈ W 1,2(0, T ;T), meas (Ω \ Ω∗) = 0, and for x ∈ Ω∗ put
σ(x, ·) := f(x, ε(x, ·)) ∈ W 1,2(0, T ;T). Let {εn; n ∈ N} ⊂ C2(Ω × [0, T ];T) be a
sequence such that lim

n→∞
|εn − ε|L = 0 and put σn : = F (εn). By (1.6) we have

|σn(x, t)− σn(y, s)|T 6 |σn(x, t)− σn(x, s)|T + |σn(x, s)− σn(y, s)|T 6
6

(
b(t− s) + c(x− y)

)
(1 + T )

(
1 + |εn|C2(Ω×[0,T ];T)

)
,

hence σn ∈ C(Ω× [0, T ];T). From (1.6)(ii) and the causality of f we further infer for
x ∈ Ω∗ and t ∈ [0, T ]

|σ(x, t)− σn(x, t)|T 6 c

(
|ε(x, 0)− εn(x, 0)|2T +

∫ t

0

|ετ (x, τ)− εn
τ (x, τ)|2Tdτ

)1/2

,

consequently σ is measurable, σ ∈ L and lim
n→∞

sup
t∈[0,T ]

|σ(·, t)− σn(·, t)|H0
T

= 0.

We now choose a sequence {ϑn} ⊂ C2(Ω × [0, T ];T) such that |ϑn − ϑ|L → 0.
Inequality (1.10) for εn, ϑn follows from (1.6)(ii) and passing to the limit we obtain the
assertion. ¤
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P r o o f of Theorem 1.2.
Uniqueness. Let u, v be two solutions of (1.8), (1.4). We subtract the identities (1.8)
for u and v and put w(x) : = ut(x, t)−vt(x, t). Integrating with respect to t we obtain

1
2

∫

Ω

|ut − vt|2(x, t) dx +
∫

Ω

∫ t

0

〈F (Du)− F (Dv), Duτ −Dvτ 〉 (x, τ) dx dτ = 0,

hence u = v by (1.6)(iii),(iv).

Existence. Let {ek; k ∈ N} be a complete orthonormal system in H0 of eigenfunctions
of the operator D∗D in Ω with homogeneous Dirichlet boundary conditions, i.e.

(1.11) −D∗Dek = λkek, λk > 0, ek ∈ H2 ∩
◦
H1 .

For a fixed n ∈ N we define the vector v = (v1, . . . , vn) : [0, T ] → Rn as the solution
of the system for k = 1, . . . , n

v̈k(t) =
∫

Ω

[
−〈

F (Du(n))(x, t), Dek(x)
〉
T +

〈
q(x, t), ek(x)

〉]
dx,(1.12)

vk(0) =
∫

Ω

〈u0(x), ek(x)〉 dx, v̇k(0) =
∫

Ω

〈u1(x), ek(x)〉 dx,(1.13)

u(n)(x, t) =
n∑

k=1

vk(t)ek(x) for (x, t) ∈ Ω×]0, T [.(1.14)

Putting y = (y1, . . . , yn) : = (v̇1, . . . , v̇n) we can rewrite system (1.12) in the form

(1.15)

{
ẏ = G(v) + q

v̇ = y

with a Lipschitz continuous causal operator G : C1([0, T ];Rn) → C([0, T ];Rn) and a
given vector q ∈ W 1,1(0, T ;Rn). Let K > 0 be a constant such that |G(u)−G(v)|∞ 6
K(|u − v|∞ + |u̇ − v̇|∞). We define successive approximations y`

j ,v
`
j in the following

way. For ` = 0, 1, . . . put κ : = min
{

1
2 , 1

2K

}
, t` : = κ`, v1

0(t) := v(0), y1
0(t) : = y(0)

for t ∈ [0, T ], and

(1.16)

{
y1

j+1(t) := y(0) +
∫ min{t,t1}
0

[
G(v1

j )(τ) + q(τ)
]
dτ,

v1
j (t) := v(0) +

∫ t

0
y1

j (τ)dτ,
j = 0, 1, . . . .

We have |y1
j+1 − y1

j |∞ 6 t1K(1 + t1)|y1
j − y1

j−1|∞ 6 3
4 |y1

j − y1
j−1|∞, hence {y1

j ,v
1
j ; j =

0, 1, . . .} are uniformly convergent sequences in C([0, T ];Rn) and their limits y1,v1

satisfy (1.15) in [0, t1]. Repeating the procedure in [t`, t`+1] with y`+1
j (t) : = y`(t),
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v`+1
j (t) : = v`(t) for t ∈ [0, t`], ` = 1, 2, . . . until t`+1 > T we construct by induction a

continuously differentiable solution y,v of (1.15). Notice that the causality of G plays
a substantial role here. Coming back to system (1.12), (1.13) we conclude that it admits
a global solution v ∈ W 3,1(0, T ;Rn).

We now derive estimates for the sequence {u(n)} defined by (1.14) which enable us
to pass to the limit as n → ∞. For an arbitrary t ∈ [0, T ] we differentiate (1.12),
multiply by v̈k(t), sum over k and integrate

∫ t

0
. Assumption (1.6)(vi) yields

|u(n)
tt (·, t)|2H0 + a|u(n)

t (·, t)|2◦
H1

6 |u(n)
tt (·, 0)|2H0 + b|u(n)

t (·, 0)| ◦
H1

+(1.17)

+ 2
∫ t

0

∫

Ω

〈
qτ (x, τ), u(n)

ττ (x, τ)
〉
dx dτ.

Upper bounds for the right-hand side of this last inequality can be found using
special properties of the basis {ek}. Putting εk : = 1√

λk
Dek we have by (1.9)

∫
Ω
〈εk(x), ε`(x)〉T dx = δk`, where δk` is the Kronecker symbol and Du

(n)
t (x, 0) =∑n

k=1

(∫
Ω

〈
Du1(y), εk(y)

〉
Tdy

)
εk(x), hence

∫
Ω

〈
Du

(n)
t (x, 0) −Du1(x), Du

(n)
t (x, 0)

〉
Tdx

= 0. This yields

(1.18) |u(n)
t (·, 0)| ◦

H1
6 |u1| ◦

H1
independently of n.

The L2-norm of u
(n)
tt (·, 0) will be estimated using equation (1.12). The operator F

is causal; this means that there exists a function ϕ : Ω × T such that F (ε)(x, 0) =
ϕ
(
x, ε(x, 0)

)
and by (1.6)(ii) ϕ is Lipschitz. We have by (1.12), (1.9)

|u(n)
tt (·, 0)|2H0 =

n∑

k=0

|v̈k(0)|2 6 2
(
|D∗ϕ(·, Du(n)(·, 0)|2H0 + |q(·, 0)|2H0

)

6 c1 + c2|u(n)(·, 0)|H2 ,

where c1, c2 are constants independent of n. We estimate |u(n)(·, 0)|H0 6 |u0|H0 ,
|Du(n)(·, 0)|2

H0
T

=
∑n

k=1 λk

∣∣∫
Ω
〈u0(x), ek(x)〉 dx

∣∣2 =
∑n

k=1

∣∣∫
Ω
〈Du0(x), εk(x)〉T dx

∣∣2 6
|Du0|2H0

T
, |D∗Du(n)(·, 0)|2H0 =

∑n
k=1 λ2

k|
∫
Ω
〈u0(x), ek(x)〉 dx|2 6 |D∗Du0|H0 , conse-

quently

(1.19) |u(n)
tt (·, 0)|2H0 6 c1 + c2|u0|H2 .

Furthermore,
∫ t

0

∫
Ω

〈
qτ (x, τ), u(n)

ττ (x, τ)
〉
dx dτ 6 sup

τ∈[0,t]

|u(n)
ττ (·, τ)|H0

∫ t

0
|qτ (·, τ)|H0dτ .

By (1.17)-(1.19) there exists therefore a constant M > 0 which depends only on the
data u0, u1, q such that

(1.20) sup
t∈[0,T ]

|u(n)
tt (·, t)|H0 6 M, sup

t∈[0,T ]

|u(n)
t (·, t)| ◦

H1
6 M
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and obviously also

(1.21) sup
t∈[0,T ]

|u(n)(·, t)| ◦
H1

6 M, |F (Du(n))|L 6 M.

There exists a subsequence of {u(n)} (still denoted by u(n)) and functions u ∈
L∞(0, T ;

◦
H1), σ ∈ L such that ut ∈ L∞(0, T ;

◦
H1), utt ∈ L∞(0, T ; H0) and u

(n)
tt → utt

in L∞(0, T ; H0) weakly-star, Du(n) → Du, Du
(n)
t → Dut in L∞(0, T ; H0

T) weakly-
star, F (Du(n)) → σ in L weakly and by Theorem V.2.3, u(n) → u, u

(n)
t → ut in

L2(0, T ; H0) strongly. The limit function u satisfies initial conditions (1.4). Indeed,
from Hölder’s inequality and (1.20) we infer |u(n)

t (·, t)−u
(n)
t (·, 0)|H0 6 Mt for t ∈ [0, T ]

and n ∈ N. Passing to the limit as n → ∞ we conclude |ut(·, t) − u1|H0 6 Mt a.e.
and similarly |u(·, t)− u0|H0 6 Mt a.e.

We now pass to the limit in (1.12) as n → ∞. For an arbitrary γ ∈ L2(0, T ) the
limit functions u, σ satisfy

(1.22)
∫ T

0

∫

Ω

[ 〈utt(x, t)− q(x, t), γ(t)ek(x)〉+ 〈σ(x, t), γ(t)Dek(x)〉T
]
dx dt = 0

for every k ∈ N. The set of finite linear combinations of functions of the form γ(t)ek(x)

is dense in L2(0, T ;
◦
H1), consequently

(1.23)
∫ T

0

∫

Ω

[〈utt(x, t)− q(x, t), w(x, t)〉+ 〈σ(x, t), Dw(x, t)〉T] dx dt = 0

for every w ∈ L2(0, T ;
◦
H1). On the other hand, from (1.12) it follows for a.e. t

(1.24)
∫

Ω

[〈
u

(n)
tt (x, t)− q(x, t), u(n)

t (x, t)
〉

+
〈
F (Du(n))(x, t), Du

(n)
t (x, t)

〉
T

]
dx = 0.

Putting w = ut in (1.23) we obtain using (1.24)

(1.25) lim
n→∞

∫ T

0

∫

Ω

〈
F (Du(n)), Du

(n)
t

〉
Tdx dt =

∫ T

0

∫

Ω

〈
σ,Dut

〉
Tdx dt.

For an arbitrary w ∈
◦
H1, γ ∈ L2(0, T ) and δ > 0 put z(x, t) : = u(x, t) −

δw(x)
∫ t

0
γ(τ)dτ . The monotonicity (1.6)(iii) enables us to use Minty’s trick in the

inequality

∫ T

0

∫

Ω

〈
F (Du(n))− F (Dz), Du

(n)
t −Dzt

〉
Tdx dt >(1.26)

> −
∫

Ω
V

(
x,Du(n)(x, ·), Dz(x, ·))(0) dx.
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Passing to the limit as n →∞ we obtain from (1.25), (1.26) and (1.6)(v),(iv)

(1.27)
∫ T

0

∫

Ω

〈
σ(x, t)− F (Dz)(x, t), Dw(x)

〉
Tγ(t) dx dt > 0

and Lemma 1.3 yields for δ → 0

(1.28)
∫

Ω

〈
σ(x, t)− F (Du)(x, t), Dw(x)

〉
Tdx = 0 a.e.

Identity (1.8) now follows from (1.23) and (1.28). Theorem 1.2 is proved. ¤

Remark 1.4. The results of Theorem 1.2 are comparable to those obtained by Du-
vaut, Lions (1972) or Visintin (1987) by penalization method for variational inequalities
in the case of constitutive operators of the form (1.7) or Prandtl-Ishlinskii operators of
stop type. The hysteresis approach, however, enables us to treat more general classes
of constitutive operators. This is particularly convincing in uniaxial models, where
the assumptions on the constitutive operator are formulated in terms of geometrical
properties of its trajectories without referring to variational inequalities.

Compactness method

A one-dimensional version of system (1.1) will be considered here in the form

(1.29)





vt = σx + q,

εt = vx,

ε = F (σ),

for (x, t) ∈]0, 1[×]0, T [, where F is a given constitutive operator and q is a given
forcing. Formally, system (1.29) is equivalent to the wave equation in displacements

(1.30) utt − F−1(ux)x = q

analogous to (1.8) provided the inverse F−1 exists.

Substituting the electric field E for v, magnetic field H for σ and magnetic induc-
tion B = µH + M for ε, where M is the magnetization and µ is the permeability,
we can interpret system (1.29) with a hysteretic constitutive operator M = W(H) as
one-dimensional Maxwell’s equations in a ferromagnetic medium.

For (1.29) we prescribe initial and boundary conditions

v(x, 0) = v0(x), σ(x, 0) = σ0(x) for x ∈]0, 1[,(1.31)

v(0, t) = σ(1, t) = 0 for t ∈]0, T [.(1.32)
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We assume again that operator F has the form

(1.33) F (σ)(x, t) : = f
(
x, σ(x, ·))(t)

for inputs σ such that σ(x, ·) ∈ C([0, T ]) for all x ∈ [0, 1], where

(1.34) (i) f(x, ·) : C([0, T ]) → C([0, T ]) is a hysteresis (i.e. rate-independent and causal)
operator for every x ∈ [0, 1],

(ii) f : [0, 1] × C([0, T ]) → C([0, T ]) is continuous and the trajectories of f(x, ·)
introduced in Remark II.4.15 fulfil the following hypothesis.

Assumption 1.5. There exist constants R > 0, bR > aR > 0, KR > 0 such that

for every x ∈ [0, 1] and σ ∈ C([0, T ]), |σ|∞ 6 R the trajectory ϕ(x, ·) of f(x, ·) along

σ in a monotonicity interval [t1, t2] is absolutely continuous and satisfies

(1.35) (i) ϕ ∈ C([0, 1]× J), J = Conv{σ(t1), σ(t2)},
(ii) aR 6 ∂

∂%ϕ(x, %) 6 bR for a.e. % ∈ IntJ ,

(iii) if σ is nondecreasing in [t1, t2], then % 7→ ϕ(x, %)− 1
2KR%2 is convex in J ,

(iv) if σ is nonincreasing in [t1, t2], then % 7→ ϕ(x, %) + 1
2KR%2 is concave in J .

We now state a global existence theorem for system (1.29), (1.31), (1.32). The results
of Sections II.3, II.4 show that operators F of the form (1.33) with f(x, ·) : = aI +
W(λ(x, ·), ·), where a is positive and W is a Prandtl-Ishlinskii operator II(3.2), a
Preisach operator II(3.13), a generalized Preisach operator with fatigue II(5.7) or a
Della Torre operator II(3.31) with initial configurations λ ∈ C([0, 1]; ΛR), where ΛR

is endowed with the sup-norm, as well as perturbations of these operators of the form
f(x, u) = au +W(λ, u) + δg(u), where g : R1 → R1 is a smooth function and δ > 0
is sufficiently small satisfy the hypotheses above. The case of the operator II(5.22) is
more delicate and we refer the reader to Krejč́ı (1994).

Theorem 1.6. Let the constitutive operator F satisfy (1.34) and Assumption 1.5

and let v0, σ0 ∈ W 1,2(0, 1), q ∈ L1(0, T ;L2(0, 1)) be given such that v0(0) = σ0(1) =
0, qt ∈ L1

(
0, T ; L2(0, 1)

)
and the inequality

∫ 1

0

[
3q2(x, 0) + 2|σ0

x(x)|2 +
1

aR
|v0

x(x)|2]dx+(1.36)

+ 4

(∫ T

0

(∫ 1

0

q2
τ (x, τ)dx

)1/2

dτ

)2

6 R2

16
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is fulfilled. Then there exists at least one solution (v, σ, ε) ∈ [
C([0, 1] × [0, T ])

]3
of

(1.29), (1.31), (1.32) such that vt, vx, σt, σx, εt ∈ L∞
(
0, T ;L2(0, 1)

)
, |σ|∞ 6 R

2 and

(1.29) holds almost everywhere in ]0, 1[×]0, T [.

The restriction on the size of the data is related to the boundedness of the convexity
domains of the operators f(x, ·). We see from (1.36) that for operators satisfying
Assumption 1.5 for every R > 0 and aR > a0 > 0 we have global existence for any
regular data.

Nothing is known about uniqueness of solutions in the general case. In the next
section we prove uniqueness results for equations with Preisach or Prandtl-Ishlinskii
constitutive operators.

The solution will be constructed by discretization in space. For n ∈ N and j =
0, . . . , n we denote Fj : = f

(
j
n , ·) and consider the system of ODE’s for t ∈]0, T [,

(i) v̇j(t) = ∆jσ(t) + qj(t),(1.37)

(ii) ε̇j(t) = ∆j−1v(t),

(iii) εj(t) = Fj(σj)(t),

where ∆jσ : = n(σj+1 − σj), ∆j−1v : = n(vj − vj−1), qj(t) : = n
∫ j+1

n
j
n

q(x, t)dx, j =
1, . . . , n− 1. We prescribe initial and “boundary” conditions

(1.38) vj(0) = v0
( j

n

)
, σj(0) = σ0

( j

n

)
, j = 0, . . . , n, v0(t) = σn(t) = 0.

The global solvability of (1.37), (1.38) for a fixed n ∈ N will be established in the
following two lemmas.

Lemma 1.7. Let the hypotheses of Theorem 1.6 hold and let t0 ∈ [0, T [, V > 0 be

given. Assume that {(vj , σj , εj); j = 1, . . . , n − 1} are absolutely continuous functions

satisfying (1.37), (1.38) for t ∈ [0, t0], max
j
‖σj‖[0,t0] 6 R

2 , max
j
|vj(t0)| 6 V . Then the

solution {(vj , σj , εj)} can be extended to the interval [0, t0 + s] ∩ [0, T ] in such a way

that max
j
‖σj‖[0,t0+s] 6 R, where s : = RaR

4n

(
V + 2nTR + n

∫ T

0

∫ 1

0
|q(x, t)|dx dt

)−1
.

P r o o f. The hypotheses of Lemma 1.7 are automatically satisfied for t0 = 0 and
V : = R

√
aR

4 . Initial conditions for εj follow from the assumption of causality of the
operators f(x, ·) which entails that there exists a continuous function η : [0, 1]×R1 →
R1 such that εj(0) = η

(
j
n , σj(0)

)
.

For an arbitrary t0 ∈ [0, T [ satisfying the hypothesis we denote

σ0
j (t) : =

{
σj(t) for t ∈ [0, t0],

σj(t0) for t ∈]t0, t0 + s]
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and for k ∈ N we define the sequences {(vk
j , σk

j , εk
j ); k ∈ N} recursively by the formulae

(i) vk
j (t) := vj(t0) +

∫ t

t0

(
∆jσ

k(τ) + qj(τ)
)
dτ,(1.39)

(ii) εk+1
j (t) : = εj(t0) +

∫ t

t0

∆j−1v
k(τ)dτ

for t ∈ [0, t0 + s]. The transition εk+1
j 7→ σk+1

j will be performed in the following way.
Let Rk+1 : C([t0, t0 + s]) → C([t0, t0 + s]) be the linearization operator

(1.40) Rk+1(u)(t) := u(ti) +
t− ti

ti+1 − ti

(
u(tj+1)− u(ti)

)
for t ∈ [ti, ti+1],

where ti : = t0 + is
k+1 , i = 0, . . . , k + 1, and put

ε̃k+1
j (t) : =

{
εj(t) for t ∈ [0, t0],

Rk+1

(
εk+1
j )(t) for t ∈ [t0, t0 + s].

Assume that for some k ∈ N ∪ {0} we have

(1.41) ‖σk
j ‖[0,t0+s] 6 R for all j = 1, . . . , n− 1.

From (1.39) we infer |vk
j (t)| 6 V + 2nTR + n

∫ T

0

∫ 1

0
|q(x, t)|dx dt and |ε̇k+1

j (t)| 6
2n max

j
|vk

j (t)| 6 RaR

2s for a.e. t ∈]0, t0 + s[, therefore also | ˙̃εk+1

j (t)| 6 RaR

2s a.e.

The function ε̃k+1
j is monotone in [ti−1, ti], i = 1, . . . , k +1. For t ∈ [0, t0] we define

σk+1
j (t) : = σj(t) and continue by induction over i similarly as in the proof of Theorem

II.3.17: assuming that σk+1
j is defined in [0, ti]; the causality of Fj entails that its

trajectory ϕi
j : [−R,R] → R1 along σk+1

j in [ti, ti+1] is independent of the values of
σk+1

j |]ti,ti+1]. We therefore can put

(1.42) σk+1
j (t) : =

(
ϕi

j

)−1(
ε̃k+1

j (t)
)

for t ∈ [ti, ti+1], i = 0, . . . , k.

Formula (1.42) is meaningful provided (1.41) holds for σk+1
j . From the construction and

assumption (1.35)(ii) it follows |σ̇k+1
j (t)| 6 1

aR
| ˙̃εk+1

j (t)| 6 R
2s a.e., hence |σk+1

j (t)| 6
|σk+1

j (t0)|+
∫ t

t0
|σ̇k+1

j (τ)|dτ 6 R.
We thus have equibounded equicontinuous sequences {vk

j , σk
j , εk

j , ε̃k
j ; k ∈ N} in

C([0, t0 + s]) satisfying (1.39) and (1.41), ε̃k
j = Fj(σk

j ), |ε̃k
j − εk

j |∞ 6 max{|εk
j (t) −

εk
j (τ)|; |t − τ | 6 s

k} 6 RaR

2k . By Arzelà-Ascoli Theorem V.2.1 there exist uniformly
convergent subsequences in [0, t0 + s] (still indexed by k) such that their limits
vj : = lim

k→∞
vk

j , σj : = lim
k→∞

σk
j , εj : = lim

k→∞
εk
j = lim

k→∞
ε̃k
j fulfil Lemma 1.7. ¤
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Lemma 1.8. Let inequality (1.36) hold and let {vj , σj , εj ; j = 1, . . . , n − 1} sat-

isfy system (1.37), (1.38) in an interval [0, t0] ⊂ [0, T ], ‖σj‖[0,t0] 6 R. Put C1 :=

4

[
∫ 1

0
(q2(x, 0) + |σ0

x(x)|2 + 1
2aR

|v0
x(x)|2)dx +

(∫ t0
0

(∫ 1

0
q2
t (x, t)dx

)1/2

dt

)2
]
. Then

(1.43) ‖σj‖[0,t0] 6 R

2
, ‖vj‖[0,t0] 6

√
bRC1 ∀j = 1, . . . , n− 1.

P r o o f. We differentiate (1.37)(i),(ii) d
dt and multiply by v̇j , σ̇j , respectively. Sum-

ming and integrating
∫ t

0
we obtain

(1.44)
n−1∑

j=1

[
1
2
v̇2

j (t) +
∫ t

0

ε̈j(τ)σ̇j(τ)dτ

]
=

n−1∑

j=1

[
1
2
v̇2

j (0) +
∫ t

0

q̇j(τ)v̇j(τ)dτ

]
.

The operators Fj satisfy the hypotheses of Theorem II.4.19 and εj ∈ W 2,1(0, T ), σj ∈
W 1,∞(0, T ) for all j = 1, . . . , n− 1, hence

min
{
bRσ̇2

j (t),
1

aR
ε̇2
j (t)

}
> ε̇j(t)σ̇j(t) > max

{
aRσ̇2

j (t),
1
bR

ε̇2
j (t)

}
a.e.,

∫ t

0

ε̈j(τ)σ̇j(τ)dτ > 1
2
ε̇j(t)σ̇j(t)− 1

2aR
ε̇2
j (0) +

KR

2

∫ t

0

|σ̇j(τ)|3dτ a.e.

Combining this last inequality with (1.44) yields

n−1∑

j=1

[
v̇2

j (t) + ε̇j(t)σ̇j(t) + KR

∫ t

0

|σ̇j(τ)|3dτ
]

6(1.45)

6
n−1∑

j=1

[
v̇2

j (0) +
1

aR
ε̇2

j (0) + 2
∫ t

0

q̇j(τ)v̇j(τ)dτ
]
a.e.

From (1.45), (1.37), (1.36) and from the inequalities

1
n

n−1∑

j=1

∫ t

0

q̇j(τ)v̇j(τ)dτ 6
∥∥∥ 1

n

n−1∑

j=1

v̇2
j

∥∥∥
1/2

[0,t]

∫ t

0

( 1
n

n−1∑

j=1

q̇2
j (τ)

)1/2

dτ(1.46)

6
∥∥∥ 1

n

n−1∑

j=1

v̇2
j

∥∥∥
1/2

[0,t]

∫ t

0

( ∫ 1

0

q2
τ (x, τ)dx

)1/2

dτ,

1
n

n−1∑

j=1

v̇2
j (0) 6 2

n

n−1∑

j=1

[
n2(σj+1 − σj)2 + q2

j

]
(0) 6 2

∫ 1

0

[|σ0
x(x)|2 + q2(x, 0)

]
dx,(1.47)

1
n

n−1∑

j=1

ε̇2
j (0) 6

∫ 1

0

|v0
x(x)|2dx,(1.48)

∥∥∥
∫ 1

0

q2(x, ·)dx
∥∥∥

[0,t0]
6 2

∫ 1

0

q2(x, 0)dx + 4
(∫ t0

0

( ∫ 1

0

q2
t (x, t)dx

)1/2

dt

)2

(1.49)
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we obtain for a.e. t ∈]0, t0[

(i)
1
n

n−1∑

j=1

[
v̇2

j (t) + aRσ̇2
j (t)

]
6 C1,(1.50)

(ii)
1
n

n−1∑

j=1

|∆jσ(t)|2 6 C2 : = 2
(
C1 +

∫ 1

0

q2(x, t)dx
)

6 R2

4
,

(iii)
1
n

n−1∑

j=1

|∆j−1v(t)|2 =
1
n

n−1∑

j=1

ε̇2
j (t) 6 bRC1,

(iv) |σj(t)| 6
n−1∑

i=j

|σi+1(t)− σi(t)| 6 R

2
,

(v) |vj(t)| 6
j∑

i=1

|vi(t)− vi−1(t)| 6
√

bRC1

and Lemma 1.8 is proved. ¤

P r o o f of Theorem 1.6. From Lemmas 1.7, 1.8 it follows that system (1.37), (1.38)
has a classical solution in [0,T] for every n ∈ N and estimates (1.50) hold for a.e.
t ∈]0, T [. For x ∈ [ j

n , j+1
n [, j = 0, . . . , n− 1 and t ∈ [0, T ] we define the functions

(1.51)





σ(n)(x, t) : = σj+1(t), σ̃(n)(x, t) : = σj(t) +
(
x− j

n

)
∆jσ(t),

v(n)(x, t) := vj(t), ṽ(n)(x, t) : = vj(t) +
(
x− j

n

)
∆jv(t),

ε(n)(x, t) := εj+1(t), q(n)(x, t) := qj(t)

continuously extended to x = 1.
Estimates (1.50) show that functions σ

(n)
t , v

(n)
t , ε

(n)
t , σ̃

(n)
t , ṽ

(n)
t , σ̃

(n)
x , ṽ

(n)
x are bounded

in L∞
(
0, T ; L2(0, 1)

)
independently of n, |σ(n)(x, t) − σ̃(n)(x, t)|2 6

∑n−1
j=1 |σj+1(t) −

σj(t)|2 6 C2
n , |v(n)(x, t) − ṽ(n)(x, t)|2 6 bRC1

n . The space W 1,p(]0, 1[×]0, T [) for
p =

(
(∞, 2), (∞, 2)

)
is compactly embedded in C([0, 1] × [0, T ]) by Corollary V.2.5;

there exist therefore functions v, σ ∈ C([0, 1] × [0, T ]) and ξ ∈ L∞
(
0, T ;L2(0, 1)

)

such that vt, vx, σt, σx ∈ L∞
(
0, T ; L2(0, 1)

)
and subsequences of the sequences above

(still indexed by n) such that v(n) → v, σ(n) → σ, ṽ(n) → v, σ̃(n) → σ uniformly,
v
(n)
t → vt, ṽ

(n)
t → vt, σ̃

(n)
t → σt, σ

(n)
t → σt, ε

(n)
t → ξ, ṽ

(n)
x → vx, σ̃

(n)
x → σx weakly-star

in L∞
(
0, T ; L2(0, 1)

)
.

System (1.37) has the form

(i) v
(n)
t = σ̃(n)

x + q(n),(1.52)

(ii) ε
(n)
t = ṽ(n)

x ,

(iii) ε(n) = F (n)
(
σ(n)

)
,
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where F (n) is the operator F (n)(u)(x, t) : = f
(

j+1
n , u(x, ·)) (t) for x ∈ [

j
n , j+1

n

]
, j =

0, . . . , n and arbitrary u such that u(x, ·) ∈ C([0, T ]) for all x ∈ [0, 1].
For each n ∈ N and t ∈ [0, T ] we have

∫ 1

0

|q(n)(x, t)− q(x, t)|dx 6 n

n−1∑

j=1

∫ j+1
n

j
n

∫ j+1
n

j
n

|q(x, t)− q(ξ, t)|dx dξ,

hence q(n) → q in L1 by Mean Continuity Theorem (Proposition V.1.14). Furthermore,
assumption (1.34)(ii) yields

∣∣F (n)(σ(n))(x, t) − F (σ)(x, t)
∣∣ =

∣∣f (
j+1
n , σ(n)(x, ·)) (t) −

f
(
x, σ(x, ·))(t)

∣∣ → 0 uniformly in [0, 1] × [0, T ] as n → ∞, hence ε(n) converge
uniformly to ε = F (σ) and εt = ξ. Passing to the limit in (1.52) we obtain (1.29).
We moreover have |σ(n)(y, 0) − σ0(y)|2 6 1

n

∫ 1

0
|σ0

x(x)|2dx, |v(n)(y, 0) − v0(y)| 6
1
n

∫ 1

0
|v0

x(x)|2dx for every y ∈ [0, 1], σ̃(n)(1, t) = ṽ(n)(0, t) = 0. Conditions (1.31),
(1.32) then follow from the uniform convergence. Theorem 1.6 is proved. ¤

Let us mention here an additional regularity result.

Proposition 1.9. Let v, σ, ε be as in Theorem 1.6. Then the functions vx, σx :
[0, T ] → L2(0, 1) are weakly continuous.

P r o o f. The argument is standard (see Arosio (1981)). Let tn → t0 ∈ [0, T ] be an

arbitrary sequence and let δ > 0 be given. For each ψ ∈ L2(0, 1) we find ψ̃ ∈
◦

W 2,1(0, 1)
such that |ψ − ψ̃|2 < δ. Then

∣∣∣
∫ 1

0

(
σx(x, tn)− σx(x, t0)

)
ψ(x)dx

∣∣∣ 6 2δ sup
t

(∫ 1

0

|σ2
x(x, t)|dx

)1/2

+

+
∣∣∣
∫ 1

0

(
σ(x, tn)− σ(x, t0)

)
ψ̃′(x)dx

∣∣∣

and similarly for vx. The assertion now follows from the estimates (1.50) and continuity
of v and σ. ¤

To conclude this section we prove under a natural energy condition that system (1.29)
is hyperbolic in the sense of bounded speed of propagation.

Proposition 1.10. Let the hypotheses of Theorem 1.6 be fulfilled. Assume that

there exists a potential energy operator U : [0, 1] ×W 1,∞(0, T ) → W 1,∞(0, T ) and a

constant c > 0 such that for every u ∈ W 1,∞(0, T )

(i) U(x, u)(t) > 1
2c2

u2(t) ∀(x, t) ∈ [0, 1]× [0, T ],(1.53)

(ii) u(t)
∂

∂t
f(x, u)(t) > ∂

∂t
U(x, u)(t) a.e.,

(iii) U(x, u)(0) = 0 if u(0) = 0.
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Let there exist an interval [a, b] ⊂]0, 1[ such that the data σ0, v0, q satisfy σ0(x) =
v0(x) = 0 for x ∈ [a, b], q(x, t) = 0 for (x, t) ∈ Ω : = {(x, t) ∈ [0, 1] × [0, T ]; a + ct <

x < b− ct}. Then every solution (v, σ) of (1.29) vanishes in Ω.

