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Preface

It is not necessary to make a long introduction in order to justify that the mathe-
matical theory of hysteresis gives a useful tool for solving concrete engineering prob-
lems in various branches of applied research. A sufficient evidence is presented in the
monographs that recently appeared or will appear in the near future (Krasnosel’skii
and Pokrovskii (1983), Mayergoyz (1991), Visintin (1994), Brokate and Sprekels (to
appear)) which cover a broad area of the theory and applications.

The present volume is mainly devoted to mathematical aspects of rate independent
plastic hysteresis in continuum dynamics. The results of Chapters II and III can however
be interpreted also in the framework of Maxwell’s equations in ferromagnetic media of
Preisach or Della Torre type. In any case, coupling hysteretic constitutive laws with
the equations of motion we are led to quasilinear hyperbolic equations with hysteretic
terms. This is a completely new branch of applied mathematics at the early stage where,
following Hrych (1991), one can say with not so much exaggeration that ”fabrication is
the most reliable reference”.

The situation is very different here from the theory of parabolic equations with hys-
teresis developed by Visintin in the 80’s (see Visintin (1994)) which is an extension
(sometimes very nontrivial) of the ideas and techniques derived from the general theory
of quasilinear parabolic equations and applied to specific hysteretic nonlinearities. This
is by no means the case of hyperbolic equations with hysteresis and the conclusion is
surprising: although the (quasilinear) equation of motion with a hysteretic constitu-
tive law preserves its hyperbolicity characterized by the finite speed of propagation, it
can be solved considerably more easily than quasilinear hyperbolic equations without
hysteresis by the methods of semilinear equations.

There is no simple and satisfactory explanation of this fact. We nevertheless make
here a comparison of the behavior of solutions to one-dimensional quasilinear wave equa-
tions with and without hysteresis. While the latter develop discontinuities (shocks) in
a finite time and weak solutions are not uniquely determined, so that additional physi-
cally motivated conditions have to be prescribed, hysteresis constitutive operators with
convex loops in the former case exhibit a higher order energy dissipation which enables
us to derive strong a priori estimates and pass to the limit in a suitable approxima-
tion scheme. From the geometrical point of view, if we represent the solutions of the
Riemann problem for the equation without hysteresis by their trajectories in the strain
- stress diagram, then shocks correspond to straight segments connecting two points
on the constitutive graph. We observe that shocks are always organized in such a way
that the corresponding trajectory is convex if the solution increases and concave if it
decreases. The maximal dissipation principle then selects the solution with the min-
imal convex/maximal concave trajectory. We can say that some kind of spontaneous
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hysteresis occurs even if no hysteresis is assumed in the constitutive law itself. If now
the constitutive law is given by a hysteresis operator with convex loops, it is natural to
expect that the solution will follow smoothly their convex/concave branches and shocks
have no reason to occur.

There are other interesting coincidences which would merit deeper understanding.
This is for instance the question of the role of the two maximal dissipation principles
in the rigid - plastic constitutive law (Sect. I.1) and in the Riemann problem (Sect.
IV.3) which are in some sense responsible for the generation of hysteresis. We also do
not comment on the fact that the Preisach operator itself is governed by a hyperbolic
equation, where the memory variable plays the role of time (Sect. I1.3).

This book is intended to give a consistent and self-contained presentation of the
theory and its connection to other disciplines. In Chapter I we interpret hysteresis
within the classical approach to continuum mechanics and derive analytical properties
of hysteresis operators arising from rheological models. The efficiency of the hysteretic
description depends on the complexity of the memory structure. In Chapter II we study
the memory induced by scalar hysteresis models of Prandtl - Ishlinskii, Preisach, Della
Torre and two models for fatigue and damage.

The main and rather nontrivial feature of hysteresis operators consists in the fact
that they dissipate energy of two orders which relate to the area of closed hysteresis
loops and to the curvature of their branches, respectively. We derive corresponding
energy inequalities which enable us subsequently in Chapter III to construct solutions
to hyperbolic equations with hysteretic constitutive laws. Chapter IV gives a detailed
study of the Riemann problem with a not necessarily monotone nonlinearity without
hysteresis and shows how hysteresis appears in the physically relevant solutions. Chapter
V is an appendix, where we try to incorporate specific auxiliary functional-analytic
results into a larger theory in order to make them more accessible to the reader.

Statements and formulae in the text are numbered consecutively in each section.
References to results from other chapters are preceded by the roman number of the
chapter. Thus, for example, Proposition 1.3.9 refers to Proposition 3.9 of Chapter I,
equation (3.26) means the corresponding formula in the chapter where the reference is
made etc.

The author is indebted to Professor Otto Vejvoda, Vladimir Lovicar and Ivan
Straskraba from Prague, Pierre-Alexandre Bliman from Paris, Martin Brokate from
Kiel and Augusto Visintin from Trento for stimulating discussions and encouragement.
The final redaction of the manuscript was made possible thanks to Dasa Berkova and
Karel Hordk from the Mathematical Institute of the Academy of Sciences of the Czech
Republic.

PRAGUE, January 1995
P.K.



I. Hysteresis operators in mechanics

The equation of motion of a deformable body Q C RY for some N € N, where N
denotes the set of positive integers and RY is the N-dimensional Euclidian space, is in
classical continuum mechanics (Landau, Lifschitz (1953)) considered in the form

0
Z O-ZJ+ 17 i:]-a"'7Na

(0.1) e

8152

j=1
where x € Q,t > 0 are the space and time variables, respectively, u = (u;) is the
displacement vector, p is the density, o = (0;;) is the stress tensor and g = (g;) is
the applied force density, 7,7 = 1,...,N. The meaningful choice in applications is
usually N = 3. We shall see in Chapter III that well-posedness of equation (0.1) can
be obtained if it is coupled with initial and boundary conditions and with a suitable
constitutive law between the stress tensor ¢ = (0;;) and strain tensor € = (g;;) defined
by the symmetric derivative of u, namely

), ii=1,...,N.

While (0.1) is a general physical law, the constitutive relation characterizes specific
properties of a concrete material subject to time-dependent loading.

This chapter will mainly be devoted to the classification and mathematical properties
of constitutive operators corresponding to models of elasticity and plasticity with or
without hardening and fatigue effects.

We shall not treat in detail models for viscous, viscoelastic and viscoelastoplastic
materials. The first reason is that there exists already an extensive literature in this
area, for instance the modern monograph by Ionescu and Sofonea (1993), where an
interested reader can find a good information about the current state of research. On
the other hand, the objective of this book is to develop a theory of rate independent
constitutive operators which, coupled with the equation of motion, lead to hyperbolic
systems. The question of approximating equations of rate independent elastoplasticity
by vanishing viscosity models which was studied already for instance by Duvaut, Lions
(1972) and is still of high general interest will be briefly considered only in Chapter IV
in a special situation of the Riemann problem.

The first section introduces the basic physical concepts used in the plasticity theory
and their mathematical interpretation. In Section 1.2 we recall some elements of convex
analysis. Sections 1.3, 1.4 then present analytical properties of constitutive operators,
in particular their dependence on given data.



I.1 Rheological models

We denote by T the space of symmetric tensors & = (&), 4,7 =1,...,N, N € N,
endowed with the scalar product <§,77> = Zf\szl &ijnij- The strain and stress tensors
¢ and o, respectively, are in general functions of the space variable z € Q@ c RY and
time variable ¢ > 0 with values in T. We consider here only homogeneous media, where
the constitutive law is independent of the spatial variable x which thus plays the role

of a parameter.

Definition 1.1. A system consisting of

(1.1) (i) a constitutive relation between ¢ and o,

(ii) a potential energy U >0

is called a rheological element.
A rheological element is said to be thermodynamically consistent, if the quantity

(1.2) Qi= (o) U

called dissipation rate, where dot denotes the time derivative, is nonnegative in the
sense of distributions for all e,0,U satisfying conditions (i), (ii).

Example 1.2. The elastic element &£.
In mechanics, elastic materials are characterized by a linear stress-strain relation and
by the complete reversibility of dynamical processes. In mathematical terminology, it is
assumed that there exists a matrix A = (A;jre) over T such that

N
(1.3) o = Ae or equivalently o;; = Z Aijkecre, 4, =1,...,N.
k=1

Reversibility means that the potential energy U involves no memory and can be chosen
in such a way that the dissipation rate ¢ vanishes, i.e. the value of U(t) for each t > 0
depends only on the instantaneous value of £(t) and U = <é, A€> almost everywhere for
every absolutely continuous e. This necessarily implies that the matrix A is symmetric
with respect to the scalar product <-, > and U has the form

(1.4) U= %<A6,6>

up to an additive constant. Indeed, for an arbitrary ¢ € W11(0,7;T) and t €]0, 7|
put &(7) := £(0) + 7(e(t) —£(0)) for 7 € [0,£]. We can choose the initial value for U
arbitrarily, for instance U(0) := 3({Ae(0),2(0)). We have by hypothesis

(15) U() =U©)+ [ (E(r), 46))dr = 5(A=(0).2(0) + 5(=(0). (A= AT)e(0)).



where (AT);jxe = Ageij, hence

(1) = (£(0), Ac(t)) + 3 (£(0), (A — AT)(=(0) —=(1)))

and we easily conclude that the matrix A = AT is symmetric and (1.4) holds.

To guarantee that the stress-strain relation is one-to-one and the material law is
deterministic we assume that the matrix A is positive definite.

The elastic element is said to be isotropic, if the matrix A has the form

(1.6) A =2pl 4+ N\J,

where p, A are positive numbers called Lamé’s constants (see Rabotnov (1988)), I is

the identity matrix I§ = £ and J is the matrix of the symmetric bilinear form <J &, 77> =
N

&mr. We denote by & := Y &;; the first invariant (trace) of a symmetric tensor £ € T
i=1

and by (dev)ij 1= &ij — %&&j? where 6;; is the Kronecker symbol, the deviatoric part

of £. We also introduce the deviatoric subspace Tyey :={£ € T; £ = 0} of T and its

orthogonal complement Tgiag :={ € T; & = Ajj, ANeRY, i,j=1,...,N}.

Example 1.3. The viscous element V.
Modeling of rate dependent relaxation effects makes often use of the concept of viscosity
based on the hypothesis that there exist two coefficients 17 > 0, > 0 of proportionality
between the deviators and first invariants of the stress and the strain rate, i.e.

(17) Odev = Nedev; O = Cél-

The assumption that no reversible energy can be stored by the viscous element (U =
0) ensures its thermodynamical consistency.

Example 1.4. The rigid-plastic element R.
The basic concept in plasticity is the yield surface in the stress space which can be
described as the boundary 97 of a convex closed set Z C T.

The rigid-plastic behavior consists of two different phases characterized by the instan-
taneous value o of the stress tensor. The material remains rigid as long as ¢ € Int Z
(the interior of Z). In this case no deformation occurs and ¢ = 0. The material
becomes plastic if o reaches the boundary 97 of Z. Plasticity is governed by three
physical principles:

(1.8) occZ (the stress values do not exceed the threshold 07),
(1.9) U=0 (no reversible energy is stored),
(1.10) <5', o— 6> >0, VoeZz (principle of maximal dissipation rate

with respect to all admissible stress values).
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Geometrically, ¢ has the direction of the outward normal cone, and condition (1.10)
is also called von Mises normality rule. We see that the variational inequality (1.10)
includes the rigid behavior (for ¢ € Int Z it entails ¢ = 0). In order to ensure the
thermodynamical consistency we assume 0 € Z. In fact, it is natural to assume that
no deformation occurs for ¢ = 0. This is equivalent to the hypothesis 0 € Int Z.

It has been observed that volume changes are negligible during plastic deformation
(Rabotnov (1988)). Combining constitutive relation (1.8) - (1.10) with the wvolume
invariance condition

(1.11) ér =0,

we conclude from Proposition 2.13 and Remark 3.10 below that Z has the form of a
cylinder

(1.12) Z = Zy + Tdiag,

where Zy C Tgev is a bounded convex closed set. The classical models of Tresca and
von Mises are special cases of (1.8)-(1.12) with Z; a ball (von Mises) or Zy :={{ €

N
Taev; Y. €| < r} for some r > 0 (Tresca), where {{} are the eigenvalues of the
k=1

N

symmetric matrix £ = (&;;). Note that we have ) & =0 for £ € Tqey. The Tresca
k=1

set Zy is usually represented for N = 3 by a hexagon in the plane & + & + &3 = 0.

Example 1.5. The rigid-plastic element with isotropic hardening 7.
Following Necas and Hlavacek (1981) we introduce a scalar hardening parameter « of
physical dimension of stress into the constitutive relations. We assume analogously as in
Example 1.4 that a bounded convex closed set Zy C Tgey is given such that 0 € Int Zj,
and we denote by My : Tgey — [0, 00[ the Minkowski functional associated to Zy by
formula (2.9) below. Let further a concave nondecreasing function ¢ : [1,00[— [1,00[
be given, ¢(1) = 1.

We denote by T; the space T x R! endowed with the scalar product [(g), (z)] =
(&,m) + By and by Z; the convex closed subset of Ty (see Fig. 1)

(1.13) 7y = {(i) €T a >0, Mo(faev) <<p(1+a)}.

The constitutive relations are analogous to (1.8)-(1.10), namely

(1.14) (Z) € 71,

(1.15) U =0, a(0) =0,
L (A R



where ¢ > 0 is a given physical constant.

We immediately observe that choosing & = ¢ in (1.16) we obtain &(a—a&) <0 Va >
a, hence & > 0.

Let Z¢ := {£ eT; (g) € Zl} be the domain of admissible stresses for an instanta-
neous value a of the hardening parameter. We see that Z< increases without changing
its shape with increasing « (see Fig. 1)

Fig. 1

Example 1.6. The brittle element B.
An application of the notion of brittleness to modeling of fatigue and damage will be
shown in Sect. II.5. To introduce the concept, we assume again the existence of a
convex open domain of rigidity Int Z C T in the stress space; as soon as the value o
of the stress reaches the fragility surface 0Z, the material breaks, the stress drops to 0
and we lose any control on the strain.

Under the same assumptions on Z asin Example 1.4 we denote by My the associated
Minkowski functional (see (2.9) below), by H the Heaviside function

1 for r >0,
(1.17) H(r) =
0 forr<0

and we introduce the damage function d by the formula
(1.18) d(t) :=1—H(1 - ||Mz(o)llj0,4),

where we put || f|ljo.4 : = sup{|f(s)[;s € [0,¢]} for each function f :[0,7] — R and
t € [0,7]. We see that d = 0 characterizes the rigid (unperturbed) state, d = 1
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corresponds to the irreversible damaged state. We define the constitutive relations in
the form, see Visintin (1994)

) { (1—d(1))=(t) = 0,
d(t)o(t) = 0.

It is natural to admit that no reversible energy can be stored by the brittle element,
so we put U = 0. The thermodynamical consistency will be discussed in Example 1.7
below.

COMPOSITION OF RHEOLOGICAL ELEMENTS

A large variety of models for the behavior of materials can be obtained by composing
rheological elements from Examples 1.2 - 1.6 in series or in parallel.

Let G1,G5 be two rheological elements and let ;,0;,U; be the strain, stress and
potential energy, respectively, corresponding to the element G;,7 =1, 2.

The total strain ¢, stress ¢ and potential energy U for the combination in parallel

G1|G2 and in series G; — Gy are defined by the following natural relations

G1|Go G1—Go
E=¢€1 =¢9 E=¢€1+¢&2
o =01+ 09 O =01 = 09
U=U;+Us U=U;+U;

Fig. 2: Rheological elements
L] | =2 L ]

Composition of rheological elements

in parallel G1|Ga i series G1 — Go

oy (o H

in analogy with the theory of electrical circuits. It is easy to see that every combination
of thermodynamically consistent elements is thermodynamically consistent.



Example 1.7. The parallel elasto-brittle element &|B5.
According to general rheological principles, the constitutive law has the form

o=0°+0?,
1
U= §<€,O'e>,

b

where €¢,0¢ and €°, 0% are strain and stress tensors corresponding to the elastic and

brittle element, respectively. We therefore have

o€ = Ae,
(1.20) e(t)H(1 — [[Mz(0®)llo.4) = 0,
o®(t)(1 = H(1 — [|Mz(0")[[j0,4)) = 0

with the same notation as in Examples 1.2, 1.6. One immediately notices that these
identities are contradictory if Mz(c(0)) > 1. Indeed, we have either Mz (c°(0)) < 1,
hence £(0) = 0¢(0) = 0 and ¢°(0) = ¢(0), which is a contradiction, or Mz(c*(0)) > 1,
hence ¢°(0) = 0, which is a contradiction, too. A similar contradiction is obtained
for any t €]0,T[ whenever sup{|Mz(c(s))|;s € [0,¢[} < 1 and Mz(o(t+)) > 1. To

preserve the consistency, we assume
(1.21) Mz(0(0)) <1, 0:[0,7] — T is continuous.
Assuming (1.21) we obtain from (1.20) o¢(t)H (1 — ||[Mz(c®)|0,q) = O, hence ¢®(t) =

o(t)H(1 = [[Mz(0")[lj0,4) = o(t)H (1 — [[Mz(0)]lj0,1))-
The constitutive law can therefore be written in operator form

(1.22) {6@ = A7'o()[1 — H(1 — Mz (o) o)

U(t) = (A7 (), 0 ()1 — H(1 — | My (o)

[O,t])]

with input ¢ € C(]0,T];T) and output ¢ € L*(0,7;T). Formulas (1.22) are now
meaningful without any restriction on o(0).

Let us verify that constitutive equations (1.22) define a thermodynamically consistent
element. We choose an absolutely continuous input ¢ and an arbitrary time interval
|t1,t2[C [0,T]. The total dissipation is given by the formula

D:=q(t—) —qlti+) = (e,0),_,  —(e0),_, , — /t 2 (e,6)dt — U(ta—) + U(t1+).

We distinguish 3 cases.



a) |[|[Mz(o)llp,g <1 forall t €]ty,tz]. Then 5( )=U(t) =0 in [0 ta[, hence D = 0.

b) ||Mz(0)|l0,t,) = 1. Then e(t) = Ao (t),U(t) = (A o(t),0(t)) in ]t1,t2] with
the same conclusion.

c) Jtg €]t1,t2]: || Mz(o) (t) € IntZ for t € [0,tp[. Then we have
e(t) =U(t) =0 for ¢t € [0,to[ and D = 1(A™ o(ty),0(to)) > 0.

We therefore have ¢ > 0 in the sense of distributions, hence the element £/B is
thermodynamically consistent.

Example 1.8. Elastoplastic models £ — R,E/R.

There are good reasons for rewriting constitutive variational inequalities in plasticity
in operator form. This enables us to distinguish clearly between input and output
quantities: while the input can be controlled, the output can be determined by solving
the constitutive equation.

Let us compare the constitutive relations for two elastoplastic models & — R, E|R.
We denote by €°,0¢ and P, 0P the strain and stress on the elastic and rigid-plastic
element, respectively.

E/R E—R
e=¢g¢=¢P e=¢€°4¢P
oc=0°%+oP c=0°=go?
0 = Ae o = Ae®
obeZz o€/

(¢,0P —5) >0 Vo e Z (eP,0—G) >0
U= Ye.ot) U= 4{et.o0)

Recall that Z C T is a given convex closed set, 0 € Int Z. We see that both models
are governed by a variational inequality of the same type, namely

E/R: (A (O'—O'p) of —5) >0

(1.23) E—R: <A A5—0)0—5>>0

}V&EZ.

The solvability of such equations is ensured by the following Theorem whose detailed
proof (in a more general setting) will be given in Sect. 1.3 below. Definition and
general information about the space W1(0,T; X) of absolutely continuous Hilbert
space valued functions is given in Chapter V.
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Theorem 1.9. Let X be a real separable Hilbert space endowed with a scalar
product <.,.>X. Let Z C X be a convex closed set, 0 € Z and let z° € Z be
a given element. Then for every function u € W1(0,T; X) there exists a unique
x € WHY0,T; Z) satisfying the variational inequality
(1.24) (u(t) —@(t),z(t) — i), >0 ae VieZ

and the initial condition
(1.25) z(0) = 2°.
We now define the solution operators S,P : Z x Wh1(0,T; X) — WH1(0,T; X) of
the problem (1.25), (1.24) by the formula
(1.26) S u) =z, P u):=u—8% ).

According to Krasnosel’skii and Pokrovskii (1983), the operators S,P are called stop
and play, respectively (see Fig. 3). The set Z is called the characteristic of S and P.

Fig. 3: Input-output diagram for the stop and play in the case dim X =1, Z = [—r, 7],
u(t) = Asinwt for A>r > 0.

Exercise 1.10. Prove that the constitutive relations for the elastoplastic models
above can be written in the form
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1
E/R: e=A"'P(of,0), U= (A7 P(of,0), P(05,0)),
1
E-R: o0=8(0"Ae), U= §<A’15(00,A5),S(00,A5)>,

where S,P are the stop and play in X = T endowed with the scalar product
<§,n>X i= <A_1§, 77>, and o}, 0" are given initial output values.

It is clear that the roles of input and output in the models £/R and £ — R cannot
be reversed.

The definition immediately suggests that the stop has the

(1.27)  Semigroup property: For uw € WH1(0,T; X),s €]0,T[ and ¢ € [0, — s] put
us(t) := u(s +t). Then for every z° € Z we have

S u)(t+ s) = S(S(a", u)(s), us)(t)-

An operator F' acting in some function space R(0,7; X) of functions [0,7] — X is
called

(1.28)  Rate independent, if for every u € R(0,T; X) and every nondecreasing map-
ping « of [0,7] onto [0,7] such that u,(t) : = u(a(t)) belongs to R(0,7; X)
we have

F(ua)(t) = F(u)(a(t)) forall t €[0,T],

(1.29)  Causal, if F(u)(t) = F(v)(t) for all t € [0,t9] C [0,7] whenever u(t) = v(t)
for all t € [0, o).