P r o o f (cf. Courant, Hilbert (1937)). Put U(σ)(x, t) : = U
(
x, σ(x, ·))(t). For

(x, t) ∈ Ω we have
(

1
2v2 +U(σ)

)
t
− (vσ)x 6 0. For an arbitrary τ ∈ [

0, b−a
2c

]
we denote

Ωτ : = {(x, t) ∈ Ω; t < τ}. A straightforward integration yields

0 >
∫∫

Ωτ

[(1
2
v2 + U(σ)

)
t
− (vσ)x

]
dx dt =

∫ b−cτ

a+cτ

(1
2
v2 + U(σ)

)
(x, τ)dx+

+
∫ a+cτ

a

(1
2
v2 + U(σ) +

1
c
vσ

)(
x,

x− a

c

)
dx+

+
∫ b

b−cτ

(1
2
v2 + U(σ)− 1

c
vσ

)(
x,

b− x

c

)
dx,

and the assertion follows from (1.53)(i). ¤

Remark 1.11. The expressions Φ : = 1
2v2 + U(σ), Ψ : = vσ are the energy density

and energy flow density, respectively. Note that the hypothesis is fulfilled for the oper-
ator f(x, ·) = 1

c2 I +W
(
λ(x, ·), ·), where W is a Preisach operator II(3.13) with initial

configuration λ(x, ·) = 0 for x ∈ [0, 1], a Della Torre operator II(3.31) or a Preisach
operator with fatigue II(5.7).

III.2 Uniqueness and asymptotics

Further investigation of qualitative properties of global solutions to system (1.29),
(1.31), (1.32) constitutes the objective of this section. In general, the problem of
uniqueness is open. Besides the easy case, where F is monotone as in Theorem 1.2, we
explicitly formulate a uniqueness condition if F is a Preisach operator.

The main part is devoted to the asymptotic behavior of solutions as t → ∞. In
the previous section we proved that the convexity of loops of the constitutive operator
implies that shocks do not occur. Here, we prove that strict convexity of loops implies
nonresonance and decay of solutions.

Uniqueness

Theorem 2.1. Let R0 > 0 and a function λ ∈ C([0, 1]; ΛR0) with ΛR0 endowed

with the sup-norm be given. Let the constitutive operator F be of the form (1.33),



118

where f(x, ·) : = Fϕ

(
λ(x, ·), ·) is the Prandtl-Ishlinskii operator II(3.2) and let h be

nondecreasing, a = h(0+) > 0. Then for every v0, σ0 ∈ W 1,2(0, 1), q ∈ L1(]0, 1[×]0, T [)
such that v0(0) = σ0(1) = 0, qt ∈ L1

(
0, T ; L2(0, 1)

)
there exists a unique solution

(v, σ, ε) ∈ (
C[0, 1] × [0, T ])

)3
of (1.29), (1.31), (1.32) such that vt, vx, σt, σx, εt ∈

L∞
(
0, T ; L2(0, 1)

)
and (1.29) holds a.e.

P r o o f. Existence follows from Theorem 1.6, since R > 0 can be chosen arbitrarily
large and aR > a > 0. Uniqueness follows from inequality II(4.11) similarly as in the
proof of Theorem 1.2. ¤

Theorem 2.2. Let W be a Preisach operator satisfying the hypotheses of Theo-

rem II.4.22 and let F be of the form (1.33) with f(x, ·) = aI + W
(
λ(x, ·), ·), a >

0, λ ∈ C([0, 1]; ΛR). Let q, v0, σ0 satisfy condition (1.36) and let (v(i), σ(i), ε(i)) ∈
(C[0, 1] × [0, T ])3, i = 1, 2, be two solutions of (1.29), (1.31), (1.32) such that σ

(i)
t ∈

L1
(
0, T ; L∞(0, 1)

)
, i = 1, 2. Then v(1) = v(2), σ(1) = σ(2), ε(1) = ε(2).

We see that the regularity σt ∈ L∞
(
0, T ;L2(0, 1)

)
, |σ|∞ 6 R

2 obtained in Theorem
1.6 is not sufficient in Theorem 2.2. To obtain uniqueness we have to assume that the
solution σ is more regular with respect to x. However, the problem whether more
regular data guarantee more regular solutions remains open.

P r o o f of Theorem 2.2. Put w(i) : = W(λ, σ(i)), i = 1, 2. From (1.29) we infer in
a standard way that

1
2

d

dt

∫ 1

0

[
(v(1)−v(2))2+a(σ(1)−σ(2))2

]
(x, t)dx+

∫ 1

0

(w(1)
t −w

(2)
t )(σ(1)−σ(2))dx = 0 a.e.

For ξ
(i)
r : = pr(λ, σ(i)), r > 0, i = 1, 2 it follows from Proposition II.4.13

1
2

d

dt

∫ 1

0

[
(v(1) − v(2))2 + a(σ(1) − σ(2))2

]
(x, t)dx+

+
∫ ∞

0

∫ 1

0

(ξ(1)
r − ξ(2)

r )
∂

∂t

(
g(ξ(1)

r , r)− g(ξ(2)
r , r)

)
(x, t)dx dr 6 0 a.e.,

hence for a.e. t ∈ [0, T [ we have

1
2

d

dt

∫ 1

0

[
(v(1) − v(2))2 + a(σ(1) − σ(2))2 +

∫ ∞

0

ψ(ξ(1)
r , r)(ξ(1)

r − ξ(2)
r )2dr

]
(x, t)dx 6(2.1)

6
∫ ∞

0

∫ 1

0

[1
2
(ξ(1)

r − ξ(2)
r )2

∂ψ

∂v
(ξ(1)

r , r)
∂

∂t
ξ(1)
r

]
(x, t)dx dt−

−
∫ ∞

0

∫ 1

0

[
(ξ(1)

r − ξ(2)
r )

(
ψ(ξ(1)

r , r)− ψ(ξ(2)
r , r)

) ∂

∂t
ξ(2)
r

]
(x, t)dx dr.
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Put k(t) : = supess
{|σ(i)

t (x, t)|; x ∈]0, 1[, i = 1, 2
}
. Then we have k ∈ L1(0, T ) and∣∣∣ ∂

∂tξ
(i)
r (x, t)

∣∣∣ 6 k(t) for a.e. (r, x, t) ∈]0,∞[×]0, 1[×]0, T [. From (2.1) we obtain

1
2

d

dt

∫ 1

0

[
(v(1) − v(2))2 + a(σ(1) − σ(2))2 + AR

∫ R

0

(ξ(1)
r − ξ(2)

r )2dr
]
(x, t)dx 6

6 3
2
CRk(t)

∫ 1

0

∫ R

0

(ξ(1)
r − ξ(2)

r )2(x, t)dr dx a.e.,

where AR, CR are positive constants from Propositions II.4.22, II.4.2. The assertion
now follows in a standard way from a Gronwall type argument like Lemma II.5.6. ¤

Exercise 2.3. Let the hypotheses of Theorem 2.1 be fulfilled and let the number
H−(R) from Proposition II.4.21 be strictly positive for all R > 0. Use inequality
II(4.11) to prove that the solution of problem (1.29), (1.31), (1.32) is stable with re-
spect to quasilinear perturbations of the form ε = F (σ) + δg(σ), where g is a smooth
increasing function and δ → 0+.

Nonresonance

We have seen that the convexity of hysteresis loops of the constitutive operator pre-
vents system (1.29) from the formation of shocks. We now show that if the hysteresis
loops are strictly convex and the right-hand side q is bounded, then the solution re-
mains globally bounded due to the hysteretic dissipation of energy. This phenomenon
is called nonresonance and the precise statement reads as follows.

Theorem 2.4. Let the hypotheses of Theorem 1.6 be fulfilled with KR > 0 and

q, qt ∈ L∞
(
0,∞; L2(0, 1)

)
. Let condition (1.36) be replaced with

(i) Q1KRb
− 1

2
R 6 1,(2.2)

(ii) 6 max{E0, Y Q1}+ Q2
0 6 1

4
R2,

where we put E0 : = 1
2

∫ 1

0

(|σ0
x(x) + q(x, 0)|2 + 1

aR
|v0

x(x)|2)dx, Y : = 6b
3
2
RK−1

R + 1
6bRQ1,

Q0 : = supess
{( ∫ 1

0
q2(x, t)dx

) 1
2 ; t > 0

}
, Q1 : = supess

{( ∫ 1

0
q2
t (x, t)dx

) 1
2 ; t > 0

}
.

Then system (1.29), (1.31), (1.32) admits a solution (v, σ, ε) ∈ ⋃
T>0

C([0, 1] × [0, T ])

such that |σ(x, t)| 6 R
2 , |v(x, t)| 6 (

6bR max{E0, Y Q1}
) 1

2 for all (x, t) ∈ [0, 1]× [0,∞[,
vt, vx, σt, σx, εt ∈ L∞

(
0,∞; L2(0, 1)

)
.

Conditions (2.2) express the requirement that the solution does not leave the con-
vexity domain of F . If the operator F is globally convex, i.e. for every R > 0 there
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exist bR > aR > a > 0 and KR > 0 such that condition (1.35) holds and if moreover
we assume

(2.3) lim
R→∞

KRb
− 1

2
R = 0, lim

R→∞
b

3
2
R

R2KR
= 0,

then assumption (2.2) is automatically satisfied without any restriction on the size of the
data for R sufficiently large. Let us note that operators satisfying (2.3) exist. It suffices
to consider a Prandtl-Ishlinskii operator II(3.2) with h(r) := a + 2crα with a, c > 0
and α ∈]0, 1]. Indeed, by Proposition II.4.21 we have bR = h(R),KR = cαRα−1.

P r o o f of Theorem 2.4. It suffices to check that the assertion of Lemma 1.8 holds
for every t0 > 0 with C1 = 6max{E0, Y Q1}. Lemma 1.7 then guarantees that system
(1.37), (1.38) has a globally bounded solution in [0,∞[. The argument of the proof
of Theorem 1.6 then shows that for every fixed T > 0 the sequence (1.46) contains a
subsequence which converges uniformly in [0, 1]× [0, T ] to a solution of (1.29), (1.31),
(1.32). Let {v(n,1), σ(n,1), ε(n,1)} denote the corresponding convergent subsequence for
T = 1. By induction we construct for ` ∈ N subsequences {v(n,`), σ(n,`), ε(n,`)} of
{v(n,`−1), σ(n,`−1), ε(n,`−1)} which converge in [0, `]. To each ` ∈ N we find n` such
that for m, n > n` we have |v(m,`) − v(n,`)| + |σ(m,`) − σ(n,`)| + |ε(m,`) − ε(n,`)| < 1

` .
The sequence {v(n`,`), σ(n`,`), ε(n`,`); ` ∈ N} then converges locally uniformly to a global
solution of (1.29), (1.31), (1.32) satisfying the assertion of Theorem 2.4.

To derive estimates (1.43) we proceed analogously as in the proof of Lemma 1.8. The
counterpart of (1.44)

(2.4)
n−1∑

j=1

[1
2
(
v̇2

j (t)− v̇2
j (s)

)
+

∫ t

s

ε̈j(τ)σ̇j(τ)dτ
]

=
n−1∑

j=1

∫ t

s

q̇j(τ)v̇j(τ)dτ

holds for every t > s > 0. To simplify the computation we introduce the notation

E(t) : =
1
2n

n−1∑

j=1

(
v̇2

j (t) + ε̇j(t)σ̇j(t)
)
,

S(t) : =
1
n

n−1∑

j=1

|σ̇j(t)|3,

V (t) : =
1
n

n−1∑

j=1

v̇2
j (t),

Z(t) : = − 1
n

n−1∑

j=1

vj(t)v̇j(t)
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and choose an arbitrary function % ∈ W 1,∞(0,∞) such that

(2.5) %(t) >
(∫ 1

0

q2
t (x, t)dx

) 1
4 ∀t > 0.

For almost all t > s > 0 we obtain from (2.4), Theorem II.4.19 and equation (1.37)

E(t)− E(s) +
KR

2

∫ t

s

S(τ)dτ 6 1
n

n−1∑

j=1

∫ t

s

q̇j(τ)v̇j(τ)dτ,(2.6)

Ż(t) + V (t) =
1
n

n−1∑

j=1

[
ε̇j(t)σ̇j(t)− vj(t)q̇j(t)

]
.(2.7)

Using Hölder’s inequality for sums and the inequalities

(2.8)

{ |vj(t)| 6 1
n

∑n−1
j=1 |∆j−1v(t)| 6 (

1
n

∑n−1
j=1 |ε̇j(t)|2

)1/2 a.e.,

|ε̇j(t)| 6 bR|σ̇j(t)|, 1
n

∑n−1
j=1 q̇2

j (t) 6
∫ 1

0
q2
t (x, t)dx a.e.

we infer from (2.6), (2.7)

E(t)− E(s) +
KR

2

∫ t

s

S(τ)dτ 6
∫ t

s

%2(τ)V
1
2 (τ)dτ,(2.9)

Ż(t) + E(t) +
1
2
V (t) 6 bR

(3
2
S

2
3 (t) + %2(t)S

1
3 (t)

)
6 bR

(
3S

2
3 (t) +

1
6
%4(t)

)
.(2.10)

We now fix a constant C > 0 which will be specified later and put B(t) := KR

4C%(t) .
The inequalities

%2(τ)V
1
2 (τ) 6 1

2
C%(τ)V (τ) +

1
2C

%3(τ),

3bRS
2
3 (t) 6 b3

R

B2(t)
+ 2B(t)S(t)

combined with (2.9), (2.10) yield for a.e. t > s > 0

E(t)− E(s) +
∫ t

s

C%(τ)
(
Ż(τ) + E(τ)

)
dτ 6(2.11)

6
∫ t

s

[ 1
2C

+
16b3

RC3

K2
R

+
bRC

6
%2(τ)

]
%3(τ)dτ.

We can choose in particular %(τ) ≡ Q
1
2
1 and put C : = 1

2K
1
2
Rb

− 3
4

R , Ê(t) : = E(t) +

CQ
1
2
1 Z(t). By (2.2)(i) and (2.8) we have |CQ

1
2
1 Z(t)| 6 1

2E(t) a.e., hence

(2.12)
1
2
E(t) 6 Ê(t) 6 3

2
E(t) a.e.
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Inequality (2.11) for %(τ) = Q
1
2
1 then yields

(2.13) Ê(t)− Ê(s) +
2
3
CQ

1
2
1

∫ t

s

Ê(τ)dτ 6 Y CQ
3
2
1 (t− s) a.e.

The function f(t) := Ê(t) + 2
3CQ

1
2
1

∫ t

s
Ê(τ)dτ − Y CQ

3
2
1 t is nonincreasing in ]0,∞[

by (2.13); from inequality II(4.21) for η(t) = e
2
3 CQ

1
2
1 t and K = 0 it follows

Ê(t−) 6 Ê(s+)e
2
3 CQ

1
2
1 (s−t) +

3
2
Y Q1(1− e

2
3 CQ

1
2
1 (s−t))

6 3
2

max{E(s+), Y Q1} for all t > s > 0,

consequently

(2.14) E(t−) 6 3 max{E(0+), Y Q1} ∀t > 0.

We have E(s) 6 1
n

∑n−1
j=1

(
v̇2

j (s) + 1
aR

ε̇2
j (s)

)
for a.e. s > 0, hence E(0+) 6 E0 and

(2.15) E(t) 6 3max{E0, Y Q1} a.e.

We have by (1.37) and (2.8)

(2.16)





|vj(t)| 6
(

1
n

∑n−1
j=1 |ε̇j(t)|2

) 1
2 6

(
2bRE(t)

) 1
2 a.e.,

|σj(t)| 6 1
n

∑n−1
j=1 |∆jσ(t)| 6 1

n

∑n−1
j=1 |v̇j(t) + qj(t)|

6
(
2E(t) +

∫ 1

0
q2(x, t)dx

) 1
2

a.e.

and estimates (1.43) with C1 = 6 max{E0, Y Q1} follow from (2.15) and (2.2)(ii). The-
orem 2.4 is proved. ¤

Decay of solutions

A natural question about the decay of solutions of (1.29), (1.31), (1.32) as t →∞ if
the right-hand side decays to 0 can be answered in the following way.

Theorem 2.5. Let the hypotheses of Theorem 2.4 hold and assume that the function

% ∈ W 1,∞(0,∞) in (2.5) can be chosen in such a way that

(2.17) lim
t→∞

%(t) = 0, 0 6 −%̇(t) 6 M%2(t) a.e.

for some constant M > 0. Then there exist constants A > 0 and t0 > 0 such that

each global solution (v, σ, ε) of (1.29), (1.31), (1.32) satisfies

(2.18)

{ |v(x, t)| 6 √
2bRA%(t),

|σ(x, t)| 6 (
2A%2(t) +

∫ 1

0
q2(ξ, t)dξ

) 1
2

∀(x, t) ∈ [0, 1]× [t0,∞[.



123

The best estimate of the decay rate for q ≡ 0 that Theorem 2.5 can yield is 1
t .

Example 2.6 and Remark 2.10(i) below show that it cannot be improved.

P r o o f of Theorem 2.5. Using inequalities (2.16) and the locally uniform con-
vergence of the approximate solutions we see that it suffices to derive from (2.11) the
inequality

(2.19) E(t) 6 A%2(t) for a.e. t > t0.

for suitable A > 0 and t0 > 0.
We fix some δ ∈ ]

0, 1
9

[
and put

(2.20) t0 : = sup
{
t > 0; M%(t0)b

1
2
R > δ

}
.

In inequality (2.11) we denote

(2.21) C : =
4M

1− 5δ
, L : =

1
2C

+
16b3

RC3

K2
R

+
1
6
bRC%2(t0).

We have |M%(t)Z(t)| 6 δE(t) for a.e. t > t0 and the function Ê(t) := E(t) +
C%(t)Z(t) satisfies

(2.22)
1− 9δ

1− 5δ
E(t) 6 Ê(t) 6 1− δ

1− 5δ
E(t) for a.e. t > t0.

We rewrite inequality (2.11) for a.e. t > s > t0 in the form

(2.23) Ê(t)− Ê(s) + C

∫ t

s

(
%(τ)E(τ)− %̇(τ)Z(τ)

)
dτ 6 L

∫ t

s

%3(τ)dτ.

Hypothesis (2.17) yields

%(τ)E(τ)− %̇(τ)Z(τ) > %(τ)
(
E(τ)− |M%(τ)Z(τ)|)

> (1− δ)%(τ)E(τ) > (1− 5δ)%(τ)Ê(τ) a.e.

and from (2.23) we conclude

(2.24) Ê(t)− Ê(s) + 4M

∫ t

s

%(τ)Ê(τ)dτ 6 L

∫ t

s

%3(τ)dτ for a.e. t > s > t0.

Put P (t) : =
∫ t

t0
%(τ)dτ for t > t0. Similarly as in the proof of Theorem 2.4 we

use inequality II(4.21) for f(t) : = Ê(t) + 4M
∫ t

t0
%(τ)Ê(τ)dτ − L

∫ t

t0
%3(τ)dτ and

η(t) : = e4MP (t). We obtain for a.e. t > s > t0.

(2.25) e4MP (t)Ê(t)− e4MP (s)Ê(s) 6 L

∫ t

s

%3(τ)e4MP (τ)dτ
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From hypothesis (2.17) it follows d
dτ

(
%2(τ)e4MP (τ)

)
> 2M%3(τ)e4MP (τ) > 0, hence

(2.26)





e−4MP (t) 6 %2(t)
%2(t0)

,

∫ t

s
%3(τ)e4MP (τ)dτ 6 1

2M

(
%2(t)e4MP (t) − %2(s)e4MP (s)

)
.

Combining (2.26) with (2.25) we obtain

e4MP (t)

(
Ê(t)− L

4M
%2(t)

)
6 Ê(t0+)− L

4M
%2(t0)

and either Ê(t0+) 6 L
4M %2(t0) and Ê(t) 6 L

4M %2(t) for a.e. t > t0 or Ê(t0+) >
L

4M %2(t0) and Ê(t) 6 Ê(t0)
%2(t0)

%2(t). Inequality (2.19) now follows from (2.22) with A =
1−δ
1−9δ max

{
L

4M , Ê(t0+)
%2(t0)

}
and the proof is complete. ¤

The rest of this section is devoted to the problem of optimality of estimates (2.18)
for q ≡ 0.

Example 2.6. Let us consider the system of ODE’s

(2.27)





v̇ = −σ,

u̇ = v,

σ = Fϕ(0, u),

(2.28) u(0) = u1 > 0, v(0) = 0,

describing the oscillations of an elastoplastic spring-mass system, where Fϕ(0, ·) is the
Prandtl-Ishlinskii operator II(3.2) with zero initial memory configuration. We assume

(2.29) h is nonincreasing in ]0,∞[, 0 6 h(r) < h(0+) for all r > 0.

By Proposition II.4.6 B every solution of (2.27) satisfies

(2.30)
d

dt

(
1
2
v2(t) + U(t)

)
= −|Ḋ(t)|,

where

(2.31)

{
U(t) =

∫∞
0

(
ξr(t)− u(t)

)
∂
∂r ξr(t)h(r) dr,

D(t) =
∫∞
0

∂
∂r

(
rξr(t)

)
h(r) dr,
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with ξr(t) : = pr(0, u)(t).
The technique of construction of the solution to system (1.15) is applicable here and

we conclude that system (2.27), (2.28) admits a unique global classical solution. Our
aim is to derive the following properties of the solution.

Proposition 2.7.
(i) There exists a sequence 0 = t0 < t1 < . . . such that (−1)ku is increasing in

[tk−1, tk], lim
k→∞

tk − tk−1 = π√
h(0+)

.

(ii) There exists a decreasing positive function Γ : ]0,∞[→]0,∞[ and positive con-

stants κi, i = 1, 2, 3, 4 such that lim
t→∞

Γ(t) = lim
t→∞

log Γ(t)
t = 0 and

(2.32) κ1Γ(κ2t) 6 |σ(t)|+ |v(t)| 6 κ3Γ(κ4t) ∀t > 0

Statement (ii) means that the solution decays to 0, but the rate of decay is not
exponential. In the proof we find an explicit formula for Γ in terms of the generator
ϕ of the operator Fϕ and we show that under the hypotheses of Theorem 2.5 we have
Γ(t) ≈ 1

t . The proof of Proposition 2.7 is based on Lemmas 2.8, 2.9 below.

Lemma 2.8. Let (u, v, σ) be a solution of (2.27) and assume that for some s0 > 0
we have v(s0) = 0, σ(s0) 6= 0. Put λ(r) : = pr(0, u)(s0). Then there exists s1 > s0

such that u, σ are strictly monotone in [s0, s1], v(s1) = 0, σ(s1)σ(s0) < 0 and putting

S := − sign
(
σ(s0)

)
, r∗(t) := mλ

(
u(t)

)
we have for t ∈ [s0, s1]

1
2
v2(t) =

(
λ(0)− λ

(
r∗(t)

)− Sr∗(t)
)
σ(s0)−(2.33)

−
∫ r∗(t)

0

(
S + λ′(r)

) (
λ
(
r∗(t)

)− λ(r) + S
(
r∗(t)− r

))
h(r)dr,

σ(t) = σ(s0) +
∫ r∗(t)

0

(
S + λ′(r)

)
h(r)dr.(2.34)

P r o o f of Lemma 2.8. There exists δ > 0 such that sign v̇(t) = sign v(t) = S for
t ∈]s0, s0 + δ[. Put s1 : = inf{t > s0; Sv(t) 6 0} with the convention inf ∅ = +∞. In
]s0, s1[ we have SḊ(t) > 0 and energy identity (2.30) entails

(2.35)
1
2
v2(t) + U(t) + SD(t) = U(s0) + SD(s0).

Using formula (2.31) for ξr(s0) = λ(r), ξr(t) = λ(r) for r > r∗(t), ξr(t) = u(t)−Sr for
r ∈]0, r∗(t)[ we obtain (2.33) directly from the identity u(t) = λ

(
r∗(t)

)
+ Sr∗(t) and

(2.35). Formula (2.34) follows immediately from the definition II(3.2).



126

Assume that s1 = +∞. Then Sv = Su̇ > 0, hence Sσ̇ = −Sv̈ > 0 in ]s0,+∞[ by
Proposition II.4.8. This yields Sv̇ = Sü > 0 in ]s0,+∞[, Su(+∞) = +∞. We have λ ∈
ΛR for R = ‖u‖[0,s0] by Corollary II.2.6, hence r∗(t) = |u(t)| and σ(t) = Sϕ

(|u(t)|)

for t sufficiently large. This means in particular Sσ(t) = −Sv̇(t) > 0 for t sufficiently
large which is a contradiction. We therefore have s1 < ∞, Sσ(s1) = −Sv̇(s1) > 0 and
Lemma 2.8 is proved. ¤

Lemma 2.8 enables us to define the sequence 0 = t0 < t1 < . . . such that (−1)ku

increases in [tk−1, tk], v(tk) = 0, (−1)kσ(tk) > 0. Put uk : = u(tk), σk : = σ(tk),
ak : = |σk|, λk(r) = pr(0, u)(tk) for r > 0, r0 : = u0, rk+1 : = mλk

(uk+1) for k > 0.
For r > 0 we define auxiliary functions

Φ(r) : =
∫ r

0

ϕ(%)d%,

α(r) : = 2
(

2Φ(r)
r

− ϕ(r)
)

= −2
r

∫ r

0

%(r − %)dh(%),

β(r) : =
2Φ(r)

r
=

2
r

∫ r

0

(r − %)h(%) d%,

γ(r) : =
∫ r0

r

β′(%)
α(%)

d%,

µ(r) : = h(0+)− h(r).

From hypothesis (2.29) we easily derive the following properties of the above func-
tions.

(i) α(0+) = 0, 0 < α′(r) < 2µ(r) for r > 0,(2.36)

(ii) β(0+) = 0, β(+∞) = 2ϕ(+∞), h(r) < β′(r) < h(0+) for r > 0,

(iii) γ(r) > h(r)
2µ(r)

log
r0

r
, γ′(r) < 0 for r > 0.

Lemma 2.9. For every k ∈ N we have ak−1 > ϕ(rk) > ak, ak−1 = β(rk), ak =
2ϕ(rk)− ak−1, rk = 1

2 |uk − uk−1|.
P r o o f of Lemma 2.9. We proceed by induction. We have σ0 = ϕ(r0), S = −1 in

]0, t1[, λ0(r) = max{0, r0 − r} and the function

f0(%) : =
(
u0 − λ0(%) + %

)
σ0 +

∫ %

0

(
1− λ′0(r)

)(
λ0(%)− λ0(r)− % + r

)
h(r) dr

satisfies f0(0) = 0, f0(r0) = −r0α(r0) < 0, f ′0(%) > 0 for % ∈ ]
0, ϕ−1

(
σ0
2

)[
, f ′0(%) < 0

for % > ϕ−1
(

σ0
2

)
. From (2.33) we infer that % = r1 is the unique positive root of the
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equation f0(%) = 0, hence r1 ∈ ]0, r0[, r1 = 1
2 (u0 − u1) and β(r1) = σ0. By (2.34) we

have σ1 = σ0 − 2ϕ(r1) and the assertion for k = 1 follows.
Assume now that for some k ∈ N the assertion of Lemma 2.9 holds. We analogously

define the function

fk(%) :=
(
uk − λk(%) + S%

)
σk +

∫ %

0

(
S − λ′k(r)

)(
λk(%)− λk(r)− S(%− r)

)
h(r) dr,

where S = (−1)k, and using the formula λk(r) = uk − (−1)kr for r ∈]0, rk[, λk(r) =
λk−1(r) for r > rk and the induction hypothesis we obtain fk(0) = 0, fk(rk) =
2rkak − 4Φ(rk) = −2rkα(rk) < 0, f ′k(%) > 0 for % ∈ ]

0, ϕ−1
(

ak

2

)[
, f ′k(%) < 0 for

% > ϕ−1
(

ak

2

)
. From (2.33) we again infer that % = rk+1 is the unique positive root of

the equation fk(%) = 0, hence rk+1 ∈]0, rk[, rk+1 = S
2 (uk − uk+1) and β(rk+1) = ak.

Identity ak+1 = 2ϕ(rk+1)− ak follows from (2.34). We obviously have ak −ϕ(rk+1) =
1
2α(rk+1) > 0, hence ak+1 − ϕ(rk+1) < 0 and the induction step is complete. ¤

P r o o f of Proposition 2.7. We rewrite the identities in Lemma 2.9 in the form

(2.37) ak−1 = β(rk), β(rk)− β(rk+1) = α(rk).

Both sequences {ak}, {rk} are decreasing, lim
k→∞

ak = lim
k→∞

rk = 0. The difference

tk+1 − tk can be directly estimated using the formula

(2.38) tk+1 − tk =
∫ uk+1

uk

(u−1)′(x) dx =
∫ uk+1

uk

dx

v(u−1(x))
,

where u−1 : Conv{uk, uk+1} → [tk, tk+1] is the inverse function to u|[tk,tk+1]. By (2.33)
we have

1
2
v2(t) = |u(t)− uk|ak − 4Φ

(1
2
|u(t)− uk|

)

and (2.38) yields

tk+1 − tk =
√

rk+1

2

∫ rk+1

0

dr√
rΦ(rk+1)− rk+1Φ(r)

=(2.39)

=
rk+1√

2

∫ 1

0

ds√
sΦ(rk+1)− Φ(srk+1)

.

From the integral formula sΦ(r)− Φ(sr) = s
∫ r

0

∫ %

s%
h(z) dz d% we infer

r2
k+1

2
s(1− s)h(rk+1) 6 sΦ(rk+1)− Φ(srk+1) 6

r2
k+1

2
s(1− s)h(0+),
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hence

(2.40)
π√

h(0+)
6 tk+1 − tk 6 π√

h(rk+1)

and statement (i) of Proposition 2.7 is proved.
The function Γ in (ii) is defined as

(2.41) Γ(t) : = γ−1(t) for t > 0,

where γ−1 : ]0,∞[→]0, r0[ is the inverse function to γ|]0,ro[. By (2.36)(iii) we have

lim
t→∞

Γ(t) = 0, lim
t→∞

log Γ(t)
t

= lim
r→0+

log r

γ(r)
= 0.

Furthermore, from the Mean Value Theorem it follows for every k ∈ N

γ(rk−1)− γ(rk)
β(rk−1)− β(rk)

= − 1
α(%k)

for some %k ∈ [rk, rk−1],

and (2.37) yields

(2.42) 1 6 γ(rk)− γ(rk−1) 6 α(rk−1)
α(rk)

∀k ∈ N.

By (2.37),(2.36) we have α(rk−1)−α(rk)
α(rk−1)

= α(rk−1)−α(rk)
β(rk−1)−β(rk) 6 2µ(rk−1)

h(rk−1)
, and similarly

rk−1−rk

rk−1
6 β(rk−1)−β(rk)

rk−1h(rk−1)
6 2µ(rk−1)

h(rk−1)
, hence

(2.43) lim
k→∞

α(rk−1)
α(rk)

= 1, lim
k→∞

rk

rk−1
= 1.

Using (2.40), (2.42) we find positive constants ci, i = 1, 2, . . . independent of k such
that c1k > γ(rk) > k, c2k > tk > c3k and

(2.44) Γ
( 1
c2

tk
)

6 rk 6 Γ
(c1

c3
tk

) ∀k ∈ N.

Using once more identities (2.33), (2.34) in [tk−1, tk] with r∗(t) = 1
2 |u(t) − u(tk−1)|

we obtain

σ2(t) +
ϕ
(
r∗(t)

)

r∗(t)
v2(t) = σ2

k−1 − 2α
(
r∗(t)

)
ϕ
(
r∗(t)

)
,

consequently

(2.45) σ2
k 6 σ2(t) +

ϕ
(
r∗(t)

)

r∗(t)
v2(t) 6 σ2

k−1 ∀t ∈ ]tk−1, tk[.
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By (2.37), (2.43) we have σ2
k−1 6 c4r

2
k, σ2

k > c5r
2
k−1, and (2.44), (2.45) entail

c5Γ2
( 1
c2

t
)

6 c5r
2
k−1 6 σ2(t) +

ϕ
(
r∗(t)

)

r∗(t)
v2(t) 6 c4r

2
k 6 c4Γ2

(c1

c3
t
)
.

The assertion now follows from the fact that r∗(t) ∈]0, rk[ and h(0+) > ϕ(r∗(t))
r∗(t) > c6 >

0 for all t ∈]tk−1, tk[. A suitable choice of constants κ1, κ2, κ3, κ4 now completes the
proof. ¤

Remarks 2.10.
(i) It is easy to check that the estimate 1

t of the order of decay in the context of
Theorem 2.5 is optimal. By Proposition II.4.21, the hypotheses of Theorem 2.5 are
fulfilled if there exist constants 0 < k1 < k2 such that

(2.46) k1(r − s) 6 h(s)− h(r) 6 k2(r − s) for all r0 > r > s > 0.

In this case we have k1
3 r2 6 α(r) 6 k2

3 r2, hence 3h(r0)
k2

(
1
r − 1

r0

)
6 γ(r) 6 3h(0+)

k1

(
1
r − 1

r0

)

for r ∈]0, r0[. The definition of Γ then yields

(2.47)
3r0h(r0)
1 + k2r0t

6 Γ(t) 6 3r0h(0+)
1 + k1r0t

for t > 0.

(ii) While the stress σ and velocity v vanish as t → ∞, the displacement u in
Example 2.6 tends to a positive value u∞ which corresponds to a remanent deformation
of the spring. This follows from the formula rk = (−1)k

2 (uk − uk−1), r0 = u0 which
entails u∞ =

∑∞
k=0(−1)k(rk − rk+1). By (2.37) we have β(rk−1)− 2β(rk) + β(rk+1) =

α(rk−1)−α(rk) > 0, hence β(rk) < 1
2

(
β(rk−1)+β(rk+1)

)
. The function β is increasing

and concave, hence rk < 1
2 (rk−1 + rk+1) for all k ∈ N. We thus conclude u∞ =∑∞

k=0(r2k − 2r2k+1 + r2k+2) > 0.

(iii) We similarly prove that the energy E(t) = 1
2v2(t) + U(t) does not vanish as

t →∞. Putting Ek = Uk : = U(tk) we obtain from (2.31)

E0 = r0ϕ(r0)− Φ(r0), Ek = Ek−1 − rkα(rk) for k ∈ N.

Lemma 2.9 and formula (2.37) then yield

E∞ = E0 −
∞∑

k=1

rkα(rk) = E0 −
∞∑

k=0

ϕ−1
(ak + ak+1

2

)
(ak − ak+1).

The function ϕ−1 is strictly convex in its domain of definition. We therefore have
ϕ−1

(
ak+ak+1

2

)
(ak − ak+1) <

∫ ak

ak+1
ϕ−1(s)ds and E∞ > E0 −

∫ a0

0
ϕ−1(s)ds = 0.

We see that a positive part of the initial energy is stored in the remanent deformation
of the spring, the rest is dissipated in the form of heat.
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III.3 Periodic solutions

The nonresonance property of wave equations with strictly convex hysteretic consti-
tutive operators which was proved in Sect. III.2 is manifested from another viewpoint
by the fact that time-periodic forcing terms imply the time-periodicity of solutions. For
a general hysteretic constitutive operator we prove the existence of a periodic solution
in its convexity domain by Galerkin method. In the case of Prandtl-Ishlinskii operators
we apply the Minty-Browder method to prove the existence and uniqueness of periodic
solutions even in the multidimensional case and, in dimension one, we prove that this
solution is asymptotically stable.

Compactness method

We pursue here the study of the scalar system (1.29) coupled with boundary condi-
tions

(3.1) v(0, t) = σ
(π

2
, t

)
= 0 for t > 0

and time-periodicity condition

(3.2) v(x, t) = v(x, t + ω), σ(x, t) = σ(x, t + ω) for (x, t) ∈]0,
π

2
[×]0,∞[,

where ω > 0 is a given period.
We introduce the spaces of ω-periodic functions

Lp
ω : =

{
u ∈ Lp

loc(0,∞); u(t + ω) = u(t) for a.e. t > 0
}

endowed with the norm of Lp(0, ω), and Cω as in Corollary II.2.7. For the sake
of simplicity we write Cω([0, π

2 ]) instead of C([0, π
2 ];Cω) and Lp

ω(0, π
2 ) instead of

Lp(0, π
2 ; Lp

ω). The corresponding Lp-norms are still denoted by | · |p, since confusion is
unlikely.

Theorem 3.1. Let the hypotheses of Theorem 1.6 be fulfilled with KR > 0 and

q, qt ∈ L2
ω(0, π

2 ). Let condition (1.36) be replaced with

(3.3) c0
R

∣∣q∣∣
2

+ c1
R

∣∣qt

∣∣ 1
2

2
6 γR,

where c0
R := 5

√
2
3 + 7

(
1 +

√
3
2 (1 + 1

bR
)
)
, c1

R := K
− 1

2
R

[
10
3 + 2

(
ωπb3

R

) 1
4
(

31
3 + 7

bR

)]
and

γ := 1
2

(
π
2

)− 1
5
(

1
ω

(
π
2

) 7
5 + 1

)− 1
2
. Let the operator F satisfy the periodicity condition

(3.4) F (u)(x, t + ω) = F (u)(x, t) ∀u ∈ Cω

(
[0,

π

2
]
)
, ∀(x, t) ∈ [

0,
π

2
]× [ω,∞[.
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Then there exists at least one solution (v, σ, ε) ∈ (
Cω

(
[0, π

2 ]
))3

to (1.29), (3.1), (3.2)

such that vt, σx ∈ L2
ω

(
0, π

2

)
, εt, σt, vx ∈ L3

ω

(
0, π

2

)
, |σ|∞ 6 R, |v|∞ 6 bRR and identities

(1.29) hold for a.e. (x, t) ∈]0, π
2 [×]ω,∞[.

From Corollary II.2.7 we immediately see that assumption (3.4) is satisfied for
Prandtl-Ishlinskii, Preisach and Della Torre operators as well as for the fatigue oper-
ator II(5.7). Condition (3.3) represents again the restriction to the convexity domain
of F . Similarly as in previous cases, for Prandtl-Ishlinskii operators II(3.2) gen-
erated by functions ϕ(r) = ar + 2c

α+1rα+1 with a, c > 0 and α ∈]0, 1] we have
bR = a + 2cRα, KR = cαRα−1, hence (3.3) is automatically satisfied for every q and
for R sufficiently large.

The uniqueness of periodic solutions is an open problem in general except for the
case where F is a Prandtl-Ishlinskii operator. In Theorems 3.4, 3.9 below we show
how the two-level monotonicity established in Theorem II.4.9 and Proposition II.4.12
implies uniqueness and stability of periodic solutions.

P r o o f of Theorem 3.1. The solution will be constructed by Galerkin method. Let
Z denote the set of all integers. We define basis functions {ej ; j ∈ Z} by the formula

(3.5) ej(t) : =

{
sin 2π

ω jt for j > 0

cos 2π
ω jt for j 6 0

and for a fixed n ∈ N we solve the algebraic system for j = −n, . . . , n, k = 0, . . . , n

(i)
∫ ω

0

∫ π
2

0

(
v
(n)
t − σ(n)

x − q
)
ej(t) sin(2k + 1)x dx dt = 0(3.6)

(ii)
∫ 2ω

ω

∫ π
2

0

(
F (σ(n))t − v(n)

x

)
ej(t) cos(2k + 1)x dx dt = 0

(iii) v(n)(x, t) : =
n∑

j=−n

n∑

k=0

vjk ej(t) sin(2k + 1)x,

(iv) σ(n)(x, t) : =
n∑

j=−n

n∑

k=0

σjk ej(t) cos(2k + 1)x

where {vjk, σjk; j = −n, . . . , n, k = 0, . . . , n} are to be found.
Instead of solving directly system (3.6)(i),(ii) we consider the following modified sys-

tem

(i)
∫ ω

0

∫ π2

0

(
v
(n)
t − σ(n)

x − αq
)
ej(t) sin(2k + 1)x dx dt = 0,(3.7)

(ii)
∫ 2ω

ω

∫ π
2

0

(
Fα(σ(n))t − v(n)

x

)
ej(t) cos(2k + 1)x dx dt = 0,
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j = −n, . . . , n, k = 0, . . . , n with a parameter α ∈ [0, 1] and operators Fα have the
form Fα(u)(x, t) = (1−α)Fϕ(0, u(x, ·)(t))+αF (u)(x, t), where Fϕ(0, ·) is the Prandtl-
Ishlinskii operator II(3.2) with initial configuration λ = 0 and generator ϕ(r) = aRr +
KRr2 for r > 0. By Proposition II.4.21 and Remark II.4.24 operators Fα, α ∈ [0, 1]
satisfy the hypotheses of Theorem 3.1, in particular Assumption 1.5.

Let V ∈ X : = R2(n+1)(2n+1) be the vector with components vjk, σjk; j = −n, . . . , n,
k = 0, . . . , n. System (3.7) has the form

(3.8) P (α, V ) = 0,

where P : [0, 1]×X → X is a continuous mapping such that P (0, ·) : X → X is odd.
We endow the space X with the norm

(3.9) ‖V ‖ : = max
{∣∣σ(n)

∣∣
∞,

1
bR

∣∣v(n)
∣∣
∞

}
.

To establish the existence of a solution V = Vα of (3.8) for every α ∈ [0, 1] it suffices
to prove the implication

(3.10) P (α, V ) = 0 ⇒ ‖V ‖ 6= R.

Indeed, the Brouwer degree d
(
P (α, ·), BR(0), 0

)
of the mapping P (α, ·) with respect to

the set BR(0) = {V ∈ X; ‖V ‖ < R} and the origin 0 ∈ X (see Fuč́ık, Kufner (1980))
is then independent of α; the degree d

(
P (0, ·), BR(0), 0

)
of the odd mapping P (0, ·) is

odd, hence in particular d
(
P (α, ·), BR(0), 0

) 6= 0 and for every α ∈ [0, 1] there exists a
solution Vα ∈ BR(0) of (3.8).

We now prove implication (3.10). Let v(n), σ(n) satisfy (3.7) for some α ∈
[0, 1], ‖V ‖ 6 R. Using the fact that ėj(t) = 2π

ω je−j(t) for every j ∈ Z we multi-
ply (3.7)(i) by

(
2π
ω j

)2
vjk and (ii) by

(
2π
ω j

)2
σjk. Summing up we obtain

(3.11)
∫ 2ω

ω

∫ π
2

0

[
Fα

(
σ(n)

)
t
σ

(n)
tt − αqtv

(n)
t

]
dx dt = 0

Similarly, multiplying (3.7)(i) by 2π
ω jv−j,k and (ii) by 2π

ω jσ−j,k yields

(3.12)
∫ 2ω

ω

∫ π
2

0

(
Fα(σ(n))tσ

(n)
t − (v(n)

t )2 + αqv
(n)
t

)
dx dt = 0.

We now apply Corollary II.4.23 to identities (3.11), (3.12). From II(4.32) and II(4.24)(ii)
it follows

(3.13)

{
1
2KR

∫ ω

0

∫ π
2

0
|σ(n)

t |3dx dt 6
∫ ω

0

∫ π
2

0
|qt| |v(n)

t |dx dt,
∫ ω

0

∫ π
2

0
|v(n)

t |2dx dt 6
∫ ω

0

∫ π
2

0

(
bR|σ(n)

t |2 + |q| |v(n)
t |)dx dt.
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Put S : =
∣∣σ(n)

t

∣∣
3
, Y : =

∣∣v(n)
t

∣∣
2
, Q1 : =

∣∣qt

∣∣
2
, Q0 : =

∣∣q∣∣
2
. Using Hölder’s inequality we

rewrite (3.13) in the form

(3.14)

{
KRS3 6 2Q1Y,

Y 2 6 bR

(
ωπ
2

) 1
3 S2 + Q0Y

Put MR : =
(ωπb3R

K2
R

) 1
4 . From (3.14) we infer Y 2 6 (2MR)

4
3 Q

2
3
1 Y

2
3 + Q2

0, hence

(3.15)





Y 2 6 4M2
RQ1 + 3

2Q2
0 6

(
2MRQ

1
2
1 +

√
3
2Q0

)2
,

S 6 2
3

(
Y +

(
Q1
KR

) 1
2
)

6 2
3

(
K
− 1

2
R + 2MR

)
Q

1
2
1 +

√
2
3Q0

From (3.7) we directly obtain

(3.16) |σ(n)
x |2 6 Y + Q0.

On the other hand, for an arbitrary function w ∈ Lin
{
ej(t) cos(2k + 1)x; j =

−n, . . . , n, k = 0, . . . , n
}

equation (3.7)(ii) yields

(3.17)
∫ ω

0

∫ π
2

0

v(n)
x w dxdt 6 |Fα(σ(n))t|3 |w| 3

2
6 bRS|w| 3

2
.

By density, inequality (3.17) holds for all w ∈ L
3
2
ω (0, π

2 ). We therefore have

(3.18) |v(n)
x |3 6 bRS.

The embedding theorem V.2.4 enables us to estimate the sup-norm of σ(n), v(n) using
boundary conditions (3.1). In order to fulfil condition V(2.5) we find integers `1, `2 such

that 1
ω

(
π
2

) 5
7 6 `1 < 1

ω

(
π
2

) 5
7 +1, 1

ω

(
π
2

) 7
5 6 `2 < 1

ω

(
π
2

) 7
5 +1 and put T1 := `1ω, T2 := `2ω.

For arbitrary (x, t) ∈ [0, π
2 ] × [0, ω] formula V(2.6) for p0 = q0 = 3, p1 = q1 = 2 and

estimate (3.16) yield

∣∣σ(n)(x, t)
∣∣ =

∣∣σ(n)(x, t)− σ(n)(
π

2
, t)

∣∣

6 2
(π

2
) 1

7
[
5
( ∫ π

2

0

∫ T1

0

∣∣σ(n)
t

∣∣3dt dx
) 1

3
+ 7

(∫ π
2

0

∫ T1

0

∣∣σ(n)
x

∣∣2dt dx
) 1

2
]

= 2
(π

2
) 1

7
[
5`

1
3
1 S + 7`

1
2
1 (Y + Q0)

]

and similarly ∣∣v(n)(x, t)
∣∣ 6 2

(π

2
) 1

5
[
5`

1
3
2 bRS + 7`

1
2
2 Y

]
.
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For c :=
(

1
ω

(
π
2

) 7
5 + 1

) 1
2

we thus obtain from estimate (3.15) and assumption (3.3)

‖V ‖ < 2c
(π

2
) 1

5
(
5S + 7

(
Q0 + (1 +

1
bR

)Y
))

6 R.

This estimate ensures that implication (3.10) holds, hence for every n ∈ N system (3.6)
has a solution such that the sequences

{|σ(n)
t |3, |σ(n)

x |2, |v(n)
x |3, |v(n)

t |2, |σ(n)|∞, |v(n)|∞;
n ∈ N}

are bounded. By Corollary V.2.5 there exist functions σ, v ∈ Cω(0, π
2 ) and

subsequences (still indexed by n) such that σ(n) → σ, v(n) → v, F (σ(n)) → F (σ)
uniformly in Cω

(
0, π

2

)
, σ

(n)
t → σt, F (σ(n))t → F (σ)t, v

(n)
x → vx weakly in L3

ω

(
0, π

2

)
,

σ
(n)
x → σx, v

(n)
t → vt weakly in L2

ω

(
0, π

2

)
. We pass to the limit in (3.6) and Theorem

3.1 is proved. ¤

Monotonicity method

To illustrate the method we consider the scalar equation

(3.19) utt −÷F (∇u) = q, (x, t) ∈ Ω×]0,∞[

with homogeneous Dirichlet boundary condition

(3.20) u(x, t) = 0 for (x, t) ∈ ∂Ω×]0,∞[

and time-periodicity condition

(3.21) u(x, t + ω) = u(x, t) for (x, t) ∈ Ω×]0,∞[,

where Ω ⊂ RN is an open bounded set with a Lipschitzian boundary, ω > 0 is a
given number, ∇u is the gradient vector ∇u : = (∂1u, . . . , ∂Nu), ∂iu : = ∂u

∂xi
and the

constitutive operator F has a special diagonal form

(3.22)
(
F (∇u)

)
i

: = Fi(∂iu), i = 1, . . . , N,

where F1, . . . , FN are scalar Prandtl-Ishlinskii operators of the form II(3.2), i.e.

(3.23) Fi(∂iu)(x, t) = Fϕi

(
λi(x, ·), ∂iu(x, ·))(t)

satisfying for every i = 1, . . . , N the following hypotheses.
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Assumption 3.2.
(i) R0 > 0 and λi ∈ C(Ω; ΛR0) for i = 1, . . . , N are given;

(ii) ϕi(r) =
∫ r

0
hi(s) ds, where hi ∈ W 1,∞(0,∞), i = 1, . . . , N are given functions

such that hi(∞) = 0 and there exist b > a > 0, αi ∈]0, 1[ such that

(3.24) a
[
max{r,R0}

]αi−2 6 −h′i(r) 6 brαi−2 for a.e. r > 0.

From Assumption 3.2(ii) we immediately derive the following properties of ϕi.

(i) hi(r) > a

1− αi
rαi−1 for r > R0,(3.25)

(ii) ϕi(r) 6 b

αi(1− αi)
rαi for r > 0.

We shall deal with anisotropic spaces defined in Appendix V.2. Let us first mention
the following easy result.

Lemma 3.3. Operators Fi map Lp(Ω; Cω) into L
p

αi (Ω, Cω) for p ∈ [1,∞[, i =
1, . . . , N and for every v, w ∈ Lp(Ω, Cω) we have

(3.26) |Fi(v)− Fi(w)|( p
αi

,∞) 6 2b

αi(1− αi)
|v − w|(p,∞).

P r o o f. By II(3.3)(ii) and (3.25) we have for every v, w ∈ C(Ω, Cω) and x ∈ Ω

|Fi(v)(x, ·)− Fi(w)(x, ·)|∞ 6 2b

αi(1− αi)
|v(x, ·)− w(x, ·)|αi∞ ,

hence (3.26) holds. The functions Fi(v)(x, ·), Fi(w)(x, ·) are ω-periodic for t > ω and
we can assume that they belong to C(Ω; Cω). The assertion follows from the density of
C(Ω, Cω) in Lp(Ω, Cω). ¤

We now fix multiindices p = (pi), p′ = (p′i), where pi = 1 + αi, p′i = 1 + 1
αi

(note
that we have 1

pi
+ 1

p′i
= 1) for i = 1, . . . , N and put α0 : = min{αi; i = 1, . . . , N}. Our

basic functional framework consists of the space

Z : =
{
u ∈ L1+α0(Ω;L2

ω); ut ∈ L2(Ω; L2
ω), ∂iu ∈ Lpi(Ω;Cω),(3.27)

∂iut ∈ Lpi(Ω; L3
ω), i = 1, . . . , N

}

endowed with the natural norm

(3.28) |u|Z : = |u|(1+α0,3) + |ut|2 + |∇u|(p,∞) + |∇ut|(p,3)
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with the notation of Appendix V.2.

Let {uk; k ∈ N} ⊂ L2(Ω) be the complete orthonormal system of eigenfunctions of
the Laplacian

(3.29) −∆uk = λkuk, uk ∈
◦

W 1,2(Ω), λk > 0.

We define a system of basis functions

(3.30) wk` : =

{
sin 2π

ω `t uk(x) for ` = 1, 2, . . . , k = 1, 2, . . . ,

cos 2π
ω `t uk(x) for ` = 0,−1,−2, . . . , k = 1, 2, . . .

and subspaces of Z

Z0 : closure in Z of Lin{wk`; ` ∈ Z, k ∈ N},
Z1 : closure in Z of Lin{wk`; ` 6= 0, k ∈ N},
Z2 : closure in Z of Lin{wk0; k ∈ N},

We now state the main existence and uniqueness theorem.

Theorem 3.4. Let Ω ⊂ RN be an open bounded set with a Lipschitzian bound-

ary and let the operator F given by (3.22), (3.23) satisfy Assumption 3.2. Let Q ∈
Lp′(Ω;Cω) be given such that Qtt ∈ Lp′(Ω;L

3
2
ω ). Then there exists a unique u ∈ Z0

such that for every z0 ∈ Z0 we have

(3.31)
∫

Ω

∫ 2ω

ω

−utz
0
t +

〈
F (∇u) + Q,∇z0

〉
dt dx = 0.

The integral in (3.31) is meaningful, since by Lemma 2.3 the operator F maps
(continuously) Lp(Ω;Cω) into Lp′(Ω, Cω). The method of proof consists in splitting
the unknown function into two components u = v + w, v ∈ Z1, w ∈ Z2 following the
idea of Prodi (1966), cf. also Lions (1969), Sect.7.1 of Chap.4. We consider two auxiliary
problems.

Auxiliary Problem I. Find v ∈ Z1 such that

(3.32)
∫

Ω

∫ 2ω

ω

−vtz
1
t +

〈
F (∇v) + Q,∇z1

〉
dt dx = 0 ∀z1 ∈ Z1.
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Assume first that we are able to solve Auxiliary Problem I. It remains to determine
w ∈ Z2 such that u : = v + w satisfies identity (3.31). We have indeed ut = vt and
z0
t = z1

t for every z0 = z1 + z2, zj ∈ Zj , j = 0, 1, 2. It is therefore natural to require

(3.33)
∫

Ω

∫ 2ω

ω

(〈
F (∇v +∇w)− F (∇v),∇z0

〉
+

〈
Q + F (∇v),∇z2

〉)
dt dx = 0.

By Proposition II.4.12 the function F (∇v + ∇w) − F (∇v) is independent of t for
t > ω; we denote by ϑi the function corresponding to Fi by Proposition II.4.12 and
for i = 1, . . . , N, ζ ∈ RN put

(3.34)
(
Θ(∇v(x, ·), ζ)

)
i
: = ϑi

(
∂iv(x, ·), ζi

)
.

We then have for a.e. x ∈ Ω

(3.35) F (∇v +∇w)(x, t)− F (∇v)(x, t) = Θ
(∇v(x, ·),∇w(x)

)

and (3.33) is equivalent to

(3.36)
∫

Ω

〈
Θ

(∇v(x, ·),∇w(x)
)

+ Q̂(x),∇z2(x)
〉
dx ∀z2 ∈ Z2,

where

(3.37) Q̂(x) : =
1
ω

∫ 2ω

ω

(
Q + F (∇v)

)
(x, t)dt.

We therefore state

Auxiliary Problem II. Let v be a solution of Auxiliary Problem I. Find w ∈ Z2

such that identity (3.36) holds.

Before solving Auxiliary Problems I, II we mention an elementary, but useful property
of periodic functions.

Lemma 3.5. Let % ∈ D(R1) be an odd function. Then for each f ∈ L2
ω we have

∫ ω

0

∫ ∞

−∞
%(s− t) f(s) f(t) dt ds = 0.

P r o o f. The assertion follows from obvious integral identities
∫ ω

0

∫∞
−∞ %(s− t) f(s) f(t) dt ds =

∫∞
0

%(τ)
∫ ω

0

(
f(s)f(s− τ)− f(s + τ)f(s)

)
ds dτ ,

∫ ω

0
f(s) f(s− τ) ds =

∫ ω

0
f(s + τ) f(s) ds ∀τ ∈ R1.

¤
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Lemma 3.6. Let the hypotheses of Theorem 3.4 be fulfilled. Then there exists a

unique solution v of Auxiliary Problem I.

P r o o f. Uniqueness. Let v, ṽ ∈ Z1 be two solutions of (3.32) and let γ ∈ D(R1)
be a nonnegative even function,

∫∞
−∞ γ(s)ds = 1. For m ∈ N put z(m)(x, t) : =

m
∫∞
−∞ γ

(
m(s − t)

)(
vt(x, s) − ṽt(x, s)

)
ds. We have z(m) ∈ Z1 and (3.32) yields for

z1 = z(m)

(3.38)
∫

Ω

∫ 2ω

ω

(
(ṽt − vt)z

(m)
t +

〈
F (∇v)− F (∇ṽ),∇z(m)

〉)
dt dx = 0.

By Lemma 3.5 we have for a.e. x ∈ Ω

∫ 2ω

ω

(vt − ṽt)z
(m)
t dt = m2

∫ ω

0

∫ ∞

−∞
γ′

(
m(s− t)

)
(vt − ṽt)(x, t)(vt − ṽt)(x, s) ds dt = 0

and passing to the limit as m → ∞ in (3.38) we obtain using the Mean Continuity
Theorem (Proposition V.1.14)

(3.39)
∫

Ω

∫ 2ω

ω

〈
F (∇v −∇ṽ),∇vt −∇ṽt

〉
dt dx = 0.

Using the fact that
∫ ω

0
v(x, t)dt =

∫ ω

0
ṽ(x, t)dt = 0 a.e., we conclude from (3.39) and

Corollary II.4.11 ∇v = ∇ṽ, hence v = ṽ.

Existence. We proceed by Galerkin method analogously as in the proof of Theorem
3.2. For a fixed n ∈ N we consider the system of equations

(3.40)
∫

Ω

∫ 2ω

ω

−v
(n)
t wk`

t +
〈
F (∇v(n)) + Q,∇wk`

〉
dt dx = 0

for k = 1, . . . , n, ` = −n, . . . , n, ` 6= 0, where

(3.41) v(n)(x, t) : =
n∑

k=1

n∑

`=−n
` 6=0

vk` wk`(x, t)

and vk` ∈ R1 are to be determined from (3.40).
We now derive a priori estimates which imply the existence of a solution {vk`} to

(3.40) and enable us to pass to the limit as n →∞ in the same way as in the proof of
Theorem 3.2.

Assume that (3.40) holds. Multiplying (3.40) by
(

2π
ω `

)3
vk,−` we obtain

(3.42)
∫

Ω

∫ 2ω

ω

〈
F (∇v(n))t,∇v

(n)
tt

〉
dt dx =

∫

Ω

∫ 2ω

ω

〈
Qtt,∇v

(n)
t

〉
dt dx.
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Proposition II.4.21 and Theorem II.4.18 applied to Fi yield

(3.43)
∫

Ω

∫ 2ω

ω

Fi(∂iv
(n))t ∂iv

(n)
tt dt dx > 1

2

∫

Ω

K
(n)
i (x)

∣∣∂ivt(x, ·)
∣∣3
3
dx

with K
(n)
i (x) = 1

2 inf{−h′i(r); 0 < r < R
(n)
i (x)}, R

(n)
i (x) = max{R0, |∂iv

(n)(x, ·)|∞}.
We have

∫ ω

0
∂iv

(n)(x, t)dt = 0, hence |∂iv
(n)(x, ·)|∞ 6 ω

2
3 |∂iv

(n)
t (x, ·)|3 for a.e. x ∈ Ω.

Assumption 3.2(ii) then implies

(3.44) K
(n)
i (x) > a

2
(
max{R0, ω

2
3
∣∣∂iv

(n)
t (x, ·)∣∣

3
})αi−2

.

We define the sets M i
+ : = {x ∈ Ω; |∂iv

(n)
t (x, ·)|3 > R0ω

− 2
3 }, M i

− : = Ω \ M i
+. In the

estimates below we denote by c1, c2, . . . suitable positive constants depending only on
a, b, ω, Ω, R0 and Q. From (3.44) it follows
∫

Ω

K
(n)
i (x)

∣∣∂iv
(n)
t (x, ·)

∣∣3
3
dx =

( ∫

Mi
+

+
∫

Mi
−

)
K

(n)
i (x)

∣∣∂iv
(n)
t (x, ·)

∣∣3
3
dx

> c1

∫

Mi
+

|∂iv
(n)
t (x, ·)|1+αi

3 dx > c1

∫

Ω

|∂iv
(n)
t (x, ·)|1+αi

3 dx− c2

and using (3.43), (3.42) and Hölder’s inequality we conclude

(3.45)
∣∣∇v(n)

∣∣
(p,∞)

6 ω
2
3
∣∣∇v

(n)
t

∣∣
(p,∞)

6 c3.

Inequality (3.26) is valid in particular for w = 0, consequently

(3.46)
∣∣F (∇v(n))

∣∣
(p′,∞)

6 c4.

A second estimate is obtained by multiplying equation (3.40) by vk` which yields

(3.47)

{ ∣∣v(n)
t

∣∣2
2

6
∫
Ω

∫ 2ω

ω
|∇v(n)|(|F (∇v(n))|+ |Q|)dt dx 6 c5,∣∣v(n)

∣∣
(2,∞)

6 ω
1
2 |v(n)

t |2 6 c6.

Estimates (3.45) - (3.47) and the Brouwer degree theory entail similarly as in the proof
of Theorem 3.2 that system (3.40) has a solution {vk`} for every n ∈ N; moreover,
there exist subsequences (still indexed by n) and functions σ ∈ Lp′(Ω;L∞ω ), v ∈ Z1

such that ∇v(n) → ∇v in Lp(Ω;L∞ω ), F (∇v(n)) → σ in Lp′(Ω;L∞ω ) and v(n) → v

in L2(Ω;L∞ω ) weakly-star, ∇v
(n)
t → ∇vt in Lp(Ω;L3

ω) and v
(n)
t → vt in L2(Ω;L2

ω)
weakly. Passing to the limit in (3.40) as n →∞ we obtain

(3.48)
∫

Ω

∫ 2ω

ω

(− vtz
1
t +

〈
σ + Q,∇z1

〉)
dt dx = 0 ∀z1 ∈ Z1.
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The monotonicity of F enables us to use Minty’s trick similarly as in the proof of
Theorem 1.2. Putting z1(x, t) := m

∫∞
−∞ γ(m(s − t))vt(x, s)ds in (3.48) we obtain for

m →∞ in the same way as in (3.38) for the same choice of γ

(3.49)
∫

Ω

∫ 2ω

ω

〈
σ + Q,∇vt

〉
dt dx = 0.

On the other hand, multiplying equation (3.40) by 2π
ω `vk,−` we have

∫

Ω

∫ 2ω

ω

〈
F (∇v(n)) + Q,∇v

(n)
t

〉
dt dx = 0 ∀n ∈ N, hence

lim
n→∞

∫

Ω

∫ 2ω

ω

〈
F (∇v(n)),∇v

(n)
t

〉
dt dx = −

∫

Ω

∫ 2ω

ω

〈
Q,∇vt

〉
dt dx(3.50)

= −
∫

Ω

∫ 2ω

ω

〈
σ,∇vt

〉
dt dx

by (3.49). Let now z1 ∈ Z1 be arbitrary. For δ > 0 we define an element z(δ) ∈ Z1 by
the formula

z(δ)(x, t) := v(x, t)− δ
( ∫ t

0

z1(x, s)ds +
1
ω

∫ ω

0

sz1(x, s)ds
)
.

Theorem II.4.9 yields for all n ∈ N and δ > 0

(3.51)
∫

Ω

∫ 2ω

ω

〈
F (∇v(n))− F (∇z(δ)),∇v

(n)
t −∇z

(δ)
t

〉
dt dx > 0

and combining (3.50), (3.51) we obtain

(3.52)
∫

Ω

∫ 2ω

ω

〈
σ − F (∇z(δ)),∇z1

〉
dt dx > 0.

The operator F is continuous by (3.26); for δ → 0+ we infer from inequality (3.52)∫
Ω

∫ 2ω

ω

〈
σ−F (∇v),∇z1

〉
dt dx = 0 for every z1 ∈ Z1 and identity (3.48) completes the

proof. ¤

Lemma 3.7. Let the hypotheses of Theorem 3.4 be fulfilled and let v ∈ Z1 be

the solution of Auxiliary Problem I. Then there exists a unique solution w ∈ Z2 of

Auxiliary Problem II.

P r o o f. The space Z2 is reflexive and continuously embedded into the Sobolev

space
◦

W 1,1+α0(Ω), hence we may define an equivalent norm
∣∣ · ∣∣

Z2
as

∣∣w∣∣
Z2

: =
∣∣∇w

∣∣
p
.
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We denote by Z∗2 the dual space of Z2 and by ((·, ·)) the duality pairing between Z2

and Z∗2 . Let T : Z2 → Z∗2 be the mapping

(3.53) ((Tw, z2)) : =
∫

Ω

〈
Θ

(∇v(x, ·),∇w(x)
)

+ Q̂(x),∇z2(x)
〉
dx,

w, z2 ∈ Z2, where Θ, Q̂ are given by (3.34), (3.37). By Browder’s Theorem (Fuč́ık,
Kufner (1980), Thm. 29.5) existence of a unique solution w ∈ Z2 to Auxiliary Problem
II is ensured provided T is
(a) demicontinuous:

∣∣wn − w
∣∣
Z2
→ 0 ⇒ ((Twn − Tw, z2)) → 0 ∀z2 ∈ Z2;

(b) bounded : if B is a bounded subset of Z2, then T (B) is a bounded subset of Z∗2 ;
(c) strictly monotone: ((Tw1 − Tw2, w1 − w2)) > 0 for w1 6= w2;
(d) coercive: lim

|w|Z2→∞
((Tw,w))
|w|Z2

= ∞.