Rate independence and causality characterize hysteresis operators according to the
classification of Visintin (1994). By definition, the stop and play are hysteresis operators
in W1(0,T; X) (we shall see later in Sect. 1.3 that they can be extended to the space of
continuous functions C([0,7T]; X)). We notice on Fig. 3 that the input-output diagram
for the stop and play forms simple hysteresis loops. More complicated loop structures
including internal loops can be observed in scalar multiyield models with a more complex
memory structure (Prandtl-Ishlinskii, Preisach, Della Torre, cf. Sect. 11.3); we however
do not pursue the question of hierarchy of loops here. Instead, we describe in Sect. 11.2
the scalar hysteresis memory by means of the memory sequence associated to the input
which is independent of the concrete choice of the hysteresis operator.

We now show how stop and play can be used for modeling the phenomena of kinematic
and isotropic hardening in elastoplastic materials, cf. Lemaitre, Chaboche (1985).
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KINEMATIC HARDENING

Let us consider the model £ —(€/R) (see Fig. 4). The general rheological rules yield

oc=0%4+o?

e=¢€%4¢€P

0¢ = AeP

o = Be®

ob ez

(eP,oP —G5) >0 VoeZ o, e
U = ((e,0) + (e2.0%)),

where A, B are given constant symmetric positive definite matrices and Z C T is a
convex closed set, 0 € Int Z. For t € [0,T] put

(1.30) Z(t) := Z + o°(t).

Then o(t) € Z(t) for all t € [0,7]. We can imagine that relation (1.30) defines a
translation of Z in the stress space T driven by the elastic component o€ of the stress
without changing shape and size. This phenomenon is called kinematic hardening and
is typical for metals, see Lemaitre and Chaboche (1985).

The evolution of ¢¢ is governed by the variational inequality

(1.31) (A7'6¢, 0" —5) >0, V5e€Z
Inequality (1.31) can be interpreted as a normality condition for the hardening rate &¢
with respect to the scalar product <., .>A i= <A_1., .>; both the hardening rate ¢¢ and
the plastic strain rate £P have the outward normal direction to 0Z at the point o, but
with respect to different scalar products (see Fig.4).
With the intention to deal with several scalar products in T we introduce the sub-
script A for the play P4 and stop Sa corresponding to the scalar product <., > N
Using Exercise 1.10 we can express the constitutive law for the model £ —(£/R) in
the form

(1.32) e=Blo+ A7 E(ag,a)

with input ¢ and output €. We now prove that the constitutive operator B~ +A~1 Py
is invertible. Identity (1.34) below gives an equivalent expression for (1.32) with input
e and output o.
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Lemma 1.11. Let of € Z be given and let A,C be given constant matrices such
that A,CA are symmetric and positive definite. Put A := A + CA. Then for all
o€ WHL(0,T; T) we have

(1.33) S(ob, 0+ CP(afy,0)) =S8(ah,0).
i A A
Proof. Put z:=84a(0(,0),y:=84(00,0 + CPa(cf,0)). Then y = S;(o7,
(I+C)o—Cx), where I is the identity matrix. Putting & : = 3(z+y) in the variational
inequalities
(A6 —d),z—5)>0

(AN ((I+C)o6—Ci—9),y—5)=0
and using the identity A=1 + A~1C = A~ we conclude (# — g,z —y); <0, hence
T =1. 0

We now apply Lemma 1.11 with C' = BA™! to the constitutive equation (1.32). We
obtain

S(o, Be) = ‘E(OS’U) for A=A+ B,
A

hence (I + BA™')o = Be + BA™!' S;(0}, Be), or equivalently

(1.34) o= (A" +B ) 'e+ BAT' S(o}, Be) = Be — BA™' P(a}, Be),
A A

where ¢ is the input and o is the output.
In the particular case B =1,A = %I for some v > 0 we obtain P4 = P4 = Pr and
the inversion formula

(1.35) (T +P@) " =1~ %7;@0,.)

holds for all 2° € Z, where Z is the identity mapping in W(0,T; X).

Exercise 1.12. Assume that the matrices A, B commute, i.e. AB = BA. Prove
that (1.34) is the constitutive equation of the model &; /(&2 —R) with

:0=A4, A=A1+BH L
1

£ :0=Bes, B=B}A+B),
2

R :Z=B(A+B)"Y2),0€Z,{c,0-6)>0 Y5¢€Z.
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Hint. Use the identity CSa(2%,u) = Scac(Cz®,Cu) for each positive definite
symmetric matrix C, where & is the stop with characteristic Z = C (Z2).

The commutativity hypothesis AB = BA is satisfied for instance if both elastic ele-
ments are isotropic. In this case the models £ —(£/R) and &£ /(£ —R) are equivalent.

ISOTROPIC AND KINEMATIC HARDENING

Let us consider now the model £ —(&/J). With the notation taken from Example
1.5, the constitutive relations are analogous to the model £ —(£ /R), namely

(0)= ()« (0) ()<
(-G () e
(1.36) [(_6?@) , (0:’) _ (Z)} >0 V(Z) € 74,

where A, B are symmetric positive definite matrices.
Let A1,B; : Ty — T; be the linear mappings defined by the identities A; (i) =

(49, B1(S) = (%), Wehave [A7 ()= (). ()~ ()] 30 () & 2, hence
(‘i) =8 ((Uog), (g)), (f;) =P ((‘705), (g)), where Sp,P; are the stop and play in

T, endowed with scalar product [Al_l-, } with characteristics Z;, with a given initial

(L)

condition (Ué)) € Z1. The constitutive equation has the form

131 ()=o) e a2 ((B) ()

We derive now some consequences of the constitutive equation.

Lemma 1.13. Let 0 € Wh1(0,T;T) be given and assume o(0) = o} = 0. Let €,
be given by the equation (1.37). Then we have

(1.38) p(1+aft)) = max{1, || Mo(oge, ) l[jo.0}

where ¢, My are as in (1.13) and o, is the deviatoric part of the plastic stress oP.

Proof. We have (f(%)) € Zy for all t € [0,T], hence My(ch,, (1)) < (1 + a(t))
by definition. The fact that o is nondecreasing (cf. (1.16)) entails ||[Mo(c%., )0, <
(1 + «a(t)). In the case ||[My(cl,, )0, < 1 we obviously have a(t) = 0 and (1.38)
0, < ¢(1+aft)) for some t €]0,T[. Then
there exists 7 €]0,¢[ such that &(r) > 0 and | Mo(oh,,)ll0,-] < (1 + a(r)), hence

(":((TT))) € Int Z;. From (1.36) we conclude &(7) = 0, which is a contradiction. O

holds. Let us assume now 1 < ||[Mo(ch,, )|
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We associate to the model £ —(£ /) the potential energy U = 1 ((e°, o) + (e?,0°)).
The dissipated energy ¢(t) is then equal to the plastic work fg (eP(7),0(7))dr and is
related to «(t) by the following identity.

Proposition 1.14. Let the assumptions of Lemma 1.13 hold. Put r = inf{f8 >
0;¢'(14+8) = 0} € [0,00]. Let @ : [0,7] — [0, 00 be the function ®(p) := [ CZ(%;_-I-Bﬁ))
Then we have «(t) € [0,r] for all t € [0,7T] and

(1.39) q(t) = ®(a(t)) provided «ft) € [0,r].

Proof. Assume «a(t) > r for some ¢ €]0,7[. Then there exists 7 < t such that
(1) >0 and «(1) > r. Putting 6 := oP(7),& = r we have ¢(1+ &) = p(1 + a(1)),
hence (2) € Z1 and (1.36) yields &(7) < 0, which is a contradiction.

Identity (1.39) can be equivalently written in the form

s 20420

(1.40) at) =) S A e i)

a.e. provided «(t) < r.

To prove (1.40) we distinguish two cases.

a) &(t) =0.

Put 6 :=(1+a)oP(t) and a:= «a(t) +b for a > 0 sufficiently small and b > 0
sufficiently large such that Mo (Gaev) — (14 &) = (1+a)(Mo(oh, (t) — (1 + a(t))) +
(14 a)p(l + at)) — (1 + a(t) +b) <0, hence () € Z;. From inequality (1.36) we
infer a<ép,ap> < 0, hence ¢(t) = 0.

b) &(t) > 0.

The play depends continuously on the characteristic with respect to the Haus-
dorff distance (see Sect. 1.3 below). It therefore suffices to assume that ¢ and M,
are smooth functions. We have (f((f))) € 0Z; and according to (1.36), the vec-

tor (_éfg()t)) has the direction of the outward normal vector n := (gridwj,\f‘;fga)(; ))),
ie. (_éfs()t)) = %n This yields ¢(t) = (eP(¢),0P(t)) = (€P(t), 00, (1)) =

m<gradMo(adev(t)),adev (t)). We have <grad Mo(adev ,oho) = Mo(ch,,) by
Exercise 2.10(iii) and My(ch, (1)) = ¢(1 + a(t)) by hypothesis, hence identity (1.40)
holds. 0J

As a consequence of Proposition 1.14, we see that the isotropic hardening can be
equivalently characterized by the plastic work (or dissipation) ¢. For this reason it is
sometimes referred to as work hardening, see Necas and Hlavacek (1981), Lemaitre and
Chaboche (1985).
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MULTIYIELD MODELS

Models of plasticity involving a single yield surface cannot provide a satisfactory de-
scription of the real material behavior. In concrete experiments, the transition between
the elastic and the plastic regime is smooth. If we neglect relaxation effects and assume
that the process is rate independent, the most natural way to proceed is to combine
a continuum of plastic elements which are not all active (i.e. in the plastic regime)
at the same time. We briefly describe three standard models in this category, namely
the Prandtl-Ishlinskii model of stop type, Prandtl-Ishlinskii model of play type and the
Mréz model. We shall see in Sect. II.3 that all these models are equivalent in the

one-dimensional case.

Example 1.15. Prandtl-Ishlinskii model of stop type.
Following Visintin (1994), we call Prandtl-Ishlinskii model of stop type the rheological

element defined by the formula & | [] (& —R+), where [] denotes the (possibly
reD reD
uncountable) combination in parallel parametrized by elements of an index set D with

measure . The sum in the rheological equation is formally replaced by the integration
with respect to the measure p. Combining the rheological equations

(1.41) o=o0°+0oP, ap:/ ordu(r), e =¢e; +€b,
D

the elastic constitutive laws

(1.42) 0¢ = Ae, 0, =Ae;, VrebD

with symmetric positive definite matrices A, {A,;r € D}, and the rigid-plastic varia-
tional inequalities

(1.43) or € Zyp, (62,0, —G,) >0, V&, € Z,, Vr €D,

where {Z,.; r € D} is a given system of convex closed sets in T with 0 € Int Z,., we
can use the results of Exercise 1.10 to derive formally the constitutive law in operator

form
(1.44) o=Ac+ [ S(02, Ae)du(r),
D T
1 1
(1.45) U= §<A87€> + 5/ (A1 S(0Y, Ave), 800, Ave) )du(r),
D T T

where {o¥; r € D} is the given initial distribution of stresses at each individual element
E — R, and S, is the stop with characteristic Z,.



16

Example 1.16. Prandtl-Ishlinskii model of play type.
The dual model to the one considered in the previous Example 1.15 is characterized by

the formula £ — > & | R, where > denotes the combination in series. Similarly as
reD reD
above, we combine the rheological equations

(1.46) e=¢e®+¢P, ep:/ erdu(r), c =op +of VreD,
D

the elastic constitutive laws

(1.47) e=A"1o, e =At0¢ VYreD

T T

and the rigid-plastic variational inequalities
(1.48) ot € Z,, (¢, o0 —G,) >0 V6,€Z, VreD

to derive the constitutive equation in operator form
(1.49) e=A"to+ / AT p(o? ., o)du(r),
D T
1 1
(1.50) U= 5(a700) + 5 [ (A7 P 0). PloT.0))du(r),
D T T

where {oF ;r € D} is the initial distribution of plastic stresses and P, is the play with
characteristic Z,.

Constitutive laws (1.44), (1.49) involve a memory which is completely described by
the system {S,; r € D} or {P,; r € D} of stops and plays, respectively. More precisely,
the value of the output for t > ¢y is uniquely determined by the value of the input for
t > to and by the distribution of stops and plays at ¢ = t3. This follows from the
fact that stop and play are solution operators of variational inequalities. It is therefore

justified to introduce the concept of memory state functions.

(1.51) Us(r1) = S(02 Ane) (1),
(152) Up(r,t) := P(0h,,0)(1

which characterize the instantaneous state of the system.

The efficiency of the hysteresis approach in plasticity is related to the possibility to
find a simple memory structure (i.e. to describe the evolution of g, 1p without solving
infinite systems of variations inequalities). This has been done in the uniaxial case (see
Chapter II); in the multiaxial case no particular memory structure has been discovered
yet except for trivial cases where Z,. are parallelepipeds. This restricts considerably the
possibilities of practical application of the multidimensional Prandtl-Ishlinskii operator.
One way how to overcome this difficulty is shown in the next example.
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Example 1.17. The model of Mréz.
The idea of Mréz (1967) was to consider the family {Z,} of finitely many characteristics
of von Mises type

(1.53) Z, : = (B,(0) N Taey) + Teting

where B,(0) is the ball in T centered at 0 with radius r > 0. The concept was then
extended to the whole system {Z,; r > 0} by Chu (1984).

The rheological structure of the model is essentially analogous to the Prandtl-
Ishlinskii model of play type. Equations (1.46), (1.47) are assumed to hold, provided
p in chosen to be the Lebesgue measure in |0, 00[ and the matrices A, have the form
A, = h(r)A, where A is an isotropic matrix of the form (1.6) and h € L (0,00) is a

nonnegative function.

The Prandtl-Ishlinskii variational inequality (1.48) can be decomposed into two im-

plications:
(1.54) ol elntZ, = 6, =0,
(1.55) ol € 0Z, = o7 € Nz (aP),

where Nz (oP) is the normal cone to Z, at oP.

The model of Mréz preserves property (1.54), i.e. no plastic deformation occurs in the
elastic domain. Denoting by Z,(t) := Z, + o&(t) the ball (or cylinder, more precisely)
centered at o¢(t) with radius r, we obtain similarly as in Example 1.11

(1.56) o(t)e Z.(t) Vr>0, Vtel0,T].

The boundary part (1.55) of the maximal dissipation principle is replaced with the
nonintersection condition

(1.57) Z.(t) C Zs(t) Vr<s, Vtel0,T],

which represents the main distinctive feature of the Mroéz model.

We do not deal with mathematical details here. A more complete information about
geometrical and analytical properties of the model can be found in Brokate, Dressler,
Krejéi (to appear/a) or Krejéi (1993/c). We just note that conditions (1.46), (1.47),
(1.53), (1.54), (1.56), (1.57) coupled with the volume invariance condition

(1.58) gr € Tqey or equivalently of € Tgey Vr >0

determine a well defined constitutive relation with input o and output e in suitable
function spaces.
The memory state function

(1.59) ¢ :]0,00[X[0,T] = Taey : (r,t) — o (t)
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describes the kinematic hardening and possesses a relatively simple memory structure.
This is particularly appreciated in numerical computations. Moreover, putting

(1.60) Ut) : = %/OOO <A_1<,0(7’, t), p(r, t)> h(r) dr

we obtain a thermodynamically consistent model.

The Mréz model can easily be generalized to the case where Z N Tqey is an ellipsoid
of the form {o € Tqey; </~1_10', o) < 1} with a non necessarily isotropic positive definite
symmetric matrix A. To preserve the thermodynamical consistency we must use the
same matrix A in (1.47) and (1.60). We see that the shape of the yield surface and the
elastic constitutive law cannot be chosen independently of each other.

In analogy to the Prandtl-Ishlinskii model, it is possible to define a “Mréz model of
stop type” with input € and output o by the relations

(1.61) (i) =00+ /OO o-h(r)dr,

— € p
e=¢,te,,

o, = Ac?,

)

)

)
(iv) o, €712,

) Ze(t) = el(t) +rAT'Z,

) e(t) € Int Z,.(t) = €P2(t) = 0.
coupled with the nonintersection condition (1.57). The Mréz models of play and stop
type are equivalent in the sense that they generate mutually inverse constitutive opera-
tors similarly as scalar Prandtl-Ishlinskii operators in Chapter II. Note that for general
multidimensional Prandtl-Ishlinskii operators this is an open problem.

Originally (Mréz (1967), Chu (1984)) the condition e? = [ ¢, dr used to be replaced
with a global normality condition analogous to (1.55), namely

(1.62) ol € 0Z, = P € Ny (d?)

(the nonintersection condition (1.57) guarantees that Nz (oF) is independent of r,
hence the implication is meaningful). It turns out that this model does not exclude
the existence of perpetual motion (see Example 3.2 of Brokate, Dressler, Krejéi (to
appear/a) which violates the second law of thermodynamics. The Mréz model coupled
with the normality condition (1.62) thus becomes thermodynamically inconsistent. It
is therefore natural to conclude that the normality condition cannot be regarded as
an independent physical property: it is or is not a mathematical consequence of the

constitutive law.



19

1.2 Geometry of convex sets

The aim of this section is to recall some basic elements of analysis of convex sets in
a Hilbert space. Most of the results are well-known. We present them in order to fix
the notation and to keep the presentation consistent (for more information we refer the
reader to the monographs Rockafellar (1970) and Aubin, Ekeland (1984)). The only
concept which is probably new is the complementary function of a convex set (Def. 2.4
below) which plays an important role in the study of vector-valued hysteresis operators
with unbounded characteristics that occur e.g. in identity (1.37).

Throughout the section, X denotes a real S(l%%arable Hilbert space endowed with a
V2,

scalar product <-, > and norm |z|x := <a:,m By Z we denote a convex closed

subset of X such that 0 € Z. We fix the number

(2.1) m := dist(0,07) := inf {|z|x;2 € 0Z} > 0.
It is clear that m > 0 if and only if 0 € Int Z.
We start with a simple lemma.

Lemma 2.1. For each x € X there exists a unique z € Z such that |x — z|x =
dist(z, Z) = min{|z —y|x;y € Z}.

Proof. Let x € X begiven. Put p := inf{|z — y|x;y € Z} and let {y,} C Z be
a sequence such that |r —y,|x — p. Using the identity
(2.2) u—vlx + |u+ ok = 2(julk + %)

for u=x —y,,v =12 — Yy we obtain

2

1 Yn + Yk
ln = Uklx = |z —unlx +lo =l = 2|z = =5 | <z —walk + o -l — 2%
X
hence {y,} is a convergent sequence and it suffices to put z := lim y,. Uniqueness
n—oo
follows from identity (2.2). O

Using Lemma 2.1 we can define the projections @ : X — Z,P:=1—Q (I is the
identity) associated to Z by the formulae

(2.3) Qx € Z, |Pzx|x = dist(z, Z) for z € X.

We shall make extensive use of the following properties of P, Q.
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Lemma 2.2. For every z,y € X we have

(i) <P$7Qm—z>>0 Vz € Z,
(i) (Pz— Py,Qz—Qy) >0,
(iii) (Pz,z) > m|Pz|x +|Pz|% with m given by (2.1),
(iv) Qx4+ aPzx)=Qx Va > —1.

Proof. (i)For z € Z,z # Qx and ~v €]0, 1] we have |[x—vz—(1—7)Qz|% > |Pz|%,
hence 2<Pw, Qr — z> +79|Qz — 2|% > 0 and the assertion follows easily. Statement (ii)
is an obvious consequence of (i). We obtain (iii) from (i) by putting z : = e Pr i
x & Z, the case x € Z is trivial. To prove (iv) we notice that for all z € Z we have
|z +aPx—z% = |Qz—z|% + (14 a)?|Pz|% +2(1+a)(Pz, Qz — ), hence the minimum
of |z + aPx — z|x is attained for z = Q. O

It is perhaps not necessary to emphasize that statement (i) of Lemma 2.2 is a Hilbert
space version of the Hahn-Banach Convex Separation Theorem. We pass now to a more
detailed study of geometrical properties of convex sets.

RECESSION CONE

Definition 2.3. A nonempty closed convex set C' C X is called a closed cone, if the
implication x € C' = ax € C' holds for all x € X and «a > 0.

Definition 2.4. Let Z C X be a convex closed set, 0 € Int Z. The set
(2.4) Cyz:={zeZ,axeZ VYa=0}

is called the recession cone of Z and the function Ky : [0, 00[— [0,00[ defined by the
formula

(2.5) Kz(r) : = sup{dist(z,Cz); x € ZN B,.(0)} forr > 0

is called the complementary function of Z, where B,(z¢) :={x € Z;|x — xo|x < r}
denotes the ball centered at xo with radius r.

Proposition 2.5. Let Z C X be a convex closed set with 0 € Int Z and with the
recession cone C'yz and complementary function Kz. Then

(i) z4+yeZ VYreCy, Yye€ Bny,(0),
(ii) Kz is nondecreasing in [0,00[, Kz(0) =0, KZS(S) > KZT(T) forall 0 < s <,
(iii) if dim X < oo, then

(2.6) lim Xz(r) — .

T—00
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Proof. (i) Since Z is closed, it suffices to assume 0 < |y|x < m. Put v := % €
10,1[. For =z € Cz we have z, := ﬁx €Cy CZ yy:= %y € B,,(0) C Z, hence

r+y= 1=z, +yy € Z.