Properties (a) - (c) are obvious consequences of inequalities II(4.16)(ii) for each of
the functions ϑi, i = 1, . . . , N . To verify the coerciveness of T we introduce for every
w ∈ Z2 the sets

M i
1(w) : =

{
x ∈ Ω; |∂iw(x)| > max{R0, |∂iv(x, ·)|∞}

}
,

M i
2(w) : =

{
x ∈ Ω; |∂iw(x)| 6 |∂iv(x, ·)|∞

}
,

M i
3(w) : = Ω \ (M i

1 ∪M i
2).

By c1, c2, . . . we denote again suitable positive constants independent of w. For x ∈ M i
1

inequalities II(4.16)(ii) and (3.25)(i) yield

ϑi

(
∂iv(x, ·), ∂iw(x)

)
∂iw(x) > hi

(|∂iv(x, ·)|∞ + |∂iw(x)|)|∂iw(x)|2
> hi

(
2|∂w(x)|)|∂iw(x)|2 > c1|∂iw(x)|1+αi .

For x ∈ M i
2 we obtain from II(4.16)(ii) and (3.25)(ii)

ϑi

(
∂iv(x, ·), ∂iw(x)

)
∂iw(x) 6 2|∂iv(x, ·)|∞ ϕi

(1
2
|∂iv(x, ·)|∞

)

6 c2|∂iv(x, ·)|1+αi∞

and for a.e. x ∈ M i
3 we trivially have ϑi

(
∂iv(x, ·), ∂iw(x)

)
∂iw(x) 6 c3.

This yields

((Tw, w)) > c1

N∑

i=1

∫

Ω

∣∣∂iw(x)
∣∣1+αi

dx

− c4

N∑

i=1

∫

Ω

∣∣∂iv(x, ·)∣∣1+αi

∞ dx− c5 −
∣∣Q̂∣∣

p′
∣∣∇w

∣∣
p

> c6

∣∣w
∣∣1+α0

Z2
− c7 − c8

∣∣w
∣∣
Z2

,
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hence T is coercive and Lemma 3.7 is proved. ¤

P r o o f of Theorem 3.4. Put u : = v + w, where v, w are solutions of Auxiliary
Problems I, II, respectively. The assertion follows from Lemmas 3.6, 3.7 and identities
(3.33)-(3.37). ¤

The same technique can be applied to the equation of motion (1.1) of an elastoplastic
continuum with a constitutive operator of diagonal type σij = Fij(εij), where Fij

are scalar Prandtl-Ishlinskii operators satisfying Assumption 3.2. The coercivity of
the mapping T defined by (3.53) then follows from the generalized Korn inequality in
W 1,p(Ω) proved by Nečas (1966).

Asymptotic stability

To conclude this section we consider again the scalar hyperbolic initial-boundary value
problem (1.29), (1.31), (1.32) with an ω-periodic right-hand side q and a constitutive
operator F of Prandtl-Ishlinskii type. Theorem 3.2 gives sufficient conditions for the
existence of ω-periodic solutions to (1.29), (1.32). Here, we prove by Ficken-Fleishman
method (see Vejvoda et al. (1981) for further references) that under natural assumptions
the periodic solution is unique and asymptotically stable.

Assumption 3.8.
(i) h ∈ W 1,∞

loc (0,∞) is an increasing function, a : = h(0) > 0 and for R > 0 we denote

bR : = h(R), KR : = 1
2 inf ess{h′(r); 0 < r < R};

(ii) F : C([0, 1]; ΛR) × C([0, 1] × [0, T ]) → C([0, 1] × [0, T ]) for arbitrary R > 0 and

T > 0 is an operator of the form

F (λ, σ)(x, t) : = F
ϕ

(
λ(x, ·), σ(x, ·))(t),

where Fϕ is the Prandtl-Ishlinskii operator II(3.2) and ΛR is endowed with the

sup-norm.

To simplify the notation we introduce the space S of pairs (v, σ) of functions defined
for (x, t) ∈ [0, 1]× [0,∞[

S : =
{
(v, σ) ∈ (

L∞(]0, 1[×]0,∞[)
)2; vt, vx, σt, σx ∈ L∞

(
0,∞; L2(0, 1)

)
,

v(0, t) = σ(1, t) = 0 ∀t > 0
}
,

endowed with norm
∣∣(v, σ)

∣∣
S

: = |v|∞+ |σ|∞+
∣∣ ∫ 1

0
(|vt|2+ |vx|2+ |σt|2+ |σx|2)(x, ·)dx

∣∣ 1
2

∞.
Theorem V.2.4 entails that for (v, σ) ∈ S both v and σ are 1

2 -Hölder continuous in
[0, 1]× [0,∞[.
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For (v, σ) ∈ S, q ∈ L∞
(
0,∞; L2(0, 1)

)
and λ ∈ C([0, 1]; ΛR) we further denote

(3.54) E(λ, v, σ, q) :=
(

vt − σx − q

F (λ, σ)t − vx

)

The main result reads as follows.

Theorem 3.9. Let F fulfil Assumption 3.8 and let q ∈ L∞
(
0,∞;L2(0, 1)

)
be a

given function such that qt ∈ L∞
(
0,∞; L2(0, 1)

)
, q(x, t + ω) = q(x, t) for a.e. (x, t) ∈

]0, 1[×]0,∞[. Assume that the set

JR : =
{
(v0, σ0) ∈ (

W 1,2(0, 1)
)2; v0(0) = σ0(1) = 0 and conditions (2.2) hold

}

is nonempty for some R > 0. Then there exists a unique element (v∗, σ∗) ∈ S ∩(
C([0, 1]; Cω)

)2
such that

(i) E(λ, v∗, σ∗, q) = 0 for every λ ∈ C([0, 1]; ΛR) and a.e. (x, t) ∈]0, 1[×]ω,∞[,
(ii) for every (v0, σ0) ∈ JR and λ ∈ C([0, 1]; ΛR) the solution (v, σ) ∈ S of the

equation

(3.55) E(λ, v, σ, q) = 0

satisfying initial conditions (1.31) has the property

(3.56) lim
t→∞

(∣∣v(·, t)− v∗(·, t)
∣∣
∞ +

∣∣σ(·, t)− σ∗(·, t)
∣∣
∞

)
= 0.

P r o o f. For (v, σ), (v̂, σ̂) ∈ S and λ, λ̂ ∈ C([0, 1]; ΛR) we define the functional

V (v, v̂, σ, σ̂, λ, λ̂)(t) :=
∫ 1

0

[
a(σ − σ̂)2(x, t) + (v − v̂)2(x, t)+

+
∫ ∞

0

(
pr

(
λ(x, ·), σ(x, ·))(t)− pr

(
λ̂(x, ·), σ̂(x, ·))

)2

(t)dh(r)
]
dx.

If now equation (3.55) is satisfied for both v, σ, λ and v̂, σ̂, λ̂, then Theorem II.4.9 yields

(3.57)
d

dt
V (v, v̂, σ, σ̂, λ, λ̂)(t) 6 0 a.e.

Inequality (3.57) provides a sufficient tool for proving the uniqueness of periodic solu-
tions to (i). Assume that for (vi, σi) ∈ S ∩ (

C([0, 1], Cω)
)2 and λi ∈ C([0, 1]; ΛR) we

have E(λi, vi, σi, q) = 0, i = 1, 2. Then V (v1, v2, σ1, σ2, λ1, λ2) is ω-periodic for t > ω,
hence d

dtV (v1, v2, σ1, σ2, λ1, λ2)(t) = 0 for a.e. t > ω. From Theorems II.4.9, II.4.10
we obtain σ1

t (x, t)− σ2
t (x, t) = 0 for a.e. t > ω.
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For r > 0 and x ∈ [0, 1] put ξi
r(x, t) := pr

(
λi(x, ·), σi(x, ·))(t), i = 1, 2. From

inequality II(1.4) it follows ∂
∂t |ξ1

r (x, t) − ξ2
r (x, t)|2 6 0 a.e.; since ξi

r are periodic for
t > ω, we conclude F (λ1, σ

1)t = F (λ2, σ
2)t for t > ω, hence v1 = v2 and σ1 = σ2. We

see in particular that it suffices to prove statement (i) for one special λ∗ ∈ C([0, 1]; ΛR).

In order to construct (v∗, σ∗) with the required properties we consider arbitrary
λ ∈ C([0, 1]; ΛR) and (v0, σ0) ∈ JR. By Theorems 2.3, 2.1 there exists a unique
solution (v, σ) ∈ S to system (3.55), (1.31), (1.32). Let

{
(v(n), σ(n)); n ∈ N} ⊂ S be

the sequence

v(n)(x, t) : = v(x, t + nω), σ(n)(x, t) : = σ(x, t + ω); (x, t) ∈ [0, 1]× [0,∞[.

The semigroup property I(1.27) applied to the play operator reads

(3.58) pr

(
λ(x, ·), σ(x, ·))(t + nω) = pr

(
λn(x, ·), σ(n)(x, ·))(t) for t > 0,

where λn(x, r) : = pr

(
λ(x, ·), σ(x, ·))(nω) ∈ C([0, 1]; ΛR). For every n ∈ N we can

rewrite (3.55) in the form

(3.59) E(λn, v(n), σ(n), q) = 0 a.e.

The sequence
{
(v(n), σ(n)

}
is equibounded in S. By Theorem V.2.4 there exists a

subsequence {nk; k ∈ N} ⊂ N and an element (v∗, σ∗) ∈ S such that (v(nk), σ(nk)) →
(v∗, σ∗) in S weakly-star, v(nk) → v∗, σ(nk) → σ∗ locally uniformly in [0, 1]×[0,∞[. In-
equality II(2.9) yields |λn(x, r)−λn(y, r)| 6 max{|λ(x, r)−λ(y, r)|, |σ(x, ·)−σ(y, ·)|∞},
hence {λn} is an equicontinuous sequence in C([0, 1]; ΛR). Since ΛR is compact in
C([0, R]), we can assume using Arzelà-Ascoli Theorem V.2.1 that there exists λ∗ ∈
C([0, 1]; ΛR) such that λnk

→ λ∗ uniformly. From (3.57) it follows

∣∣V (v(nk), v∗, σ(nk), σ∗, λnk
, λ∗)

∣∣
∞ 6 V (v(nk), v∗, σ(nk), σ∗, λnk

, λ∗)(0),

hence

(3.60) lim
k→∞

∣∣∣
∫ 1

0

(|v(nk) + v∗|2(x, ·)− |σ(nk) − σ∗|2(x, ·))dx
∣∣∣
∞

= 0.

We now prove that v∗, σ∗ are ω-periodic. Put v∗∗(x, t) : = v∗(x, t+ω), σ∗∗(x, t) : =
σ∗(x, t+ω), λ∗∗(x, r) : = pr

(
λ∗(x, ·), σ∗(x, ·))(ω). Passing to the limit in (3.59) as k →

∞ we obtain for a.e. (x, t) ∈]0, 1[×]0,∞[

(i) E(λ∗, v∗, σ∗, q) = 0,(3.61)

(ii) E(λ∗∗, v∗∗, σ∗∗, q) = 0.
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Put β : = lim
k→∞

V (v(1), v, σ(1), σ, λ1, λ)(t) > 0. For every t > 0 we have

β = lim
k→∞

V (v(nk+1), v(nk), σ(nk+1), σ(nk), λnk+1, λnk
)(t)(3.62)

= V (v∗∗, v∗, σ∗∗, σ∗, λ∗∗, λ∗)(t),

hence

0 =
1
2

d

dt
V (v∗∗, v∗, σ∗∗, σ∗, λ∗∗, λ∗)(t) =

∫ 1

0

(1
2

∂

∂t

[
a(σ∗∗ − σ∗)2(x, t)+

+
∫ ∞

0

(
pr(λ∗∗, σ∗)− pr(λ∗, σ∗)

)2(x, t)dh(r)
]−

− (
F (λ∗∗, σ∗)− F (λ∗, σ∗)

)
t
(σ∗∗ − σ∗)(x, t)

)
dx.

Theorems II.4.9, II.4.10 yield σ∗∗(x, t) − σ∗(x, t) = λ∗∗
(
x,R0(x, t)

) − λ∗
(
x, R0(x, t)

)
,

where R0(x, t) : = max
{
M(λ∗∗(x, ·), σ∗∗(x, ·), t), M(λ∗(x, ·), σ∗(x, ·), t)}. For every

x ∈ [0, 1] the function R0(x, t) is monotone; there exists therefore the limit s(x) : =
lim

t→∞
σ∗∗(x, t)− σ∗(x, t). Since σ∗ is bounded, we necessarily have s(x) ≡ 0.

From Proposition II.2.10 we similarly infer that for every x and r there exists
the limit z(x, r) := lim

t→∞
pr

(
λ∗∗(x, ·), σ∗∗(x, ·))(t) − pr

(
λ∗(x, ·), σ∗(x, ·))(t) and that

z(x, r) ≡ 0.
Let δ > 0 be given. Since σ∗ is uniformly continuous, there exists T0 > 0 such that

(3.63)
∣∣σ∗(·, t + ω)− σ∗(·, t)

∣∣
∞ < δ for all t > T0.

By (3.60) there exists ` ∈ N such that

(3.64)
∣∣
∫ 1

0

|σ∗(x, ·)− σ(nk)(x, ·)|2dx
∣∣
∞ < δ2 for k > `.

Put T1 : = T0 + n`ω. For s > T1 we have s− n`ω > T0, hence

∣∣σ(·, s + ω)− σ(·, s)∣∣
2

6
∣∣σ(·, s + ω)− σ∗(·, s− n`ω + ω)

∣∣
2
+(3.65)

+
∣∣σ∗(·, s− n`ω + ω)− σ∗(·, s− n`ω)

∣∣
2

+
∣∣σ∗(·, s− n`ω)− σ(·, s)∣∣

2
6 3δ.

Let now t > 0 be arbitrary. We fix k > ` such that t + nkω > T1. Then

∣∣σ∗(·, t + ω)− σ∗(·, t)∣∣
2

6
∣∣σ∗(·, t + ω)− σnk(·, t + ω)

∣∣
2
+

+
∣∣σ∗(·, t)− σ(nk)(·, t)∣∣

2
+

∣∣σ(·, t + nkω + ω)− σ(·, t + nkω)
∣∣
2

6 5δ.

Since δ > 0 was arbitrary, we conclude from this last inequality that σ∗ = σ∗∗, i.e.
σ∗ ∈ C([0, 1];Cω). By (3.61), v∗t is ω-periodic and v∗x is ω-periodic for t > ω. We
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thus have v∗(x, t + ω) − v∗(x, t) = v∗(x, ω) − v∗(x, 0), hence v∗x(x, ω) = v∗x(x, 0) a.e.
and v∗∗ = v∗ ∈ C([0, 1]; Cω). Passing to the limit as t →∞ in (3.62) we obtain β = 0,
hence λ∗∗ = λ∗.

Let now {dn} be the sequence

dn : = V (v(n), v∗, σ(n), σ∗, λn, λ∗)(0).

By (3.57) we have dn+1 6 dn for every n and lim
k→∞

dnk
= 0, hence lim

n→∞
dn = 0 and

(3.57) yields

∣∣∣
∫ 1

0

(|v(n) − v∗|2 + |σ(n) − σ∗|2)(x, ·)dx
∣∣∣
∞
→ 0 as n →∞.

The whole sequence {(v(n), σ(n)); n ∈ N} therefore converges locally uniformly to
(v∗, σ∗) in [0, 1]× [0,∞[.

We fix again an arbitrary δ > 0 and find n0 such that for every n > n0 and
(x, t) ∈ [0, 1]× [0, ω] we have

|v(n)(x, t)− v∗(x, t)|+ |σ(n)(x, t)− σ∗(x, t)| < δ.

For each t > n0ω we find n > n0 such that t− nω ∈ [0, ω[. Then

∣∣v(·, t)− v∗(·, t)
∣∣
∞ +

∣∣σ(·, t)− σ∗(·, t)
∣∣
∞ =

=
∣∣v(n)(·, t− nω)− v∗(·, t− nω)

∣∣
∞ +

∣∣σ(n)(·, t− nω)− σ∗(·, t− nω)
∣∣
∞ < δ

and Theorem 3.9 is proved. ¤
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IV. The Riemann problem

We illustrate here the connection between hysteresis and hyperbolic equations from
another point of view. We consider the Riemann problem for a system of the form
III(1.29) with a non-hysteretic constitutive operator F which is generated by a single-
valued not necessarily monotone scalar constitutive function g. This is different from
the approach of Keyfitz (1986), where a nonmonotone constitutive law is replaced with
a hysteretic one. We assume no hysteresis in the data and transform the Riemann
problem for self-similar solutions into a boundary-value problem for a singular first-
order ordinary differential equation. One observes the following facts.

• If the constitutive function is nonlinear, then even smooth data admit infinitely
many solutions.

• The Second Principle of Thermodynamics does not guarantee uniqueness of solu-
tions if and only if the constitutive function has at least one inflection point.

• The Lax (1957) entropy condition does not guarantee uniqueness of solutions if the
constitutive function has at least two inflection points.

The investigation of monotone solutions separately for forward and backward waves
shows that they can be represented by their trajectories along the graph of the con-
stitutive function, where shocks correspond to straight segments connecting two points
on the constitutive graph. These trajectories are convex if the solution increases and
concave if the solution decreases (see Fig. 14 on page 167). The solutions themselves
therefore exhibit a hysteretic behavior which thus appears as an intrinsic property of
quasilinear hyperbolic equations.

We obtain existence and uniqueness in the Riemann problem by splitting the solution
into the backward and forward part with an auxiliary transition condition which is to be
found. Each of the two parts is then subjected to a new form of the maximal dissipation
principle which selects the solution with minimal L2-norm, or equivalently the monotone
solution with the minimal convex (maximal concave) trajectory along the convex hull
of the constitutive graph similarly to the idea of Leibovich (1974), see Fig. 15 on page
170. We prove that this selection rule is compatible with the shock admissibility criteria
of Lax (1957), Liu (1981) and with the vanishing viscosity criterion, but not with the
Dafermos (1973) maximal entropy rate criterion in general.

We concentrate our attention to particular aspects of the Riemann problem; a more
complete information can be found for instance in the recent monograph by Chang and
Hsiao (1989).
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IV.1 Weak self-similar solutions

Quasilinear hyperbolic systems with regular data may exhibit singularities in a finite
time. To be able to continue the solution, one has to pass to a generalized concept of
weak solutions where discontinuities are allowed. Self-similar solutions then naturally
arise as the limit case when we magnify the scale of observation of a solution in a
neighborhood of an isolated discontinuity. We show that weak solutions are in general
not uniquely determined by the data and further physically motivated conditions have
to be prescribed.

Nonexistence of smooth solutions

We start with a modification of an example of John (1976).

Example 1.1. Let us consider the system

(1.1)

{
vt = c2(ε)εx

εt = vx

analogous to III(1.29) with constitutive law σ = g(ε), g′(ε) = c2(ε).
We prescribe initial conditions

(1.2) ε(x, 0) = Φ(x), v(x, 0) =
∫ Φ(x)

0

c(s)ds,

where c, Φ : R1 → R1 are given smooth functions. We further assume that there exist
constants α, β > 0, c0, ϕ0 ∈ R1 and an interval [x1, x2] ⊂ R1 such that

sup{|Φ′(x)|;x ∈ R1} 6 α, sup{|c′(s)|; s ∈ R1} 6 β,(1.3)

c(s) = c0 + βs for s ∈ [s1, s2],(1.4)

Φ(x) = ϕ0 + αx for x ∈ [x1, x2],(1.5)

where si : = Φ(xi), i = 1, 2. Put t0 : = 1
αβ , x0 := −t0(c0 + βϕ0).

According to the classical general theory of Courant, Hilbert (1937), problem
(1.1),(1.2) has a unique local smooth solution. In fact, this solution can be directly
found.

Using the Banach Contraction Principle we define the functions ε, v : R1×[0, t0[→ R1

implicitly by

(1.6) ε = Φ(x + tc(ε)), v(x, t) : =
∫ ε(x,t)

0

c(s) ds.
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The elementary identity εt(x, t) = c(ε(x, t))εx(x, t) implies that ε, v solve (1.1), (1.2)
for t < t0.

We now show that the limits of ε(x, t), v(x, t) as (x, t) → (x0, t0) do not exist. Let
λp for p ∈ R1 denote the segment

λp : = {(x, t) ∈ R1 × [0, t0[; x = p− tc(Φ(p))}.

For (x, t) ∈ λp we have ε(x, t) = Φ
(
p + t(c(ε(x, t))− c(Φ(p)))

)
, consequently ε(x, t) =

Φ(p). For p ∈ [x1, x2] the equation of λp reads x − x0 = (p − x0)(1 − t
t0

), hence all
λp’s intersect each other at the point (x0, t0).

Weak solutions

Example 1.1 suggests that an appropriate functional framework for describing the
global behavior of solutions to quasilinear systems should include discontinuous func-
tions.

An alternative approach to systems of the type (1.1) consists in a formal transforma-
tion into a single quasilinear wave equation

(1.7) utt = g(ux)x

for u(x, t) :=
∫ x

0
ε(ξ, t)dξ, (x, t) ∈ R2

+ : = R1×]0,∞[, where g is a function defined in
an (unbounded or bounded) interval ]a, b[⊂ R1 with values in another (unbounded or
bounded) interval ]c, d[⊂ R1. Throughout this chapter we assume only that

(i) g :]a, b[→]c, d[ is locally Lipschitz,(1.8)

(ii) g(a+) = c, g(b−) = d.

The fact that the function g is not necessarily monotone (so that equation (1.7) may
change type) plays here a less important role than the fact that g is allowed to be
nonlinear.

We prescribe initial conditions

(1.9) u(x, 0) = ϕ(x), ut(x, 0) = ψ(x),

where ϕ,ψ : R1 → R1 are given functions.
A suitable function space for the superposition operator generated by the function g

is L∞; we thus define a weak solution to (1.7) as a function u such that

(i) u ∈ W 1,∞(R2
+), ux(x, t) ∈ ]a, b[ a.e., g(ux) ∈ L∞(R2

+),(1.10)

(ii)
∫∫

R2
+

(
ut%t − g(ux)%x

)
dx dt = 0 ∀% ∈ D(R2

+).
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According to this definition we require

(1.11) ϕ(0) = 0, ϕ ∈ W 1,∞(R1), ϕ′(x) ∈]a, b[ a.e., g(ϕ′) ∈ L∞(R1), ψ ∈ L∞(R1).

We have to interpret condition (1.9) which is not well defined in L∞. If g is linear
(say g(v) = k2v for some k > 0), then the solution to (1.10), (1.9) is given by the
formula

(1.12) u(x, t) =
1
2
(ϕ(x− kt) + ϕ(x + kt)) +

1
2k

∫ x+kt

x−kt

ψ(ξ)dξ,

and under the hypothesis (1.11) we have

(1.13) ut, ux ∈ C([0,∞[;L2
loc(R1)).

One could equivalently choose a different Lp
loc-space with an exponent p ∈ [1,∞[.

We shall see that (1.13) with p = 2 expresses the fact that the energy is continuous.
Conditions (1.9) can therefore be understood as the limit as t → 0+ with respect to

the metric in the Fréchet space L2
loc(R1).

In the nonlinear case, we consider (1.13) as a prescribed regularity in addition to
(1.10)(i).

In general, the problem of existence of solutions of (1.10), (1.9) is open, except for the
special case, where the function g is increasing and has suitable convexity properties.
The solution can then be constructed by compensated compactness method, see DiPerna
(1983), Serre (1986). Here, we do not relax the assumptions (1.8) and concentrate our
attention to local properties of weak solutions.

To derive some necessary conditions for the local behavior of isolated discontinuities,
we assume

(1.14) (i) ϕ(0) = 0 and there exist the limits ϕ′(0±) = V±, ψ(0±) = D±;
(ii) there exists δ > 0 and a local solution defined in Ωδ : = ]− δ, δ[×]0, δ[ such

that u ∈ W 1,∞(Ωδ), ut, ux ∈ C([0, δ];L2(−δ, δ)), identity (1.10)(ii) holds for
all % ∈ D(Ωδ) and conditions (1.9) are satisfied for a.e. x ∈ ]− δ, δ[;

(iii) for all (x, t) ∈ Ωδ there exists the limit u(x, t) : = lim
γ→∞

γu(x
γ , t

γ ) such that

ux = lim
γ→∞

ux( ·γ , ·γ ), ut = lim
γ→∞

ut( ·γ , ·γ ) are strong limits in the Banach space

C([0, δ];L2(−δ, δ)).

We immediately see that the limit function u can be extended to (x, t) ∈ R2
+, belongs

to W 1,∞(R2
+) and satisfies the self-similarity condition

(1.15) u(x, t) = γu
(x

γ
,

t

γ

)
for all (x, t) ∈ R2

+ and γ > 0.
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Let us define an auxiliary function

(1.16) f(z) : = u(z, 1) for z ∈ R1.

Then f is Lipschitz and (1.15) entails

(1.17) u(x, t) = tf
(x

t

)
for all (x, t) ∈ R2

+.

Passing to the limit as γ → +∞ we easily check that u satisfies equation (1.10) (ii)
with initial conditions

(1.18) u(x, 0) =

{
xV+ for x > 0

xV− for x < 0
, ut(x, 0) =

{
D+ for x > 0

D− for x < 0
.

We now reformulate problem (1.10),(1.18) for self-similar solutions by introducing a new
unknown function

(1.19) θ(z) =
df

dz
(z) for z ∈ R1,

where f is defined by (1.16).

Proposition 1.2. Let (1.8) hold and let V± ∈ ]a, b[, D± ∈ R1 be given. A function

u satisfies conditions (1.10), (1.13), (1.17), (1.18) if and only if the function θ defined

by (1.19) has the following properties:

(i) θ(z) ∈ ]a, b[ a.e., θ, g(θ) ∈ L∞(R1),(1.20)

(ii) the function z 7→ z2θ(z)− g(θ(z)) is Lipschitz in R1,

(iii)
d

dz

(
z2θ(z)− g

(
θ(z)

))
= 2zθ(z) a.e.,

(iv) θ(±∞) = V±,

(v)
∫ ∞

−∞
(θ(z)− P0(z))dz = D+ −D−, where P0(z) : =

{
V+ for z > 0

V− for z < 0
.

Equation (1.10) with initial conditions (1.18) constitute the Riemann problem. Sys-
tem (1.20) represents its equivalent formulation for self-similar solutions. However, the
question of existence of non-self-similar solutions to the Riemann problem seems to be
open.

Before proving Proposition 1.2 we state an auxiliary result.
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Lemma 1.3. Let θ satisfy conditions (1.20)(i)-(iv). Then there exists a constant

R > 0 such that for |z| > R we have θ(z) = P0(z).

P r o o f of Lemma 1.3. We choose an arbitrary open bounded interval J ⊂ R1 such
that V± ∈ J ⊂ J ⊂]a, b[ and put

L : = sup
{∣∣∣g(r)− g(s)

r − s

∣∣∣ ; r, s ∈ J, r 6= s
}

.

We find R >
√

L sufficiently large such that θ(z) ∈ J for |z| > R and put δ : = R2 −
L > 0.

Integrating equation (1.20)(iii)
∫ ξ

R
dz for ξ > R we obtain

(1.21) ξ2(θ(ξ)− θ(R))− g(θ(ξ)) + g(θ(R)) =
∫ ξ

R

2z(θ(z)− θ(R))dz,

hence δ|θ(ξ)− θ(R)| 6 ∫ ξ

R
2z|θ(z)− θ(R)|dz and Gronwall’s inequality (Lemma II.5.6)

yields θ(ξ) = θ(R) for all ξ > R. The argument for z < −R is analogous. ¤

P r o o f of Proposition 1.2. Let θ be an arbitrary solution to (1.20). We choose
arbitrarily f(0) ∈ R1 and define u by (1.17). Let % ∈ D(R2

+) be an arbitrary
test function. For z ∈ R1 put η(z) : =

∫∞
0

%(zt, t)dt. Then η ∈ D(R1) and using
the identities

∫∞
0

t%x(zt, t)dt = dη
dz (z),

∫∞
0

t%t(zt, t)dt = − d
dz (zη(z)), d

dz (zf(z)η(z)) =
zθ(z)η(z) + f(z) d

dz (zη(z)) we obtain from (1.20)(iii)

0 =
∫ ∞

−∞
[(z2θ(z)− g(θ(z))

dη

dz
+ 2zθ(z)η(z)]dz(1.22)

=
∫∫

R2
+

[(f(z)− zθ(z))t%t(zt, t)− g(θ(z))t%x(zt, t)]dz dt,

hence u is a solution of (1.10).
Conversely, let u satisfy (1.10)(ii) and let η ∈ D(R1) be na arbitrary test func-

tion. Putting %(x, t) := η(x
t )µ(t) for some µ ∈ D(]0,∞[),

∫∞
0

µ(t)dt = 1 we conclude
analogously as in (1.22) that (1.20)(ii),(iii) hold.

We now prove that the initial condition (1.18) is equivalent to (1.20)(iv),(v). Assume
first that (1.18) is fulfilled. Then for each K > 0 we have

(1.23) 0 = lim
t→0+

∫ K

−K

|ux(x, t)− P0(x)|2dx = lim
ξ→∞

1
ξ

∫ ξ

−ξ

|θ(z)− P0(z)|2dz.
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Formula (1.21) for a fixed R > 0 and arbitrary ξ > R entails ξ2(θ(ξ)−V+)−g(θ(ξ))+
g(θ(R)) =

∫ ξ

R
2z(θ(z)− V+)dz + R2(θ(R)− V+), hence

|θ(ξ)− V+| 6 1
ξ2
|g(θ(ξ))− g(θ(R))|+ R2

ξ2
|θ(R)− V+|+ 2

ξ

∫ ξ

R

|θ(z)− V+|dz

6 2
ξ2

(|g(θ)|∞ + R2|θ|∞) + 2
(

1
ξ

∫ ξ

0

|θ(z)− V+|2dz

)1/2

.

Combining the last inequality with (1.23) and (1.10)(i) we obtain V+ = lim
ξ→+∞

θ(ξ) and

similarly V− = lim
ξ→−∞

θ(ξ).

We further have for each K > 0

lim
t→0+

∫ K

−K

|ut(x, t)− P1(x)|2dx = 0, where P1(x) :=

{
D+ for x > 0

D− for x < 0
.

Choosing R as in Lemma 1.3 we infer from elementary computations

0 = lim
ξ→+∞

1
ξ

∫ ξ

−ξ

|f(z)− zθ(z)− P1(z)|2dz

= lim
ξ→+∞

1
ξ

∫ ξ

R

|f(0) +
∫ R

0

(θ(s)− V+)ds−D+|2dz +

+ lim
ξ→+∞

1
ξ

∫ R

−R

|f(z)− zθ(z)− P1(z)|2dz +

+ lim
ξ→+∞

1
ξ

∫ −R

−ξ

|f(0)−
∫ 0

−R

(θ(s)− V−)ds−D−|2dz,

consequently

(1.24) 0 = f(0) +
∫ R

0

(θ(z)− V+)dz −D+ = f(0)−
∫ 0

−R

(θ(z)− V−)dz −D−,

and condition (1.20)(v) follows again from Lemma 1.3.
The proof of the converse, namely that conditions (1.20)(iv),(v) imply (1.18), follows

immediately from Lemma 1.3 provided that f(0) is chosen according to (1.24).
Proposition 1.2 is proved. ¤

A naive approach to problem (1.20) consists in a formal differentiation of equation
(1.20)(iii), i.e.

(1.25) θ′(z)(z2 − g′(θ(z))) = 0,
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where prime denotes derivative. Identity (1.25) suggests that there are two types of so-
lutions, namely the constant states θ′(z) = 0 and rarefaction waves θ(z) = (g′)−1(z2).
We shall not try to justify this procedure which can be useful in concrete examples, but
in general it leads to serious difficulties, since both θ and g′ are in principle arbitrary
bounded measurable functions, so that equation (1.25) is unmanageable. We proceed
in a different way which will be explained in detail in the next sections. The rest of this
section is devoted to examples and counterexamples related to the problem (1.20).

Multiplicity of weak solutions

We first mention the following classical result which is an immediate consequence of
the continuity condition (1.20)(ii).

Lemma 1.4. (Rankine-Hugoniot condition).
Let θ be a solution of (1.20) and let there exist two sequences zn → z, ẑn → z such

that lim
n→∞

θ(zn) = θ1 6= θ2 = lim
n→∞

θ(ẑn). Then z2 = g(θ1)−g(θ2)
θ1−θ2

.

We have already noticed that constant functions always solve equation (1.20)(iii).
Lemma 1.4 gives us a tool for constructing piecewise constant solutions of the form

(1.26) θ(z) = θi for z ∈ ]zi−1, zi[, i = 1, . . . , N

corresponding to a partition

(1.27) −∞ = z0 < z1 < . . . < zN = +∞

and to a sequence {θ1, . . . , θn} ⊂]a, b[, θi 6= θi+1 for all i = 1, . . . , N − 1.
The criterion is obvious and can be expressed in the following way.

Proposition 1.5. A function θ of the form (1.26) is a solution of (1.20) if and only

if the following conditions are fulfilled.

(i) θ1 = V−, θN = V+,(1.28)

(ii) z2
i =

g(θi+1)− g(θi)
θi+1 − θi

, i = 1, . . . , N − 1,

(iii)
N−1∑

i=1

zi(θi − θi+1) = D+ −D−.
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Remark 1.6. The case where g is a linear function of the form g(v) = k2v with
k > 0 is trivial. We immediately see that the piecewise constant function

θ(z) =





V− for z < −k

V+ for z > k

V0 for z ∈ ]− k, k[

with V0 = 1
2k (D+ −D− + k(V+ + V−)) is the unique solution of (1.20).

In the nonlinear case, even smooth data do not ensure the uniqueness of weak solu-
tions. The exact statement reads as follows.

Proposition 1.7. Let g be a nonlinear function satisfying (1.8). Let V+ = V− ∈
]a, b[ and D+ = D− ∈ R1 be given. Then there exist infinitely many distinct piecewise

constant solutions to (1.20).

Problem (1.20) with V+ = V− and D+ = D− obviously admits the trivial con-
stant (i.e. smooth) solution. The construction of non-smooth solutions is based on the
following lemma.

Lemma 1.8. Let ]â, b̂[, ]ĉ, d̂[⊂ R1 be given intervals, 0 ∈ ]â, b̂[∩]ĉ, d̂[, and let ĝ :
]â, b̂[→]ĉ, d̂[ be a nonlinear locally Lipschitz function such that ĝ(r)r > 0 for all r 6= 0.

Then there exist â < q < 0 < p < b̂ such that

either (i)
ĝ(p)− ĝ(q)

p− q
>

ĝ(p)− ĝ(r)
p− r

∀r ∈ ]q, 0](1.29)

or (ii)
ĝ(p)− ĝ(q)

p− q
>

ĝ(s)− ĝ(q)
s− q

∀s ∈ [0, p[.

P r o o f of Lemma 1.8. Let us assume that for every â < q < 0 < p < b̂ both sets

A+(p, q) : =
{

s ∈ [0, p[;
ĝ(p)− ĝ(q)

p− q
6 ĝ(s)− ĝ(q)

s− q

}
,

A−(p, q) : =
{

r ∈ ]q, 0];
ĝ(p)− ĝ(q)

p− q
6 ĝ(p)− ĝ(r)

p− r

}

are non-empty. Put r̄ : = max A−(p, q), s̄ : = minA+(p, q) and assume for instance
r̄ < 0. By hypothesis, the set A−(p, r̄) is a non-empty subset of A−(p, q) which
contradicts the definition of r̄. We therefore have r̄ = 0 and similarly s̄ = 0. The
inequalities ĝ(p)−ĝ(q)

p−q 6 ĝ(p)
p , ĝ(p)−ĝ(q)

p−q 6 ĝ(q)
q combined with the elementary identity

(1.30)
ĝ(p)− ĝ(q)

p− q
− ĝ(q)

q
=

p

q

( ĝ(p)− ĝ(q)
p− q

− ĝ(p)
p

)

yield ĝ(p)
p = ĝ(q)

q for all â < q < 0 < p < b̂. We conclude that ĝ is linear in ]â, b̂[,
which is a contradiction. ¤
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P r o o f of Proposition 1.7. Put V : = V+ = V−, ĝ(r) := g(r + V ) − g(V ) for
r ∈ ]â, b̂[ : = ]a− V, b− V [. We distinguish four cases (see Fig. 11)

A. ĝ(r)r > 0 for r ∈ ]â, b̂[\{0} and (1.29)(i) holds for some â < q < 0 < p < b̂.

For some r ∈ ]q, 0[ which will be specified later we define

(1.31) z1 : = −
√

ĝ(q)
q

, z2 : = −
√

ĝ(p)− ĝ(q)
p− q

, z3 : = −
√

ĝ(p)− ĝ(r)
p− r

, z4 : =

√
ĝ(r)
r

,

and

(1.32) θ(z) :=





V for z < z1,

V + q for z ∈ ]z1, z2[,

V + p for z ∈ ]z2, z3[,

V + r for z ∈ ]z3, z4[,

V for z > z4.

Lemma 1.8 and identity (1.30) ensure that we have z1 < z2 < z3 < z4 and θ

defined by (1.32) is a solution to (1.20) according to Proposition 1.5 provided condition
(1.28)(iii) holds. Here it reads

(1.33) −
√

ĝ(q)q +
√

(ĝ(p)− ĝ(q))(p− q)−
√

(ĝ(p)− ĝ(r))(p− r)−
√

ĝ(r)r = 0.

Let us denote by h(r) the left-hand side of equation (1.33). We have h(0) > 0, h(q) < 0,
hence (1.33) is satisfied for a suitable r ∈ ]q, 0[.

B. ĝ(r)r > 0 for r ∈ ]â, b̂[\{0} and (1.29)(ii) holds for some â < q < 0 < p < b̂.

Analogously as above we define for s ∈ ]0, p[

(1.34) z1 : = −
√

ĝ(p)
p

, z2 : = −
√

ĝ(p)− ĝ(q)
p− q

, z3 : = −
√

ĝ(s)− ĝ(q)
s− q

, z4 : =

√
ĝ(s)
s

and

(1.35) θ(z) :=





V for z < z1,

V + p for z ∈ ]z1, z2[,

V + q for z ∈ ]z2, z3[,

V + s for z ∈ ]z3, z4[,

V for z > z4.

Similarly as in the case A we check that θ solves (1.20) provided s ∈ ]0, p[ is a
solution of the equation

(1.36)
√

pĝ(p)−
√

(ĝ(p)− ĝ(q))(p− q) +
√

(ĝ(s)− ĝ(q))(s− q) +
√

sĝ(s) = 0.
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Denoting by h̃(s) the left-hand side of equation (1.36) we easily obtain h̃(0) <

0, h̃(p) > 0, hence (1.36) holds for some s ∈ ]0, p[.

C. There exists p > 0 such that ĝ(p) = 0. We then put r0 : = min{r 6 0; ĝ(r) > 0}
and fix some q0 ∈ ]â, r0[.

For an arbitrary γ ∈
]
0, ĝ(q0)

q0−p

[
put q : = max{u ∈ [q0, r0];

ĝ(u)
u−p = γ}. By Proposition

1.5, the function θ defined by (1.31), (1.32) for some r ∈ ]q, r0[ is a solution to (1.20)
provided condition (1.33) holds. For the auxiliary function h(r) as in (1.33) we have
h(r0) > 0, h(q) < 0 with the same conclusion as above.

O
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y

q r
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y = ĝ(u)
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D. There exists q < 0 such that ĝ(q) = 0. We put s0 : = max{r > 0; ĝ(r) 6 0} and
fix some p0 ∈]s0, b̂[. For a fixed γ ∈ ]0, ĝ(p0)

p0−q [ put p : = min{s ∈ [so, po];
ĝ(s)
s−q = γ}.

For s ∈ ]s0, p[ we define the function θ by formulas (1.34),(1.35). Similarly as in the
previous cases we choose s such that equation (1.36) is satisfied.

It remains to check that there exist in fact infinitely many solutions of the form above.
This is obvious in the cases C and D, where for each γ we obtain a different solution.
In the situation A we similarly find a continuum of solutions parametrized by γ ∈
] ĝ(p)

p , ĝ(p)−ĝ(q)
p−q [ given by formulas (1.31),(1.32) with q replaced with qγ : = max{u ∈

]q, 0[; ĝ(p)−ĝ(u)
p−u = γ} and with a suitable r. Case B is analogous. This completes the

proof of Proposition 1.7. ¤

Our task now is to find convincing arguments for the exclusion of pathological solu-
tions described in the proof of Proposition 1.7. The first attempt in Sect. IV.2 will be
the dissipation condition deduced from the 2nd Principle of Thermodynamics. We shall
see in Proposition 2.3 that the solutions above violate the dissipation condition if g is
monotone; this need not be the case if nonmonotonicities are allowed.

IV.2 Dissipation of energy

In the preceding section we observed that the Riemann problem in the form (1.20)
may admit in general infinitely many solutions. To reduce the multiplicity, we impose,
in addition to (1.20), a condition based on the 2nd Principle of Thermodynamics which
states that the dissipation rate is nonnegative. We shall see that this condition ensures
existence and uniqueness for system (1.20) if and only if g is globally convex or globally
concave in ]a, b[. In other words, to obtain existence and uniqueness in the general case,
the dissipation condition has to be strengthened. This will be done in Section IV.3.

Dissipation condition

Let us come back to equation (1.7). We associate to each weak solution u the
functions

(2.1) E(u) : =
1
2
u2

t + G(ux), F(u) : = utg(ux)

called energy density and energy flow density, respectively (cf. Remark III.1.11), where
G is a primitive function to g

(2.2) G(v) : =
∫ v

V

g(u)du for v ∈]a, b[
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with an arbitrarily fixed V ∈]a, b[.
Smooth solutions satisfy the Energy Conservation Law

(2.3)
∂

∂t
E(u) =

∂

∂x
F(u).

For weak solutions, one cannot ensure that the energy is preserved even if the nonlin-
earity g is monotone and regular. This will follow from Theorem 3.15 in Sect. IV.3.
Instead of (2.3), according to the 2nd Principle of Thermodynamics we require that the
energy dissipation rate is nonnegative, i.e.

(2.4)
∂

∂t
E(u)− ∂

∂x
F(u) 6 0 in the sense of distributions.

For self-similar solutions we can rewrite condition (2.4) in the following way.

Proposition 2.1. Let the hypotheses of Proposition 1.2 hold. Then the solution u

of (1.10), (1.18) satisfies condition (2.4) if and only if the corresponding solution θ of

(1.20) satisfies the dissipation condition

The function z 7→ G(θ(z))− θ(z)g(θ(z)) +
z2

2
θ2(z)−

∫ z

0

ζθ2(ζ)dζ(2.5)

is nondecreasing for z > 0 and nonincreasing for z < 0.

P r o o f. Condition (2.4) means

(2.6)
∫∫

R2
+

[(1
2
u2

t + G(ux)
)
%t(x, t)− utg(ux)%x(x, t)

]
dx dt > 0 ∀% ∈ D(R2

+), % > 0.

Analogously as in the proof of Proposition 1.2 we rewrite inequality (2.6) in the form

(2.7)
∫ ∞

−∞

[(1
2
(f − zθ)2 + G(θ)

) d

dz
(zη(z)) + (f − zθ)g(θ)

d

dz
η(z)

]
dz 6 0

for every η ∈ D(R1), η > 0.
The identity

d

dz

(
(z2θ − g(θ))fη

)
= (z2θ − g(θ))f

dη

dz
+ +

(
(z2θ − g(θ))θ + 2zθf

)
η

combined with (2.7) entails

∫ ∞

−∞

[(
G(θ)− θg(θ) +

z2

2
θ2

) d

dz
(zη(z)) + z2θ2η(z)

]
dz 6 0 ∀η ∈ D(R1), η > 0,
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or equivalently

(2.8)





∫∞
0

[(
G(θ)− θg(θ) + z2

2 θ2
)

dξ1
dz + zθ2ξ1

]
dz 6 0,

∫ 0

−∞
[(

G(θ)− θg(θ) + z2

2 θ2
)

dξ2
dz + zθ2ξ2

]
dz > 0

for every ξ1 ∈ D(]0,∞[), ξ2 ∈ D(] −∞, 0[), ξ1, ξ2 > 0. The assertion now follows from
Lemma II.4.16. ¤

Remark 2.2. For a discontinuity of the first kind, i.e. such that the limits
θ1 : = θ(z−), θ2 : = θ(z+) exist and are not equal, condition (2.5) and Lemma 1.4
entail

(2.9) z
[
G(θ2)−G(θ1)− 1

2
(θ2 − θ1)(g(θ2) + g(θ1))

]
> 0,

where the left-hand side expresses the energy dissipation across the jump.
Inequality (2.9) has a clear geometrical meaning: the bracketted expression represents

the signed area between the graph of the constitutive function g and the straight
segment with slope z2 between the points (θ1, g(θ1)) and (θ2, g(θ2)) (see Fig. 12)

u

y

θ1 θ2

y = g(u)

Fig. 12 �
We can try to apply condition (2.9) to the situation described in Proposition 1.7.

The result reads as follows.

Proposition 2.3. Let the hypotheses of Proposition 1.7 hold and let θ be a solution

of (1.20) satisfying condition (2.5). If g is nondecreasing, then θ is constant.

P r o o f. Put V : = V+ = V−, D : = D+ = D−. For u ∈ ]a, b[ and z ∈ R1 we define
auxiliary functions

G̃(u) : =
∫ u

V

(g(r)− g(V ))dr,

f(z) : = D −
∫ ∞

0

(θ(ξ)− V )dξ +
∫ z

0

θ(ξ)dξ,
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Φ(z) : =
1
2
(f(z)− zθ(z)−D)2 + G̃(θ(z)),

Ψ(z) : = (f(z)− zθ(z)−D)(g(θ(z))− g(V )).

From (2.7) and (1.22) it follows

(2.10)
∫ ∞

−∞

(
Φ(z)

d

dz
(zη(z)) + Ψ(z)

d

dz
η(z)

)
dz 6 0

and by Lemma II.4.16 the function E(z) : = Ψ(z)+zΦ(z)−∫ z

0
Φ(ξ)dξ is nondecreasing.

We find R > 0 sufficiently large such that θ(z) = V for |z| > R. The functions Φ, Ψ
are chosen in such a way that Φ(R) = Φ(−R) = Ψ(R) = Ψ(−R) = 0, Φ(z) > 0 for all
z ∈ [−R, R].

The inequality E(R) > E(−R) yields
∫ R

−R
Φ(ξ)dξ 6 0, hence Φ(z) = 0 for almost

all z ∈ ] − R, R[. This implies G̃(θ(z)) = 0 for all z, hence g(θ(z)) = g(V ) for all
z ∈ R1 and (1.20)(ii),(iii) entail θ ≡ const . = V in ]−∞, 0[∪]0,∞[. ¤

The following example shows that the monotonicity assumption in Proposition 2.3
is substantial. Under the hypotheses of Proposition 1.7 we construct a nonconstant
solution of (1.20) which satisfies the dissipation condition (2.5).

Example 2.4. We restrict ourselves for instance to the case B of the proof of
Proposition 1.7. Assuming that ]c, d[ = ]−∞,+∞[ we define the solution θ of (1.20)
by formulas (1.34), (1.35). We now introduce a new function g̃ satisfying (1.8) such
that θ is a solution of (1.20) and condition (2.5) holds with g replaced with g̃.

Let ϕ1 ∈ D(]V + q, V [), ϕ2 ∈ D(]V, V + s[), ϕ3 ∈ D(]V + s, V +p[) be given auxiliary
functions such that

∫ V

V +q
ϕ1(v)dv = 2,

∫ V +s

V
ϕ2(v)dv = 3,

∫ V +p

V +s
ϕ3(v)dv = 2. For

K > 0 and v ∈ ]a, b[ put

gK(v) := g(v) + K(ϕ1(v)− ϕ2(v) + ϕ3(v)).

Then gK satisfies (1.8) and θ is a solution of (1.20) with g replaced with gK . By
Remark 2.2 and inequality (2.9), condition (2.5) holds if and only if the following four
conditions corresponding to jumps at the points z1, z2, z3, z4 are fulfilled:

0 6 1
2
p(gK(V + p) + gK(V ))−

∫ V +p

V

gK(v)dv =

=
1
2
p(g(V + p) + g(V ))−

∫ V +p

V

g(v)dv + K,

0 > 1
2
(p− q)(gK(V + p) + gK(V + q))−

∫ V +p

V +q

gK(v)dv =

=
1
2
(p− q)(g(V + p) + g(V + q))−

∫ V +p

V +q

g(v)dv −K,
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0 6 1
2
(s− q)(gK(V + s) + gK(V + q))−

∫ V +s

V +q

gK(v)dv =

=
1
2
(s− q)(g(V + s) + g(V + q))−

∫ V +s

V +q

g(v)dv + K,

0 6 1
2
s(gK(V + s) + gK(V ))−

∫ V +s

V

gK(v)dv =

=
1
2
s(g(V + s) + g(V ))−

∫ V +s

V

g(v)dv + 3K.

The example is complete if we put g̃ := gK for K sufficiently large.

Multiplicity of dissipative solutions

We now present another negative result showing that the dissipation condition (2.5)
does not guarantee the uniqueness of solutions of (1.20) even in the “regular” case when
g is increasing and smooth.

Proposition 2.5. Let g :]a, b[→]c, d[ be an increasing smooth function which has

an inflection point q0 ∈]a, b[. Then there exist V+, V− ∈ ]a, b[, D+, D− ∈ R1 such that

problem (1.20) has infinitely many distinct solutions satisfying condition (2.5).

P r o o f. We choose an interval ]q0−k1, q0+k2[⊂ ]a, b[ such that one of the situations
(i) g′′ > 0 in ]q0 − k1, q0[, g′′ < 0 in ]q0, q0 + k2[,
(ii) g′′ < 0 in ]q0 − k1, q0[, g′′ > 0 in ]q0, q0 + k2[,
occurs. The construction will be different in each case (see Fig. 13)

(i) We fix some numbers q0 − k1 < V− < q0 < p0 < r0 < V+ < q0 + k2 such that

∫ r0

V−
g(v)dv <

1
2
(r0 − V−)(g(r0) + g(V−)),(2.11)

g(r0)− g(p0)
r0 − p0

<
g(r0)− g(V−)

r0 − V−
(2.12)

and define θ(z) by the formula

(2.13) θ(z) : =





V− for z < z1,

r for z ∈ ]z1, z2[,

p for z ∈ ]z2, z3[,

V+ for z > z3,
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(2.14) z1 : = −
√

g(r)− g(V−)
r − V−

, z2 : = −
√

g(r)− g(p)
r − p

, z3 : =

√
g(V+)− g(p)

V+ − p

for each (r, p) in a small neighborhood of (r0, p0) such that (2.11), (2.12) hold for (r, p).
We put D− : = 0, D+ : = h(p0, r0) with

h(p, r) :=
√

(g(r)− g(V−))(r − V−)−
√

(g(r)− g(p))(r − p)−
√

(g(V+)− g(p))(V+ − p).

By Proposition 1.5, θ is a solution of (1.20) if and only if h(p, r) = h(p0, r0). We
obviously have ∂

∂ph(p, r) > 0 and by the Implicit Function Theorem there exists a
function p(r) defined in a neighborhood of r0 such that h(p(r), r) = h(p0, r0) which
determines a one-parametric family of solutions of (1.20) satisfying condition (2.5).

V− uq0 p0 r0 V+

y = g(u)�
V− uq0 p0r0 V+

y = g(u)�
Fig. 13: case (i) case (ii)

(ii) Similarly as above, we fix some numbers q0 − k1 < r0 < V− < q0 < V+ < p0 <

q0 + k2 such that inequalities (2.12) and

(2.15)
∫ p0

r0

g(v)dv <
1
2
(p0 − r0)(g(p0) + g(r0))

hold. We put here D− : = h(p0, r0), D+ : = 0. We easily check that the argument of
(i) remains valid for the function θ defined by (2.13), (2.14). ¤

Remark 2.6. We can observe that the point z = 0 plays a particular role for
solutions of (1.20). By Lemma 1.4, the function z 7→ g(θ(z)) is continuous at the point
z = 0, hence the value

(2.16) Q : = g(θ(0))

is well defined for each solution θ of (1.20). Moreover, all possible discontinuities of θ

across z = 0 are compatible with the dissipation condition (2.5). If equation (1.7) is
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interpreted as equation of motion, where u, ux, g(ux) are the displacement, the strain
and the stress, respectively, condition (2.16) represents a boundary stress condition at
the point x = 0.

The idea now is to replace condition (1.20)(v) with the boundary condition (2.16) for
an unknown value of Q ∈ ]c, d[ which is to be identified in such a way that (1.20)(v)
holds for given D+, D−. This procedure enables us to consider separately the cases
z < 0 and z > 0. Introducing the functions

(2.17) w±(s) : = θ(±√s) for s > 0

we can easily rewrite the problem (1.20)(i)-(iv), (2.16) in the following way.

Proposition 2.7. A function θ is a solution to (1.20)(i)-(iv), (2.16) if and only if

each of the functions w = w+, w = w− defined by formula (2.17) satisfies the conditions

(i) w, g(w) ∈ L∞(0,∞), w(s) ∈ ]a, b[ a.e.,(2.18)

(ii) the function s 7→ sw(s)− g(w(s)) is Lipschitz in ]0, +∞[,

(iii)
d

ds

(
sw(s)− g(w(s)

)
= w(s) for a.e. s > 0,

(iv) w(+∞) = V, g(w(0)) = Q

for V = V+, V = V−, respectively.

Moreover, the dissipation condition (2.5) is equivalent to the condition

The function D(w) : s 7→ G(w(s))− w(s)g(w(s)) +
s

2
w2(s)− 1

2

∫ s

0

w2(σ)dσ(2.19)

is nondecreasing in ]0,+∞[

for each of the functions w = w+, w = w−.

The proof of Proposition 2.7 is elementary and we omit it here.
We conclude this section with the following complement to Proposition 2.5 which will

be proved in the next section (see Remark 3.14).

Theorem 2.8. Let g :]a, b[→]c, d[ be a convex or concave function and let V+, V− ∈
]a, b[ be given. Then there exists an interval ]A,B[⊂ R1 such that

(i) problem (1.20) has a unique solution satisfying (2.5) provided D+ −D− ∈ ]A, B[,
(ii) problem (1.20) has no solution satisfying (2.5) provided D+ −D− /∈ ]A,B[,
(iii) if c = −∞ then A = −∞ and if d = +∞ then B = +∞.



165

IV.3 Minimal solutions

The aim of this section is to strengthen the dissipation condition (2.5) in order to
ensure existence and uniqueness of solutions to the Riemann problem in the form (1.20)
for an arbitrary nonlinearity g satisfying conditions (1.8).

The fact that the dissipation rate is nonnegative has been equivalently expressed for
a solution w of system (2.18) by the condition that the function D(w) in (2.19) is
nondecreasing in ]0,∞[. Among all solutions to (2.18) we now select that one denoted
by w∗ which maximizes the dissipation in the sense that

(3.1) the total increment D(w∗)(+∞) − D(w∗)(0) of the dissipation function is
maximal with respect to all solutions w of (2.18).

Condition (3.1) is meaningful if the set g−1(Q) contains a single point; otherwise
the “initial” value w(0) = V0 ∈ g−1(Q) can be arbitrarily chosen without affecting the
dissipation condition (2.19). With the intention to eliminate the influence of the concrete
choice of V0 we formally compare only solutions with the same initial value V0 and using
the identity D(w)(+∞)−D(w)(0) = G(V )−G(V0)−V g(V )+V0Q+ 1

2

∫∞
0

(V 2−w2(s)) ds

we reformulate condition (3.1) in a more convenient way.

Definition 3.1. Let V ∈ ]a, b[ and Q ∈ ]c, d[ be given. A solution w∗ of (2.18) is

called minimal, if the inequality

(3.2)
∫ ∞

0

(
w∗

2
(s)− w2(s)

)
ds 6 0

holds for every solution w of (2.18).

This section is devoted to the proof of the following two statements.

Theorem 3.2. For every V ∈ ]a, b[ and Q ∈ ]c, d[ there exists a unique minimal

solution w∗ of (2.18).

Theorem 3.3. Let V−, V+ ∈ ]a, b[ be given. Then there exists an interval ]A,B[⊂ R1

with the following properties.

(i) For every D ∈ ]A,B[ there exists a unique Q ∈ ]c, d[ and a unique solution to (1.20)

for D+−D− = D such that each of the functions w+, w− defined by formula (2.17)

are minimal solutions of (2.18) with boundary conditions g(w+(0)) = g(w−(0)) =
Q, w+(+∞) = V+, w−(+∞) = V−.

(ii) For D ∈ R1\]A,B[ no solution with the above property exists.

(iii) If c = −∞, then A = −∞ and if d = +∞, then B = +∞.

The minimal solution will be found explicitly. The construction is based on the
investigation of monotone solutions.
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Monotone solutions

We start with an auxiliary lemma.

Lemma 3.4. Let w : [s1, s2] → R1 be a monotone function, w(s1) = v1, w(s2) = v2

and let its inverse w−1 be defined by the formula

(3.3) w−1(u) :=

{
supS−(u) for u ∈ [v2, v1] if w is nonincreasing,

supS+(u) for u ∈ [v1, v2] if w is nondecreasing,

where S±(u) : = {s ∈ [s1, s2];±w(s) 6 ±u}. Then we have

(i)
∫ s2

s1

w(s)ds +
∫ v2

v1

w−1(u)du = s2v2 − s1v1,(3.4)

(ii)
∫ s2

s1

w2(s)ds + 2
∫ v2

v1

uw−1(u)du = s2v
2
2 − s1v

2
1 .

P r o o f. Both assertions follow from Fubini’s theorem. We consider just the case of
w nondecreasing (otherwise we pass from w to −w).

Let K be the rectangle [s1, s2] × [v1, v2]. We define the maximal monotone graph
Γ1 : = {(s, u) ∈ K; w(s−) 6 u 6 w(s+)}, where we put w(s1−) : = w(s1), w(s2+) : =
w(s2), and the sets A1 : = {(s, u) ∈ K; v1 6 u < w(s−)}, B1 : = {(s, u) ∈ K; w(s+) <

u 6 v2}. The function w−1 is nondecreasing in [v1, v2] and we have B1 = {(s, u) ∈
K; s1 6 s < w−1(u−)}, K = Γ1 ∪A1 ∪B1, A1 ∩B1 = ∅, meas Γ1 = 0, hence

(s2 − s1)(v2 − v1) =
∫

A1

du ds +
∫

B1

ds du =
∫ s2

s1

(w(s)− v1)ds +
∫ v2

v1

(w−1(u)− s1)du

and (3.4)(i) follows easily.
To prove (3.4)(ii) we consider the cylinder in cylindrical coordinates

C : = {(r, ϕ, s); r ∈ [0, v2 − v1], ϕ ∈ [0, 2π], s ∈ [s1, s2]},
define the sets Γ2 : = {(r, ϕ, s) ∈ C; (s, r + v1) ∈ Γ1}, A2 : = {(r, ϕ, s) ∈ C; (s, r + v1) ∈
A1}, B2 : = {(r, ϕ, s) ∈ C; (s, r + v1) ∈ B1} and argue as above. ¤

Formulas (3.4) enable us to identify monotone solutions of (2.18) with their trajecto-
ries in the phase plane. This will be done in the next three lemmas.

Lemma 3.5. Let V ∈ ]a, b[ and Q ∈ ]c, d[ be given and let w be a solution of (2.18)

which is monotone in ]0,∞[, w(0+) =: V0 ∈ g−1(Q), w(+∞) = V . Let w−1 be the

inverse of w according to formula (3.3). For v ∈ Conv{V0, V } put

(3.5) g∗(v) := Q +
∫ v

V0

w−1(u)du.

Then g(w(s)) = g∗(w(s)) for all s > 0.
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P r o o f. By Lemma 3.4 and equation (2.18)(iii) we have for each s > 0

∫ w(s)

V0

w−1(u)du = sw(s)−
∫ s

0

w(σ)dσ = g(w(s))−Q,

hence g∗(w(s)) = g(w(s)) by definition of g∗. ¤

The function y = g∗(u) describes the trajectory of the solution w along the strain-
stress diagram y = g(u) (see Fig. 14). From Lemma 3.5 we immediately derive two
important properties, namely

(3.6) (i) g∗ is convex and increasing in [V0, V ] if w is nondecreasing and concave and
increasing in [V, V0] if w is nonincreasing,

(ii) if g∗(v) 6= g(v) for some v ∈ Conv{V0, V }, then g∗ is affine in a neighborhood
of v.

V0 V

y = g(u)

y = g∗(u)

u
�

V V0

y = g(u)

y = g∗(u)

u
�

Fig. 14: Trajectories of a nondecreasing and nonincreasing solution

The proof of the converse of Lemma 3.5 is slightly more complicated.

Lemma 3.6.
(i) Let V0, V ∈ ]a, b[ be given such that V0 < V, g(V0) < g(V ), and let g∗ : [V0, V ] →

]c, d[ be a convex increasing function such that g∗(V0) = g(V0), g∗(V ) = g(V ) and

implication (3.6)(ii) holds. Put s̄ : = g∗
′
(V−), w∗(s) : = inf{v ∈ [V0, V ]; g∗

′
(v) > s}

for s ∈ ]0, s̄[, w∗(s) : = V for s > s̄. Then w∗ is a nondecreasing solution of (2.18)

with Q = g(V0), w∗(0+) = V0 and its trajectory g∗∗ defined according to Lemma 3.5

by the formula

(3.7) g∗∗(v) : = g(V0) +
∫ v

V0

w∗
−1

(u)du for v ∈ [V0, V ]

coincides with g∗.
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(ii) Let V0, V ∈ ]a, b[ be given such that V0 > V, g(V0) > g(V ), and let g∗ : [V, V0] →
]c, d[ be a concave increasing function such that g∗(V0) = g(V0), g∗(V ) = g(V ) and

implication (3.6)(ii) holds. Put s̄ : = g∗
′
(V +), w∗(s) := sup{v ∈ [V, V0]; g∗

′
(v) > s}

for s ∈ ]0, s̄[, w∗(s) : = V for s > s̄. Then w∗ is a nonincreasing solution of (2.18) with

Q = g(V0), w∗(0+) = V0 and its trajectory g∗∗ defined by (3.7) coincides with g∗.

P r o o f. It suffices to prove the statement (i). Part (ii) is then obtained by passing
from g(v) to −g(−v).

The definition ensures that w∗ is nondecreasing and

(3.8) g∗(w∗(s))− g∗(v) 6 s(w∗(s)− v) for all s > 0 and v ∈ [V0, V ],

hence

s1(w∗(s2)− w∗(s1)) 6 g∗(w∗(s2))− g∗(w∗(s1)) 6 s2(w∗(s2)− w∗(s1))

for all s2 > s1 > 0. This yields

w∗(s1)(s2 − s1) 6 s2w
∗(s2)− g∗(w∗(s2))− s1w

∗(s1) + g∗(w∗(s1)) 6 w∗(s2)(s2 − s1),

therefore the function W ∗(s) : = sw∗(s) − g∗(w∗(s)) is Lipschitz in ]0,∞[, W ∗′(s) =
w∗(s) a.e.

To prove that w∗ solves (2.18) it suffices to check that g∗(w∗(s)) = g(w∗(s)) for all
s > 0. Assume on the contrary g∗(w∗(s)) 6= g(w∗(s)) for some s > 0. Then g∗ is affine
in a neighborhood of w∗(s), say g∗

′
(w∗(s)− δ) = g∗

′
(w∗(s) + δ) = s, which contradicts

the definition of w∗.
It remains to verify that g∗∗ = g∗. In fact, we prove more, namely g∗

′
(u+) = w∗

−1
(u)

for all u ∈]V0, V [. Indeed, for an arbitrary s > w∗
−1

(u) we have by (3.3) u < w∗(s)
and the definition of w∗(s) entails g∗

′
(u+) < s, hence g∗

′
(u+) 6 w∗

−1
(u) for all

u ∈ ]V0, V [. Conversely, for s > g∗
′
(u+) there exists δ > 0 such that w∗(s) > u + δ,

hence s > w∗
−1

(u). Consequently, w∗
−1

(u) = g∗
′
(u+) and Lemma 3.6 is proved. ¤

Lemma 3.4 enables us to express the value of the integral
∫∞
0

(
w2

1(s)−w2
2(s)

)
ds for

two monotone solutions w1, w2 of (2.18) in terms of their convex (concave) trajectories
g∗1 , g∗2 .