(ii) The function Kz is obviously nondecreasing, Kz(0) = 0. Let us fix positive
numbers r > s and £ > 0 and an element z. € Z such that |z.|x < r, Kz(r) <
dist(z.,Cz) +e. We have either |z.|x < s and Kz(s) > Kz(r )—5 or |z.|x > s and
xe € Z,Kz(s) > dist( te,Cz) = i dist(z.,Cz) > ERTS (Kz(r) —¢€). For

Kz(s) > Kz(r)

I«'B\ lzex

€ — 0+ we obtain in both cases
(iii) We see that the limit of £Z (T) as r — oo exists. Assume that it is positive,

say lim KZT(T) = ¢ > 0. For each r > 0 there exists z, € Z N B,-(0) such that
r—00
ar := |zp|x = dist(z,,Cz) = Kz(r) > er. We have in particular a, — oo as r — oc.

There exists y € X and a sequence 1, — oo such that y = lim %, ly|x = 1. For an

arbitrary « > 0 and for n sufficiently large the element —*-2, belongs to Z, hence

y € Cz. By hypothesis we have |z, —a, y|x > er,, hence Zﬁ — y‘X > €, which is a

contradiction.

We immediately see that Cz = {0} if Z is bounded. The converse is true provided
dim X < oo as a consequence of Proposition 2.5(iii) and is false if dim X = oco. It
suffices to consider the example of the convex “infinite-dimensional cube” Z :={x €
X;|(z,er)| <1Vk € N}, where {ex} is an orthonormal basis in X.

Let us note that for r > s > 0 we have by Proposition 2.5 (ii) Kz(r) — Kz(s) <
KZT(T)(T — s), hence Ky is Lipschitz.

Property (iii) in Proposition 2.5 is crucial for the extension of the vector stop and play
to the space of continuous functions. We therefore introduce the following terminology.

Definition 2.6. A convex closed set Z C X 1is called a recession set if 0 € Int Z
and the complementary function Kz satisfies (2.6).

Indeed, every convex closed set Z C X with 0 € Int Z is a recession set if dim X <
oo. This is not true for infinitely dimensional spaces, but the system of recession sets
still contains for instance all sets of the form Z = C + Zg, where C is a cone and Zp
is bounded, 0 € Int Zg.

Definition 2.7. Let A, B C X be two closed subsets of X. The Hausdorff distance
H(A,B) of A and B in X is defined by the expression

H(A, B) : = max {sup{dist(y, A);y € B},sup{dist(x, B);z € A}}.

The complementary function depends continuously on the convex set Z with respect
to the Hausdorff distance.
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Lemma 2.8. Let Z,Z be convex closed subsets of X such that B,,(0) C Z and
H(Z,Z) =: & < m. Then

() Bm -(0)C 7,
(ii) Cz=0C5,
(iii) |Kz(r)—Kz(r)|<e Vr=0.

Proof. (i) Assume that for some = € B,,_.(0) we have dist(z, Z) = |Pz|x > 0,
where P,(Q are the projections associated to Z by (2.3). Using Lemma 2.2(iv) for
a= ﬁ we obtain dist(z+aPz, Z) = |P(z4+aPz)|x = (14+a)|Pz|x = e+|Px|x > ¢
and z + aPx € B,,(0) C Z, which is a contradiction.

(i) It suffices to prove Cy C Z. Let x € Cyz be given For every n C N there exists
3, € Z such that |Z, —nx|x < + <. This yields —zn —zeZ.

(iii) Using (ii) we denote by C the recession cone C; = C;. Let Pr,Qc¢ be the
projections associated to C' by (2.3).

For an arbitrary § > 0 we find &5 € Z N B,(0) such that dist(Zs,C) = |Pois|x >
K;(r)—0. Put x5 := Q%5 € Z. We have by hypothesis ¢ > dist(Zs, Z) = |PZs|x =
|zs — Zs|x and |zs|x < |Zs|x < r as a consequence of Lemma 2.2 (i) for z = 0. From
Lemma 2.2 (ii) it follows |Poxs — PoZs|x < |xs — Z5|x < e and we conclude

(27) Kz(’l“) Z diSt($57C) = |PC{E5|X Z Kz(?“) -0 —e.

We similarly prove the counterpart to (2.7), namely K;(r) > Kz(r) —§ — . Letting o
tend to 0 we obtain the assertion. OJ

Lemma 2.9. Let the hypotheses of Lemma 2.8 hold and let P, (@), P.Q be as above.
Then for all x,y € X we have

(28)  max{|Pz— Pylx,|1Qz — Qylx } < |z —ylx + [ellalx +Iylx)] "

Proof. Let z € Z,2 € Z be such that |Qz — 2|x < &,|Qy — z|x < e. The
inequalities <P:U,Q:U—z> <Py,Qy z> 0 entail <P:U Py, Qx — Qy> <Pz z—
@y> + <Py, zZ— Qx>7 hence

|Pz — Py% < (Px— Py, —y) +(|Px|x + |Py|x)
1Qz — Qyl% < {(Qx — Qy,z —y) + &(|Pz|x + |Py|x)

and (2.8) follows. O
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Another useful concept in applications (see Sect.Il.1) is the Minkowski functional My
(also called gauge, cf. Rockafellar (1970)) associated to a convex closed set Z with
0 € Int Z by the formula

1
(2.9) Mz (x) ::inf{r>0;—a:€Z}forx€X.
r

The proof of the following properties of the Minkowski functional is left to the reader.

Exercise 2.10. Prove that
(i) Mz(rz) =rMz(x) Vr >0, VrelX;
(i) Mz(x+y) < Mz(z)+ Mz(y) Vx,ye X;
(iii) Let My denote the subdifferential of M. Then (w,z) = My(z) for all z € X
and w € OMz(x);
(iv) Cz ={z € X; Mz(x) =0}, Z ={z € X; Mz(z) < 1}
(v) Mz isanorm in X if and only if Z = —Z and Cz = {0};
(vi) The space X endowed with the norm My is a Banach space if and only if Z is
bounded;
(vii) The space X endowed with the norm My is a Hilbert space if and only if there
exists a bounded linear selfadjoint strictly positive operator A : X — X such that
Z ={z € X;(Az,z) < 1}.

TANGENT AND NORMAL CONES

A natural generalization of normal vectors and tangent hyperplanes which in general
are not uniquely determined, is the concept of normal cone Nz(x) and tangent cone

T7(x) to a convex closed set Z C X at a point x € Z. They are defined by the formula

(2.10) {NZ(:C) ={yeX;(yr—2)=20 VzeZ},

Tz(z) :={w € X;{w,y) <0 Vye Nz(z)}.

It is easy to check for each x € Z using Lemma 2.2 that every element u € X can
be decomposed in a unique way into the sum v = v + w of the normal component
v € Nz(z) and the tangential component w € Tz(z) such that (v, w) = 0.

For x € IntZ we obviously have Nz(z) = {0},Tz(z) = X. One might expect
that for € 0Z the normal cone should contain nonzero elements. The example
Z :={z € X;|{z,ex)| < £ Vk € N}, where {e;} is an orthonormal basis, shows that
this conjecture is false, since 0 € 0Z and Nz(0) = {0}. In regular cases this cannot
happen.

Proposition 2.11. Let Int Z # (). Then for every x € 0Z we have Nz(z)\{0} # 0.
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Proof. Let {z,;n € N} € X\ Z be a sequence such that lim |z, — z|x = 0.
Put e, := |Pzy|lx > 0, yn := 2, + %Pzn. We have e, < |z, — z|x and Lemma
2.2(iv) yields Qyn, = Qz,, Py, = (1 + %)Pzn By Lemma 2.2(i) we further have

|Qyn — x|§( =|Qz, — x|%( = |z, — :1:]3( - \Pzn@( = 2<Pzn,an - :1:> < |zn — x|§( and
(2.11) <Pyn,Qyn—z> >0 VzeZ, VneN.

Passing to subsequences we can assume that {Py,} converges weakly to an element &
which belongs to Nz(z) by (2.11). It remains to verify that £ # 0. We fix an arbitrary
ball Bs(xo) C Int Z. Putting z : = x¢ + %Pyn in (2.11) we obtain § < <§,w — x0>,
hence & # 0. O

It seems justified with respect to applications in plasticity (see Example 1.4) to men-

tion the important particular case of cylinders in X.

Definition 2.12. Let Y C X be a closed subspace of X, let Y be its orthogonal
complement and let Z C'Y be a convex closed set. Then the set Z := Z + Y+ is
called a cylinder in X.

Proposition 2.13. A convex closed set Z C X is a cylinder of the form Z = Z+Y+
with Z C Y if and only if Nz(z) CY forall z € Z.

Proof. The “only if’ part is trivial. To prove the converse we put Z := ZNY
and choose arbitrarily v € Z and w € Y+. From Lemma 2.2(i) we infer (P(u +
w),Q(u+ w) —u) >0, hence |P(u+ w)[k% < (P(u+ w),w). On the other hand, we
have P(u+w) € Nz(Q(u+w)) C Y, and we conclude (P(u+w),w) = |P(u+w)} = 0.
Consequently, Z + Y1 c Z and equality follows from the convexity of Z. 0

Remark 2.14. Cylinders of the form Z = Z+ YL with Z C Y are characterized
by the condition Pz € Y for all € X. Denoting by P,(Q the projections associated
to Z in Y we obtain for every © € X of the form z =u+w,u € Y, w € Y+ the
identities Pz = Pu, Qz = Qu + w.

STRICT CONVEXITY

In general, the boundary 0Z of a convex closed set Z C X can contain straight
segments. We recall two criteria for their existence. It is easy to verify that 0Z contains
a segment of length r > 0 if one of the following conditions is satisfied.

A. Internal criterion: There exist z,y € 0Z, |z —y|x =, %(IE +y) €0Z.

B. External criterion: There exists z € 0Z and a sequence {w,;n € N} C X \Tz(z)
such that |w,|x =1, lim w, =w,z 4+ rw € 0Z.
n—oo
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The terminology is justified by the fact that we always have %(m—ky) € Z for x,ye Z
and z+rw ¢ Z for z€ 0Z,w e X \Tz(z) and r > 0.
According to these criteria we introduce the functions «a, 0 : [0, 00[— [0,00[ by the

formulae

(2.12)
a(r) :=inf {|P(z +rw)|x; 2 € 0Z, w e X\ Tz(2), lw|x =1},

{(5(7’) = inf {dist (5 (z +y),02); z,y € Z, |z —y|x =2r},
where P is the projection (2.3). We naturally have 6(r) = +oo if 2r > diam Z : =
sup{|z — y|x;z,y € Z} (the diameter of Z) and 6(r) < ‘%(w—ky)—x‘x = r for
0 < r < jdiamZ. Choosing an arbitrary x € X \ Z we obtain a(r) < |P(Qz +
ﬁPw)‘X =r by Lemma 2.2.

The case dimX = 1 is trivial (then §(r) = r for r < idiamZ, a(r) = r for all
r > 0), as well as the case Int Z = (then 6(r) = a(r) =0 for r < 1 diam 2).

Proposition 2.15. Let Z C X be a convex closed set, Int Z # (). Then for all
0 < p<r we have

(i) kel

Proof. (i) Let 0 <p <7 and € >0 be given. Put v:= 2. We fix z € 9Z and
w e X\ Tz(z),|lwx =1 such that |P(z + rw)|x < a(r)+e¢e. For v:=(1—7)z+
vQ(z 4+ rw) € Z we have

a(p) < [P(z +pw)lx < |z +pw —vlx =1|P(z +rw)lx < Z(alr) +2)
hence (i) holds.
(ii) It suffices to assume §(r) < oo. We find z,y € Z and z € 0Z such that

|z —y|x = 2r and

(2.13)

‘x—}—y

€ ; r+vy
— —S¢ 2T <
5 Z’X 5 \dlst( 5 ,8Z> <o(r) +

£
5
Put & := vyx+(1—7)z,9 : = yy+(1—7)z with v as above. Then &,y € Z, |t—y|x = 2p
and 0(p <|x+y—Z‘X—’Y|x+y—Z‘X E(o(r) +e).

(iii) Let x,y,z,e be as in (ii). We fix an arbitrary @ € Nz(2),|¢|x =1 and assume
(¢, — > >0 (otherwise we interchange z and y). Put v, := 54 49 € X\TZ( )

:1:+

Then a(r) < |P(2 + glve) [y < |2+ plipve —oly < [z = 52 +[ev -
@)UJX < |z - + ¢. Letting ¢ tend to 0 we obtain (iii) from (2.13). O

:chy

x
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We see that both «,d are nondecreasing in their domains. One can derive by ele-
mentary means further interesting properties of these functions. Details are left to the

reader as an exercise.

Exercise 2.16. Let Z C X be a closed convex domain with a nonempty interior.
Prove that
(i) 6(r) < 3a(2r +26(r)) for r € [0, 5 diam Z|,
(ii) a(r) —a(p) <r—p for 0<p<r,
(iii) if dim X > 2, then for every x € Int Z, ¢ : = dist(z,0Z) and r € [0,¢] we have
2¢6(r) < r? 4 6%(r);
(iv) if §(r) > 0 for some r €]0, 3 diam Z[, then diam Z < 6+m(r2 + 0%(r)).

Hint. (i) Assume a(2r + 24(r)) < 20(r) —e for some r > 0,e > 0. Find z €
0Z, w € 0B1(0) N (X \ Tz(z)) such that |P(z + (2r + 25(7’))’[U)|X < 26(r) and put
z:=Q(z + (2r + 26(r))w). Then z € Z, |x — z|x > 2r, x4+ (r + 6(r))w € Z, hence
|z + (r+6(r))w — ££2 ‘X > &(r) which is a contradiction.

(ii) Use the Lipschitz continuity of P which follows from Lemma 2.2(ii).

(iii) Let z. € 0Z be such that |z. — z|x < ¢+ e. Find w € B;(0) such that
<w,z€ —:c> = 0 and put u4 := £E—|—\/ﬁ e x ~ trw. Then uy € B.(z) C Z,

u++u,

lup —u_|x =2r and 6(r) < |z — ‘X

(iv) Assume s := %|x Ylx > 552 )(r + 6%(r)) for some z,y € Z. Then s > r,
hence §(s) > 24(r) > 25(T) (r? +6%(r)) > r. By (iii) we have 2§(s)d(r) < r? + 62(r)
which is a contradiction.

The upper bound for diam Z in Exercise 2.16(iv) does not seem to be optimal. If Z

is a ball, then we obtain for instance diam Z = 5(1r) (r? 4+ 62(r)). We can nevertheless

conclude that Z is unbounded if and only if a(r) = 0 for all r > 0. The opposite

situation is of some interest in applications.

Definition 2.17. A convex closed set Z C X is said to be strictly convex, if a(r) > 0
for all r > 0.

Proposition 2.18. Let Z C X be a strictly convex set, dim X > 2, By, (z) C Z
for some x € Int Z. Then o~ : [0,00[— [0,00[ is locally Lipschitz in ]0,00[, and we
have lim O‘T(S) =1, a (s) > /ms forall s>0.

§—00

Proof. Proposition 2.15 (i) entails a(r) — a(p) > CY(p)( p) for all » > p >0,

hence a~! is locally Lipschitz in ]0,00[. We obviously have r > a(r) > r — diam Z,
-1
hence lim O‘T(S) = 1.

(
To conclude, notice that Exercise 2.16(iii) and Proposition
S§—00
(

2.15(iii) yield ma(r) < r? for r € [0,m] and the trivial inequality a(r) <r < —r2 for
r > m completes the proof. O
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1.3 The play and stop operators

The elementary hysteresis operators called stop and play have already been intro-
duced in Sect. 1.1. The rigorous construction presented here is slightly different from
the approach of Krasnosel’skii and Pokrovskii (1983) and Visintin (1987). We admit
the infinitely dimensional case and we start with nonsmooth input functions. More
precisely, we define the inputs and outputs in the space C([0,T]; X) N BV(0,T;X)
of continuous functions of bounded variation with values in a Hilbert space X. We
further prove that the play and stop operators can be extended to continuous (but not
necessarily bounded) operators from C([0,7]; X) to C([0,T]; X) and that they depend
continuously on the characteristic Z. The play operator has an interesting smoothen-
ing property in C([0,7T]; X), namely that the total variation of the output remains
bounded. The restriction of these operators to Sobolev-type spaces W1P(0,T; X) (for
details about vector-valued absolutely continuous functions see Chapter V) is shown to
be continuous if 1 < p < oo and discontinuous for p = +00. We consider also the
problem of periodicity if the input is periodic and derive two energy inequalities.

The first step consists in proving the following generalization of Theorem 1.9.

Theorem 3.1. Let a real separable Hilbert space X, a convex closed set Z C X
with 0 € Z, an element zo € Z and a function u € C([0,T]; X) N BV(0,T;X) be
given. Then there exists a unique £ € C([0,T]; X)NBV(0,T;X) and = € C([0,T]; Z)
such that

(3.1) 1) x(t)+€0) =ult) Vtelo,T),

T
(i) / (a(t) - p(t), de(®) > 0 Vi € C([0,T); 2),

where <-, > is the scalar product in X.

The integral in (3.1)(iii) is the Riemann-Stieltjes integral (see Sect. V.1). Theorem
1.9 will turn out to be the consequence of Theorem 3.1 after we prove the regularity in
Proposition 3.9.

Exercise 3.2. Prove that condition (3.1)(iii) is equivalent to

(3.2) /t (z(1) —(7),dE(T)) =0 Y € O([s,t]; Z) forall 0 < s <t <T.
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Hint. For 0<s<t<T,v e C([s,t];Z) and § €]0,min{s, T — t}[ put

xz(r) forTe€[0,s—0]Ut+9,T],

W(r) for T € [s,t],

z(s —0) + =5 (Y(s) —z(s — 8)), TE|s—6,s],
T(t+0) + BT ((t) — x(t +0)), T €t t+ 4]

ps(T) 1=

Use formulae V(1.22), V(1.23) to prove that

t+0
/<:c ), de(r)) > /t (et + ) — () / (2(r) — (s — 8),de(r))
t+5
+5/5_6<w(8)—:c(s— >d7‘+5/ t) —xz(t+9),&(T )—5(t)>d7

and pass to the limit as § — 0+.

Proof of Theorem 3.1. The uniqueness is easy. Indeed, let (z,€) and (y,n) be
two solutions of (3.1). Putting ¢ = 2(z +y) we obtain for all ¢ € [0, 7]

[ et strate - i) = - [ (€)= niryate - ) >0

and formula V(1.21) yields £ =n,z =y.
The solution will be constructed by a simple time-discretization scheme. For a fixed
n € N we define

T
(3.3) ujzzu(]—), j=0,...,n.

n

Let P,@Q be the projections defined by formula (2.3). We construct the sequences

;= Q(xi_1+u; —u_1), j=1,...,n,
(3.4) { J (] 1 J J 1), J

§ i=u;—x;, J=0,...,n

We have fj - gj,1 = P(l‘j,1 + U; — Ujfl) and Lemma 22(1) yields

(35) <£j_£j—1;xj_z> >0 VZEZ, \V/je {1,,77,}
Putting z:=2;_; and M := [\ofacbrr]u we immediately obtain from (3.5)

(3.6) Z & —&i—1lx <M
j=1
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We now define piecewise linear functions u(™, ¢ 2™ ¢ WH1([0,T]; X) by the

formula

— 55 (g — uj-a),

; )(5 fy 1)

) (g — 1)

u(”)(t) t= w1+ n(
(3.7) EM@) 1= &1 +n(E -
x(”)(t) =1+ n(

'ﬁl°F

for ¢ € [(3 LT ;2L and j=1,...,n continuously extended to t = T.

Let p, be the modulus of continuity of u defined by V(1.19). For every 7 €
}M, %[ and z € Z we have by (3.5) and Lemma (2.2)(i)

n

(M(7),2"(7) = z) > —%@j — &1, a5 — Tj1) > —%<§j — &1, uj — ujo1)
T
> —%Mu(g)ﬁj —&i—1lx
and estimate (3.6) yields
T
(3.8) / (2 (7) = p(7), dE™ (1) > M ()

for all n € N, t € [0,7] and ¢ € C([0,T]; Z).
The proof of Theorem 3.1 will be complete if we prove that

(3.9) {€):n e N} is a uniformly convergent sequence.

Indeed, in this case it suffices to use formula (3.8) and Theorem V.1.26, since the
sequence {u(™} is uniformly convergent and [\O/E;ﬁ €M < M by (3.6).

To prove (3.9) we choose arbitrarily n,¢ € N and put (1) := 3 (2™ (r) + 29 (7)).
From (3.8) we infer

T T
@10 [ (00 - €0, > - () + ) ).
hence by inequality V(1.20)

1 T T
€0 — €O < [ —u®] (Var e 4+ Vare?) 4 M (pna () + () )

The sequence {£™} is therefore fundamental in C([0,T], X), hence (3.9) holds and
Theorem 3.1 is proved. O
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Definition 3.3. Let u € C([0,T]; X)NBV(0,T; X) be a given function and let Z C
X beaconvex closed set, 0 € Z. Let (x,&) be the solution of (3.1). We define the values
P(xg,u),S(xo,u) of the play and stop operators P,S : ZxC([0,T]; X)NBV(0,T; X) —
C([0,T]; X)NBV(0,T; X), respectively, by the formula

(3.11) Plxo,u) := ¢, S(xg,u) : = .

Remark 3.4. The initially unperturbed state (“virginal state” in the terminology of
Visintin (1984)) is characterized by the choice x¢p = Qu(0) of the initial condition (3.1)
(ii). In this case we use the simplified notation

(3.12) P(u) := P(Qu(0),u),  S(u) := S(Qu(0), u).

We next study the dependence of P, S on Z in terms of the Hausdorftf distance of
sets in X (cf. Def. 2.7).

Proposition 3.5. Let u,v € C([0,T]; X)NBV(0,T; X) be given functions, let Z,Z
be given convex closed sets such that their Hausdorff distance ¢ := H(Z, Z ) is finite,
0€ ZNZ and let xg € Z, %9 € Z be given. Let P,P be the play operators corre-
sponding to Z, Z, respectively.

Put ¢ :=P(xg,u), n:=P(Fo,v),z:=u—E& y:=v—n. Then for 0 <s <t <T
we have

(3.13) €60) = (D) < I€(s) ~n(s) + 20+ [u— vloo) (Var € + Varn).

Proof. Let Q,P,Q,P bethe projections (2.3) corresponding to Z, Z, respectively.

For 7 € [s,t] put ¢(7) := Q(m(T)), o(1) := Q(y(7)). We have |¢(1) — z(7)|x < ¢,
lo(7) — y(7)|x < e and the inequalities

[ (#)— et azm) 2 0. [ (ulr) —w(m).dntr) >0

entail

[ (a1 = vl de - () > —(Vare + Varn)

[s,1] [s,1]
and the rest follows from Exercise V.1.24. O

CONTINUOUS INPUTS

Theorem 3.7 below enables us to extend the stop and play to the space C([0,T]; X).
The idea of the proof is due to A.A. Vladimirov (see Krasnosel’skii, Pokrovskii (1983)
for dim X < oo and Z bounded) and relies on the following Lemma.
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Lemma 3.6. Let B C C([0,T); X) be a compact set. Let Z C X be a recession
set (see Def. 2.6) with B,,(0) C Z and let r > 0 be given. Then there exists M > 0
such that for every uw € BNBV(0,T;X), every convex closed set Z C X such that
H(Z,Z) < % and every xg € Z N B,(0) we have

3.14 V. < M,
(3.14) Var P(xo, u)

where P is the play operator corresponding to Z.

Proof. Let Z be the system of sets Z satisfying the hypotheses of Lemma 3.6.
Every Z € = is a recession set and B (0) C Z by Lemma 2.8.
N
We find uy,...,uny € B such that B C |J {u € C([0,T]; X); |u — ug|oo < v} for
k=1
v := {5 and fix § > 0 such that max{j,, (6);k=1,...,N} <~.
We first prove that for every u € BNBV(0,T;X), Z€E, 0 € Z and 0 <s<t<T
such that |t — s| < § we have
2
(3.15) Var P(xg,u) < EK%GS(.CBQ,U)(S)I)().

[s,t]

Put € := P(zo,u), z := S(xg,u). We find £ € Cz such that |z(s) — Z|x <
Kz(|x(s)|x) and put for 7 € [s, 1]

for some ¢ € C([s,t]; X),|¢|eo < 1.
We have [(7) — 2|x < F forall 7€ [s,t], hence ¥ € C([s,t]; Z). Inequality (3.2)
and Exercise V.1.24 then entail

T eago) < [ (uts) = a- g, dg(n) = lats) ~ b — 5lu(s) - - €O,

and inequality (3.15) follows from Theorem V.1.30.
Putting R := L + 1 we obtain from (3.15)

2R
1 < K2 (|2l
(3.16) [\(){%;1"15 - 7(|7|o0)

Inequality (3.13) for v =n =¢ =0 yields [£|% < |[u(0) — z0l% + 2|u|oo [V%Fr] ¢, and
0,
from Lemma 2.8(iii) we infer
2 4R 2
2|2, < 4(Juloo +7)7 + EQ‘U/’OO (K3 (|z]o) + 5)

The set B is bounded, hence the last inequality provides an upper bound for |z|s
independent of u € B and Z € Z. Inequality (3.14) then follows from (3.16) and
property (2.6) of recession sets. O
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Lemma 3.6 immediately implies that for each v € C([0,7]; X) and z¢ € Z the value
of P(xo,u) € C([0,T]; X)NBV(0,T,X) and S(xg,u) € C([0,T]; Z) can be defined in a
unique way provided Z is a recession set (this is no restriction if dim X < 00). Indeed,
for any sequence {u,;n € N} C C([0,7]; X)NBV(0,T; X) such that nh_)rgo |u—tn|oo =0

we conclude from (3.14)

3.17 V. n) <M
( ) [O%P(l@?u )

and (3.13) yields
(3.18) | P(20, un) = P(xo, ur) 2 < |un(0) — un(0)% + 4M|un — uk]oc

for all k,n € N. The sequence {P(zo,un)} is therefore fundamental in C([0,77]; X)
and its limit is independent of the concrete choice of the sequence {u,}. We therefore

can define

(3.19) P(xo,u) 1= nler;OP(xo,un).
By Proposition V.1.18(ii) we have

(3.20) Var P(zg,u) < M,

[0,7]

hence P maps Z x C([0,7); X) into C([0,7]; X)NBV(0,T; X).

The following two continuity results are straightforward consequences of the above
considerations and the density of BV (0,7; X)NC([0,T]; X) in C([0,T]; X).

Theorem 3.7. Let the hypotheses of Lemma 3.6 be satisfied. Let =. be a system
of recession sets Z C X such that H(Z, Z) < 5 for some e < 7. Then there exists a
constant M > 0 such that for all u,v € B, Z1,Z3 € Z. and 2 € Z; N B.(0),i=1,2
we have

(321) [Pt u) = Pa5,v)lee < M(e+ |u—vlo)? + Ju = vloo + |2} — 28]x,
where Py1,Py are the plays corresponding to Zi,Zs, respectively.

Corollary 3.8. Let {un,;n € NU{0}} C C([0,T];X) be a given sequence of

functions, let {Z,;n € N U {0}} be a given sequence of recession sets such that

0

lm |u, — Uploo = 0, lim H(Z,,Z,) = 0 and let x, € Z, be given initial val-

n—oo

ues, 20 = lim 20. Put &, := Pn(2%,u,) for n € NU {0}, where P,, is the play

n—oo
corresponding to Z,. Then lim |, —&,|e0 = 0.
n—oo

Notice that the unperturbed initial values defined in Remark 3.4 satisfy the conver-
gence condition by Lemma 2.9.
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REGULARITY

One can expect that play and stop operators act in Sobolev spaces W1P(0,T; X).
Before passing to the continuity result we formulate rigorously the normality rule men-
tioned in Sect. I.1.

Proposition 3.9. Let Z C X be a convex closed set with 0 € Z, let xg € Z be
a given initial value and let w € W1P(0,T; X) be given for some p € [1,+00]. Then

€= P(xo,u),x : = S(zo,u) belong to WHP(0,T; X) and satisfy

(3.22) (i) (€@),z(t)—2)>0 ae VzeZ
(ii) <§(t),a:(t)> =0 a.e.

Proof. For arbitrary 0 < s <t < T and 7 € [s,t] put () = z(s) in (3.2).
Then Lemma V.1.25 and formulas V(1.22), V(1.25) yield

360 = €6 < [ (ulr) = ul).dem) = [ (€0~ ()it ar

< max [£(t) \X/ |u(T)|x dr,
s<TLKE
hence |£(t) — &(s)|x < 2f |u(7)|x dr for all 0 < s < t < T. This implies & €

Whr(0,T; X) and by Lemma V.1.25 we have fst <§(T),J;(T) —(7))dr > 0 for all
Y € C([s,t]; Z) and 0 < s <t < T, which is equivalent to (3.22)(i). To prove (3.22)(ii)
it suffices to put z := x(t £ h) in (3.22)(i) and let h tend to 0. O

Remarks 3.10.

(i) Formulae (3.22) admit a simple geometrical interpretation in terms of the normal
and tangential cones Nz, T introduced in (2.10). If w is absolutely continuous, then
£(t) € Nz(x(t)) and @(t) € Tz(x(t)) ae., so @ = &+ & is the (unique) orthogonal
decomposition of % into the normal and tangential component.

(ii) Putting z := S(zo,u), y := S(yo,v) for given xzg,yo € Z, u,v € WH1(0,T; X)
we immediately obtain from (3.22)(i)

(3.23) 5|2 =y < (@) —y(t),alt) —o(t))  ae.,

consequently

(3:20) o) — y(t)]x < w0 — yolx +2 / ja(r) — o()|xdr Ve [0,T].
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This immediately implies that the mapping & : Z x W11(0,T; X) — C([0,T]; X) is
Lipschitz.

Theorem 3.12 below concerns the continuity of the play and stop as mappings Z X
WLP(0,T; X) — WHP(0,T; X) for 1 < p < +oo and their continuous dependence on
Z. We first prove that the piecewise linear approximations (3.7) converge strongly in
Wi(0,T; X).

Proposition 3.11. Let the hypotheses of Proposition 3.9 be fulfilled for p =1 and

let u(™, £ 2" be defined by (3.7). Then lim |[¢(™) —¢|;; =0, where & = P(x0, )
and |- |11 is the norm in WH1(0,T; X).

Proof. Inequality (3.5) entails
(3.25) (EM ), 2™ ) >0 ae.
Put y(™ := ¢ — g .= ¢ — 2. We have by (3.22)(ii) and (3.25)
9 (0)]x < [a ()]x, [§(8)]x = [u(t)|x  ae.

The hypotheses of Theorem V.1.15 are now satisfied for v, : = ¢, v, : = 9™, g, : = |1|x,
gn 1= |u™|x (in particular, hypothesis (i) follows from (3.9)) and we conclude

lim |y(n) —yl11 =0, hence lim \gW) —¢&|11=0.
O

Theorem 3.12. Let {Zn; n € NU {0}} be a sequence of convex closed sets in X
such that 0 € () Z,, lim H(Z,,Z,) =0 and let {2} be a sequence of initial values
n=0 n—eo

such that 23 = lim z¥. Let {u,;n € NU{0}} Cc W'P(0,T;X) be a sequence such

n—oo

that lim |u,—u,|1, =0 for some p € [1,+o0[. Put &, := P, (2%, u,) for n € NU{0},

n—oo

where P, is the play corresponding to Z,. Then lim |, —&,|1,, = 0.
n—oo

Proof. Put 6, :=H(Z,, Zpn), Tpn : = up—E&,. Inequality (3.22)(i) and the argument
of the proof of Proposition 3.5 yield <xn —Z0, T, —xo> < <£L‘n — Ty, Up —uo> +n (|tn| x +
[io|x) a.e., hence |z, — Toloo — 0, € — &oloo — 0 as n — oo. For y, : =&, —z, we
further obtain from (3.22)(ii)

1Un(t)|x = |un(t)|x a.e. forall neNU{0}.

Similarly as in the proof of Proposition 3.11 we use Theorem V.1.15 to prove that
lim |§, — &]1,1 = 0. The assertion of Proposition V.1.13 for ¢, := |ty|x, vn := Un

n—oo

then completes the proof for p > 1. 0
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A counterpart to Theorem 3.12 does not hold for p = +o0o even if dimX = 1. It
suffices to consider Z = [—1,1], T = 1 and the sequence u,(t) := (1+1)t for ¢ € [0,1],
n € N with ug(t) :=t, 20 := 0. We then have

€o(t)

0 for tG[O,%],
0, &.(t):= " for n € N,
(1+L)t—1 for te]2g,1]

hence |u, — ugl1,00 — 0, [§n — &ol1,00 = 1.

We shall see in Chapter II that for dim X = 1 the operators P,S are Lipschitz
continuous in C([0,7T]; X) and in W11(0,T; X). Better continuity results will also be
obtained in Section 1.4 in the vector case provided Z has a special shape.

In general, the situation is more complicated. The following example similar to those
which occur in models of plasticity with isotropic hardening of the type (1.37) shows
that the play operator (3.12) does not necessarily map bounded sets in C([0,7]; X) into
bounded sets. The operator F' := I 4+ P thus provides an elegant example of general
interest in functional analysis such that both F and F~' = I—1P (cf. identity (1.35))
are continuous and unbounded in C([0,77]; X).

Example 3.13. Put X :=R? 7 —{(a b) € X;1>b> g(a)}, where g(a) :=
e 0 — 1, & = P(un), Tn = Up — En, Up(t) 1= COS(:W) for t € [0,2] and n € N.
Let Ty :={(a,b) € Z;b=1}, T : ={(a,b) € Z b = g(a)} denote the upper and lower
boundary of Z, respectively.

Fig. 5




36

In component form we can write x,,(t) = (%”é:))) For z,(t) € Int Z we have @,(t) =

Un(t) and for z,(t) € I'y we have ,(t) = 0 by Remark 3.10, so «,, is nonconstant
only if z,(t) € I'z. In this case 4, (t) is the tangential component of 4, (), hence,

1d
(3.26) i (t) cosh(ay,(t) +1) = _§E(COS nmt).
Put ai := an(%n—_l). There exists 7, € }%,%[ such that «a,(t) = ap for t €
[zkn_l,m}, cosnwt, = g(ag) and in |7, %[ equation (3.26) holds. After integration

we obtain

1
Sinh(ak+1 —- 1) — sinh(ak + 1) — (1 + g(ak)) — ée—ak—17

N | —

hence ag41 > ay for all k and lim ap = +o0o. We therefore have lim «,, (2 — %) =

k—o0 n— oo

lim a, = +oo and the sequence {z,; n € N} is unbounded in C([0,2]; X).

n—oo

PERIODIC INPUTS

An interesting particular case arises if the input function w is periodic. We denote
by WLl the space of absolutely continuous w-periodic functions v : R! — X, i.e.
such that u(t +w) = u(t) for all ¢+ € R!, endowed with the norm of W1(0,w; X).
Example 3.13 above shows that the outputs P(u),S(u) are not necessarily periodic.
We nevertheless have the following asymptotic periodicity result.

Theorem 3.14. Let u € W1 be given, let Z C X be a convex closed set with
0€IntZ andlet xg € Z be given. Assume that the trajectory {z(t); t € [0,+o0[} C
Z of x = 8(wg,u) is precompact. Then there exists x* € W1 such that

lim |z(t) —z*(t)|]x = 0.

t—o0

Proof. We denote as usual £ := P(xg,u). We have <§(t),:c(t) —z(t+w)) >0,
<§(t +w),z(t+w) —z(t)) =0 ae., hence &|z(t+w)—z(t)|% <0.

Put r:= tll)rglo |z(t +w) — x(t)|x. By hypothesis, there exists Z € Z and a sequence
{n;; j € N} C N such that 31520 |z(n;w) — Z|x = 0. Put

(3.27) () @;t)

(i) 2"

z(t+njw) for ¢t>0,
= S(z,u).

Then (i;(t) —i*(t),z;(t) —2*(t)) <0 a.e., hence

(3.28) |z (t) — 2" ()| x < |z(njw) — Z|x.
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We therefore have for all ¢ >0

lz*(t +w) —2"(t)|x = glggo lz(t + njw +w) — z(t +njw)|x =7

For &*(t) := u(t) — 2*(¢) this yields <gf* t+w) — gf*( ) (t +w) —z*(t)) = 0, ae.,

consequently <§*(t +w),x*(t +w) (t)) = <§* x*( (4w > = 0 a.e. We
now obtain from (3.27)(ii), (3.22)(i) <§*( ), " (t+w) —z> > 0, <§ t+w),z*(t)—2) >
for all z € Z. As in the proof of Proposition 3.9 we conclude <£* , T (t + w)> =

<£*(t +w),&*(t)) = 0, hence by (3.22)(ii)
75 () — 2"t +w)| % = (1) - €t +w), i () — 3" (t+w)) =0 ae.

For all ¢t > 0 the last identity entails z*(t +w) — z*(t) = 2*(w) — Z, and in particular
|x*(nw) — Z|x = nr. The trajectory of z* is bounded due to the inequality (3.28),
hence r = 0. We therefore have z* € W!'l. Inequality (3.28) then yields

lz(t) — 2™ (t)|x < |z(njw) —Z|x for t>n,w,

hence the assertion of Theorem 3.14 holds. O

ENERGY INEQUALITIES

The natural definition in Exercise 1.10 of the potential energy associated to the
play and stop has the form Up(t) := 1| P(wo,u)(t)%, Us(t) : = 3| S(zo,u)(t)|%, re-
spectively. We then have for all uw € W(0,7; X) and almost all ¢ €]0, T

(3.29) { (5 Pxo,u)(t),u(t)) — Up(t) >0,

(i(t). S(o, w)(1)) — Us(#) > 0.

The left-hand sides of these inequalities express the rate of dissipation. It can be in
some cases computed explicitly.

Example 3.15. (von Mises yield condition, see Example 1.4). Let Y C X be a

closed subspace of X and let Z be the infinite cylinder Z :=(B.(0)NY) + Y+ of
radius 7 > 0. In both cases in (3.29), the dissipation rate ¢(¢) is given by the formula

(3:30) i) = (5 Plao,u)(), S(o, u)(1)) = r| 2 Plao,u)()] .

as a special case of Lemma 4.12 below.
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Hysteresis operators arising from variational inequalities have an interesting feature

with important consequences, namely that they admit higher order energy inequalities.

This property is obvious for linear constitutive operators and very nontrivial for non-

linear operators, like the stop or play. We shall put much emphasis on this fact in
the following chapters in connection with hyperbolic equations on one hand and with
the geometry of constitutive laws on the other hand. The first general result in this

direction is the following.

Theorem 3.16. Let u € W1>°(0,T; X) be given such that @ € WH1(0,T; X). For

a convex closed Z C X with 0 € Z and for some xy € Z put x(t) := S(xo,u)(t),

Us(t) : = %]@(t)|% for a.e. t €]0,T[. Then we have

¢
(3.31) Ua(t) — Us(s) < / (a(r),a(r))dr
for almost all 0 < s <t <T.

Proof. By (3.22)(i) we have for almost all 7 €]0,T[ and ¢ €]0,T — 7|

<a;(7-) —u(7),z(r) — x(7 + 5)> <0, <x(7' +0)—u(r+9),z(r+9) — :E(T)> <0,

hence

2dt|:c(7+5) o(7) % < {@(r46) — (1), w(t + 6) — u(7)).
We fix 0 <s <t <T such that by Proposition V.1.22 we have
x(t+0) — x(t) x(s+06) — x(s)

B A
Then
(3.32) Us(t) — Us(s hmsup/< T+5 ) (T+5§_um>d7-
6—0+

To prove that inequalities (3.31), (3.32) are equivalent, we use Proposition V.1.13 for

an arbitrary sequence ¢, | O+ and p =1. We put
1
U (T) 1= 5—2<x(7' + ) — (1), 4(r + 6p) — u(T)>
Vo(T) 1= <:i:(7'),il(7')>,
1 T+6n
() i=lilows- [ (o) xdo

On
9o(7) = [&]oo|i(T)]x

We have indeed |g,(7) — go(7)] < 5+ fT+6" |90(0) — go(7)|do, hence the hypotheses of
Proposition V.1.13 are satisfied as a consequence of Proposition V.1.14. Note that by

(3.22)(ii) we have |#(7)|x < |4(7)|x < const. for a.e. 7 €]0,T7.

O
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I.4 Special characteristics

According to Theorem 3.7 in the previous section, the play and stop are %-Hélder
continuous on compact sets in C([0,7]; X). Krasnosel’skii and Pokrovskii (1983) al-
ready pointed out that these operators have better continuity properties for special
characteristics Z. In particular, they are uniformly continuous if Z is a strictly con-
vex cylinder and Lipschitz if Z is a polyhedron. We present here elementary proofs
of these results and prove that the play transforms uniformly convergent sequences in
C([0,T]; X) into strictly convergent sequences in C([0,7]; X) N BV (0,T; X) provided
0Z is smooth (Proposition 4.11 below). The latter statement is a generalization of a
result of Visintin (1994) for dim X = 1.

For the sake of simplicity, we assume throughout this section that the initial conditions
(3.1)(ii) for the stop and play are chosen as in Remark 3.4.

CYLINDERS

In classical models of plasticity, the yield surfaces represented by the boundary 07
of the convex characteristic Z have a cylindrical shape in the sense of Definition 2.12.
This enables us to reduce the dimension of the problem.

Proposition 4.1. Let Y C X be a closed subspace of X and let Y be its
orthogonal complement. Let Z C Y be a recession set, Z = Z +Y+. Let u €
C([0,T); X),v € C([0,T);Y) be given such that u(t) —v(t) € Y for all t € [0,T]. Let
P C([0,T); X) — C([0,T]; X), P: C([0,T);Y) — C([0,T];Y) be the play operators
corresponding to Z, Z, respectively, with initial conditions from Remark 3.4. Then

P(u) = P(v).
Proof. The assertion follows immediately from the time-discrete construction and
from Remark 2.14. O
STRICTLY CONVEX CYLINDERS

The uniform continuity of the play on a strictly convex cylinder is expressed by
Theorem 4.2 below (cf. also Proposition 2.18). By a strictly convex cylinder we mean
a set Z C X which admits a representation of the form

(4.1) Z=Z+Y", where ZCY Iis strictly convex,

Y,Y ! being complementary orthogonal closed subspaces of X.
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Theorem 4.2. Let Z C X be a strictly convex cylinder of the form (4.1) and let «
be the function associated to Z by formula (2.12). Then for all u,v € C([0,T]; X) we
have

(4.2) |P(u) = P)leo <™ (Ju— 1)

Proof. It suffices to assume Y = X (by Proposition 4.1) and u,v € W11(0,T; X)
(by density). Put & :=P(u),n:=P),z:=u—§ y:=v—n, V(t) := max{|{(t) —
n(t)|x;a " (Ju — v|so)} for ¢ € [0,T]. Then V is absolutely continuous. Assume that
for some ¢ €]0,7[ we have V(t) > 0. Then

(4.3) €)= n(t)]x > o™ (Ju — vlso)

and 1€(t) — n(O = 2(E(8) — (1), £1) — n(t)) > 0.