We first observe that integrating equation (2.18)(iii) we obtain

(3.9) g(V )−Q =
∫ ∞

0

(V − w(s))ds

for each solution w of (2.18). If moreover we assume that w is monotone, then w is
nondecreasing if Q < g(V ), nonincreasing if Q > g(V ) and constant if Q = g(V ).
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Let now w1, w2 be two monotone solutions of (2.18) for given conditions V ∈ ]a, b[
and Q ∈ ]c, d[. We distinguish two cases.

A. Q < g(V ). Then both w1 and w2 are nondecreasing.

Assume for instance w1(0+) = : V1 6 V2 : = w2(0+) < V, g(V1) = g(V2) = Q. The
convex trajectories g∗1 , g∗2 corresponding to w1, w2 are given by a formula analogous to
(3.5) and satisfy g∗

′
i (u) = w−1

i (u) for a.e. u ∈ ]Vi, V [, i = 1, 2. Identity (3.4)(ii) yields
∫ ∞

0

(w2
i (s)− V 2)ds + 2

∫ V

Vi

ug∗
′

i (u)du = 0, i = 1, 2,

and integrating by parts we obtain

(3.10)
1
2

∫ ∞

0

(w2
1(s)− w2

2(s))ds =
∫ V2

V1

(g∗1(u)−Q)du +
∫ V

V2

(g∗1(u)− g∗2(u))du.

B. Q > g(V ). Then both w1 and w2 are nonincreasing.

Assume w1(0+) =: V1 > V2 : = w2(0+) > V, g(V1) = g(V2) = Q. For the corre-
sponding concave trajectories g∗1 , g∗2 we have analogously as above

(3.11)
1
2

∫ ∞

0

(w2
1(s)− w2

2(s))ds =
∫ V1

V2

(Q− g∗1(u))du +
∫ V2

V

(g∗2(u)− g∗1(u))du.

We see that the minimization problem (3.2) in the class of monotone solutions con-
sists in finding the minimal convex trajectory in the case A and the maximal concave
trajectory in the case B. This suggests the following definition (cf. Fig. 15)

Definition 3.7. Let V ∈ ]a, b[ and Q ∈ ]c, d[ be given. Put

VQ : =

{
max

(
g−1(Q)∩]a, V ]

)
if Q 6 g(V ),

min
(
g−1(Q) ∩ [V, b[

)
if Q > g(V ),

Ω(Q,V ) : = Conv
{
(u, y) ∈ (

Conv{VQ, V })×]c, d[; y = g(u)
}
. Then the function g∗

defined for u ∈ Conv{VQ, V } by the formula

(3.12) g∗(u) : =





min{y ∈ ]c, d[; (u, y) ∈ Ω(Q, V )} if Q < g(V ),

max{y ∈ ]c, d[; (u, y) ∈ Ω(Q,V )} if Q > g(V ),

g(u) if Q = g(V ),

is called the minimal trajectory from Q to V .

We immediately see that the minimal trajectory satisfies the hypotheses of Lemma
3.6. From identity (3.11) we easily conclude that the solution w∗ of (2.18) associated
to g∗ by Lemma 3.6 is minimal with respect to all monotone solutions. We now prove
that it is minimal in the sense of Definition 3.1.
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Fig. 15: Minimal convex trajectory Maximal concave trajectory

Existence and uniqueness of minimal solutions

Theorem 3.2 will be proved in the following form.

Proposition 3.8. Let V ∈ ]a, b[ and Q ∈ ]c, d[ be given and let g∗ be the minimal

trajectory from Q to V . Let w∗ be the solution associated to g∗ by Lemma 3.6 in

the case Q 6= g(V ), w∗ ≡ V if Q = g(V ). Then for every solution w 6= w∗ of (2.18) we

have

(3.13)
∫ ∞

0

(
w∗

2
(s)− w2(s)

)
ds < 0.

This fact is less obvious. Its original proof in Krejč́ı, Straškraba (1993) is relatively
complicated. We present here a simple and elegant proof which is due to Lovicar (1994).
It consists of two steps (Lemmas 3.9 - 3.10).

We first observe that the case Q = g(V ) follows trivially from identity (3.9) which
entails for every solution w of (2.18)

∫ ∞

0

(w2(s)− V 2)ds =
∫ ∞

0

(w(s)− V )2ds + 2V

∫ ∞

0

(w(s)− V )ds

=
∫ ∞

0

(w(s)− V )2ds > 0.

On the other hand, passing from w∗ to −w∗ and from g(v) to −g(−v) we see that
the cases Q > g(V ) and Q < g(V ) are symmetrical. For the sake of definiteness we
assume in the sequel Q < g(V ).

Let us suppose now that there exists a solution w 6= w∗ of (2.18). We introduce the
functions

(3.14)

{
W ∗(s) := sw∗(s)− g(w∗(s))

W (s) : = sw(s)− g(w(s))
for s > 0.
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Both W and W ∗ are Lipschitz, W ′ = w, W ∗′ = w∗ a.e., W ∗ is convex and there exists
L > 0 such that W (s) = W ∗(s) = sV − g(V ) for s > L, W (0+) = W ∗(0+) = −Q.
We define the sets

(3.15)





M0 : = {s > 0; W ∗(s) = W (s)},
M+ : = {s > 0; W ∗(s) > W (s)},
M− : = {s > 0; W ∗(s) < W (s)}.

We have [L, +∞[⊂ M0, hence both M+ and M− are open bounded sets. They have

the form M+ =
∞⋃

k=1

]α+
k , β+

k [, M− =
∞⋃

k=1

]α−k , β−k [, with α±k , β±k ∈ M0, provided we

include the case α±k = 0.
For almost all s ∈ M0 we have w∗(s) = w(s), hence

(3.16)
∫

M0

(
w∗

2
(s)− w2(s)

)
ds = 0.

Lemma 3.9. For all k ∈ N we have

(3.17)
∫ β+

k

α+
k

(
w∗

2
(s)− w2(s)

)
ds < 0.

P r o o f. We have W ∗(s) > W (s) for all s ∈ ]α+
k , β+

k [, W ∗(α+
k ) = W (α+

k ),
W ∗(β+

k ) = W (β+
k ), hence

∫ β+
k

α+
k

r(s)
(
w(s)− w∗(s)

)
ds > 0

for each bounded nondecreasing function r :]α+
k , β+

k [→ R1. Indeed, this follows trivially
from the integration by parts provided r is smooth. In the general case we approximate
r by a pointwise convergent sequence rn → r of smooth nondecreasing functions and
pass to the limit.

This yields

0 <

∫ β+
k

α+
k

(
w∗(s)− w(s)

)2
ds =

∫ β+
k

α+
k

(
w2(s)− w∗

2
(s)

)
ds− 2

∫ β+
k

α+
k

w∗(s)
(
w(s)− w∗(s)

)
ds

6
∫ β+

k

α+
k

(
w2(s)− w∗

2
(s)

)
ds

and Lemma 3.9 is proved. ¤
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Lemma 3.10. For all k ∈ N we have

(3.18)
∫ β−k

α−k

(
w∗

2
(s)− w2(s)

)
ds < 0.

P r o o f. Lemmas 3.6, 3.5 and inequality (3.8) yield

(3.19) sw∗(s)− g(w∗(s)) > sv − g∗(v) > sv − g(v)

for all s > 0 and v ∈ [VQ, V ]. On the other hand, for s ∈]α−k , β−k [ we have by
hypothesis sw∗(s)−g(w∗(s)) < sw(s)−g(w(s)), hence w(s) /∈ [VQ, V ] for s ∈]α−k , β−k [.

Put A+ : = {s ∈ ]α−k , β−k [; w(s) > V }, A− : = {s ∈ ]α−k , β−k [; w(s) < VQ}. We have
]α−k , β−k [= A+ ∪A− and

∫

A−

(
w2(s)− w∗

2
(s)

)
ds > (VQ + V )

∫

A−

(
w(s)− w∗(s)

)
ds,

∫

A+

(
w2(s)− w∗

2
(s)

)
ds > (VQ + V )

∫

A+

(
w(s)− w∗(s)

)
ds,

therefore

∫ β−k

α−k

(
w2(s)− w∗

2
(s)

)
ds > (VQ + V )

(
W (β−k )−W ∗(β−k )−W (α−k ) + W ∗(α−k )

)
= 0,

and inequality (3.18) is proved. ¤

To finish the proof of Proposition 3.8 which in turn implies Theorem 3.2, it suffices
to combine Lemmas 3.9, 3.10 and identity (3.16).

The natural question whether the minimal solution of (2.18) satisfies the dissipation
condition (2.19) can easily be answered.

Proposition 3.11. For every V ∈ ]a, b[ and Q ∈ ]c, d[ the minimal solution w∗ of

(2.18) fulfils the dissipation condition (2.19).

P r o o f. By Lemmas 3.4, 3.6 we have for all s > 0

1
2

∫ s

0

w∗
2
(σ)dσ =

1
2
sw∗(s)−

∫ w∗(s)

VQ

uw∗
−1

(u)du

=
1
2
sw∗(s)− w∗(s)g∗(w∗(s)) + VQg∗(VQ) +

∫ w∗(s)

VQ

g∗(u)du.
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The function D(w∗) in (2.19) has therefore the form

D(w∗)(s) =
∫ w∗(s)

VQ

(
g(u)− g∗(u)

)
du + G(VQ)−QVQ.

For Q < g(V ) we have g(u) > g∗(u) for all u ∈ [VQ, V ] and w∗ is nondecreasing,
for Q > g(V ) we have g(u) 6 g∗(u) for all u ∈ [V, VQ] and w∗ is nonincreasing, for
Q = g(V ) the solution w∗ is constant, hence in all cases condition (2.19) holds. ¤

Existence and uniqueness in the Riemann problem

Let us state now two easy lemmas which enable us to prove Theorem 3.3.

Lemma 3.12. Let Q1, Q2 ∈ ]c, d[ and V ∈ ]a, b[ be given such that Q1 < Q2 <

g(V ). According to Definition 3.7 put Vi : = VQi and g∗i (u) : = min{y ∈ ]c, d[; (u, y) ∈
Ω(Qi, V )} for u ∈ [Vi, V ], i = 1, 2. Then g∗1(u) 6 g∗2(u) for all u ∈ [V2, V ] and

g∗
′

1 (u) > g∗
′

2 (u) for a.e. u ∈ ]V2, V [.

P r o o f. We obviously have Ω(Q2, V ) ⊂ Ω(Q1, V ) and V > V2 > V1, hence g∗1 6 g∗2
in [V2, V ]. Let us assume now g∗

′
1 (u) < g∗

′
2 (u) for some Lebesgue point u ∈]V2, V [ of

both g∗
′

1 and g∗
′

2 . Then g∗1(u) < g∗2(u) 6 g(u), hence g∗1 is affine in a neighborhood of
u. Put u : = min{v ∈ ]u, V [; g(v) = g∗1(v)}. The points (u, g(u)) and (u, g∗2(u)) belong
to Ω(Q2, V ), hence for all α ∈ ]0, 1[ we have g∗2(αu+(1−α)u) 6 αg(u)+ (1−α)g∗2(u),
or equivalently

g∗2(u + α(u− u))− g∗2(u)
α(u− u)

6 g(u)− g∗2(u)
u− u

.

Passing to the limit as α → 0+ we obtain

g∗
′

2 (u) 6 g(u)− g∗2(u)
u− u

<
g(u)− g∗1(u)

u− u
= g∗

′
1 (u).

which is a contradiction. ¤

Lemma 3.13. Let V ∈ ]a, b[ and c < Q1 < Q2 < d be given. Let w∗1 , w∗2 be the

minimal solutions of (2.18) for Q = Q1, Q = Q2, respectively. Then w∗1(s) 6 w∗2(s) for

all s > 0.

P r o o f. The cases Q1 6 g(V ) < Q2 or Q1 < g(V ) 6 Q2 are obvious. We may
therefore assume Q1 < Q2 < g(V ) (the opposite situation g(V ) < Q1 < Q2 is again
covered by the usual transformation g(v) 7→ −g(−v)). By Lemma 3.6 we have for all
s > 0

w∗i (s) = inf{u ∈ [Vi, V ]; g∗
′

i (u) > s}, i = 1, 2,

where Vi, g
∗
i are as in Lemma 3.12. For all s > 0 and u ∈ [V2, V ] such that u < w∗1(s)

we have by Lemma 3.12 g∗
′

2 (u+) 6 g∗
′

1 (u+) < s. This entails u < w∗2(s), hence
w∗1(s) 6 w∗2(s). ¤
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P r o o f of Theorem 3.3. For an arbitrary Q ∈ ]c, d[ we denote by wQ
+ , wQ

−
the minimal solutions of (2.18) with boundary conditions g(wQ

+(0)) = g(wQ
−(0)) =

Q,wQ
+(+∞) = V+, wQ

−(+∞) = V−, and put

θQ(z) :=

{
wQ

+(z2) for z > 0,

wQ
−(z2) for z < 0.

By Proposition 2.7, θQ(z) solves (1.20)(i) - (iv) for all Q ∈ ]c, d[. To handle condition
(1.20)(v) we introduce the function

(3.20) ϕ(Q) : =
∫ ∞

−∞

(
θQ(z)− P0(z)

)
dz

with the intention to put

(3.21) A : = ϕ(c+), B : = ϕ(d−).

The proof of Theorem 3.3 will be complete as soon as we prove that the function ϕ

defined by (3.20) is continuous and increasing and implications (iii) hold.
The fact that ϕ is increasing follows immediately from Lemma 3.13. To prove

the continuity, we fix an arbitrary compact interval [c′, d′] ⊂ ]c, d[ such that g(V+),
g(V−) ∈ ]c′, d′[. Put a′ : = min{v ∈ ]a, b[; g(v) > c′}, b′ : = max{v ∈ ]a, b[; g(v) 6 d′},
L′ : = sup

{∣∣ g(u)−g(v)
u−v

∣∣; a′ 6 v < u 6 b′
}

< +∞.
From Lemma 3.6 we infer that θQ(z) = P0(z) for all |z| > √

L′ and all Q ∈ [c′, d′].

Integrating equation (1.20)(iii)
∫√L′

0
dz and

∫ 0

−√L′ dz we obtain for all Q ∈ [c′, d′]

(3.22)

{
L′V+ − g(V+) + Q = 2

∫√L′

0
zθQ(z)dz,

−L′V− + g(V−)−Q = 2
∫ 0

−√L′ zθQ(z)dz,

hence

(3.23)
∫ √

L′

−√L′
|z|(θQ1(z)− θQ2(z)

)
dz =

∫ ∞

−∞
|z|(θQ1(z)− θQ2(z)

)
dz = Q1 −Q2

for all Q1, Q2 ∈ [c′, d′], Q1 > Q2. Note that by Lemma 3.13 we have θQ1(z) > θQ2(z)
for a.e. z ∈ R1. Using the estimates

ϕ(Q1)− ϕ(Q2) =
∫ ∞

−∞

(
θQ1(z)− θQ2(z)

)
dz

6
∫ √

Q1−Q2

−√Q1−Q2

(
θQ1(z)− θQ2(z)

)
dz +

1√
Q1 −Q2

∫ ∞

−∞
|z|(θQ1(z)− θQ2(z)

)
dz

6 (2(b′ − a′) + 1)
√

Q1 −Q2
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we conclude that ϕ is locally 1
2 -Hölder continuous in ]c, d[.

Parts (i), (ii) of Theorem 3.3 now follow from (3.20). It remains to prove one of the
implications (iii), the other one is analogous. Assume for instance d = +∞, V+ > V−,
and put

L : = sup
{g(v)− g(V+)

v − V+
; v ∈ ]V+, b[

}
> 0.

We distinguish two cases.

A. L < +∞.
Then for every Q > g(V+) the slope of the minimal trajectory (3.12) from Q to V+

does not exceed the value of L, and therefore θQ(z) = V+ for z >
√

L. Using formula
(3.22) for L′ = L we obtain

(3.24) ϕ(Q) >
∫ √

L

0

(θQ(z)− V+)dz > 1√
L

∫ √
L

0

z(θQ(z)− V+)dz > 1
2
√

L
(Q− g(V+)).

B. L = +∞.
Put L̂ : = lim sup

v→V+

g(v)−g(V+)
v−V+

< +∞. For λ > L̂ we define

Vλ : = min
{
v ∈ ]V+, b[;

g(v)− g(V+)
v − V+

= λ
}
, Qλ : = g(Vλ).

The minimal trajectory g∗ from Qλ to V+ is then affine, namely g∗(u) = g(V+) +
λ(u− V+) for u ∈ [V+, Vλ]. This yields

θQλ
(z) =





V+ for z >
√

λ.

Vλ for z ∈ ]0,
√

λ[,

wQλ
− (z2) > V− for z < 0,

therefore

(3.25) ϕ(Qλ) >
∫ √

λ

0

(θQλ
(z)− V+)dz =

√
(Qλ − g(V+))(Vλ − V+).

In both cases (3.24), (3.25) we obtain ϕ(Q) → +∞ as Q → +∞. Theorem 3.3 is
proved. ¤

Remark 3.14. Theorem 3.3 enables us now to prove Theorem 2.8 from the preceding
section. In fact, it suffices to prove that for a convex constitutive function g the
dissipation condition (2.19) and the minimality criterion (3.2) for solutions of (2.18)
coincide. The case of g concave is then obtained in a standard way. We prove the
following theorem.
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Theorem 3.15. Let g be convex and let V ∈ ]a, b[, Q ∈ ]c, d[ be given. Let w be a

solution of (2.18) satisfying the dissipation condition (2.19) and let w∗ be the minimal

solution of (2.18). Then w = w∗ a.e.

In the proof we make use of an auxiliary lemma. Notice that a convex function
satisfying (1.8) is increasing, hence every solution w of (2.18) can be continuously
extended to s = 0.

Lemma 3.16. Let the hypotheses of Theorem 3.15 hold. Assume that there exist

Lebesgue points s1, s2 of w such that 0 6 s1 < s2 and w(s1) =: v1 < v2 := w(s2).
Then s2 > g′(v2−), s1 6 g′(v1+), w(s) = inf{u ∈ [v1, v2]; g′(u) > s} for a.e. s ∈
[s1, g

′(v2−)[, w(s) = v2 for s ∈ ]g′(v2−), s2].

P r o o f of Lemma 3.16. The function w0 : [0,∞[→]a, b[ defined as w0(s) := w(s)
for s ∈ ]s1, s2[, w0(s) := v1 for s ∈ [0, s1], w0(s) := v2 for s ∈ [s2, +∞[ solves (2.18)
with V = v2, Q = g(v1). The minimal convex trajectory g∗0 from g(v1) to v2 coincides
with g and the corresponding minimal solution w∗0 is given by the formula (cf. Lemma
3.6) w∗0(s) = inf{u ∈ [v1, v2], g′(u) > s} for s ∈ [0, g′(v2−)[, w∗0(s) = v2 for s >

g′(v2−), w∗
−1

0 (u) = g′(u) for a.e. u ∈ ]v1, v2[.
By (2.19) we have D(w)(s2) > D(w)(s1), hence

1
2

∫ s2

s1

w2(s)ds 6 −
∫ v2

v1

ug′(u)du +
1
2
s2v

2
2 −

1
2
s1v

2
1 .

Lemma 3.4 yields − ∫ v2

v1
ug′(u)du = 1

2

∫∞
0

(
w∗

2

0 (s) − v2
2)ds, therefore 1

2

∫∞
0

(
w2

0(s) −
w∗

2

0 (s)
)
ds 6 0.

By Proposition 3.8 we conclude w0 = w∗0 a.e. and Lemma 3.16 follows. ¤

P r o o f of Theorem 3.15. The assertion is an immediate consequence of Lemma
3.16 if Q < g(V ) (we simply put s1 = 0 and let s2 tend to +∞). The case Q > g(V )
is slightly more complicated. In fact, it suffices to prove that w is nonincreasing in
[0,+∞[, since the only concave trajectory from Q to V in this case is the minimal one
which is affine.

Let us suppose on the contrary that there exist Lebesgue points s1, s2 of w such
that 0 6 s1 < s2 and w(s1) := v1 < v2 : = w(s2). We distinguish 2 cases.

A. g(v1) < Q.
Put v : = supess{w(s); s ∈ [0, s1]}. Then v > g−1(Q) > v1 and there exists a

sequence {σn} ⊂ [0, s1] of Lebesgue points of w such that σn → s̄ < s1, w(σn) → v.
Passing to the limit as n →∞ in the identity

∫ s1

σn
w(s)ds = s1v1 − g(v1)− σnw(σn) +

g(w(σn)) we obtain 0 >
∫ s1

s̄
(w(s) − v)ds = g(v) − g(v1) − s1(v − v1), hence s1 >

g(v)−g(v1)
v−v1

> g′(v1+), which is in contradiction with Lemma 3.16.
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B. g(v1) > Q.
Analogously as above put v : = inf ess{w(s); s ∈ [s2, +∞[}. We have v 6 V < v2

and w(s) = V for sufficiently large, therefore there exists a convergent sequence {σn} ⊂
[s2, +∞[ of Lebesgue points of w such that σn → s > s2, w(σn) → v as n → ∞.
Passing to the limit in the identity

∫ σn

s2
w(s)ds = σnw(σn) − s2v2 − g(w(σn)) + g(v2)

yields 0 <
∫ s

s2
(w(s)− v)ds = g(v2)− g(v)− s2(v2 − v) hence s2 < g(v2)−g(v)

v2−v 6 g′(v2−)
which again contradicts Lemma 3.16. ¤

At the end of this section we show an interesting example.

Example 3.17. Let g be the function g(u) : = eu − 1 for u ∈ R1, V+ = V− : = 0.
Then the hypotheses of Theorem 2.8 are fulfilled with a = −∞, b = d = +∞, c = −1
and we can explicitly compute the values of A and B. In fact, we have B = +∞ by
Theorem 3.3.

The minimal solution w∗ of (2.18) with V = 0 is given by the formula

w∗(s) =

{
log(1 + Q) for 0 6 s < Q

log(1+Q)

0 for s > Q
log(1+Q)

if Q > 0,

w∗(s) =





log(1 + Q) for 0 6 s 6 1 + Q

log s for 1 + Q < s < 1

0 for s > 1

if Q ∈ ]− 1, 0].

The function ϕ defined by (3.20) has the form

ϕ(Q) = 2
∫ ∞

0

w∗(z2)dz =

{
2
√

Q log(1 + Q) for Q > 0,

4
(√

1 + Q− 1
)

for Q ∈ ]− 1, 0].

By (3.21) we have A = −4. Since g is convex, we infer from Theorems 3.15, 3.3 that
problem (1.20) with D+−D− 6 −4 has no solution satisfying the dissipation condition
(2.5). On the other hand, putting for an arbitrary u < 0.

(3.26) θ̂u(z) : =





u for |z| <
√

g(u)
u

0 for |z| >
√

g(u)
u

we see that θ̂u solves problem (1.20) with V+ = V− = 0, D+ −D− =
∫ +∞
−∞ θ̂u(z)dz =

−2
√

ug(u), hence for arbitrary D+ < D− there exists a solution of (1.20) of the form
(3.26). In other words, problem (1.20) with D+−D− 6 −4 admits only solutions which
violate the dissipation condition!
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IV.4 Entropy conditions

In this section we study the relationship of the minimal solution from Definition 3.1
to entropy conditions arising from various physical or geometrical considerations. We
already proved Theorem 2.8 and Propositions 2.5, 3.11 which state that the minimal-
ity always implies the dissipation condition (2.5) and that these two conditions are
equivalent (modulo some smoothness) if and only if g is convex or concave.

Here we recall four more or less classical selection rules for the relevant solution.
Three of them, namely the Lax entropy condition, Liu’s shock admissibility criterion
and the vanishing viscosity criterion are compatible with the minimal solution, while
Dafermos’ maximal entropy rate condition is not in general.

Lax entropy condition

The Lax (1957) shock admissibility condition for systems of conservation laws can be
defined only under some regularity assumption. Following Aumann (1969) we introduce
here the space R(α, β) of regulated functions as the space of all functions f :]α, β[→ R1

such that there exist finite limits f(α+), f(β−) and f(r+), f(r−) for all r ∈]α, β[, and
this space is endowed with the sup-norm | · |∞.

It is clear that regulated functions are bounded and have at most countable many dis-
continuities. More information about the spaces R(α, β) can be found e.g. in Fraňková
(1991) or Tvrdý (1989).

Definition 4.1. Let us assume that the derivative g′(u) = dg
du belongs to R(a, b).

A weak solution θ of system (1.20) is said to satisfy the Lax entropy condition at a

point z ∈ R1 if the one-sided limits θ(z+) 6= θ(z−) exist and

(i) zg′(θ(z−)+) > z3 > zg′(θ(z+)−) if θ(z−) < θ(z+),
(ii) zg′(θ(z−)−) > z3 > zg′(θ(z+)+) if θ(z−) > θ(z+).

The fact that the minimal solution follows the minimal trajectory along g implies
immediately the following result.

Proposition 4.2. Let the hypotheses of Theorem 3.3 be satisfied and let g′ belong

to R(a, b). For D+−D− ∈ ]A,B[ denote by θ the solution of problem (1.20) defined in

Theorem 3.3. Then θ satisfies the Lax entropy condition at each point of discontinuity

z ∈ R1.

Notice that the Lax entropy condition does not follow from the dissipation condition
(2.5) if g has inflection points: the solutions defined by formula (2.13) in the proof of
Proposition 2.6 obviously violate the Lax entropy condition. On the other hand, it is
easy to infer from inequality (2.9) that the Lax entropy condition does not necessarily
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imply the dissipation condition if g is allowed to have more than one inflection point.
Below in Example 4.3 we show that even the combination of both Lax condition and
dissipation condition does not guarantee the uniqueness of solutions of the Riemann
problem. It suffices to work with smooth increasing constitutive functions g having at
least two inflection points.

Example 4.3. Let g :]a, b[→]c, d[ be an increasing smooth function and let there
exist numbers a < V− < q < V+ < s < b such that
(i) g′′ > 0 in ]V−, q[∪]V+, s[, g′′ < 0 in ]q, V+[,
(ii) there exists t ∈]q, V+[ such that g(t)−g(V−)

t−V−
= g(s)−g(V−)

s−V−
= max

{ g(u)−g(V−)
u−V−

; u ∈
]V−, s]

}
(see Fig. 16)

V− t V+
rps u

Fig. 16�
We fix some r ∈]V+, s[ such that

∫ r

V−
g(u)du < 1

2 (r − V−)(g(r) + g(V−)) and put

(4.1) θ(z) :=





V− for z < −
√

g(r)−g(V−)
r−V−

,

r for z ∈
]
−

√
g(r)−g(V−)

r−V−
,
√

g(r)−g(V+)
r−V+

[
,

V+ for z >
√

g(r)−g(V+)
r−V+

.

Then θ is a solution of (1.20) with

(4.2) D+ −D− =
√

(g(r)− g(V−))(r − V−) +
√

(g(r)− g(V+))(r − V+).

For p ∈ [r, s[ we further define

(4.3) θp(z) :=





w∗p(z2) for z < 0,

p for z ∈
[
0,

√
g(p)−g(V+)

p−V+

[
,

V+ for z >
√

g(p)−g(V+)
p−V+

,
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where w∗p is the minimal solution of (2.18) with V = V−, Q = g(p) and we check that
the value of p can be chosen in such a way that θp satisfies (1.20) with D+−D− given
by (4.2). Using Lemmas 3.4, 3.6 we obtain

∫ ∞

−∞

(
θp(z)− P0(z)

)
dz =

∫ ∞

0

(
w∗p(z2)− V−

)
dz +

√(
g(p)− g(V+)

)
(p− V+) =

=
∫ p

V−

√
g∗′p (u) du +

√(
g(p)− g(V+)

)
(p− V+),

where g∗p is the minimal (concave) trajectory from g(p) to V−. Put

h(p) :=
∫ p

V−

√
g∗′p (u) du +

√(
g(p)− g(V+)

)
(p− V+)−

−
√(

g(r)− g(V−)
)
(r − V−)−

√(
g(r)− g(V+)

)
(r − V+).

We claim that p ∈ [r, s[ can be chosen in such a way that h(p) = 0. Indeed, we have

h(s) =
√(

g(s)− g(V−)
)
(s− V−) +

√(
g(s)− g(V+)

)
(s− V+)−

−
√(

g(r)− g(V−)
)
(r − V−)−

√(
g(r)− g(V+)

)
(r − V+) > 0,

and Hölder’s inequality yields

∫ r

V−

√
g∗′r (u)du 6

√(
g(r)− g(V−)

)
(r − V−),

hence h(r) 6 0. The function h is continuous in [r, s[, hence h(p) = 0 for some
p ∈ [r, s[. We thus dispose of two solutions θ, θp of problem (1.20) with D+ − D−
given by formula (4.2). Both θ and θp satisfy the Lax condition and the dissipation

condition. To check that θ 6= θp we notice that g∗p(t) = g(t), hence g∗p(p)−g∗p(t)

p−t =
g(p)−g(t)

p−t < g(s)−g(t)
s−t = g(t)−g(V−)

t−V−
= g∗p(t)−g∗p(V−)

t−V−
. This implies that g∗p is not affine,

consequently the solutions θ, θp are distinct.

Liu’s shock admissibility criterion

Definition 4.4. (Liu (1981)) A solution θ to problem (1.20) is said to satisfy Liu’s
shock admissibility criterion at a point z ∈ R1 if the limits θ(z+) 6= θ(z−) exist and

(4.4) z

(
g(u)− g(θ(z−))

u− θ(z−)
− g(θ(z+))− g(θ(z−))

θ(z+)− θ(z−)

)
> 0 ∀u ∈ Conv

{
θ(z−), θ(z+)

}
.
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It is obvious that the minimal solution defined in Theorem 3.3 satisfies Liu’s criterion
at each point of discontinuity. The converse is true in the class of regulated functions.

Proposition 4.5. Let the problem (1.20) admit a solution θ ∈ R(−∞,∞) such that

condition (4.4) holds at each point z ∈ R1 of discontinuity of θ. Then θ is minimal in

the sense of Theorem 3.3.

P r o o f. Let us first assume for instance that θ is nondecreasing in ]0,∞[. Let
w+(s) : = θ(

√
s) be the corresponding solution of (2.18) and let g∗ be its trajectory

according to Lemma 3.5. If for some u ∈]θ(0+), V+[ we have g(u) 6= g∗(u), then by
Lemma 3.5 there exists s > 0 such that u ∈]w(s−), w(s+)[ and g∗(u) = g(w(s−)) +
(u − w(s−)) g(w(s+))−g(w(s−))

w(s+)−w(s−) . Condition (4.4) then entails g(u) > g∗(u), hence g∗ is
the minimal trajectory. The same argument works for θ nonincreasing and for the
interval ]−∞, 0[.

On the other hand, condition (4.4) excludes nonmonotonicities of θ in ]−∞, 0[ and
]0,∞[. This can be seen again by considering just the interval ]0,∞[ only. Let us
assume for instance that there exist z3 > z1 > 0 and z2 ∈ [z1, z3] such that the values
v1 : = θ(z1−), v3 : = θ(z3+), v2 : = inf{θ(z); z ∈ [z1, z3]} satisfy v2 < v1 < v3, v2 =
θ(z2+) or v2 = θ(z2−), θ(z) ∈ [v2, v1] for z ∈ [z1, z2], θ(z) ∈ [v2, v3] for z ∈ [z2, z3]
(the other possibilities are analogous).