At least one of the expressions (£(t),&(t) —n(t)), (n(t), n(t) —£(t)) must therefore be
positive. Let us choose for instance <§(t), &(t) —n(t)) > 0. This implies £(t) # 0, hence
by Remark 3.10 we have z(t) := u(t) — £(t) € 0Z and £(t) —n(t) € X \ Tz (z(t)).
From the definition of the function « it follows

a(lg(t) =n(t)lx) <P (@) +&() —n(t))Ix < |o(t)+&() —n(t) —y(t)|x = |u(t) —v(t)]x

which contradicts (4.3). We conclude V(t) <0 a.e., consequently

(4.4) [€(t) = n(t)[x < max{]€(0) —n(0)]x,a " (Ju—v]s)}

for all ¢ € [0,7] and the assertion follows from the choice of initial conditions. O

Example 4.3. If Z (or more precisely Z) is the ball Bg(0) with radius R > 0 (the
model of von Mises, cf. Examples 1.4 and 3.15), then P is globally %—Hélder continuous
by Theorem 4.2, since the function o has the form

(4.5) alr)=+/(R?+r2)—R for r>0.

To verify that the exponent % is optimal it suffices to consider the case X = R? u(t) : =
(R+R)(55)), v(t) := R($}) for some fixed R > 0,h >0 and for all ¢ >0 (see Fig.

sint sint

6). We obviously have y = v, n =0, |[u — v|e = h, 2(0) = (Ig) and |z(t)|x < R for

all t > 0. Put A:={t > 0;]z(t)|x < R} and assume A # (). Let Ja,b[C A be an
arbitrary component of A. For ¢ € A we have by (3.22) #(t) = u(t), hence
1 d? d

5 715 = 2 (i), z(t)) = [a(®)x + (2(t),i(t)) = h(R+h) > 0.



41

It follows from this last inequality and from the hypothesis |z(a)|x = R that
(i(a),z(a)) < 0, hence a > 0 and there exists ¢ > 0 such that (a(t),z(t)) < 0
for a.e. t €]a —¢,al. Inequality (3.22)(i) then yields

% (R — |z(a— o)f%) = /_ ((t), o(t))dt < /_ (alt), x(t))dt <0,

which is a contradiction. We therefore have A = () and #(¢) is the tangential component
of u(t) at the point z(t) for all ¢ > 0, i.e.

@(t) = u(t) — %@l(t),x(t»m(t) for all ¢ > 0.

cos(t+o(t))

We easily compute z in the form xz(t) = R(Sin(tﬂ)(t))

), where p is the solution of the
differential equation

o) = T cos (1) ~ 1, 0(0) =0

Fig. 6

An explicit formula for ¢ has the form o(¢) = 2arctan (, / ﬁ tanh(—vﬂ;}};}ﬂt)),
hence gg : = tlirglo o(t) = 2arctan@/ﬁ and [£(t) — n(t)|x = |z(t) — u(®)|x = (R* +
(R+ h)?> —2R(R + h) cos g(t))1/2. The optimal estimate is obtained for ¢ — oo and
equals ((R+ h)? — R2)1/2; it is therefore identical to (4.2), (4.5).

The above example provides also an illustration to Theorem 3.14. We obtain in this

case o (t) = R((2(H0).
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POLYHEDRONS

Definition 4.4. Let nq,...,n, be given unit vectors and f31,...,[3, given positive
numbers, p € N. Then the convex closed set

7 = {xeX; <:c,m'><ﬁi WE{L'--,P}}

is called a polyhedron.

The linear hull of the system {ni,...,n,} denoted by Y := Lin{nq,...,n,} is a
closed subspace of X with N :=dimY < p.

We introduce the quantities
(4.6) (i) e:= max{(w,n,-N>;w € Lin{n;,,...,niy_, }, Jw|x =1,
Lin{n;,,...,niy } = Y},

(1+s*+2es) for s>0,

1 —g2
(iii) Ly :=1,Lg4q :=VY(Lg) for k>1.
This subsection will be devoted to the proof of the following Lipschitz estimate.

Theorem 4.5. For every u,v € C([0,T]; X) we have

| P(u) = P(v)]oo < Liv|te = v]oo.

It is not known whether the constant Ly is optimal in general except for the trivial
case N = 1. The optimality for N = 2 follows from the next example.

Example 4.6 (see Fig. 7). In X =R? we choose ny := (5°7),ng := (%7 ), By =

sin 7y — sin -~y
B2 := cosy for some ~y €]F, 5[ Forall t >0 we define v(t) : = ((1)) and
v(t) + nysint for t € [2knm, (2k+ )7,
u(t) : = kE=0,1,...,
v(t) + ngsint for te [(2k+ 1)m, (2k + 2)7],
hence |u — v|e = 1.
With the notation of (4.6) we obtain € = —cos 2y, Lo = Colﬂ. In our concrete situa-
tion we have P(v)(t) = 0 and putting nq : = (zgisnj), Nig 1= (:2)21)’ E:=Pu), z:=

w—§&, 7 ={z € X; <z,ﬁ1> < (Lg — 1)sinvy, ¢ = 1,2} we prove by induction (details
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Fig. 7

are left to the reader) that z(¢) remains in ZNZ for all ¢ > 0. From Theorem 3.14 it
follows that z is asymptotically periodic with z*(t) = u(t) — (%2). The minimal upper
bound for |P(u) — P(v)|s is therefore equal to |2* — u|so = La.

Before proving Theorem 4.5 we start with three auxiliary Lemmas which are due to
V. Lovicar, see Picek (1991). Note that by Theorem 4.1 it suffices to assume X =Y.

Lemma 4.7. Let Z be a polyhedron from Definition 4.4. For z € Z put I'(z) : =

{k e {1,....p};(z,nk) = Bi}, C(z) :={w € X;w =3 apng, ap = 0}. Then
kel (z)

C(z) = Nz(z), where Nyz(z) is the normal cone (2.10).

Proof. We obviously have C(z) C Nz(z). The set C(z) is a convex closed
cone and we can associate to it the projections @, P, according to formula (2.3). Let
w € Nz(z) be arbitrary. We have by definition

Vo € C(z),

(47) <Pzw7 sz - §0> }
> Yy € Z.

(4.8) <w, z— w>

For k € T'(z) we have Q.w + ny € C(z), and (4.7) yields (P,w,n,) < 0. For k €
{1,...,p} \T'(z) we have (z,n) < Bi. In both cases we obtain z + dP,w € Z for
some sufficiently small § > 0. Putting ¢ : = z + P,w we infer from (4.8) and Lemma
2.2(iii) |P.w|% < (P.w,w) <0, hence w € C(2). O

0
0

Lemma 4.8. Let Z be as above and let u,v € W%(0,T; X) be given. For t € [0,T]
put &(t) := P(u) ), n(t) := P)(t), x(t) : = u(t) — (), y(t) : = v(t) —n(t), g(t) : =
£(t) —n(t), G(t) :=|g(t)|x. Then for every j € I'(z(t)) we have (nj,g(t)) < |u(t) —
v(t)|x and for every i € T'(y(t)) we have (n;,g(t)) > —|u(t) — v(t)|x.

Proof. For j € T'(z(t)) we have n; € Nz(x(t)), hence (nj,g(t)) < (n;,u(t) —
v(t)) < |u(t) — v(t)|x and similarly for i € T'(y(t)). O
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Lemma 4.9. Assume that under the hypotheses of Lemma 4.8 the derivatives
£(t),n(t) exist for some t €]0,T[ and that G(t) > 0, G(t) > 0. Then there exists either
j € D(x(t)) such that {nj,g(t)) >0 or i€ T'(y(t)) such that {n; g(t)) <O0.

Proof. By hypothesis we have £G?(t) = 2<§(t) —0(t),&(t) — n(t)) > 0, hence

either (£(1),g(t)) > 0 or (i(t),g(t)) < 0. We have £(t) € Nz(x(t)),n(t) € Nz(y(t))
and it suffices to use Lemma 4.7. O

We now pass to the proof of Theorem 4.5.

Proof of Theorem 4.5. We may assume that u,v € WH1(0,7;X), X =Y. Let
. X — Lin{n,,,...,n;, } denote the
orthogonal projection of X onto Lin{n;,,...,n; }. We introduce a Lyapunov function
V : X — R! by the formula

r > |u— v| be arbitrarily chosen and let P;,

,,,,,

(4.9) V(z) 1= max{Lyr?, Lir® — |Py, _g.xlk + |2l%, |o[%}

where the maximum is taken over all £k =1,..., N —1 and over all linearly independent
systems {n;,,...,n; } C {n1,...,n,}. Let us note that each of the functions z —
Lir? — Py, a.xlk% + =% = Lir? + |(I — P;, i, )z|%, where I is the identity, is

convex, hence V' is convex. In particular V' (g(t)) is absolutely continuous.
It suffices to prove

(4.10) —Vi(g(t)) <0 almost everywhere.

Indeed, assuming (4.10) we infer |g(t)|% < V(g(t)) < V(g(0)) < L r? using the fact
that |g(0)|x <.

It remains to verify inequality (4.10). Assume that for some t €]0,T[ the derivatives
£(t),n(t) exist and %V(g(t)) > 0. We necessarily have V(g(t)) > L3r?

Assume first V(g(t)) = |g(t)|% = G?*(t). Lemmas 4.8, 4.9 then entail that there
exists ¢ € I'(z(t)) UT(y(t)) such that |(ng,g(t))| < r, and the inequality V(g(t)) >
Lyr? — <ng,g(t)>2 + |g(t)|% > |g(t)|% contradicts the hypothesis.

There exists therefore k& € {1,...,N — 1} and a linearly independent system
{ni,,...,n; } C{n1,...,np} such that
(4.11) V(g(t)) = Lir?® — |Pyy o905 + 9(t)]%-

.....

The assumption %V(g(t)) > 0 yields (g(¢), (I — Pi, 4,)g(t)) > 0. We can assume
<£(t), (I —Pi,  3,)9(t)) >0 (otherwise we interchange the roles of u and v). Lemmas
4.7, 4.8 ensure the existence of some i1 € I'(x(t)) such that

(4.12) > (N1 9() > (Miyns Py i)
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This implies in particular that n,, ., ¢ Lin{n, ,...,n; }. Wefind v € Lin{n;,,...,n;,},
|lv] =1 and real numbers a,b such that

(4.13) P,

,,,,,

Put 6 := (n;,,,,v) € [—¢,&]. By definition of the projection we have

(4.14) 1Py 9] x = [(g(t),v)] = |ad + b].

,,,,,

On the other hand, inequality (4.12) yields

(415) r>a-+bd > CL|P¢1 iknik+1|%( -+ b5,

,,,,,

hence a > 0. From (4.14), (4.15) it follows a(1—6%) < r—bd—ad® < r+[0]|P;, i, 9(t)|x
and

(4.16)  |Py i 9)|% = a® + 6% +2abs = (ad +b)* + a*(1 — 6°)

1 2
w9 ()% + 15 (r+1011P:y ap9(t)x)

.....

,,,,,

.....

,,,,,

Lk—l—lr ’PZI

.....

1
9% > 12 (U(Le) = (P 9(t)lx))
> Lir? = Py, g%,

which contradicts assumption (4.11). Consequently, (4.10) holds and Theorem 4.5 is
proved. U

SMOOTH CHARACTERISTICS

We already know that the play P maps in general C([0,7]; X) into C([0,7]; X)N
BV (0,T; X). This mapping is discontinuous with respect to the strong topologies of
C([0,T]; X) and BV (0,T; X) even in the simplest case dim X = 1. This can easily be
verified by the following construction.

Example 4.10. Put X :=R', Z =[-1,1], ug(t) := 1+¢, up(t) := 1+t + Lsinnt
for n € N and t € [0,27], &, : = P(uyp), xpn 1= up —&, for n € NU{0}. The functions
u, are nondecreasing, x,(0) = 1. Proposition 3.9 yields x,(t) =1 for all n € NU {0}
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and ¢ € [0,27], hence & (t) =t, &,(t) =t+ Lsinnt for n € N, and we easily check that
lim |u, — up|eo = 0, [ygr](fn — &) =4.

n—oo

In some cases it is possible to prove the continuity of the play with respect to the
topology of C([0,T];X) N BV (0,7T;X) induced by the strict metric ds(&§,n) := | —

Moo + |V%§ [Var nl|, see Section II1.2 of Visintin (1994) for the case dim X = 1.
0 0,7

We prove this result without restriction on X only for bounded characteristics with a
smooth boundary. The problem whether Proposition 4.11 below holds for an arbitrary
convex closed characteristic Z seems to be open.

Proposition 4.11. Let Z C X be a bounded convex closed set such that 0 € IntZ,
for every x € 0Z there exists a unique outward normal n(x) and the mapping n :
dZ — 0B1(0) is continuous. Then for every sequence {u;; i € NU{0}} c C([0,T7]; X)

such that lim |u; — ug|eoc =0 we have lim Var P(u;) = Var P(up).
1—00 t—o0 [0,T] [0,T]

The reader can check in a straightforward way that the mapping n : 9Z — B1(0) is
automatically continuous provided dim X < oco. For dim X = oo this need not be true.

1/2
In the example Z : = {ac =00 wker € X; 1y > [Zzozgxi-i— Z -2z + ,%2] },

where {ex} is an orthogonal basis in X, the points z; := %[(\/1 +2—1)e; + 'yek}
belong to 9Z for every v# 0 and k € N, 2] — 0 as k — oo. The normal cone Nz(0)
obviously contains —ej, since for every = € Z we have < —e1,0— x> =21 > 0. On the
other hand, each vector v € Nz(0) must satisfy (v, —z]) > 0 Vk € N,Vy # 0, hence

() < YVEET =L )y

h 7]

and for v — 0 we obtain n(0) = —e;. Since n(z)) = \/%272(_\/1 +v2e1 + ver),
letting k — oo for a fixed v # 0 we conclude that n is discontinuous at = = 0.

Proposition 4.11 is an easy consequence of the following Lemma.
Lemma 4.12. Let the assumptions of Proposition 4.11 be satisfied. Let v : Z —
B1(0) be defined by the formula v(0) := 0, v(x) : = Mz(x) n(ﬁw) for x € Z\ {0},

where My is the Minkowski functional associated to Z by formula (2.9). Then for
every u € C([0,T]; X) we have

(4.17) Varé / dé(t)),

where £ = P(u), x = u — .
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Proof of Lemma 4.12. Let us first assume u € W11(0,7; X). Then §(t) =0 if
z(t) € Int Z, £(t) = |£(t)|x n(z(t) if x(t) € Z, hence |£(t)|x = (v(z(t)), £(t) ) ae.
and (4.17) holds.

Let now u € C([0,T]; X) be arbitrary and let {u;; i € N} ¢ WH(0,T;X) be
a sequence such that zlggo lu; — uloo = 0, and put & := P(u;),z; :=u; — &. Let

0=ty <ty <...<ty =T be an arbitrary partition of [0,7]. The mapping v
is continuous. By Lemma 3.6, Corollary 3.8 and Theorem V.1.26 we therefore have

[\O/aiy & < const., hm Var & = fo (v(z(t)),dE(t)) and

N T

3 le() —€l-a) - hmZ\@ — Gt < [ (vla). ) < Vs
hence (4.17) holds. O

Proof of Proposition 4.11. It suffices to apply formula (4.17), Lemma 3.6, Corol-
lary 3.8 and Theorem V.1.26. 0J

Remark 4.13. Formula (4.17) generalizes the energy identity (3.30) in Example
3.15, where we have v(z) = L.
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II. Scalar models for hysteresis

In applications to plasticity, scalar hysteresis effects cannot be described simply by
putting N =1 in the definition of the space T of symmetric N x N tensors in Chapter
I. The hypothesis I(1.11) of volume invariance would exclude any plasticity effects, since
for N =1 we have T = Tqjae = R'. One has to proceed in the following way.

Let us consider for instance the elastoplastic models £ — R, £ | R as in Example 1.1.8,
with characteristics Z of von Mises type, namely

(01) Z = (Br(o) N Tdev) + r]I‘diagw

where B,(0) is the ball in T centered at 0 with radius r > 0. We further assume
that the elastic element is isotropic with a matrix A given by formula I(1.6). Then the
inverse matrix A~! has the form

1 A

0.2 Y iy S—
(02) 24 203\ + 2p)

The constitutive law is governed by the variational inequalities 1(1.23). Let us assume
that the input is uniaxial. For the model £|R this means

(0.3) o(t) := a(t)oo,

where a : [0,7] — R! is a scalar-valued function and g € B1(0) N Tyey is a fixed
unit vector. Putting & := (P (t),00)00 in the first inequality of 1(1.23) we obtain

1
(0.4) <2—a00 — AP oP — <ap,cro>ao> >0 a.e.,
W
hence the projection &7 (t) := oP(t) — (P (t),00)00 of oP(t) satisfies
(0.5) §E<A gP(t),5"(t)) <0 ae.

A further hypothesis that the initial output value oP(0) is proportional to oy then
entails aP(t) = 0. The output oP is therefore uniaxial of the form oP(t) = b(t)oy,
where b(t) € [—r,r] is the solution of the scalar variational inequality

(0.6) (b(t) —a(t)) (b(t) —¢) <0 a.e. Vo € [—r,r].

A similar conclusion is obtained for the model £ —7R when assuming that the input
¢ has a form analogous to (0.3).

This chapter is devoted to the study of mathematical properties of scalar models
of hysteresis which are related to the variational inequality (0.6). The main feature
of these models is a particular structure of memory which has important mathematical
consequences and, last but not least, represents in itself an important tool in engineering
computations related to fatigue and damage in elastoplastic materials.
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I1.1 Scalar play and stop

The scalar play and stop are the main building blocks for a large class of hysteresis
models, such as Prandtl-Ishlinskii and Preisach models, Della Torre’s “moving” model
and various models for fatigue and damage that will be introduced later in this chapter.
This section is devoted to the investigation of analytical properties specific for the scalar
case. We obtain additional regularity results related to the total variation of both the
output and its derivative and we prove a conjecture of V. Tchernorutskii saying that
the play minimizes the total variation among all uniform approximations of a given
continuous function.

The most interesting feature of hysteresis models based on the play and stop is their
memory structure which will be described in Sect. II.2.

LIPSCHITZ CONTINUITY

We restrict ourselves to plays and stops with symmetric characteristics Z, =
[—r, 7], r> 0.
In Sect. 1.3 we already proved that the system

(1.1) (i) |z.(t)] <r Vtel0,T],

(i)  (a(t) —@r(t) (zr(t) — ) 20 ae. Vo€ [-r7],
(iii) z,(0) = zY

for a given input function v € WH1(0,T) and a given initial condition 20 € [—r, 7]

has a unique solution z, € W11(0,T). The stop and play operators S,, P, : [-r,r] X
W11(0,T) — WH(0,T) are then defined as solution operators of problem (1.1) by the

formula
(1.2) Sl u) =2, Pl u):=u—umz,.

Theorems 1.3.12 and 1.4.5 entail that the operators S,(z2,-), P-(22,-) are continuous
in W1P(0,T) for p € [1,00[ and admit a Lipschitz continuous extension to C([0,T7).

In fact, we can prove more, namely

Proposition 1.1. For z%,94% € [-r,7] and u,v € WHY(0,T) put z, := S-(2%,u),

T

yr = Sr(y2,v), & :=u— 1z, 9 := v — u,. Then we have

i N —i < 2 — g2 : () — o
() / E0(8) — 0 (8)]dE < |29 — 4] + / ja(t) — o(t)|dt,
() 16—l < max{|€.(0) — 7 (0)], [t — v]oo}.
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Before proving Proposition 1.1 we mention an auxiliary identity due to Brokate
(1989).

Lemma 1.2. Under the hypotheses of Proposition 1.1 we have for almost all t €]0,T|
(1'3) lgr(t) - nr(t)‘ + %|$r(t) - yr(t)| = (u(t) - U(t)) sign (gr(t) - nr(t))'

Proof. Put A, :={t €]0,T[; z.(t) > vy (t)}, A_ :={t €]0,T[; z-(t) < y-(t)},
Ag :={t €]0,T[; z,(t) = y,(t)}. The inequalities &, (t) (zr(t) — ) = 0, () (yr(t) —
¢) >0 ae. forall p € [—r,r] entail

(1'4) (gr(t) - nr(t)) (xT(t) - yr(t)) 20 ae.

For a.e. t € A, we therefore have &.(t) —n,.(t) > 0 and (1.3) follows. The same
argument works in A_. For a.e. ¢t € Ay we have &,.(t) = 9,(t), hence &.(t) — n,(t) =
4(t) — o(t) and we conclude that (1.3) holds. O

Proof of Proposition 1.1. Inequality (i) follows immediately from Lemma 1.2.
The proof of (ii) is an elementary one-dimensional version of the proof of Theorems
1.4.2 or 1.4.5 with a Lyapunov function V(t) : = max{|¢(¢t) — n,(¢)|?, |u — v|%,}. We
leave the details to the reader. 0J

Remark 1.3. For every 0 < s <t < T we have with the same notation as above

(1.5) [6r(8) — & (s)] < max{[u(7) —u(s)[; 7 € [s,t]}.
This follows from Proposition 1.1(ii), where we put

o(r) = {U(T) for T€]0,s] oy

u(s)  for Tels,t]’

It is particularly simple to solve Problem (1.1) if the input is monotone in an interval
[t1,t2] C [0,T]. We then have

min{r, x,(t1) + u(t) — u(t1)} for t €]tq1,ts] if uw is nondecreasing,
(1.6) x.(t) =

max{—r, x,(t1) + u(t) —u(t;)} for t €]ty,ta] if u is nonincreasing.