It is more convenient to work with the solution w of (2.18) defined by the formula
w(s) : = θ(

√
s) for s > 0. Put si : = z2

i for i = 1, 2, 3, A : = {s ∈]s2, s3[; w(s+) = v1

or w(s−) = v1}. For A 6= ∅ put sA : = inf A. Integrating equation (2.18)(iii) we obtain

s2(v2 − v1)− g(v2) + g(v1) =
∫ s2

s1

(w(s)− v1)ds 6 0,(4.5)

s2(v1 − v2)− g(v1) + g(v2) =
∫ sA

s2

(w(s)− v1)ds.(4.6)

Put s̄ : = inf{s ∈ [s2, s3];w(s+) > v1}. We have either s̄ = s2 or s̄ > s2. In the
latter case it follows from (4.5), (4.6) that [s2, s̄]∩A = ∅, hence in both cases we obtain
w(s̄−) < v1 < w(s̄+). Put v : = w(s̄−) ∈ [v2, v1[. Hypothesis (4.4) and Lemma 1.4
then yield

(4.7)
g(v1)− g(v)

v1 − v
> s̄,

consequently

(4.8)
∫ s̄

s1

(w(s)− v1)ds = s̄(v − v1)− g(v) + g(v1) > 0.

By construction, we have
∫ s̄

s1
(w(s)−v1)ds < 0, which is a contradiction. Proposition

4.5 is proved. ¤
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Dafermos maximal entropy rate criterion

The idea of Dafermos (1973) is similar to that which leads to the minimality condition
(3.1), namely to maximize the dissipation of energy. Its advantage is that it can easily
be formulated for arbitrary (not necessarily self-similar) solutions to equation (1.1).

Definition 4.6. A solution u of problem (1.9) - (1.11) is said to satisfy the Dafermos
maximal entropy criterion, if for every solution ũ to (1.9) - (1.11) we have

(4.9)
d

dt

∫ ∞

−∞

(1
2
u2

t + G(ux)
)
−

(1
2
ũ2

t + G(ũx)
)
dx 6 0

in the sense of distributions.

In the class of self-similar solutions we can rewrite condition (4.9) in a simple way.

Proposition 4.7. For r ∈]a, b[ and z ∈ R1 put G(z, r) : = G(r) − rg(r) + 3
2z2r2.

Then a self-similar solution u of (1.9) - (1.11) satisfies condition (4.9) with respect to

all self-similar solutions ũ of (1.9)-(1.11) if and only if

(4.10)
∫ ∞

−∞

(
G(z, θ(z))− G(z, θ̃(z)

)
dz 6 0

for all solutions θ̃ to (1.20), where θ is the solution to (1.20) associated to u according

to Proposition 1.2.

The proof of Proposition 4.7 is a simple exercise analogous to the proof of Proposition
1.2 based on the integration-by-parts formula

∫ ∞

−∞
(f2 − f̃2)dz =

∫ ∞

−∞
2z(θf − θ̃f̃)dz = −

∫ ∞

−∞

[
θ(z2θ − g(θ))− θ̃(z2θ̃ − g(θ̃))

]
dz

and we leave it to the reader.

The comparison of the maximum principles (3.2) and (4.10) is not easy in general. We
can better understand their meaning when looking at piecewise constant solutions of the
form (1.26). Let us denote by A(θi, θi+1) : = G(θi+1)−G(θi)− 1

2 (θi+1 − θi)(g(θi+1) +
g(θi)) the signed area between the graph of the constitutive function g and the segment
connecting the points (θi, g(θi)) and (θi+1, g(θi+1)) which represents the trajectory of
the shock at the point z = zi. While condition (4.10) consists in maximizing the sum

(4.11)
∑

zi∈R1

ziA(θi, θi+1),
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condition (3.2) requires to maximize separately the expressions

(4.12)
∑
zi>0

A(θi, θi+1), −
∑
zi<0

A(θi, θi+1)

with an unknown intermediate condition g(θ(0)) = Q which is to be identified.

The construction in Example 2.4 shows that these conditions are not equivalent.
Condition (4.12) naturally selects the constant solution. On the other hand, the expres-
sion (4.11) vanishes for the constant solution and is positive for the nonconstant one.
Paradoxically, the constant solution does not maximize the entropy rate in Dafermos’
sense.

Vanishing viscosity

It has been observed in various situations that the fact of neglecting small dissipation
effects may lead to a loss of well-posedness of the problem (one example of this kind
has recently been studied by Lovicar, Straškraba, Krejč́ı (1993).

Here, the nonlinear elastic-stress constitutive law σ = g(ε) can be considered as the
limit case of the parallel viscoelastic law σ = g(ε) + ηε̇ (see Sect. I.1 on rheological
models) as the viscosity coefficient η tends to 0. In the case that the solutions uη of
the corresponding equation of motion

(4.13) uη
tt − g(uη

x)x − ηuη
xxt = 0

converge in some sense to a solution of equation (1.7), it is natural to declare that this
limit is the relevant solution of equation (1.7). In other words, the selection rule is
imposed by the limit process.

With respect to self-similar solutions, it is more convenient to replace (4.13) with the
equation

(4.14) uη
tt − gη,K(uη

x)x − η

2
tuη

xxt = 0,

where gη,K ∈ C1(]a, b[) is a regularization of the function g that we briefly describe
here.

Let g satisfy condition (1.8). For a fixed compact interval K ⊂]a, b[ and a number
η > 0 put

(4.15) gη,K(u) := e
1
η (uK−u)g(uK) +

∫ u

uK

1
η
e

1
η (v−u)g(v) dv for u ∈]a, b[,

where uK : = minK. The identity

(4.16) ηg′η,K(u) = g(u)− gη,K(u) ∀u ∈]a, b[
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has the following immediate consequences (the proof is left to the reader).

Lemma 4.8. Let K ⊂]a, b[ be a compact interval. Put LK : = sup
{∣∣ g(u)−g(v)

u−v

∣∣;
u, v ∈ K, u 6= v

}
. Then for every η > 0 the function gη,K is continuously differentiable

in ]a, b[ and for every u ∈ K we have

(i) |g(u)− gη,K(u)| 6 ηLK ,

(ii) |g′η,K(u)| 6 LK .

In terms of self-similar solutions, approximating equation (1.7) by (4.14) corresponds
to the approximation of problem (2.18) by the equation

(4.17) η
(
sw′η(s)

)′ = wη(s)− (
swη(s)− gη,K(wη(s))

)′

for a suitable choice of boundary conditions and of the compact interval K. This can
be done in the following way.

Let Q,V be given data in (2.18) and let us define VQ as in Definition 3.7. We can
assume for the sake of definiteness that Q < g(V ) leaving the other cases to the reader.

We fix an open bounded interval J , [VQ, V ] ⊂ J ⊂ J ⊂]a, b[ and put K : = J . For
an arbitrary β > LK we prescribe boundary conditions

(4.18) wη(η) = VQ, wη(β) = V.

We first verify that problem (4.17), (4.18) cannot have multiple solutions.

Lemma 4.9. Let 0 < δ < s1 < s2 be given and let w, w̃ be two solutions of (4.17)

in the interval ]s1 − δ, s2 + δ[. Assume w(si) = w̃(si) for i = 1, 2. Then w(s) = w̃(s)
for all s ∈]s1 − δ, s2 + δ[.

P r o o f. If the set B : = {s ∈ [s1, s2]; w(s) = w̃(s)} is infinite, then it contains a
convergent sequence and its limit point s̄ satisfies w(s̄) = w̃(s̄), w′(s̄) = w̃′(s̄). The
general theory of ordinary differential equations then yields w ≡ w̃.

Assume that B is finite. We choose two consecutive points σ1, σ2 ∈ B, so that for
instance w(σi) = w̃(σi) for i = 1, 2, w(s) > w̃(s) for s ∈]σ1, σ2[. Integrating

∫ σ2

σ1
ds

the identity

(
ηs(w′ − w̃′)

)′ = (w − w̃)− (
s(w − w̃)− g(w) + g(w̃)

)′

we obtain

η
[
σ2

(
w′(σ2)− w̃′(σ2)

)− σ1

(
w′(σ1)− w̃′(σ1)

)]
=

∫ σ2

σ1

(w − w̃)ds > 0,

hence either w′(σ2) > w̃′(σ2) or w′(σ1) < w̃′(σ1), which is a contradiction. ¤
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For a fixed η > 0 we have the following existence result.

Theorem 4.10. Problem (4.17), (4.18) has a unique classical solution wη. Moreover,

there exists η0 > 0 such that for η < η0 the solution wη can be extended to an interval

]αη, +∞[ for some αη ∈]0, η[, it is twice continuously differentiable and increasing in

its domain of definition.

P r o o f. We define recursively for s ∈ [η, β] a sequence {w(n)(s); n ∈ N ∪ {0}} by
the formula

w(0)(s) : = VQ + (V − VQ)
s− η

β − η
,

w(n)(s) : = VQ + c(n−1)

∫ s

η

1
τ

e
1
η

R τ
η

( g′
η,K

(w(n−1)(σ))

σ −1
)
dσdτ,

where

c(n−1) : = (V − VQ)
[ ∫ β

η

1
τ

e
1
η

R τ
η

( g′
η,K

(w(n−1)(σ))

σ −1
)
dσdτ

]−1

.

We immediately see that {w(n)} ⊂ C2([η, β]) is a sequence of increasing functions
satisfying boundary conditions (4.18) and that there exists a constant Mη independent
of n such that 0 < c(n) 6 Mη,

∣∣w(n)′(s)
∣∣ 6 Mη for all s ∈]η, β[.

From the Arzelà-Ascoli theorem V.2.1 it follows that there exist convergent subse-
quences of {c(n)} and {w(n)} (still indexed by n) such that the limits cη : = lim

n→∞
c(n),

wη : = lim
n→∞

w(n) satisfy

(4.19) wη(s) = VQ + cη

∫ s

η

1
τ

e
1
η

R τ
η

( g′
ηK

(wη(σ))

σ −1
)
dσdτ,

hence wη is a solution of (4.17), (4.18).
The function wη can be extended to a maximal solution of (4.17) wη :]αη, βη[→]a, b[

for some αη < η, βη > β. Identity (4.19) remains valid for s ∈]αη, βη[, hence wη is
twice continuously differentiable and increasing in its maximal domain of definition.
Lemma 4.9 then entails that this solution is unique.

It remains to prove that βη = +∞ for η sufficiently small. Put

γη : = sup{s ∈]αη, βη[;wη(s) ∈ K}, δ : =
1
4
(β − LK).

We have γη > β and the identity

(4.20)
(
sw′η(s)

)′ =
1
η

(g′η,K(wη(s))
s

− 1
)(

sw′η(s)
)
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combined with Lemma 4.8 (ii) entails for s ∈]LK + δ, γη[

(4.21)
(
sw′η(s)

)′ 6 −δ

η(LK + δ)
sw′η(s).

Putting p : = δ
LK+δ > 0 we rewrite (4.21) in the form

(
e

p
η ssw′η(s)

)′ 6 0, hence also(
e

p
η sw′η(s)

)′ 6 0. This yields for s ∈]LK + 2δ, γη[

δe
p
η sw′η(s) 6

∫ LK+2δ

LK+δ

e
p
η tw′η(t) dt 6 e

p
η (Lk+2δ)(V − VQ),

hence

(4.22) wη(s) 6 wη(LK + 3δ) +
η(V − VQ)

δp
e−

δp
η for s ∈]LK + 3δ, γη[.

For η > 0 sufficiently small, say η < η0, we thus have wη(s) ∈ K for all s ∈]αη, βη[,
hence βη = +∞. This completes the proof of Theorem 4.10. ¤

We now pass to the limit as η → 0+. The following Theorem says that the solution
obtained by the vanishing viscosity selection rule coincides with the minimal solution
defined in Sect. IV.3.

Theorem 4.11. Let Q ∈ ]c, d[ and V ∈ ]a, b[ be given and let wη be the solution of

(4.17), (4.18) for η ∈]0, η0[. Let w∗ be the minimal solution of (2.18). Then wη(s) →
w∗(s) as η → 0+ for a.e. s > 0.

P r o o f. For η < η0 we define auxiliary functions

(4.23) ŵη(s) : =

{
wη(s), s ∈ [η, +∞[,

VQ, s ∈ [0, η[.

It suffices to assume Q < g(V ) (Q > g(V ) is analogous and Q = g(V ) is trivial). By
(4.22), the system {wη; η < η0} converges uniformly to the constant V on [β− δ,+∞[
as η → 0+. On [0, β], {ŵη; η > 0} is an equibounded system of continuous nonde-
creasing functions, and from Helly’s Selection Principle (Kolmogorov, Fomin (1970))
we deduce the existence of a nondecreasing function w : [0, β] → [VQ, V ] and of a
sequence ηk → 0+ as k →∞ such that

(4.24) ŵηk
(s) → w(s) ∀s ∈ [0, β] as k →∞.
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Let ϕ ∈ D(0,∞) be arbitrarily chosen. For k sufficiently large we have
∫ ∞

0

[(
sŵηk

(s)− gηk,K(ŵηk
(s))

)
ϕ′(s) + ŵηk

(s)ϕ(s)
]
ds =

= ηk

∫ ∞

0

ŵηk
(s)

(
ϕ′(s) + sϕ′′(s)

)
ds

and passing to the limit as k →∞ we obtain
∫ ∞

0

[(
sw(s)− g(w(s))

)
ϕ′(s) + w(s)ϕ(s)

]
ds = 0.

Consequently, w is a nondecreasing solution of (2.18) with w(s) = V for s > β and
w(0+) = V ∈ [VQ, V ].

For each η > 0 and s > η we have

(4.25) η2w′η(η) = ηsw′η(s) + swη(s)− ηVQ − gη,K(wη(s)) + gη,K(VQ)−
∫ s

η

wη(σ)dσ

and integrating the last identity
∫ β

η
ds we obtain

(β − η)η2w′η(η) = η
[
βV − ηVQ −

∫ β

η

wη(s)ds
]
+

+
∫ β

0

(
sŵη(s)− gη,K(ŵη(s)) + gη,K(VQ)−

∫ s

0

ŵη(σ)dσ
)
ds.

For η = ηk we pass to the limit as k →∞. This yields

β lim
k→∞

η2
kw′ηk

(ηk) =
∫ β

0

(
sw(s)− g(w(s)) + g(VQ)−

∫ s

0

w(σ)dσ
)
ds

=
∫ β

0

(
g(VQ)− g(V )

)
ds = β

(
g(VQ)− g(V )

)
6 0.

We conclude

(4.26) V = VQ, lim
k→∞

η2
kw′ηk

(ηk) = 0.

According to Lemma 3.5, we define the convex trajectory g∗ of the solution w by
the formula

g∗(u) : = Q +
∫ u

VQ

w−1(v)dv

analogous to (3.5). We are done if we prove

(4.27) g(u) > g∗(u) ∀u ∈ [VQ, V ].
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Indeed, then g∗ is the minimal trajectory from Q to V and by Lemma 3.6, w is
the minimal solution of (2.18). The limit function w is then independent of the choice
of the sequence {ηk}, so the assertion of Theorem 4.11 holds.

To prove (4.27), we choose an arbitrary u ∈]VQ, V [ and find s > 0 such that u ∈[
w(s−), w(s+)

]
. Following Lemma 3.5 we have g∗(w(s±)) = g(w(s±)), hence it remains

to consider the case

(4.28) w(s−) < u < w(s+).

Let {sk} be the sequence such that wηk
(sk) = u for all k ∈ N and let us assume

that a subsequence (denoted again by sk) converges to some s̄ 6= s. For s̄ > s and
σ ∈]s, s̄[ we have w(s+) 6 w(σ) = lim

k→∞
wηk

(σ) 6 u, which is a contradiction. The case

s̄ < s is analogous, so sk → s as k →∞.
Put ∆ := g(u)− g∗(u). Lemma 3.4 entails

∆ = g(u)− g(V0)− su +
∫ s

0

w(σ)dσ

= gηk,K

(
wηk

(sk)
)− gηk,K(V0)− skwηk

(sk) + ηkV0 +
∫ sk

ηk

wηk
(σ)dσ + Ik,

where

Ik : =
(
g(u)− gηk,K(u)

)− (
g(V0)− gηk,K(V0)

)
+

+ (sk − s)u +
∫ s

0

(
w(σ)− ŵηk

(σ)
)
dσ −

∫ sk

s

wηk
(σ)dσ.

We have lim
k→∞

Ik = 0 and identity (4.25) yields ∆ = ηkskw′ηk
(sk)− η2

kw′ηk
(ηk) + Ik.

From (4.26) we conclude

∆ = lim
k→∞

ηkskw′ηk
(sk) > 0

which is nothing but inequality (4.27). Theorem 4.11 is proved. ¤
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V. Appendix: Function spaces

The calculus of functions of one real variable with values in a Banach space has
originally been developed as an auxiliary tool for the semigroup theory, see for instance
Hille, Phillips (1957), Yosida (1965) or Brézis (1973). Special results that we need here
either do not exist at all or, as the opposite extreme, exist only in a form which is too
general for our purposes. This is also the case of embedding theorems for anisotropic
Sobolev spaces that we use in Chapter III for solving partial differential equations with
hysteresis.

About 20 pages are thus devoted here to a survey, where new results incorporated
into a simplified general theory constitute an exposition that the reader will hopefully
find elementary and consistent.

V.1 Integration of vector-valued functions

In this section we recall basic notions of the Bochner integral and of the theory of
functions of bounded variation that are directly needed in the preceding chapters. One
of the main goals is to give a self-contained proof of Theorem 1.15 on the relationship
between the strong and weak convergences of integrable functions which seems to be
new and plays a important role in the study of vector hysteresis operators in Sect. I.3.

For the reader’s convenience, we include those proofs which are simple enough and
do not require special knowledge of other branches of analysis.

Definition 1.1. Let X be a real Banach space endowed with norm | · |X and let

[a, b] ⊂ R1 be a compact interval. A function u : [a, b] → X is called

(i) simple, if there exists a partition [a, b] =
N⋃

k=1

Ek of the interval [a, b] into a finite

union of pairwise disjoint Lebesgue measurable sets {Ek; k = 1, . . . , N} and a sequence

{xk; k = 1, . . . , N} ⊂ X such that for almost all t ∈ [a, b] we have

(1.1) u(t) =
N∑

k=1

xk χEk
(t),

where χEk
is the characteristic function of the set Ek,

χEk
(t) =

{
0 if t /∈ Ek,

1 if t ∈ Ek;
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(ii) strongly measurable, if there exists a sequence {un; n ∈ N} of simple functions

such that lim
n→∞

|un(t)− u(t)|X = 0 for a.e. t ∈ [a, b].

It is easy to see that for a strongly measurable function u : [a, b] → X the scalar-
valued function t 7→ |u(t)|X is Lebesgue measurable.

In order to fix the terminology we first list basic properties of Lebesgue measurable
and integrable functions.

Theorem 1.2. (Egoroff) Let {fn; n ∈ N} : [a, b] → [0,∞[ be a sequence of Lebesgue

measurable functions. Then the following conditions are equivalent:

(i) lim
n→∞

fn(t) = 0 for almost all t ∈ [a, b];

(ii) for every δ > 0 there exists a measurable set Mδ ⊂ [a, b], meas(Mδ) < δ such that

lim
n→∞

sup{fn(t); t ∈ [a, b] \Mδ} = 0, where meas denotes the Lebesgue measure.

An elementary proof of Egoroff’s Theorem can be found in Yosida (1965). The
following two statements deal with Lebesgue integrable functions. Proposition 1.3 is a
straightforward consequence of the additivity of the Lebesque integral and Proposition
1.4 follows from Egoroff’s Theorem and Proposition 1.3.

Proposition 1.3. (Absolute continuity of the integral). For each Lebesgue integrable

function f : [a, b] → R1 we have

(1.2) ∀ε > 0 ∃δ > 0 ∀A ⊂ [a, b] : meas(A) < δ ⇒
∫

A

|f(t)|dt < ε.

Proposition 1.4. (Fatou’s Lemma). Let {fk; k ∈ N ∪ {0}} : [a, b] → [0,∞[ be

a sequence of integrable functions, f0(t) = lim
k→∞

fk(t) for a.e. t ∈ [a, b]. Then
∫ b

a
f0(t)dt 6 lim inf

k→∞
∫ b

a
fk(t)dt.

We shall study more in detail the relationship between the pointwise convergence
almost everywhere and convergence of integrals. Let us recall that a set S of integrable
functions f : [a, b] → R1 is called equiintegrable, if relation (1.2) holds for δ independent
of the choice f ∈ S.

Proposition 1.5. Let {fk; k ∈ N} be an equiintegrable sequence such that

lim
k→∞

fk(t) = 0 for a.e. t ∈ [a, b]. Then lim
k→∞

∫ b

a
fk(t)dt = 0.

We omit the proof which is very easy (one can use for instance Egoroff’s Theorem
and property (1.2)).
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Let us come back to vector-valued strongly measurable functions. We first show some
kind of countable structure in the convergence almost everywhere.

Proposition 1.6. (Diagonalization Principle). Let {un; n ∈ N} and {vk
n; k, n ∈ N}

be two sequences of strongly measurable functions [a, b] → X and let u : [a, b] → X be

a function such that

lim
n→∞

|un(t)− u(t)|X = 0, a.e.,

lim
k→∞

|vk
n(t)− un(t)|X = 0 a.e. ∀n ∈ N.

Then there exists a sequence {kn; n ∈ N} ⊂ N such that lim
n→∞

|vkn
n (t)−u(t)|X = 0 a.e..

One immediately realizes that the statement is false if the convergence almost every-
where is replaced with convergence at each point t ∈ [a, b]; it suffices to choose u in
the second Baire’s class and vk

n continuous.

P r o o f of Proposition 1.6. By Egoroff’s Theorem, for each n ∈ N there exists a set
Mn ⊂ [a, b], meas(Mn) < 2−n and a number kn ∈ N such that for every j > kn and

t ∈ [a, b]\Mn we have |vj
n(t)−un(t)|X < 1

n . Put M : =
∞⋂

l=1

∞⋃
n=l

Mn. Then meas(M) = 0

and for each t ∈ [a, b]\M we have for n sufficiently large |vkn
n (t)−u(t)|X 6 1

n +|un(t)−
u(t)|X and the assertion follows. ¤

We leave to the reader the detailed proof of the next three consequences of Egoroff’s
Theorem and of the Diagonalization Principle.

Corollary 1.7. Let {un; n ∈ N} : [a, b] → X be a sequence of strongly measurable

functions such that lim
n→∞

|un(t) − u(t)|X = 0 a.e. Then u : [a, b] → X is strongly

measurable.

Corollary 1.8. A function u : [a, b] → X is strongly measurable if and only if

there exists a sequence {un; n ∈ N} of continuous functions [a, b] → X such that

lim
n→∞

|un(t)− u(t)|X = 0 a.e.

Corollary 1.9. (Lusin’s Theorem). A function u : [a, b] → X is strongly measurable

if and only if for every δ > 0 there exist a closed set Fδ ⊂ [a, b] and a continuous
function w : [a, b] → X such that meas([a, b] \ Fδ) < δ, u(t) = w(t) for all t ∈ Fδ and

sup
[a,b]

|w(t)|X 6 sup
[a,b]

|u(t)|X .
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Bochner integral

We now introduce the Bochner integral in a standard way following Yosida (1965)
and Hille, Phillips (1957).

Definition 1.10. For a simple function u : [a, b] → X of the form (1.1) we define

its Bochner integral over a measurable set A ⊂ [a, b] by the formula.

(1.3)
∫

A

u(t)dt : =
N∑

k=1

xk meas(Ek ∩A) ∈ X.

An arbitrary function u : [a, b] → X is said to be Bochner integrable in [a, b] if there

exists a sequence {un;n ∈ N} of simple functions [a, b] → X such that lim
n→∞

∫ b

a
|un(t)−

u(t)|Xdt = 0 and we define its Bochner integral over a measurable set A ⊂ [a, b] as

(1.4)
∫

A

u(t)dt : = lim
n→∞

∫

A

un(t)dt ∈ X.

Notice that the sequence xn : =
∫

A
un(t)dt in Definition 1.10 is fundamental in X

and its limit (1.4) is independent of the choice of the sequence {un}. The definition
immediately implies

(1.5)
∣∣∣∣
∫

A

u(t)dt

∣∣∣∣
X

6
∫

A

|u(t)|Xdt < ∞

for each Bochner integrable function u and measurable set A ⊂ [a, b].
Bochner’s Theorem 1.11 below gives an elegant characterization of Bochner integrable

functions.

Theorem 1.11. (Bochner’s Theorem). A function u : [a, b] → X is Bochner inte-

grable if and only if it is strongly measurable and
∫ b

a
|u(t)|Xdt < ∞.

We show here a simple proof which is based on the following Lemma.

Lemma 1.12. Let {un; n ∈ N} be a sequence of Bochner integrable functions

[a, b] → X such that

∀ε > 0 ∃nε ∈ N ∀m, ` > nε :
∫ b

a

|um(t)− u`(t)|Xdt < ε.

Then there exists a strongly measurable function u : [a, b] → X and a subsequence

{unk
} ⊂ {un} such that

(1.6) lim
k→∞

|unk
(t)− u(t)|X = 0 for a.e. t ∈ [a, b].
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P r o o f of Lemma 1.12. We choose nk in such a way that the implication m, ` >
nk ⇒

∫ b

a
|um(t)−u`(t)|Xdt < 2−2k holds. Put Mk : = {t ∈ [a, b]; |unk

(t)−unk+1(t)|X >
2−k}, M : =

∞⋂
`=1

∞⋃
k=`

Mk. Then meas(Mk) < 2−k, hence meas(M) = 0 and for each

t ∈ [a, b] \M the limit u(t) : = lim
k→∞

unk
(t) exists.

To prove that u is strongly measurable it suffices to prove that every Bochner inte-
grable function v : [a, b] → X is strongly measurable. So, let {wn} be a sequence of
simple functions such that lim

n→∞
∫ b

a
|wn(t) − v(t)|Xdt = 0. The above argument shows

that there exists a function w : [a, b] → X and a subsequence {wnk
} ⊂ {wn} such that

lim
k→∞

|wnk
(t) − w(t)|X = 0 a.e. The function w is strongly measurable by definition

and from Egoroff’s Theorem we conclude that v(t) = w(t) a.e. ¤

P r o o f of Theorem 1.11. The “only if” part follows from Lemma 1.12 and inequality
(1.5). To prove the converse we choose an arbitrary strongly measurable function u :
[a, b] → X with

∫ b

a
|u(t)|Xdt < ∞ and an arbitrary sequence {wk} of simple functions

such that lim
k→∞

|wk(t)−u(t)|X = 0 a.e. For every n ∈ N we apply Egoroff’s theorem to

find a set Mn ⊂ [a, b], meas(Mn) < 1
n and an index kn such that |wkn(t)−u(t)|X < 1

n

for all t ∈ [a, b] \Mn. Putting

ŵn(t) : =

{
wkn(t) for t ∈ [a, b] \Mn

0 for t ∈ Mn

we obtain
∫ b

a
|ŵn(t)−u(t)|Xdt 6 b−a

n +
∫

Mn
|u(t)|Xdt and it suffices to use Proposition

1.3. ¤

We define in a standard way in the class of strongly measurable functions an equiva-
lence relation u ∼ v ⇔ u(t) = v(t) a.e. Identifying in an obvious sense functions with
their equivalence classes we can define the normed linear spaces

(1.7) (i) L1(a, b; X) of Bochner integrable functions u : [a, b] → X endowed with norm
|u|1 : =

∫ b

a
|u(t)|Xdt,

(ii) Lp(a, b; X) for 1 < p < ∞ of functions u ∈ L1(a, b; X) such that |u|p : =(∫ b

a
|u(t)|pXdt

)1/p

< ∞, endowed with norm | · |p,
(iii) L∞(a, b; X) of a.e. bounded strongly measurable functions u : [a, b] →

X endowed with norm |u|∞ : = inf{sup{|u(t)|X ; t ∈ [a, b] \ M}; M ⊂
[a, b],meas(M) = 0},

(iv) C([a, b];X) of continuous functions u : [a, b] → X endowed with norm | · |∞.

The fact that | · |p is a norm is well known (Adams (1975)). It is not difficult to
infer from Lemma 1.12 and Propositions 1.4, 1.5 that Lp(a, b,X) are Banach spaces
for p ∈ [1,∞[. The completeness of L∞(a, b; X) and C([a, b];X) is obvious, indeed.
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Let us mention the following classical results.

Proposition 1.13. (Lebesgue Dominated Convergence Theorem). Let {vn; n ∈
N ∪ {0}} ⊂ Lp(a, b; X), {gn; n ∈ N ∪ {0}} ⊂ Lp(a, b;R1) be given sequences for some

p ∈ [1,∞[. Let us assume

(i) lim
n→∞

∫ b

a
|gn(t)− g0(t)|pdt = 0,

(ii) lim
n→∞

|vn(t)− v0(t)|X = 0 a.e.,

(iii) |vn(t)|X 6 gn(t) a.e. for all n ∈ N ∪ {0}.

Then lim
n→∞

|vn − v0|p = 0.

P r o o f. Put fn(t) = |vn(t) − v0(t)|pX for all t ∈ [a, b]. We have 0 6 |fn(t)| 6
(gn(t) + g0(t))p 6 2p−1

(|gn(t) − g0(t)|p + 2p|g0(t)|p
)
, hence {fn} is an equiintegrable

sequence and we use Proposition 1.5. ¤

Proposition 1.14. (Mean Continuity Theorem). For every p ∈ [1,∞[ and u ∈
Lp(a, b; X) we have

(1.8) lim
δ→0+

∫ b−δ

a

∣∣u(t)− u(t + δ)
∣∣p
X

dt = 0.

P r o o f. Let ε > 0 be given. For n ∈ N put En : = {t ∈ [a, b]; |u(t)|X > n}. We
find η > 0 such that

∫
A
|u(t)|pX < εp for each set A ⊂ [a, b] with meas(A) < η, and

n0 ∈ N such that meas(En0) < η. Put u0(t) := u(t)(1− χEn0
(t)) for t ∈ [a, b]. Then

|u0|∞ 6 n0 and by Lusin’s Theorem (Corollary 1.9) there exists a set M , meas(M) <(
ε

n0

)p

and a function v ∈ C([a, b];X) such that |v|∞ 6 n0 and v(t) = u0(t) for all
t ∈ [a, b] \M .

We fix δ0 > 0 such that sup{|v(t) − v(s)|pX ; t, s ∈ [a, b], |t − s| < δ0} < εp

b−a . The
triangle inequality in Lp for δ ∈]0, δ0[ then yields

( ∫ b−δ

a

|u0(t)− u0(t + δ)|pXdt
)1/p

6
(∫ b−δ

a

|v(t)− v(t + δ)|pXdt
)1/p

+

+ 2
( ∫

M

|u0(t)− v(t)|pXdt
)1/p

6 ε + 4ε,

therefore ( ∫ b−δ

a

|u(t)− u(t + δ)|pXdt
)1/p

< 7ε for δ < δ0,

and (1.8) is proved. ¤
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We now state the main result of this section.

Theorem 1.15. Let X be a Hilbert space endowed with a scalar product
〈·, ·〉. Let

{vn; n ∈ N ∪ {0}} ⊂ L1(a, b;X), {gn;n ∈ N ∪ {0}} ⊂ L1(a, b;R1) be given sequences

such that

(i) lim
n→∞

∫ b

a

〈
vn(t), ϕ(t)

〉
dt =

∫ b

a

〈
v0(t), ϕ(t)

〉
dt ∀ϕ ∈ C([a, b]; X),

(ii) lim
n→∞

∫ b

a
|gn(t)− g0(t)|dt = 0,

(iii) |vn(t)|X 6 gn(t) a.e. ∀n ∈ N,

(iv) |v0(t)|X = g0(t) a.e.

Then lim
n→∞

|vn − v0|1 = 0.

Notice that Theorem 1.15 does not follow from Proposition 1.13, since we do not
assume the pointwise convergence here.

P r o o f of Theorem 1.15. We first prove that property (i) is satisfied for every
ϕ ∈ L∞(a, b;X). For a fixed ϕ ∈ L∞(a, b; X) and δ > 0 we use Lusin’s Theorem to
find a function ψ ∈ C([a, b];X) and a set Mδ ⊂ [a, b] such that meas(Mδ) < δ and
ψ(t) = ϕ(t) for all t ∈ [a, b] \Mδ, |ψ|∞ 6 |ϕ|∞. We then have

∣∣∣
∫ b

a

〈
vn(t)− v0(t), ϕ(t)

〉
dt

∣∣∣ 6
∣∣∣
∫ b

a

〈
vn(t)− v0(t), ψ(t)

〉∣∣∣+

+ 2‖ϕ‖∞
( ∫ b

a

|gn(t)− g0(t)|dt + 2
∫

Mδ

g0(t)dt
)
,

and Proposition 1.3 entails

(1.9) lim
n→∞

∫ b

a

〈
vn(t), ϕ(t)

〉
dt =

∫ b

a

〈
v0(t), ϕ(t)

〉
dt ∀ϕ ∈ L∞(a, b; X).