Identity (1.6) is obvious if w is absolutely continuous in [t1,t2]; the general case
follows from the density of Wtl(t,t5) in C([ty,1s]).

Note that formula (1.6) is sometimes used as an alternative definition of the stop
(Krasnosel’skii, Pokrovskii (1983)) for piecewise monotone functions.
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OUTPUT VARIATION

In Sections 1.3 and 1.4 we already pointed out regularization properties of the play op-
erator. The assumptions of Proposition 1.4.11 are trivially fulfilled here, hence the play
operator maps C([0,7]) continuously into BV (0,7") endowed with the strict metric.
Furthermore, formula I(4.17) is of independent interest here and reads for u € C([0, 7))
(cf. also Example 1.3.15)

(1.7) Var £, = 1/0 Ty (t)dér(t)

[0,T] r

or, in pointwise form for v € W11(0,T)

(1.8) E(0)] =~ (DG (0) ae.

where &, = PT(ZL'B,U), Ty = ST(.TB,U).

This result can be improved in the following way.

Proposition 1.4. Let v € C([0,T]), r > 0 and z2 € [—r,7| be given. Let u, be
the continuity modulus of u defined by formula V(1.19). Put &, := P.(2%,u), §, : =
inf{o > 0;u,(6) > 2r}. Then there exists an integer N < 527_ + 1 and a partition
0=ty <ty_1<...<to<T such that & is monotone in [t;,t;_1] for i =1,..., N
and constant in [to,T], |x.(t;)| =r for i=0,...,N —1 and

N
1.9 Var &, = tic1) —u(t;))| — 2N ) h
(1.9) [O%g ;m( 1) — u(ts)| r+ag, where
r+ 20 if x.(ty-1) =T,
ag = 0 .
r—z, if xp(ty—1) = —r.
Proof. Put Ay :={t € [0,T];2,.(t) = £r} and ¢ty : = max{0,sup AL} with the
convention sup ) = —oo. If ty = 0, then we put N := 0. For to > 0 assume for instance

to € A_ and put recursively tor_1 := max{0,sup(Ay N [0,t2r_2])}, tar : = max{0,
sup(A_ N[0,t25-1])} for k=1,2,... until ¢ty =0.

We first prove that &, is monotone in each interval [t;,¢;—1] and constant in [tg,T].
Choosing i odd for instance, say i = 2k — 1, we obtain |t;,t;_1[NA; = (, hence
(1) € [—r,r] for all 7 €]t;, t;—1].

Let [s,t] C]t;,t;—1| be an arbitrary subinterval and put ¢ := min{r — z.(7);7 €
[s,t]} > 0. From Exercise 1.3.2 we obtain

/ (20(7) = $(F))dE () 2 0 Vb € Cl(s, 1)y []oo < 1
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For ¢ (1) : = x,(7)+0 the last inequality yields &,.(t) < &:(s), hence &, is nonincreasing.
We similarly prove that &, is nondecreasing in [tog,tor—1] and constant in [to, 7], 0 >
Er(tan—2) — &r(tan—1) = u(tor—2) — u(tor—1) + 2r, 0 < & (top—1) — & (tor) = ultor—1) —
u(tor) — 2r. By definition of ¢, we have t,_y —t; > 9, for i =1,..., N — 1. This yields
T>ty—tn_1>(N—1)d, hence N < % + 1.

We therefore have

Var Z|u i—1) —u(t;)| —2(N = 1)r

[tn-1, to
and formula (1.9) follows easily. O
By definition of the play we always have

(1.10) & —u|loo <7

for u € C([0,T]) and &, := P.(2%,u). Proposition 1.3 says that the play operators
define a uniform approximation of w by piecewise monotone functions as r — 0+.
Tchernorutskii (1993) pointed out during the Trento Hysteresis Meeting that this ap-

proximation minimizes the total variation in the following sense.

Corollary 1.5. Let u € C([0,T]),r > 0 and 20 € [—r,r] be given and let n €
BV (0,T) be a function such that n(0) = u(0) — 22, |7 — u|s < r. Then

Proof. Let 0=ty <tn_1,<...<tyo<T be the partition defined in Proposition
1.4. Then
N N—-1
Varn > > In(tioa) =0t = Y fultior) — u(ts)| — 2(N = Dr + |n(tx—1) — n(0)].
=1 =1

We now have either z,.(tx_1) = r and n(ty_1) — n(0) = u(ty_1) — r — u(0) + 22 =

u
[6r(tn—1) =& (tn)]; or @p(ty—1) = —r and 7(0) —n(ty-1) = u(0) — a7 —u(ty—1) —r =
|€-(tn—1) — &-(tn)| and identity (1.9) completes the proof.

O

In Sect.I.3 we proved that the general Hilbert-space-valued play maps W'P into
WP for 1 < p < +oo and is continuous in W1? only if 1 < p < 4+o0o (Theorem
[.3.12). In the scalar case the play preserves more regularity: if the derivative of the
input has bounded variation, then the same holds for the output.
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Proposition 1.6. Let u € W1°°(0,T) be given such that there exists v € BV (0,T),
W = v ae For r > 0 and 22 € [-r,r] put & := P.(2%,u). Then there exists
w € BV(0,T) such that & =w a.e. and

(1.11) Var w < |v(04)| + Var v.
0,T] [0

For the proof we need two auxiliary lemmas.

Lemma 1.7. Let v : [0,T] — R! be a given function. Assume that there exists
a closed set C C [0,T] such that v(t) = 0 for t € C. Let Q be the open set

Q:=10,T\C = U Jak,bx| with lag,bi[ pairwise disjoint. Then the following two

conditions are equivalent.

(i) veBV(0,T),

(i) wv|, ,,€BV(ar,bx) VkeN and Var v < oo0.
[ak,b] — [ak,br]

If moreover one of the conditions (i), (ii) is satisfied, then

oo

(1.12) Varv = Var v
[0,T] el lak,bk]

Proof. The implication (i) = (ii) is obvious. Indeed, for each m € N we have

>ope, Var v < Var v, hence also
7 [ak,bi] [0,T]

(1.13) Var v < Varv.
k=1 [akvbk] [OvT]

Let us assume now that (ii) holds and let 0 =ty < t; < ... <tny =T be an arbitrary
partition of [0,7]. Put M := {j € {0,...,N}it; & C’}. For every j € M \ {0,N}
there exists an interval ]ay,, bx;[> t;; in the case 0 € M put ay, := 0, by, := minC' and
similarly ag, :=maxC, by, :=T if N € M. To ensure that each interval Jay,, by, [ is

counted exactly once we choose a set M’ C M such that J Jax,,br,[= U Jax;,bx,]|,
jeEM jeM’
ag; # ay, for i,j € M', i #j.
We now construct the partition 0 = so < s17 < ... < sg = T by putting
{s0,...,sx} = {tj; 5 =0,...,N} U{ag,;,bx,; j € M'}. If for some 0 < iy < iy < K
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and j € M’ we have s;, = by, si, = ag,,,, then necessarily v(s;) = 0 for all

11 < 1 < 19. We thus obtain

N
(1.14) D lo(ty) —v(t;)[ <D fo(si) —v(si)| < ) Var v
j=1 :

i=1 jearr @50
for every partition t; and the converse of (1.13) follows. Lemma 1.7 is proved. O

Lemma 1.8. Let u € Wh>(0,T) be given such that there exists v € BV (0,T),u =
v a.e. Then the right derivative 4 (t) exists and is equal to v(t+) for all t € [0,T]
and the left derivative u_(t) exists and is equal to v(t—) for all t €]0,T].

Proof. It suffices to pass to the limit as h — 04 in the formulas

(u(t + h) —u(t) = % /O (v(t +mn) —v(t+))dn + v(t+),

= S

h
(u(t) — u(t — h)) = % /O (0t — 1) — v(t—))dn + v(t—).
O
Proof of Proposition 1.6. Put C := {t € [0,7]; 0 € Conv{v(t—),v(¢t+)}}. Then

C' is closed and choosing a representative of v with minimal total variation we can
assume that

0 for t € C,
o(t) = L(v(t+) +o(t—)) for t €]0,T[\C,
v(0+) fort =0,
v(T—) fort =T.
In each component ]ag, bx| of the set Q :=10,T[\C = kﬁl]ak, bi| the function v does

not change sign. Consequently, u is strictly monotone in each interval [ag,bx] and the

value of &, can be determined from formula (1.6). For ¢ € [ag, bx] we have

() = { max{&,(ax),u(t) —r} if u increases,

min{&,.(ag),u(t) +r}  if u decreases

For each k € N there exists 7 € [ak, bx] such that

) 0 for a.e. t €lak, k|,
fT(t) = .
u(t) for a.e. t €]y, by
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Put w(t) :=v(t) for t € | |7k, br[,w(t) := 0 otherwise. Notice that for almost all
kEN
t € C we have v(t+) = v(t—) = 0 and Lemma 1.8 entails 4(t) = 0; inequality (1.5)

then yields &,.(t) =0 for a.e. t € C, hence &.(t) = w(t) a.e.

In each interval [ax,bx| we have

Var w = |v(1)| + Var v < |v(ag)| + Var v

[ak,br] Th bk ag,bi]

with v(ag) = 0 whenever ay > 0.

Consequently,
o0 (e @]
Var w < |[v(0+)] + Z Var v
1 lak,bk] 1 lak,br]
and it suffices to use Lemma 1.7. O

I1.2 Memory of the play-stop system

The concept of memory in connection to hysteresis operators is related to the fact that
the instantaneous output value may depend not only on the instantaneous input value
and the initial condition, but also on other input values in the history of the process.
For the scalar play-stop system it is possible to characterize explicitly the memory in
the form of memory sequences associated to each input and each initial configuration.
Below, we give a precise meaning to these concepts and we prove a formula (Proposition
2.5) which enables us to compute the output value from the memory sequence without
solving variational inequalities. The knowledge of the memory structure of the play-stop
system will have important consequences for Preisach-type operators in Sect. 11.3.

Already Madelung (1905) formulated axiomatic rules for the behavior of scalar hys-
teretic systems (we refer the reader to the monograph Brokate, Sprekels (to appear),
where the connection between Madelung’s rules and Preisach-type hysteresis operators
is explained in detail). It has been discovered only recently (Krasnosel’skii, Pokrovskii
(1983), Krejei (1989), (1991/a), Brokate (1990)) that the play - stop system provides
a unified approach to Preisach-type models, scalar Prandtl - Ishlinskii models and
Madelung’s rules.

We start with a superposition formula due to M. Brokate (Brokate, Sprekels (to
appear)) which has no counterpart in the vector case.
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Lemma 2.1. Let u € C([0,T]) and r,s €]0,00[ be given. For z¥ € [—r,r],3° €
[_37 S] put & 1= PT(%Q,U), Ns = IPS(ygvér)a Nr4s * = 7)7“+8(x2 + ygau) Then ns =
Nr+s-

Proof. It suffices to assume u € W11(0,T). By definition we have for almost
every t €]0,7T[ and every ¢ € [—1,1]

(2.1) () Trgs () (w(t) = nrss(t) = (r+ 5)9) >0,

The normality rule 1(3.22)(ii) here reads 75(&, —75) = 0 a.e., and (2.1)(ii) entails
(2.2) s () (u(t) = &) —re) 20 ae. Vee[-1,1].

The sum of (2.1)(iii) and (2.2) yields
(2.3) s () (u(t) = ns(t) = (r+5)p) >0 ae. Vpe[-11].

We obviously have |u — 7s]oo < |u — & loo + [&r — Ms|oo < 7+ s like in (1.10), hence
putting ¢ := m@u(t) —ns(t) = nrys(t)) in (2.1)(i) and (2.3) we obtain

(s (£) = 05(8)) (s (£) = ms(£)) <O e,

0

The choice of initial conditions ensures that 7,.,4(0) = 75(0) = u(0) — 22 — 42, hence

Ns = Nrts- ]

As an immediate consequence of Lemma 2.1 we have
Corollary 2.2. For every r,s €]0,00[, 20 € [—r,r], 22, € [29 — 5,20 + 5] and
u € C([0,T]) we have
|€r+s - €r|oo < S,

where &, 1= Pr(a:,Q,U), Erys 1= 77r+s($2+sa“)'

It is clear by definition (more precisely, by existence and uniqueness of solutions of
the variational problem (1.1)) that the evolution of the output for ¢ > ¢y is uniquely
determined by the input values for t > ¢y and the initial output value for ¢t = ty3. The
curve A :]0,00[— R : 7 — P.(22 u)(ty) thus expresses the instantaneous memory
created during the interval [0,tg]. Its structure is described below in Proposition 2.5.
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Assuming that the initial configuration {z%; r > 0} is chosen in such a way that
29, , — 2] < s for all » > 0,s > 0, we infer from Corollary 2.2 that for every u €
C([0,T]), r,s €]0,00[ and t € [0,T] we have |A!(r+s) — Xi(r)| < s.

It is therefore natural to define the configuration space

d\
(2.4) A:={NeWh>(0,00); d(T) <1 ae.}
r
of memory configurations A, and its subspaces
(2.5) Ar:={X e A; AX(r)=0 for r > R}, Ap:= U Ag.

We now introduce a more convenient notation. For A € A, v € C([0,T]) and r > 0

put

(26) pr(Au) = P, ),
where z! is given by the formula

(2.7) 20 1= Q. (u(0) — A(r))

and @, : R! — [—r,7] is the projection

(2.8) Qr(x) : = sign(z) min{r, |z|}.

For the sake of consistency put po(A, u) : = u. We immediately see that p,.(—\, —u) =
—pr(A,u) for all 7, A and u. Moreover, the operator p, : A x C([0,7]) — C([0,T]) is
Lipschitz in the following sense.

Lemma 2.3. For every u,v € C([0,T]), A, € A and r > 0 we have

(2.9) e (A, 1) = pr(pt,v) oo < max {{A(r) — u(r)], [u — v]oo .

Proof. Put & :=p.(\u), n. := p.(,v). Proposition 1.1(ii) yields
(2.10) & — 1|0 gmaX{‘ér(O)_nr(0)|v|u_v‘00}a

where &(0) = u(0) = @y (u(0) = A()), 7,(0) = v(0) — @, (4(0) — (1)) Assume for
instance u(0) — A(r) = v(0) — p(r). The function @, is nondecreasing and Q.. (z) <1

for a.e. z € RY, hence &(0) =9, (0) < u(0) —v(0), n(0) = &(0) < u(r) — A(r) and (2.9)
follows from (2.10). O
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To an arbitrary A € Ag we associate a function my : R! — [0, +o0[ by the formula
(2.11) ma(v) :=min{r > 0; |[v — A(r)| = r}.

The function r +— r — |v — A(r)| is nondecreasing. This immediately implies that
lv = A(r)| >r for r € [0,mx(v)], [v—A(r)] < r for r € [m)(v),+o0[; the function my
is increasing and left-continuous in [A(0), +oo[ and decreasing and right-continuous in
] — 00, A(0)], ma(A(0)) = 0. For A € Ag, u € C([0,T]) and ¢ € [0,T] we define the
quantity

(2.12) M(Xu,t) : = max {my(u(r)); 7 € [0,4]}.

It is clear that the function t — M (A, u,t) is nondecreasing and left-continuous in [0, 7]
for fixed A and w. The following lemma is substantial for the memory description of

stops and plays.

Lemma 2.4. Assume M(\ u,t) = my(u(t)) for some X\ € Ag,u € C([0,T]) and
t € [0,T). Then

A(r) for r>= M(\u,t),
(2.13) pr( AN u)(t) =< u(t)+r for r < M(\u,t) if wu(t) <A(0),
u(t) —r for r < M(\u,t) if wu(t) > X0).

Proof. We first prove Lemma 2.4 for u € WH1(0,7). Put & := p.(\,u) and
7= M(\u,t). By (2.6)-(2.8) we have &.(0) = A(r) for r > 7. Assume that &.(t) #
A(r) for some 7 > 7. Then there exists 7 €]0,¢[ such that

cither (i) &.(7) >0, &(1) > A(r)

or (ii) & (1) <0, & (1) < A(r).

The variational inequality (1.1) implies &.(7) = u(7) — r in the case (i) and &.(7) =
u(7) +r in the case (ii), hence r < |u(7) — A(r)|, which contradicts the definition of 7.
We therefore have &,.(t) = A(r) for all r > 7, 7 = |u(t) — &(t)].

The case 7 =0 is trivial. For 7 > 0 we have u(t) =7+ A(7) if u(t) > A(0), u(t) =
—7 + A(7) if u(t) < A(0), and for r €]0,7[ Corollary 2.2 entails

r=r 2 &) = &) = &) —u@®)| = &) —u®)] =7 -,

hence

(1) = TA) + "
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and the assertion follows.
Let now u € C([0,T]) be arbitrary and assume M (A, u,t) = my(u(t)) for some ¢.

We find a sequence {u,} C W1(0,T) such that |u, —u|le — 0 as n — oo, r[nn]lun =
0.t

I[Iolir}lu, I[%ai{ Up = I[%aicu, Up(t) = u(t). Then M (A un,t) = my(u,(t)) = mx(u(t)) and
it K K

it suffices to pass to the limit in formula (2.13) for u,, as n — oc. O

The general situation my(u(t)) < M (A, u,t) will be treated in the following way. For
ue C([0,T]), A € Ag and t € [0,T] put

{f = M\ u,t),

(2.14) ’

t := max{r € [0,t]; mx(u(7)) =7},

(2.15) {to —imi=r D=0 7
e I ORSUR

and continue recursively by putting
bokt1 = max {7 € [tor, t]; u(T) = max{u(o);o € [ta, ]} },k = (0),1,2,...,
(2.16) tor, := max {1 € [top—_1,t);u(r) = minfu(o);0 € [tar—1,t]}}, k=1,2,...,

—1)7 .
Tijy1 = ( 21) (u(tj+1) - ’U,(tj)),j = (O),1,2,.. .

until t2k+1 =1t or tgk =t.

One of the following two possibilities occurs.
A. The sequence {(t;,7;)} is infinite, u(t) = lim w(t;), lim r; = 0;
J—00 J—00

B. The sequence {(t;j,r;)} is finite, ¢ =¢,. In this case we put r; := 0 for j > n+1.

In the sequel, the sequence {(¢;,r;)} is called memory sequence of u at the point t
with respect to the initial configuration A and denoted by M Sy (u)(t).

Proposition 2.5. Let u € C([0,7]), A € Ag, r >0 and t € [0,T] be given, and let
MSy(u)(t) = {(tj,rj)} be the memory sequence (2.15),(2.16). Then we have

o1 Oou) = { A(r) for r>r,
' Prid R0 = u(ty) + (=1)r  for 1€ [rjpa,myl, 5 =(0),1,2,...

Let us make a remark before proving Proposition 2.5. Formula (2.17) shows that the
increasing sequence {u(t2r)} of local minima and decreasing sequence {u(togy1)} of
local maxima is precisely what the system {p.(\,u)(t); r > 0} keeps in memory. The
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Fig. 8

instantaneous output values are determined by these sequences and the rest of the input
history for 7 € [0,¢] \ {¢;} is irrelevant (see Fig. 8). A similar memory structure can
be observed in the vector case for the model of Mroéz (see Brokate, Dressler, Krejéi (to
appear/a)), but not for vector plays and stops in general.

Proof of Proposition 2.5. Assume for instance 7 = r1,t = t; (the other case is
analogous). For r > 0 put A (r) := py(A\,u)(t;). We have mjy (u(ty)) = M (A u,t) =
M (X u,t;) =r; and Lemma 2.4 yields

() A(r) for r>rq,
)=
' u(ty) —r for r <.

We are done if ¢t = t;; otherwise, for j =2,3,... put A\;(r) := p.(\,u)(¢;) and assume

)\(7’) fOI‘ r > T,
(2.18) Ni(r) =< ult;) + (=1)'r for 7€ [rip1,miii=1,...,5—1,
u(t;) + (=1)7r for 7€ [0,7)]

for some j > 1,t; < t. We now prove that (2.18) holds for j + 1.
Put w;(r) :=u(r +t;) for 7 € [0,T — t;]. By (2.16) we have 0 < (—1)7 (u;(7) —
uj(0)) < 2rj4q for 7 € [0,t —¢;], hence for r € [rj41,7;[ it follows from (2.18)

[u; (1) = X ()] = |r = (=1)7 (u; (1) = u; (0))[ < 7.

For r €]0,7;41[ we similarly obtain |u;(t;4+1—1%;)—X;(r)| > r, hence M(X\j,u;,t—t;) =
my, (uj (tjgy1 — tj)) =r;41. Lemma 2.4 and the semigroup property 1(1.27) then entail
Aj(7) for r>rj41,
Air1(r) =pr( N ui)(tjer —t;) = ‘
]+1( ) ( J J)( j+1 J) {U(tj+1) + (_1)]—}—17,, for r E]O,Tj+1[,

and the induction argument completes the proof. O
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Corollary 2.6. Let A € A and u € C([0,T]) be given. For t € [0,T] and r > 0
put A'(r) := p.(\,u)(t). Then for every t € [0,T] we have
(i) A* e Ap, where R = max{R, |u|s},

(ii) A(r) = A(r) for 7 = M(\ u,t),
(iif) - A"(0) = u(t),
(iv) |ZA(r)|=1 forae. r€l0,M(Au,t).

Proof. Statements (ii)-(iv) follow immediately from Proposition 2.5. To prove (i)
we just note that for r > max{R,|u|lo} we have |u(t) — A(r)| = |u(t)| < r, hence
M(X\ u,t) < max{R, |u|} for all ¢t € [0,T]. O

In Sect. 1.3 (Theorem 1.3.14) we proved that the vector play and stop are asymptoti-
cally periodic on periodic inputs. The scalar case is again much simpler. Let us denote
by C, for a given period w > 0 the space of continuous functions u : R!' — R! such
that u(t+w) = u(t) forall ¢ € R'. We immediately see that the function ¢ — my (u(t))
is w-periodic in R! and M (), u,-) defined by (2.12) is constant in [w, +o0o[. We state
explicitly the following Corollary of Proposition 2.5.

Corollary 2.7. Let u € C,, and XA € Ay be given. Then for every r >0 and t > w
we have p,(\,u)(t+ w) = pr(A, u)(t).

DIFFERENTIABILITY

Despite the regularity of the play, it is clear that the derivative ST(t) of the output
& = pr(A,u) of the play with input w € C([0,7]) and initial configuration A € Ay at
a given point t €]0,T[ need not exist even if u(t) exists. Indeed, this is not the case if
u(t) = 0, since formula (1.5) then implies &.(t) = 0. On the other hand, if @(t) exists,
then the right and left derivatives & (), &7 (t) always exist and can be computed from
the memory formula (2.17) in the following way.

Proposition 2.8. Let A\ € Ag, uw € C([0,7]) and t €]0,T[ be given such that
u(t) # 0 exists. Then there exist 01(t) > oo(t) > 0 such that

S for r=oeo(t), . = O for r > p1(t),
(2.19) S (0= {u(t) for r < go(t), &)= {u(t) for < 01(t).

Proof. It suffices to assume 4(t) > 0; otherwise we use the fact that the operator
pr is odd and pass from (A, u) to (=X, —u).
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Assume first M(X,u,t) = my(u(t)) = : 7. The assumption @(t) > 0 entails
u(t) = A7) + 7. If the set A :={7 € [0,t[; u(T) = u(t)} is nonempty, then we de-
fine ¢; := max A, ty := max {7 € [t1,t]; u(r) = min{u(o); o € [t;,t]}} similarly as in

(2.16). We put

if A=

(u(t) —ults)) HAA£0D’ o1(t) := max{r > 0; u(t) = A(r)+r}

(2.20) 00() : = {

o= 3|

and claim that (2.19) holds.
We have to consider separately several cases.

A. r>p(t)

There exists § > 0 sufficiently small such that |u(7) — A(r)| < r for all 7 € [t,t+ ],
hence M (A, u,7) < r and Lemma 2.4 yields &,.(7) = A(r) for 7 € [¢,t+ 4], in particular
EH(t) =

B. 0<r<opi(t)

We choose 6 > 0 such that 0 < u(7) — u(t) < 2r for all 7 €]t,t + 6[. We have by
hypothesis u(t) = A(o1(t)) + 01(t), hence u(r) > A(01(t)) + 01(t) and the memory
sequence M Sy (u) (1) = {({;,7;) } 51 satisfies 71 = M(X\,u,7) > 01(t), t1 €]t, 7], 7j <7

for all j > 2. By Proposition 2.6 we have &.(7) = u(ty) —r, &(t) = u(t) — r, hence
En()—€.(8) _ ulty)—u(t)

. Letting ¢ tend to 0 and using obvious inequalities w >
1

T—1 T—1
wlt)—u®) 5 w-ult) e ohtain £ (t) = ult)
C. oo(t) =7, r = 00(t).
We have m (u(r ) < 7 for all 7 € [0,t]. Proposition 2.5 implies &,.(7) = A(r) for
< t, hence £ (t) =

D. oo(t) <7,r = 00(t).

We define auxiliary functions A2(p) : = &,(t2) for o > 0,us(7) : = u(te +7) for 7 €
[0,t — ta]. For ¢ € [00(t),7] Proposition 2.5 entails Aa2(0) = u(t1) — 0 = u(t) — o, hence
lua (1) = A2 (00(t))| = |00(t) — (u(t) —u(r+12))| < 00(t) for all T € [0,t—t5]. This yields
m, (UQ(T)) < 0o(t) and using once more Proposition 2.5 and the semigroup property
we obtain &.(T + t2) = pr(Aa,u2)(7) = A2(r) with the same conclusion as in C.

E. r < 00(t),A=0,|u(r) = Moo(t))] < 00(t) for all 7€ [0,¢[.

We choose 71 € [0,t] such that u(7) > A(r)+r forall 7 € [r,t]. Put 7 : = M(\,u, )
€lr,00(t)[, 72 : = max{r € [0,t];u(T) < A(*) + 7} € [11,t[. We now fix 73 € [12,t] such
that 0 < u(t) —u(7) < 2r for all 7 €]rs,t[. For such 7 we therefore have M Sy (u)(7) =
{(t;,7;)}j>1 with #; €]me,7[, 71 €]F, 00, 7 < r for j > 2. From Proposition 2.5 it
follows &.(7) = u(ty) —r, &(t) = u(t) —r and we argue as in B for 7, — ¢ to obtain

& (8) =a(t).
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F.r<p(t),A=0,3to <t : u(ty) = A oo(t)) — 00(t).
Putting Ao(0) : = &,(to) for o > 0 and wuo(7) := u(r +to) for 7 € [0,t — to] we
apply the argument of E to ug using the semigroup property similarly as in D.

G. r <oo(t),A#0.
We argue as in F for u(7) := u(r +t2) and A2(p) : = &,(t2).

To complete the proof, it remains to consider the case my(u(t)) < M(X, u,t). The
assumption u(t) > 0 entails ¢ = toy41 for some k > 0, where {(¢;,7;)} = MSx(u)(t).
The above argument applied to ugk(7) : = (T + tor), Aak(0) : = &,(tar) gives the as-
sertion for

Tok+1 if Agp =0,
(2.21) oo(t) : = . . ;o 01(t) 1= raga,

%(u(t) — u(t2k+2)) if Agp #0
where we denote Ay :={7 € [tor,t[; u(T) = w(t)}, tops1 : = max Aoy and fopio =
max {7 € [fopt1,t]; u(r) = min{u(c);o € [tary1,t]}}. O

Corollary 2.9. Let u € WH1(0,T) and X\ € Ay be given and let L C]0,T| be
the set of Lebesgue points of u. Put L* :={t € L;u(t) # 0} and for r > 0 denote
Ly :={te L*;r € [oo(t), 01(t)]}, where 0o, 01 are as in Proposition 2.8. Then we have

(i) meas L} =0,

(ii) meas{t € L*;00(t) < 01(t)} = 0.

Proof. Put &.(t) := p.(A\u)(t) for t € [0,T] and r > 0. According to Proposition
2.8, the set L} has an empty intersection with the set of Lebesgue points of & and
& € WH1(0,T) by Proposition 1.1, hence measL’ = 0. To prove (ii) we denote
Q:={t € L*; 0o(t) < o1(t)}, Q :={t € L*; 01(t) — 00(t) = L} for n € N. We have
2, C U Ly and Q= |J Q, hence meas2 = 0. O

k: n

1 n=1

MoNoOTONICITY

The trivial inequality (1.4) will have important consequences in the next chapter,
where it enables us to use monotonicity techniques for solving partial differential equa-
tions with hysteretic constitutive operators. We prove here a less trivial complement to
inequality (1.4) which shows that this inequality is strict in a certain sense.

Proposition 2.10. Let A\, € Ag and u,v € WH1(0,T) be given such that \(0) =
u(0), u(0) = v(0). For r > 0 put & := p.(A\,u), 0y 1= pr(p,v), Tp 1= u—E&, Yp : = vV—
n.. Then the following three conditions are equivalent.
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(i) For every r >0 we have (fr(t) —0e(0)) (2, (t) — yr(£)) =0 ace.
(ii) Forevery r >0, t € [0,T] and § € [0,1] we have p, (6A+(1—6)u, Su+(1—8)v)(t) =

06 (t) + (1 = 0)n. (1)
(iii) For every t € [0,T] we have

A(r) — p(r) for r > R(t),

fr(t) - nr(t) = {)\(R(t)) _ ,U(R(t)) for r 6]07R(t)[7

where R(t) := max{M (\,u,t), M(u,v,t)}.

Remark 2.11. Assertion (iii) of Proposition 2.10 for r — 0+ says that the difference
u(t)—wv(t) depends only on the value of the nondecreasing function R(t). If in particular
both u and v are w-periodic, then u(t) —v(t) is constant for ¢ > w.

The assumption A(0) = u(0), ©(0) = v(0) is not restrictive. If A, p, u,v are arbitrar-
ily given, then putting Ao(7) : = pr-(\,u)(0), po(r) : = pr-(1,v)(0) we have p,. (A, u)(t) =
pr( Ao, w)(t), pr(p,v)(t) = pr(po,v)(t) for all » > 0 and ¢ € [0,7], so we may replace
A, e with Ao, po.

Proof of Proposition 2.10.
(i) = (ii):

Using the inequalities &, ()(z,(t)—¢) > 0, ,(t) (n:(t)—¢) =0 ae. forall ¢ € [—r,r]
we infer from (i) for every r > 0

& () (2 () = ne()) = (D) (0 (1) — 2,(1) =0 ace.,

hence
ér(t) (nr(t) — go) >0, n.(t) (mr(t) — go) >0 ae VYpel[-rrl.

For every ¢ € [0,1],7 > 0 and ¢ € [—r,r] we thus have

E (1) (02 (1) + (1= )y () = 0) 2 0, 1, (D) (02, (1) + (1= D)) —¢) 20 ae,

and in particular

(55}(15) + (1= 0)n-(8) (6, (t) + (1 = 8y, (t) — ) =0 aee.

From (1.1), (1.2), (2.6), (2.7) we directly obtain (ii).

(i) = (iii).
For r > R(t) Corollary 2.6 yields &.(t) = A(r),n.(t) = pu(r), hence (iii) holds.
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Let now r < R(t) be arbitrarily chosen and let us suppose that %fr(t), %nr(t)
exist and %(ﬁr (t) — nr(t)) # 0. Then for § €]0,1[ we obtain from (ii)

|9 e (OA+ (1= 8 du+ (1 =)o) (1) < 1.

Corollary 2.6 (iv) then entails r > M (6A + (1 — 0)u, du + (1 — d)v,t), hence |du(r) +
(1 —=0)v(T) — dA(r) — (1 = 8)u(r)| < r for all 7€ ]0,1].

By hypothesis r < R(t) there exists 7 € [0,¢] such that either |u(7) — A(r)| > r or
|v(T) — p(r)| > r. In the latter case we have for instance

r

2 [0u(T) + (1 = 8)o(T) — 6A(r) — (1 —6)pu(r)]

> [o(7) = p(r)| = dfu(r) —v(r) = A(r) + p(r)]

which is a contradiction for § sufficiently small. We therefore have %&(t} = %nr(t)
for a.e. r €]0, R(t)[ and (iii) follows.

(iii) = (i).

Let r > 0 be arbitrarily chosen. The function ¢ — R(t) is nondecreasing in [0,77].
Put A, :={t€[0,T); R(t) >r} and ¢, :=inf A, if A, #0,t, =T if A, ={. Then
for t € [0,t,] we have by (iii) &.(t) — (t) u(t) — v(t), hence xr(t) = y,(t), for
t €]t,, T[ we have &.(t) — n.(t) = A(r) — n(r), hence &.(t) = 7,(t). In both cases (i) is
fulfilled.

Proposition 2.10 is proved. 0

Another useful inequality which belongs to this subsection is due to Hilpert (1989)
and reads as follows.

Proposition 2.12. For \,u € Ag, u,v € WH1(0,T) and r > 0 put & := p.(\,u),
Ny := pr(p,v). Then we have

(222) (E0) — i (1) sign (u(t) —v(t)) > 1)~ ()] ae

Proof. Inequality (1.4) has the form (£, —n,.)(u—v — & +n,) > 0 a.e. The sign
function is nondecreasing, therefore (&, —n,)sign(u—uv) > (& —n,) sign(&, —n,.), which
is nothing but (2.22). O
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I1.3 Multiyield scalar hysteresis models

We apply here the results of the two previous sections to the analysis of more complex
hysteresis operators, namely those of Prandtl-Ishlinskii, Preisach and Della Torre. Main
emphasis is put on the structure of memory and analytical properties in the space of

continuous functions.

PRANDTL-ISHLINSKIIT OPERATORS

Rheological constructions of vector-valued Prandtl-Ishlinskii operators were intro-
duced in Sect. I.1. The distinction between operators of stop type and play type plays
a substantial role in the study of energy dissipation properties. At this stage we can

adopt the following definition which includes both concepts.

Definition 3.1. Let a constant a > 0 and a function h € BVj,.(0,00) be given,
h(0+) = a. Put

(3.1) o(r) = /07" h(s)ds for r >0.

Then the operator F, : Ag x C([0,T]) — C([0,T]) defined by the formula

(3.2) F(A u) =au —I—/ pr(A,u) dh(r), X € Ao, u € C([0,TY)),
¥ 0

where p, is the play operator (2.6), is called a Prandtl-Ishlinskii operator generated by

the function ¢ and ¢ is called the generator of the operator F,.

The Stieltjes integral in (3.2) is finite due to the assumption A € Ay and Corollary
2.6(i) which ensure that p,(A\,u) vanishes for r sufficiently large.

From inequality (1.5) it follows that the mapping t — F, (A, u)(t) is continuous.
Moreover, the operator F, is locally Lipschitz in Ay x C([0,7T]) in the following sense.

Proposition 3.2. Let ¢ satisfy the hypotheses of Definition 3.1 and let R > 0 be

given. For r > 0 put Vj(r) := ?gal}"h. Then for every A\, € A and u,v € C([0,T))

such that |u|eo, [V|co < R we have

R
33) () | FOw)=Fln0)| o < [ IN0) =) Vi) + 0+ Vi () = ol
If moreover h is nonnegative and nonincreasing, then

() |FOu) = Fn0)] o <AODN = plo +20(Ju — vl0).
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Proof. It suffices to use Lemma 2.3 and the elementary inequality | fOR f(r)dh(r)]
< fOR|f(7“)|th(7") for f € C(]0,R]). In the case of h nonincreasing we put &, :=
pr(Nw), 0y = pr(p,v), Tp = u — &y Yp := v — 1. By (2.9),(2.6),(1.2) we have |z, —
Yr|oo < min {27, [u—v|so + max{|A(r) — pu(r)|, [u—v|oo} } <IA(F) = p(r)|+2min {r, |u—
v|oo} and the assertion follows from the inequality

| FoA ) = Foo (11, 0) o0 < h(00)Ju = v]oe = 57 |2r = yrlocdh(r).
0

The Prandtl-Ishlinskii operator preserves the memory structure in the following sense.

Proposition 3.3. Let ¢ satisfy the hypotheses of Definition 3.1 with h(r) > 0 for
r >0, lim ¢(r) = 4o0. For A € Ay and v e C([0,T]) put w:= F,(\ u) and

(3.4) u(s) := — /0_01( ))\'(T) h(r)ydr  for s>0,

is the inverse function to ¢ and N = % Let t € [0,T] be arbitrarily

chosen and let MSy(u)(t) = {(tj,7;)} be the corresponding memory sequence.
Then p € Ao, MS,(w)(t) ={(t;,¢(r;)} and

where ¢

(3.5) ps(p,w)(t) = — /001( | %pr()\ u)(t) h(r)dr Vs> 0.

Proof. We first note that an equivalent formula for w(t) reads

(3.6) w(t) = — /OOO %pr()\,u)(t) h(r) dr

by Remark V.1.31.
Let t,7 be given by (2.14), i.e. u(f) — A(F) = SF, where S = sign (u(t) — A(0)) and
for every ¢ <7 we have

(3.7) /F (1+ SN (r))dr = S(u(t) — Mq) — Sq) > 0.

Lemma 2.4 yields w(t) = pu(¢(7)) + Se(7) and for ¢ < 7 we obtain from (3.4), (3.7)

T

5(w® ~ u(e(0) = (@) + [ (14 SN () hir)dr > ola),

q

hence ¢(7) = m,, (w(t)), sign (w(f) — (0)) = sign (u(f) — A(0)).
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For all 7 € [0,t] and r > 7 we have p.(A\,u)(7) = A(r) by Theorem 2.5; formula
(3.6) then entails

) = o) = | [ 2w a] < o)

consequently @(7) = M(p,w,t), the pair (,¢(F)) is the first point of MS,(w)(t) and
2ps(p,w )(B)],_ o(r) = = Zp. (A u)(f) for ae. r> 0.

Assume now that for some ¢, <t we have MS,(w)(ty) = {(¢;,¢(r;)); j < k}. For
r,s >0 and 7 € [0,t — tg] put \e(r) := pr(Aw)(t), pr(s) : = ps(p, w)(tk), uk(T) : =

u(T + tg), wi(7) 1= fw(Ak,uk)( ). By Proposition 2.5 we have p(s) = A} (¢ 1(s))
for all s > 0, hence py(s) = — [°° o1 (s) )\’( ) h(r)dr. Applying the above argument to
Uk, Wy Aoy [ 1D [O,t—tk] we obtain M S, (w)(te1) = {(t;,0(r;)); j < k+1} asa
consequence of the semigroup property of the play. A standard induction procedure
completes the proof. O

We immediately see that if ¢ is the identity ¢(r) = r, then F (A, u) = u for
all A € Ag and u € C(]0,7]). The following superposition formula is an immediate
consequence of identity (3.5).

Corollary 3.4. If ¢, are functions satisfying the hypotheses of Proposition 3.3,
then for all uw € C([0,T]) and X\ € Ag we have

{(u,f(/\w)) = w{@(k,uh
(p«/f.l (Ma«{:()‘?u)) = U,

where p is given by (3.4) and v o ¢(r) := (p(r)).

Remarks 3.5.
(i) Play and stop with threshold 7y belong to the class of Prandtl-Ishlinskii operators
for p(r) = max{0,r — o}, ¢(r) = min{r, 7o}, respectively.
(ii) Superposition and inversion formulas in Corollary 3.4 show that every group I’
with respect to superposition of generators ¢ : [0, 00[— [0, 00[ generates a group
T = {F,(0,-); p € T} of Prandtl-Ishlinskii operators C([0,T]) — C([0,T]) which
is isomorphic to I'. The choice A = 0 of trivial initial configuration corresponds
to the “virginal state”, cf. Remark 1.3.4.
(iii) The distinction between Prandtl - Ishlinskii operators of stop type and play type
can be characterized in terms of generators: a convex function ¢ generates an

operator of play type, a concave ¢ generates an operator of stop type.
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PREISACH OPERATOR

The classical model of ferromagnetism due to Preisach (1935) is based on the concept
of delayed switching element or relay with values +1 (the switch is “on”) and —1
(the switch is “off”). It can be described by an operator R, ., : {—1,1} x C([0,T]) —
BV (0,T) with input v (magnetic field) and output s (magnetization), depending on
two parameters v € R! (interaction field) and r > 0 (critical field of coercivity) and
defined formally as follows (see Fig. 9).

1 1 !
| +
Fig. 9 - [ S R
8 O-!_ v—T| v o u
| Y l
i I '
—1 0

Let RZ denote the set {(v,r) € R?; > 0}. For given parameters (v,r) € R3, input
u € C([0,T1]), initial magnetization sy € {—1,1} and time ¢ € [0,7] put

S(t) :={7 € [0,4]; |u(r) —v| =},
and 7; : = max S(t) provided S(t) # (). We then define

+1 if w(0) =>v+r,
(3.8) Ry +(s0,u)(0) := ¢ —1 if w(0) <
S0 if w(0) €lv—r,v+7],

R, - (sg,u)(0 if S(t)=10
(3.9) Ror(s0,u)(t) := {l(;(:(; —)i)) if SEt; # 0.

r

The number of switching points t € [0,7] where the value of R, ,(so,u) switches
from —1 to +1 or vice versa is obviously finite and a similar estimate as in Proposition
1.4 holds. Moreover, R, .(so,u) is right continuous in [0, 7.

In applications, it is convenient to use the following representation of the relay by
means of the system {p,; r > 0} of play operators.

Lemma 3.6. Let A € Ay and u € C([0,T]) be given. For (v,r) € RY put
sx(v,r) :=—1 if v > Xr), sa(v,7) = +1 if v < A(r). Then for every t € [0,T]
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and (v,r) € R3, v # p.(A\,u)(t) we have

+1if v <p(\u)(t),

Ry (sa(v,r),u)(t) = { 1 if v > pr(Au)(t).

For interpreting Lemma 3.6 we can use Fig. 8. At each instant ¢ € [0,7] the curve
v = pr(A\,u)(t) describes the interface in the (v,r)-plane between the region below,
where all switches R, , are on and above, where all switches are off.

Proof of Lemma 3.6. We make use of the memory representation of the play
in Theorem 2.5. Assume first my(u(t)) = M(X\u,t):=7. For r > T we have
pr(Nu)(t) = Ar) and A(r) —r < u(r) < A(r) +r for all 7 € [0,t]. Choosing
v > A(r) we thus have u(7) —v < r for all 7 € [0,¢] and sj(v,r) = —1, hence
Ry (sx(v,7),u)(r) = —1 for all 7 € [0,t]. For v < A(r) we similarly have u(r) — v >
—r and R, (sa(v,r),u)(r) = +1 for all 7€ [0,t].