Let us note that the transition from (i) to (1.9) is related to the Dunford-Pettis
Theorem, see Edwards (1965). To prove Theorem 1.15 we put for t ∈ [a, b]

ϕ(t) :=

{
0 if v0(t) = 0,
v0(t)
g0(t)

if v0(t) 6= 0.

Then ϕ ∈ L∞(a, b; X) and the inequality

|vn(t)− v0(t)|2X 6 g2
n(t)− 2

〈
vn(t), v0(t)

〉
+ g2

0(t) =

= |gn(t)− g0(t)|2 + 2g0(t)
[
gn(t)− g0(t) +

〈
v0(t), ϕ(t)

〉− 〈
vn(t), ϕ(t)

〉]
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holds for a.e. t ∈ [a, b]. By Hölder’s inequality we have

∫ b

a

|vn(t)− v0(t)|Xdt 6
∫ b

a

|gn(t)− g0(t)| dt+

+
( ∫ b

a

2g0(t)dt
)1/2(∫ b

a

[
gn(t)− g0(t) +

〈
v0(t), ϕ(t)

〉− 〈
vn(t), ϕ(t)

〉]
dt

)1/2

and the assertion follows from (1.9). ¤

Functions of bounded variation

Definition 1.16. A partition S : = {{t0, . . . , tN}; a = t0 < t1 < . . . < tN =
b} of the interval [a, b] is said to be δ-fine for δ > 0, if max{|ti − ti−1|; i =
1, . . . , N} 6 δ. We denote by ∆δ(a, b) the set of δ-fine partitions of the interval [a, b],
∆0(a, b) :=

⋃
δ>0

∆δ(a, b).

Definition 1.17. Let S = {t0, . . . , tN} ∈ ∆0(a, b) and a function u : [a, b] → X be

given. We define the S-variation VS(u) of u and the total variation Var
[a,b]

u of u in

[a, b] by the formulae

V
S
(u) :=

N∑

i=1

|u(ti)− u(ti−1)|X ,

Var
[a,b]

u : = sup{V
S
(u); S ∈ ∆0(a, b)}.

We denote by BV (a, b; X) := {u : [a, b] → X; Var
[a,b]

u < ∞} the set of all functions of

bounded total variation.

The definition entails that every function u ∈ BV (a, b;X) is bounded, the one-
sided limits u(t+) (u(t−)) exist for all t ∈ [a, b[ (t ∈]a, b], respectively) and the set{
t ∈ [a, b]; u(t+) 6= u(t) or u(t−) 6= u(t)

}
of discontinuity points is at most countable.

An important example of functions of bounded variation are the step functions

(1.10) ξ(t) :=
N∑

j=1

xjχ]tj−1,tj [(t) +
N∑

j=0

yjχ{tj}(t)

as a special case of (1.1), where S : = {t0, . . . , tN} ⊂ ∆0(a, b) is a given partition and
{xj}, {yj} ⊂ X are given sequences.
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The following statement shows that functions of bounded variation are strongly mea-
surable and that BV (a, b; X) endowed with the norm

(1.11) |u|BV : = sup{|u(t)|X ; t ∈ [a, b]}+ Var
[a,b]

u

is a Banach space.

Proposition 1.18.
(i) For every u ∈ BV (a, b; X) there exists a sequence {ξn; n ∈ N} of step functions

such that lim
n→∞

sup
[a,b]

|u(t)− ξn(t)|X = 0, Var
[a,b]

ξn 6 Var
[a,b]

u.

(ii) Let {un; n ∈ N} ⊂ BV (a, b; X) be a sequence and let u : [a, b] → X be a function

such that lim
n→∞

|un(t)− u(t)|X = 0 for all t ∈ [a, b]. Then Var
[a,b]

u 6 lim inf
n→∞

Var
[a,b]

un.

P r o o f. (i) The function V (t) := Var
[a,t]

u is nondecreasing in [a, b]. For n ∈ N put

N(n) := max(N ∩ [0, nV (b)]) and tnj := sup{t ∈ [a, b]; V (t) 6 j
n} for j = 1, . . . , N(n),

tnN(n)+1 := b, tn0 := a. The assertion holds for ξn(tnj ) := u(tnj ), ξn(t) := u
(

1
2 (tnj + tnj+1)

)

for t ∈]tnj , tnj+1[, j = 0, . . . , N(n), ξn(b) := u(b), with the convention ]tnj , tnj+1[= ∅ if
tnj = tnj+1.

Part (ii) follows immediately from Definition 1.17. ¤

As a consequence of Proposition 1.18 we see that step functions form a dense subset of
BV (a, b;X) with respect to the so-called strict metric defined by the formula ds(u, v) =
sup{|u(t)− v(t)|X ; t ∈ [a, b]}+ |Var

[a,b]
u−Var

[a,b]
v|.

Let us pass to another important concept.

Definition 1.19. A function u : [a, b] → X is called absolutely continuous, if for

every ε > 0 there exists δ > 0 such that the implication

n∑

k=1

(bk − ak) < δ ⇒
n∑

k=1

∣∣u(bk)− u(ak)
∣∣
X

< ε

holds for every sequence of intervals ]ak, bk[⊂ [a, b] such that ]ak, bk[∩]aj , bj [= ∅ for

k 6= j.

Exercise 1.20. Prove the implication: u is absolutely continuous in [a, b] ⇒ u ∈
C([a, b];X) ∩BV (a, b; X).

The following result is taken from Brézis (1973) (Proposition A.2). We cite it without
proof.
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Proposition 1.21. Let u be absolutely continuous and put V (t) : = Var
[a,t]

u for t ∈
[a, b]. Then V : [a, b] → [0,∞[ is nondecreasing, absolutely continuous and

(1.12) V̇ (t) = lim
h→0

∣∣ 1
h

(u(t + h)− u(t))
∣∣
X

for a.e. t ∈ ]a, b[.

In general, the problem of differentiability of absolutely continuous vector-valued
functions is nontrivial (see Brézis (1973)). For our purposes it is sufficient to consider
a simpler case, namely

(1.13) X is a separable Hilbert space.

Proposition 1.22. Let (1.13) hold. Then for every absolutely continuous function

u : [a, b] → X there exists an element u̇ ∈ L1(a, b;X) such that

(i) u̇(t) = lim
h→0

1
h (u(t + h)− u(t)) a.e.,

(ii) u(t)− u(s) =
∫ t

s
u̇(τ)dτ for all a 6 s < t 6 b.

P r o o f. Let
〈·, ·〉 be a scalar product in X, let {ek; k ∈ N} be an orthonormal

basis in X and let u : [a, b] → X be an absolutely continuous function. Then the
real-valued functions vk(t) : =

〈
u(t), ek

〉
are absolutely continuous. There exists a set

M ⊂ [a, b] of measure zero such that for all t ∈]a, b[\M identity (1.12) holds and the
derivative v̇k(t) = dvk

dt (t) exists for all k ∈ N.
Let Xf ⊂ X be the space of finite linear combinations x =

∑N
k=1 akek, {a1, . . . , aN}

⊂ R1. For each t ∈]a, b[\M we define a linear functional Φt : Xf → R1 by the formula

Φt(x) : =
N∑

k=1

akv̇k(t) = lim
h→0

〈
x,

1
h

(u(t + h)− u(t))
〉

for x ∈ Xf ,

and (1.12) entails

(1.14) |Φt(x)| 6 |x|X V̇ (t)

for all x ∈ Xf and t ∈]a, b[\M .
From the density of Xf in X we infer that the closure of Φt (still denoted by Φt)

is a bounded linear functional on X and can be represented by an element u̇(t) ∈ X

in the form

(1.15) Φt(x) =
〈
x, u̇(t)

〉 ∀x ∈ X, ∀t ∈]a, b[\M.

We have in particular v̇k(t) =
〈
ek, u̇(t)

〉
for all t and k and

(1.16)
1
h

(u(t + h)− u(t)) → u̇(t) weakly in X as h → 0.
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From (1.12), (1.16) we obtain

(1.17) |u̇(t)|X 6 V̇ (t) ∀t ∈]a, b[\M.

On the other hand, putting u(N)(t) : =
∑N

k=1 vk(t)ek we have for all t ∈]a, b[\M

lim
N→∞

∣∣u̇(N)(t)− u̇(t)
∣∣
X

= 0,

lim
h→0

∣∣u̇(N)(t)− 1
h

(u(N)(t + h)− u(N)(t)
∣∣
X

= 0, ∀N ∈ N,

and the Diagonalization Principle (Proposition 1.6) entails that u̇ : [a, b] → X is
strongly measurable. Using Bochner’s Theorem and inequality (1.17) we check that
u̇ ∈ L1(a, b; X).

For t ∈ [a, b] put v(t) := u(a) +
∫ t

a
u̇(τ)dτ . We have

〈
x, v(t)

〉
=

〈
x, u(t)

〉
for all

x ∈ Xf and t ∈ [a, b], hence (ii) holds. This implies in particular V (t) − V (s) 6∫ t

s
|u̇(τ)|Xdτ , consequently V̇ (t) 6 |u̇(t)|X a.e. It follows from (1.17), (1.12) that the

convergence in (1.16) is strong and Proposition 1.22 is proved. ¤

Similarly as in the scalar-valued case we denote by W 1,1(a, b; X) the space of abso-
lutely continuous functions with values in a Hilbert space X and by W 1,p(a, b; X) for
p ∈]1,∞] the space of all functions u ∈ W 1,1(a, b; X) such that u̇ ∈ Lp(a, b;X). The
spaces W 1,p are Banach spaces endowed with the norm |u|1,p : = |u|p + |u̇|p.

Stieltjes integral

Let X be a separable Hilbert space with a scalar product
〈·, ·〉. For arbitrary

functions u ∈ C([a, b]; X) and ξ ∈ BV (a, b; X) and for an arbitrary partition S =
{t0, . . . , tN} ∈ ∆δ(a, b) we define the Riemann-Stieltjes sum

(1.18) IS(u, ξ) :=
N∑

k=1

〈
u(tk), ξ(tk)− ξ(tk−1)

〉

with the intention to pass to the limit as δ → 0.

We denote by µu(δ) the modulus of continuity of a function u ∈ C([a, b];X), i.e.

(1.19) µu(δ) : = sup{|u(t)− u(s)|X ; |t− s| 6 δ}.

Lemma 1.23. Let u ∈ C([a, b]; X) and ξ ∈ BV (a, b; X) be given. Then for every

ε > 0 there exists δ > 0 such that for arbitrary partitions S, S′ ∈ ∆δ(a, b) we have

|IS(u, ξ)− IS′(u, ξ)| < ε.
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P r o o f. Let ε > 0 be given. We find δ > 0 such that µu(δ)Var
[a,b]

ξ < ε. For S, S′ ∈
∆δ(a, b), S = {t0, . . . , tN}, S′ = {s0, . . . , sK} we define Ŝ : = S ∪ S′ = {τ0, . . . τL} ∈
∆δ(a, b). For each k = 0, . . . , L there exist jk ∈ {1, . . . , N}, ik ∈ {1, . . . ,K} such that
τk ∈]tjk−1 , tjk

]∩]sik−1 , sik
] and we have

|IS(u, ξ)− IS′(u, ξ)| =
∣∣∣

L∑

k=1

〈
u(tjk

)− u(sik
), ξ(τk)− ξ(τk−1)

〉∣∣∣ 6 µu(δ)Var
[a,b]

ξ < ε.

Lemma 1.23 is proved. ¤

Lemma 1.23 shows that the limit lim
δ→0+

IS(u, ξ) exists and is independent of the

choice of S ∈ ∆δ(a, b). This limit is called the Riemann-Stieltjes integral and denoted
by

∫ b

a

〈
u(t), dξ(t)

〉
.

It is easy to see that the Riemann-Stieltjes integral is linear with respect to both u

and ξ and that the estimate

(1.20)
∣∣∣
∫ b

a

〈
u(t), dξ(t)

〉∣∣∣ 6 |u|∞Var
[a,b]

ξ

holds for all u ∈ C([a, b];X) and ξ ∈ BV (a, b; X).

Exercise 1.24. Prove that for every u ∈ C([a, b];X) ∩BV (a, b; X) we have

(1.21)
∫ b

a

〈
u(t), du(t)

〉
=

1
2
(|u(b)|2X − |u(a)|2X)!

H i n t. Use the identity
〈
u(tk), u(tk)−u(tk−1)

〉
= 1

2 (|u(tk)−u(tk−1)|2X + |u(tk)|2X −
|u(tk−1)|2X).

An immediate consequence of identity (1.21) is the integration-by-parts formula

(1.22)
∫ b

a

〈
u(t), dξ(t)

〉
+

∫ b

a

〈
ξ(t), du(t)

〉
=

〈
u(b), ξ(b)

〉− 〈
u(a), ξ(a)

〉

for every u, ξ ∈ C([a, b];X) ∩BV (a, b; X).

The relation between Riemann-Stieltjes and Lebesgue integrals can be expressed in
the following way.

Lemma 1.25. For all u ∈ C([a, b]; X) and ξ ∈ W 1,1(a, b; X) we have

(1.23)
∫ b

a

〈
u(t), dξ(t)

〉
=

∫ b

a

〈
u(t), ξ̇(t)

〉
dt.
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P r o o f. For an arbitrary partition S = {t0, . . . , tN} ∈ ∆δ(a, b) we have by
Proposition 1.22(ii)

∣∣ ∫ b

a

〈
u(t), ξ̇(t)

〉
dt−IS(u, ξ)

∣∣ =
∣∣ ∑N

k=1

∫ tk

tk−1

〈
u(t)−u(tk), ξ̇(t)

〉
dt

∣∣ 6
µu(δ)

∫ b

a
|ξ̇(t)|Xdt, so (1.23) holds. ¤

We can derive useful integration formulas in the case that ξ is a step function of the
form (1.10). For an arbitrary u ∈ C([a, b];X) we then have

(1.24)
∫ b

a

〈
u(t), dξ(t)

〉
=

N−1∑

j=1

〈
u(tj), xj+1 − xj

〉
+

〈
u(a), x1 − y0

〉
+

〈
u(b), yN − xN

〉
.

If moreover u ∈ W 1,1(a, b;X), then

(1.25)
∫ b

a

〈
u(t), dξ(t)

〉
=

〈
u(b), yN

〉− 〈
u(a), y0

〉−
∫ b

a

〈
ξ(t), u̇(t)

〉
dt.

Notice that the integrals (1.24), (1.25) are independent of the values of y1, . . . , yN−1!

The Riemann-Stieltjes integral depends continuously on the functions u and ξ in
the following sense.

Theorem 1.26. Let {un;n ∈ N} ⊂ C([a, b]; X), {ξn; n ∈ N} ⊂ BV (a, b;X) be given

sequences and u, ξ : [a, b] → X be given functions such that

(i) lim
n→∞

|un − u|∞ = 0,

(ii) lim
n→∞

|ξn(t)− ξ(t)|X = 0 for all t ∈ [a, b],

(iii) Var
[a,b]

ξn(t) 6 c, where c > 0 is a constant independent of n.

Then lim
n→∞

∫ b

a

〈
un(t), dξn(t)

〉
=

∫ b

a

〈
u(t), dξ(t)

〉
.

Notice that the integral
∫ b

a

〈
u(t), dξ(t)

〉
is meaningful by Proposition 1.18. The proof

of Theorem 1.26 relies on three Lemmas.

Lemma 1.27. For every u ∈ W 1,1(a, b; X) and every sequence {ξn; n ∈ N} of step

functions such that |ξn|∞ 6 c and lim
n→∞

ξn(t) = 0 for all t ∈ [a, b] we have

(1.26) lim
n→∞

∫ b

a

〈
u(t), dξn(t)

〉
= 0.

P r o o f. It suffices to use formula (1.25) and Proposition 1.13 for X = R1 and
p = 1. ¤
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Lemma 1.28. For every u ∈ W 1,1(a, b; X) and every sequence {ξn; n ∈ N} ⊂
BV (a, b;X) such that |ξn|∞ 6 c and lim

n→∞
ξn(t) = 0 for all t ∈ [a, b] identity (1.26)

holds.

P r o o f. For every n ∈ N we find a step function ξ̂n such that |ξn − ξ̂n|∞ < 1
n .

For every partition S = {t0, . . . , tN} ⊂ ∆δ(a, b) we have

N∑

k=1

〈
u(tk), ξn(tk)− ξn(tk−1)

〉
=

N∑

k=1

〈
u(tk), ξ̂n(tk)− ξ̂n(tk−1)

〉
+

〈
u(b), ξn(b)− ξ̂n(b)

〉−

− 〈
u(a), ξn(a)− ξ̂n(a)

〉−
N−1∑

k=0

〈
u(tk+1)− u(tk), ξn(tk)− ξ̂n(tk)

〉
.

Passing to the limit as δ → 0+ we obtain

∣∣∣
∫ b

a

〈
u(t), dξn(t)

〉∣∣∣ 6
∣∣∣
∫ b

a

〈
u(t), dξ̂n(t)

〉∣∣∣ +
1
n

(2|u|∞ + |u̇|1)

and the assertion follows from Lemma 1.27. ¤

Lemma 1.29. For every u ∈ C([a, b]; X) and every sequence {ξn; n ∈ N} ⊂
BV (a, b;X) such that Var

[a,b]
ξn 6 c and lim

n→∞
ξn(t) = 0 for all t ∈ [a, b] identity (1.26)

holds.

P r o o f. Let ε > 0 be given. We choose û ∈ W 1,1(a, b; X) such that |u− û|∞ < ε
2c

(for instance û piecewise linear). By Lemma 1.28 there exists n0 such that for n > n0

we have
∫ b

a

〈
û(t), dξn(t)

〉
< ε

2 . From inequality (1.20) we obtain

∣∣∣
∫ b

a

〈
u(t), dξn(t)

〉∣∣∣ 6
∣∣∣
∫ b

a

〈
u(t)− û(t), dξn(t)

〉∣∣∣ +
∣∣∣
∫ b

a

〈
û(t), dξn(t)

〉∣∣∣ < ε,

hence (1.26) holds. ¤

We now can finish the proof of Theorem 1.26.

P r o o f of Theorem 1.26. Using the inequality

∣∣∣
∫ b

a

〈
un(t), dξn(t)

〉−
∫ b

a

〈
u(t), dξ(t)

〉∣∣∣ 6

6
∣∣∣
∫ b

a

〈
un(t)− u(t), dξn(t)

〉∣∣∣ +
∣∣∣
∫ b

a

〈
u(t), d(ξn − ξ)(t)

〉∣∣∣

we obtain the assertion from inequality (1.20) and Lemma 1.29. ¤
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To conclude this section, we prove another important theorem.

Theorem 1.30. For every ξ ∈ C([a, b];X) ∩BV (a, b; X) put

M(ξ) := sup
{ ∫ b

a

〈
u(t), dξ(t)

〉
; u ∈ C([a, b];X), |u|∞ 6 1

}
.

Then M(ξ) = Var
[a,b]

ξ.

Indeed, Theorem 1.30 does not hold for arbitrary ξ ∈ BV (a, b;X). Easy counterex-
amples can be found in the class of step functions according to formula (1.24).

P r o o f of Theorem 1.30. Let a = t0 < t1 < . . . < tN = b be an arbitrary partition.
For k = 1, . . . , N put

vk : =

{
0 if ξ(tk) = ξ(tk−1),

ξ(tk)−ξ(tk−1)
|ξ(tk)−ξ(tk−1)|X if ξ(tk) 6= ξ(tk−1).

For 0 < ε < 1
2 min{tk − tk−1; k = 1, . . . , N} we define a function u ∈ C([a, b];X) by

the formula

u(t) :=





v1 , t ∈ [a, t1 − ε[,

vN , t ∈ ]tN−1 + ε, b],

vk , t ∈ ]tk−1 + ε, tk − ε[, k = 2, . . . , N − 1,

linear in [tk − ε, tk + ε], k = 1, . . . , N − 1.

Using formulas (1.22), (1.23) we obtain
∫ b

a

〈
u(t), dξ(t)

〉
=

N∑

k=1

∣∣ξ(tk)− ξ(tk−1)
∣∣
X

+(1.27)

+
1
2ε

N−1∑

k=1

∫ tk+ε

tk−ε

〈
vk+1 − vk, ξ(tk)− ξ(t)

〉
dt.

We obviously have |u|∞ 6 1, hence (1.27) yields

N∑

k=1

∣∣ξ(tk)− ξ(tk−1)
∣∣
X

6 M(ξ) + µξ(ε)
N−1∑

k=1

∣∣vk+1 − vk

∣∣
X

,

where µξ is the modulus of continuity (1.19). Letting ε → 0+ we obtain
∑N

k=1 |ξ(tk)−
ξ(tk−1)|X 6 M(ξ), hence Var

[a,b]
ξ 6 M(ξ). From (1.20) it follows M(ξ) 6 Var

[a,b]
ξ and the

proof is complete. ¤

Remark 1.31. Theorem 1.26 and Proposition 1.18(i) immediately imply that for-
mula (1.25) holds for arbitrary ξ ∈ BV (a, b; X) and u ∈ W 1,1(a, b; X) with ξ(a) =
y0, ξ(b) = yN .
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V.2 Embedding theorems

Classical monographs Adams (1975), Kufner, John, Fuč́ık (1977), Besov, Il’in,
Nikol’skii (1975) on Sobolev spaces and their embeddings deal mainly with isotropic
spaces, where the derivatives with respect to different variables belong to the same
Lp-space. The anisotropy in Besov, Il’in, Nikol’skii (1975) concerns merely the Lp-
space itself. However, hysteresis operators which occur in partial differential equations
produce in a natural way functions which behave differently with respect to the time
and space variables. For the readers’s convenience we prove by classical methods of
Adams (1975) or Kufner, John, Fuč́ık (1977) the simple Theorem 2.4 below which
is extensively used in Chap. III and does not immediately follow from well-known
embedding formulas.

Let us first recall the following classical result the proof of which is elementary and
can be found e.g. in Yosida (1965).

Theorem 2.1 (Arzelà - Ascoli). Let X, Y be compact metric spaces endowed with

metrics dX , dY , respectively. Let C(X;Y ) be the space of continuous functions f :
X → Y endowed with the metric dc(f1, f2) : = max{dY

(
f1(x), f2(x)

)
; x ∈ X}. Then

a subset A ⊂ C(X, Y ) is relatively compact if and only if it is equicontinuous, i.e.

(2.1) ∀ε > 0 ∃δ > 0 ∀f ∈ A ∀x1, x2 ∈ X : dX(x1, x2) < δ ⇒ dY

(
f(x1), f(x2)

)
< ε.

Definition 2.2. Let X, Y be Banach spaces endowed with norms | · |X , | · |Y , re-

spectively. We say that

(i) Y is embedded in X and denote Y ↪→ X if Y ⊂ X and

(2.2) ∃c > 0 ∀y ∈ Y : |y|X 6 c|y|Y ;

(ii) Y is compactly embedded in X and denote Y ↪→↪→ X if Y ↪→ X and every

bounded set in Y is relatively compact in X.

For the sake of completeness we mention Sobolev Embedding Theorems for isotropic
spaces in the following classical form (see any of the monographs cited above).

Theorem 2.3. Let Ω ⊂ RN be a bounded open domain with a Lipschitzian bound-

ary. Then for N = 1 we have

(i) W 1,p(Ω) ↪→ ↪→C(Ω) for 1 < p 6 ∞,(2.3)

(ii) W 1,1(Ω) ↪→C(Ω), W 1,1(Ω) ↪→ ↪→Lq(Ω) for 1 6 q < ∞.
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For N > 1 and 1 6 p 6 ∞ put s : = 1
p − 1

N with the convention 1
∞ = 0. Then

(i) s < 0 ⇒ W 1,p(Ω) ↪→ ↪→C(Ω),(2.4)

(ii) s = 0 ⇒ W 1,p(Ω) ↪→ ↪→Lq(Ω) for 1 6 q < ∞,

(iii) s > 0 ⇒ W 1,p(Ω) ↪→L1/s(Ω),W 1,p((Ω) ↪→ ↪→Lq(Ω) for 1 6 q <
1
s
.

In Chap. III we deal with anisotropic function spaces of the type Lp
(
0, T ; Lq(Ω)

)
,

Lq
(
Ω; Lp(0, T )

)
, Lq

(
Ω; C([0, T ])

)
for 1 6 p, q 6 ∞, where Ω ⊂ RN is a regular open

bounded set and ]0, T [ is a time interval. According to the general theory of Besov,
Il’in, Nikol’skii (1975), these spaces are Banach spaces endowed with norms of the form
(1.7). Another kind of anisotropy is related to functions u ∈ L1(Ω×]0, T [) whose gen-
eralized partial derivatives ∂0u : = ∂u

∂t , ∂iu : = ∂u
∂xi

, i = 1, . . . , N belong to the spaces
Lpi

(
0, T ; Lqi(Ω)

)
with 1 6 pi, qi 6 ∞, i = 0, . . . , N endowed with norms | · |(pi,qi)

given by (1.7). We denote such a space by W 1,p(0, T ; Ω), where p is the multiindex
{(p0, q0), . . . , (pN , qN )} and easily check that it is reflexive if 1 < pi < ∞, 1 < qi < ∞
for all i = 0, . . . , N . We similarly treat the spaces with ∂iu ∈ Lqi

(
Ω; Lpi(0, T )

)
.

We do not give an exhaustive list of embedding formulas for all possible combina-
tions of multiindices. Instead, we present a detailed proof of one typical anisotropic
embedding theorem which is used several times in Chap. III.

Theorem 2.4. Let [a, b] ⊂ R1 be a compact interval and let T > 0 and a multiindex

p =
(
(p0, q0), (p1, q1)

)
be given, 1 6 p0, q0, p1, q1 6 ∞. Put

α : = 1− 1
q1

+ 1
q0

, β : = 1− 1
p0

+ 1
p1

, κ : =
(
1− 1

p0

)(
1− 1

q1

)− 1
p1q0

with the convention 1
∞ = 0 and assume κ > 0. Then for every u ∈ W 1,p(0, T ; ]a, b[)

and every (x, t), (y, s) ∈]a, b[×]0, T [ such that

(2.5) max{|t− s|1/α, |x− y|1/β} 6 min{T 1/α, (b− a)1/β}

we have

(2.6) |u(x, t)− u(y, s)| 6 2
κ

(α|ut|(p0,q0) + β|ux|(p1,q1))max{|t− s| κ
α , |x− y|κ

β }.

P r o o f. We follow the strategy of Adams (1975) or Kufner, John, Fuč́ık (1977).
Assume first

(2.7) 1 6 p0, q0, p1, q1 < ∞.
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Then the space C1([a, b]× [0, T ]) is dense in W 1,p(0, T ; ]a, b[) and it suffices to assume
u ∈ C1([a, b]× [0, T ]).

Let (x, t), (y, s) be two distinct points of ]a, b[×]0, T [. Put

(2.8) η : = max{|t− s| 1α , |x− y| 1β }.

Let Q : = [x1, x2]× [t1, t2] ⊂ ]a, b[×]0, T [ be a rectangle such that

(i) (x, t), (y, s) ∈ ∂Q,(2.9)

(ii) t2 − t1 = ηα, x2 − x1 = ηβ .

We choose arbitrarily (ξ, τ) ∈ Q and for σ ∈ [0, 1] put ϕ(σ) : = u
(
x + σβ(ξ − x),

t + σα(τ − t)
)
. We have

u(ξ, τ)− u(x, t) =
∫ 1

0

[
βσβ−1(ξ − x)ux

(
x + σβ(ξ − x), t + σα(τ − t)

)
+(2.10)

+ασα−1(τ − t)ut

(
x + σβ(ξ − x), t + σα(τ − t)

)]
dσ.

and integrating identity (2.10) with respect to (ξ, τ) we obtain

∣∣∣
∫∫

Q

u(ξ, τ)dξ dτ − ηα+βu(x, t)
∣∣∣ 6(2.11)

6 βηβ

∫ 1

0

σβ−1

∫∫

Q

∣∣ux

(
x + σβ(ξ − x), t + σα(τ − t)

)∣∣dξ dτ dσ +

+ αηα

∫ 1

0

σα−1

∫∫

Q

∣∣ut

(
x + σβ(ξ − x), t + σα(τ − t)

)∣∣dξ dτ dσ.

The substitution ξ 7→ ϕ = x+σβ(ξ−x), τ 7→ ψ = t+σα(τ − t) and Hölder’s inequality
yield

∫∫

Q

∣∣ux

(
x + σβ(ξ − x), t + σα(τ − t)

)∣∣dξ dτ =(2.12)

= σ−α−β

∫ t+σα(t2−t)

t+σα(t1−t)

∫ x+σβ(x2−x)

x+σβ(x1−x)

∣∣ux(ϕ,ψ)
∣∣dϕdψ

6
∣∣ux

∣∣
(p1,q1)

σ−
α
p1
− β

q1 ηα(1− 1
p1

)+β(1− 1
q1

)

and similarly
∫∫

Q

∣∣ut

(
x + σβ(ξ − x), t + σα(τ − t)

)∣∣dξ dτ 6(2.13)

6
∣∣ut

∣∣
(p0,q0)

σ−
α
p0
− β

q0 ηα(1− 1
p0

)+β(1− 1
q0

).
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We thus obtain from (2.11)

∣∣∣
∫∫

Q

u(ξ, τ)dξ dτ − ηα+βu(x, t)
∣∣∣ 6(2.14)

6 ηα+β+κ
(
β|ux|(p1,q1) + α|ut|(p0,q0)

) ∫ 1

0

σκ−1dσ

The same inequality (2.14) holds for
∣∣∣
∫∫

Q
u(ξ, τ)dξ dτ − ηα+βu(y, s)

∣∣∣ and we conclude

(2.15) |u(x, t)− u(y, s)| 6 2
κ

ηκ
(
β|ux|(p1,q1) + α|ut|(p0,q0)

)

and (2.6) follows.
Let now u ∈ W 1,p(0, T ; ]a, b[) be arbitrary and let {u(n); n ∈ N} ⊂ C1([a, b]× [0, T ])

be a sequence such that u(n) → u in W 1,p(0, T ; ]a, b[). By inequality (2.6) for u(n) and
Arzelà - Ascoli Theorem 2.1 the sequence {u(n)} converges uniformly to u and we can
pass to the limit in (2.6).

To complete the proof we have to remove assumption (2.7). Let p0, q0, p1, q1 be
arbitrary. We construct sequences {p(n)

0 , q
(n)
0 , p

(n)
1 , q

(n)
1 ; n ∈ N} satisfying assumption

(2.7) such that α = 1− 1

q
(n)
1

+ 1

q
(n)
0

, β = 1− 1

p
(n)
0

+ 1

p
(n)
1

, κn : =
(
1− 1

p
(n)
0

)(
1− 1

q
(n)
1

)− 1

p
(n)
1 q

(n)
0

> 0, p
(n)
i ↗ pi, q

(n)
i ↗ qi as n → ∞, i = 0, 1. Every u ∈ W 1,p(0, T ; ]a, b[) satisfies

|u(x, t) − u(y, s)| 6 2
κn

(
α|ut|(p(n)

0 ,q
(n)
0 )

+ β|ux|(p(n)
1 ,q

(n)
1 )

)
max

{|t − s|κn
α , |x − y|κn

β
}

and
passing to the limit we obtain the assertion. ¤

Combining Arzelà - Ascoli Theorem 2.1 and Theorem 2.4 we obtain the following
embedding result.

Corollary 2.5. Under the hypotheses of Theorem 2.4 the compact embedding

W 1,p(0, T ; ]a, b[) ↪→ ↪→C([a, b]× [0, T ]) holds.
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V. Lovicar, I. Straškraba, P. Krejč́ı (1993): Hysteresis in singular perturbation
problems with nonuniqueness in limit equation. In: Models of Hysteresis (A. Visintin,
ed.), Pitman Research Notes in Mathematics. Longman, Harlow, 91 - 101.
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