The case r < 7 is analogous. Assume for instance u(t) = A\(F) +7 > A(r) +r. We
then have p,.(\,u)(t) = u(t) —r > u(r) —r for all 7 € [0,t]. For v > p,.(A\ u)(t) we
obtain v > A(r) and u(t) —v < r for all T € [0,¢], hence R, ,(sx(v,7),u)(t) = —1
similarly as above. For v < p,.(\,u)(t) we have u(t) — v > r and two cases can
occur. If S(t) = (), then w(0) —v > r and if S(¢t) # 0, then u(r¢) —v = r. In both
situations we have by definition R, ,(sx(v,7),u)(t) = +1. We proceed analogously if
u(t) = A(7) — 7. In the case my(u(t)) < M(\,u,t) we construct the memory sequence
MSx(u)(t) = {(t;,7;)} and use the above argument by induction over j with ;4
instead of ¢ and \;(r) = p.(\, u)(¢;) instead of A(r) as in the proof of Theorem 2.5.

0J

The output w(t) of the Preisach model is formally defined as an average over all

elementary switches with a given density function ¢ € L (R%) by the formula (see

Krasnosel’skii, Pokrovskii (1983), Visintin (1984), Brokate, Visintin (1989), Mayergoyz
(1991))

(3.10) w(t) 1= %//R2 Ry (sx(v,r),u) () ¥(v,7) dvdr.

To justify the integration we adopt the following hypotheses.

Assumption 3.7.
(i) The antisymmetric part vq(v,r) := 5 (¥ (v,r) — (—v,7)) of ¢ satisfies 1, €
L(RY).

(ii) The integral in (3.10) is considered in the sense of principal value.
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Using Lemma 3.6 and putting

(3.11) g(v,r) := /Ov Y(z,r)dz for (v,r)€R2

we rewrite formula (3.10) in the form
(3.12) w(t) =C +/ g(pr()\,u)(t),r) dr,
0

with C' = — [ [7° Ya(v,7) dvdr.

Notice that the integral in (3.12) is meaningful independently of Assumption 3.7, since
pr(A,u)(t) =0 for r sufficiently large and ¢(0,7) = 0 for all r > 0. Furthermore, by
(1.5) and the absolute continuity of Lebesgue’s integral the function w in (3.12) is
continuous. This justifies the following definition.

Definition 3.8. Let ¢ € L{ (R%) be given and let g be defined by (3.11). Then

the Preisach operator W : Ag x C([0,T]) — C([0,T]) generated by the function g is
defined by the formula

(3.13) WO u)(t) : = /0 oo O u)(8), ) dr
for A € Ag, u € C([0,T]) and t € [0,T].

Remark 3.9. It is clear that the Prandtl-Ishlinskii operator (3.2) with @ = 0 and
h € Wlicl (0,00) belongs to the class of Preisach operators for (v,r) = h/(r). On
the other hand, the Preisach operator can be used in elastoplasticity for modeling non-
linear counterparts to the Prandtl-Ishlinskii model of play type corresponding to the

rheological formula Y N;.|R,, where R, is the (scalar) rigid-plastic element with con-
r>0
straint Z, = [—r,r] and N, is the nonlinear elastic element with constitutive equation

e = g(o,r). The thermodynamical admissibility of the element N, is ensured by choos-
ing the potential energy

(3.14) U, = G(o,r) := og(o,r) — /OJ g(v,r) dv.

The constitutive equation of the model _ MN,|R, then has the form ¢ = W(\,0)
r>0
with the Preisach operator (3.13) for a suitably chosen distribution of initial plastic

stresses. General rheological principles of Sect. 1.1 suggest to define the potential
energy associated to the Preisach operator )4 by the integral

(3.15) UM u)(t) := /000 G (pr(\,u)(t),r) dr.

Mathematical consequences of this definition will be given in the next section.
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We require in the sequel that the following hypothesis is fulfilled.

Assumption 3.10. There exist fo,31 € Li.(0,00), B1(r) = Bo(r) = 0 a.e.,
by 1= fo Bo(r)dr < oo such that

Bi(r) = (v,r) = —Bo(r) for ae. (v,r) € R3.
For R >0 put by(R) := fOR B1(r)dr

The following continuity result is analogous to Proposition 3.2 and we leave the proof
to the reader.

Proposition 3.11. Let Assumption 3.10 be satisfied and let R > 0 be given. Then
for every A\,u € Ar and u,v € C([0,T]) such that |u|s,|v|cc < R the Preisach
operator (3.13) satisfies

R
WA 1) =W (s v)| o </0 [A(r) = ()] Br(r) dr + b1 (R)u — v]oo.

We now pass to the description of memory related to Preisach operators. We fix a
number b > by and define an auxiliary function f :R3 — R! as the solution of the
hyperbolic Cauchy problem

oz — vz = 9(v,7)
(3.16) f(0,00 =0
%(U,O) = bu,

where the “memory” variable r > 0 plays the role of “time”. We obviously have

v+Tr—0p0
(3.17) flo,r)=brv+ = / / (z,0)dz dp.

r+0

The main result is Proposition 3.14 below as a counterpart to Proposition 3.3. We

start with two lemmas.

Lemma 3.12. Let Assumption 3.10 hold and let A € Ay be given. Then the function

_9f
(3.18) ox(r) 1= B (v,7) ) for r >0

with f,g satisfying (3.17),(3.11) has the following properties.



(i) @x(0) =0,

(i) (b—bo)(ra —71) < alra) —oalr1) < (b+bi(re))(ra —r1)  for all ro > ry.

Proof. We have

)\(TQ)+T2 Q
@a(ra) —@alr1) =b(ra —r1) + / / Y(v,0)dvdo+
)\(T1)+T1 o

A(r1)— r1+g A(r2)+re— Q
/ / (v,0)dvdo+ = / / (v,0)dvdo
A(r2)—ra+o A(rz)—ra+e

and Lemma 3.12 follows from Assumption 3.10.
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O

Lemma 3.13. Let the hypotheses of Lemma 3.12 with b > by be fulfilled and let

p: [0,00[— R be defined by the formula

of

(3.19) wu(s) 1= 5

—(v,r

|y 9@ e for s >0, 7 =51 o)
Then p € A and the implication
(3.20) N(l=1 = (ea(r) =X(r)
holds for all > 0 such that X (r) exists. If moreover we assume
T rT—o
(3.21) / / Ya(v,0)dvdo =0 for r sufficiently large,
o Jo

then p € Ayp.

Proof. For an arbitrary s >0 and r = ¢, '(s) we have
() 5 = 0) 4 A0 +7 = A0) + [ (90r) + 7~ 0.0) ~ 9(\(@). 0) de,
p(s) = 5 = u(0) + BA) = 7 = X)) + [ (90N0) =7+ 0,0) ~ 9(N(@). ) do
and Assumption 3.10 entails

(3.22) 0< (b—1bo)(A(ra) + 12 — A(r1) — 1) < pu(s2) + s2 — pls1) — s1

<
< (b+b1(T2))()\(T2)+T2_)\< —7“1),

(323) 0 (b — bo)(T’Q — )\(7’2) - 7Ty + )\(7“1)) < §9 — M(Sg) — 81+ ,U(Sl)

(b + bl(T‘Q)) (7“2 — A(T’Q) — T + )\(7‘1))

NN
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for all ro > r and s; = pa(r;), 1 =1,2.
Using Lemma 3.12 we rewrite inequalities (3.22), (3.23) in the form

b —bo Alr2) = A(r1) p(s2) — p(s2)
(3.24) Ogb—{—b—l(rg)(liﬁ><liﬁ
b + b1 (T‘Q) )\(7’2) — )\(7"1)
g b— bo (1 + 9 —T1 ) ’

hence p € A and (3.20) holds.
It remains to check that pu(s) =0 for s sufficiently large provided (3.21) holds. We
ﬁnd 7 such that for r > 7 we have A(r) =0. For s > ¢,(F) and 7 = ¢, '(s) we have
fo ®a(v, 0) dvdo and the assertion follows easily. 0

We now apply Lemmas 3.12, 3.13 to the time-dependent situation. The result is
analogous to Proposition 3.3.

Proposition 3.14. Let g, f,\, be as in Lemmas 3.12, 3.13 and let u € C([0,T])
and t € [0,T] be given with memory sequence MSy(u)(t) = {(¢;,r;)}. Put w := bu+
W(A,u), where W is the Preisach operator (3.13), A'(0) := p,(\,u)(t) for o >0 and

(335)  p'(s) = L(wr)

ot / 9(\(0),0) do for s >0, r = py(s)

Then MS,(w)(t) = {(t;,oxt(r;))} and for all s >0 we have py(p, w)(t) = p'(s).

Proof. We first note that the function ¢ — gogtl(s) is continuous for each fixed
s > 0. Indeed, putting 7 := ¢! (s) for some ¢ € [0,7] we have for each 7 # ¢t by
Lemma 3.12

(b—bo) [0 (5) = 3 (5)] < [s = ar ()] = Jone (1) — oar ()| < b (r) [N (r) = A7(r)]

and it suffices to use the estimate (1.5).
Let now (¢,7) be the first point of MSy(u

)(t) and put 5 := @, (7). For all T € [0,{]
and r > 7 we have A7(r) = A(r), hence @y~ (7

) = 5. The identities

p(5) + 5 —w(r) = b(A(F) + 7 —u(r)) + /0 (9O\(F) +7 = 0,0) — 9g(\"(0), 0)) de,

(5) =5 = w(r) = bAE) =7 = u(r)) + [ (o) =7+ 0.0) = 9N (0).) de
yield § = m,(w)(t), |w(r) — pu(3)| < § for 7 € , hence (%, (7)) is the first
point of M S, (w)(t). For s > 5§ we obviously have pw ( ) = u(s) = ps(p, w)(r) for all
7 €[0,t], for s < 5 implication (3.20) applied to X!, u? entails pt(s) = ps(p, w)(t). We
now repeat the induction procedure over ¢; from the proof of Proposition 3.3. Details
are left to the reader. OJ
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Exercise 3.15. Let F,, be the Prandtl-Ishlinskii operator (3.2) with »’ € L{. (0, 00)
and let W be the Preisach operator (3.13). Let the function ¢ in (3.11) satisfy As-
sumption 3.10 and identity (3.21) and let f be given by (3.17). Let XA € Ag be given
and let p be as in Lemma 3.13. Put f(z,7) : = fo ( ,r))dv, §(z,r) 1= %—%.
Let W be the Preisach operator W (A\u) = fo (pr )\ u) )dr.

Prove the superposition formula

(3.26) Z)—" (1, bu+ WA, w)) = abu + W(A, u)

for all uw € C([0,T]).

Hint. Use Proposition 3.14, formula (3.6) and the identities

) /Ooo a;gig hs)ds = — /0“’ (%(v,m £2gv(v,r)a)g£7’)>h<%(v,r)>
L0 o]_y) = S+ Phion (2 )

v, T v, T — (v, 7
v:,\t(r)> or? Gz )+ 87"811( or ov
It can be shown that the superposition of two Preisach operators Wi oWsr is in

T,

v=At(r)

v=At(r) '

general not Preisach. Moreover, the inverse of bl +)A(A,-), where I is the identity, is
Preisach if and only if )/ is Prandtl-Ishlinskii. We do not pursue this question here;
an interested reader can find more information in Krejéi (1991/a). On the other hand,
we prove below that the conditions in Proposition 3.14 are sufficient for the continuous
invertibility of the operator bI +W(A,-) in C([0,T]).

Lemma 3.16. Let Assumption 3.10 hold and let X\ € Ag,b > by be given. For
uy,ug € C([0,T]) put w; := bu; + W(A\, u;), i =1,2. Then we have

2

Proof. We choose t € [0,T] such that for instance wuj(t) —ua2(t) = |u1 — u2|ee > 0
and put

r* o= inf{r > 0; p.(\, u1)(t) < pr(A, u2)(t)},

0 0
s* = a—i(v,r*) = a—i(v,r*)

Y

v=pr= (A,u1)(t) v=pr= (A,u2)(t)

where f is given by (3.17). For p defined by (3.19) we obtain from Proposition 3.14

of

P (py ws) (t) = == (v,77)

+/ g(pr( N uy)(t),r)dr, i=1,2.
v=px (Au;)(t) r (b )®),7)

*
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The identities

wi (t) — wa(t) = b(ur(t) — ua(t)) + /000 (9(prN,ur)(t), ) — g(pr(N u2)(t),7)) dr,

Pss (w1 (1) — per (p, wo)(t) = /OO (g(pr()\,ul)(t),r) — g(pr()\,UQ)(t),r)) dr

*

entail
pr(X, m)(t)
b(u1 — us(t -I—/ / (v,r)dvdr <
0 (A, ug)(t)
wi () — wa(t) + |[ps- (1, w1) (1) — po= (1, w2) (2]
The assertion now follows from Assumption 3.10 and inequality (2.9). O

Theorem 3.17. Let Assumption 3.10 be fulfilled and let A € Ay, b > by be given.
Then the operator bl +W(A,-) : C([0,T]) — C([0,T]) is invertible and its inverse is
Lipschitz continuous.

Theorem 3.17 will follow from Lemma 3.16 if we prove that for every w from a
dense subset of C([0,T]) there exists u € C([0,T]) such that w = bu + W(A, u).
A suitable candidate seems to be the subspace Cpn,([0,77]) C C(]0,7]) of continuous
piecewise monotone functions. We first investigate the behavior of the Preisach operator
on locally monotone inputs.

Lemma 3.18. Let Assumption 3.10 hold and let b > by be given. For \ € Ay and
veR put

‘o) b mA(z W(z—r,r)dr|dz if v = X0),
(3.27) @, (v) ::{ fA(O)[ +J ) dr] > A(0)

[ ot J D ey dr]de i v < A(0),

Then we have
(328) (b — bo)(?}g — ’Ul) < (I))\( ) @A(Ul) (b+ K(Ul,’vQ))(’UQ — ’Ul)
for all v1 < vy, where k(vy,v2) : = max{ mk(mﬁ (t)dr;i= 1,2}.

Inequality (3.28) is a straightforward consequence of Assumption 3.10. Lemma 3.19
below shows the connection to the Preisach operator W.
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Lemma 3.19. Let Assumption 3.10 hold and let A € Ag,b > by and u € C([0,T]) be
given such that u is monotone (nondecreasing or nonincreasing) in an interval [t,t+6].
Put w := bu + WA\ u), A(r) := pr(A\,u)(f) for r > 0. Then for all t € [{,{+ 6] we
have

(3.29) w(t) = w(t) + 05 (u(t)).

Proof. The semigroup property 1(1.27) entails that we are in the situation of
Lemma 2.4, i.e. putting @(7) := u(r +1) for 7 € [0,8] we have p,(\,u)(t +1) =
pr(A,0)(7), hence

A(r) for r > o(t),
pr( AN u)(t) = u(t) —r for r < o(t) if u increases,
u(t) +r for r < o(t) if u decreases,

where o(t) := mj(u(t)). This yields

o(t) (g(u(t) —rr) — g(j\(r),r)) dr if u increases,

w(t) = w(t) + b(u(t) — u(t)) + Ot @
() () ( () ()) { 09()(g(u(t)—f—?“,?“)—g(/\(r)ﬂ“)) dr if u decreases,

and (3.29) follows easily. O

We now pass to the proof of Theorem 3.17.

Proof of Theorem 3.17. Let w € Cpy,([0,7]) be monotone in each interval
[tj—1,t;] of the partition 0 = tp < t; < ... < ty = T. We construct a function
u € Cpmn([0,T]) successively by putting

u(0) := &3 (w(O) —bA(0) — /Ooog()\(r),r)dr> :

u(t) := @3 H(w(t) —w(ty)) for t €ty tj], j=0,...,N —1,

where \;(r) := py(\,u)(t;) for » > 0. From Lemma 3.19 we infer w = bu + W(A, u).
Since Cpy,([0,T]) is dense in C([0,T]), Theorem 3.17 follows from Lemma 3.16. O

The remaining part of this section is devoted to a generalization of the Preisach model
for ferromagnetism.
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THE DELLA TORRE MODEL

The model of Preisach (1935) was originally intended to describe the dependence of
the magnetization M in a ferromagnetic medium on the intensity of the magnetic field
H. The material is represented as a homogeneous mixture of dipoles with two possible
orientations +1 obeying the switching rule (3.9) and distributed with a nonnegative
density v (v,r) as in formula (3.10). We have seen that the Preisach model leads to the
constitutive equation M = W(A, H) in operator form with a given initial configuration
A€ Ap.

Della Torre (1966) proposed to include a feedback influence into the Preisach model
by assuming a modified implicit constitutive law (“moving model”)

(3.30) M =W\, H + aM)

with a real parameter «.

Under the hypotheses of Theorem 3.17 with 3y = 0 and 31 € L'(0,00),b1(0) : =
[° B1(r) dr < oo we can rewrite identity (3.30) in input-output form by introducing
an auxiliary quantity Z := H +aM. Then M =W\, Z) and H =27 —aW(\, Z).

Theorem 3.17 ensures that for a < @ the operator I — aW(J,-) is invertible
and its inverse (I —aW(A, ~))_1 is Lipschitz in C([0,T]). We conclude that (3.30) is
equivalent to

(3.31) M =W\ H),

6

where Wa (A, ) := W(A, o (I—aW(A, -))_1 is a locally Lipschitz operator in C([0,T7).

We immediately see that )V, is a rate independent operator, but it cannot be repre-
sented in general by a Preisach operator (see Brokate (1992)) except for the trivial case
where )V is Prandtl-Ishlinskii.

While Preisach operators are thermodynamically consistent due to their rheological
structure, this is not obvious for the Della Torre operator )V,. We shall see in the next
section (Corollary 4.4) that a suitable choice of potential energy U, for the constitutive
law (3.31) consists in putting

(3.32) Us(\H) i = U ()\, (I—aw(), -))‘1(H)) - g(yav(A, m))?,

where U is the Preisach potential energy (3.15).
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I1.4 Monotonicity and energy inequalities

This section is the most important with respect to applications. The energy estimates
and monotonicity relations that we derive here constitute the main tool for solving
hyperbolic equations with hysteresis operators in the next chapter. The interesting
fact that introducing hysteresis into hyperbolic equations makes the problem easier
originates in particular dissipation properties of hysteresis operators. We already noticed
in Theorem 1.3.16 that besides the rheological potential energy the stop operator admits
a second order potential energy. We shall see that in the scalar case, the dissipation of
the second order energy is related to the convexity of hysteresis loops in the input-output
diagram and we derive a lower bound for the dissipation rate which is proportional to
the cube of the input derivative. We first use Proposition 2.8 to clarify how Preisach
type operators act on absolutely continuous inputs.

Lemma 4.1. Let a € L{ (R%) be given such that the following conditions are
fulfilled.
(i) The function v +— a(v,r) is continuous for a.e. r >0,
(ii) there exist ¢ € L (RY) and B € L _(0,00) such that for a.e. r > 0 and all
v € R! we have

|a(v,7)] < e(v)Ba(r).

Let further p, be the play defined by (2. 6) For X\ € Ag,u € WHL(0,T),r > 0
and t € [0,T] put &(t) : = p,(\,u)(t) and w(t) := [~ for(t) a(v,r)dvdr. Then w €
W11(0,T) and for a.e. t€]0,T[ we have

(4.1) ift) = / Tt ale (1), r) dr.

Proof. With the notation of Corollary 2.9 put
(4.2) La(u) :={t e L; u(t) =0} U {t € L*; 0o(t) = 01(t) }.

Then meas(]0,7[\Lx(u)) = 0 and for every ¢t € Ly(u) we can pass to the limit as
0 — 0 in the identity

1 % q fr(t+5)
“(w(t+06) — —al(, dv dr +
5( w( w( / /T(t) (v,7) a( (1), )) vdr

+/ L6t +8) — &) a(en(t), ) dr
0

using Lebesgue’s Dominated Convergence Theorem (Proposition V.1.13) and estimate
(1.5). O
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In the sequel we restrict the class of Preisach operators (3.13) by requiring more
regularity. In addition to Assumption 3.10 we assume

(4.3) (i) g—f € Liz.(R3)

(ii) Y(v,r) =20 ae.,

We immediately see that under the hypothesis (4.3)(i) the Preisach operator is locally
Lipschitz with respect to the norm in W1(0,T) in the following sense.

Proposition 4.2. Let v be a function fulfilling (4.3)(i) and Assumption 3.10. For
a given R >0 put Cg := supess {g—f(v,'r’); lv| + 7 < R}. Then for every A\, s € AR
and uy,us € WH1(0,T) such that max {\ui|oo, fOT | (t)|dt; @ = 1,2} < R the outputs
w; 1= W(\;,u;), i = 1,2 of the Preisach operator (3.13) satisfy

(4.4) /0 1 (t) — i (¢)|dt < bl(R)/O |y (t) — o (t)] dt +
+ (b1 (R) + R*CR) (|A1 — Azfoo + U1 — uzls0).

Proof. Putting & := p.(\;,u;) for » > 0,i = 1,2 we obtain from Lemma 4.1

R . .
iy () — 1 (1)) < / E(6) — (1) (e (1), r) dr +
R .
4 / 20| [0 (€1 (), r) — o (E2(8).7) | dr

and the assertion follows from Proposition 1.1 and Assumption 3.10. O

THERMODYNAMICAL CONSISTENCY

We now give a rigorous proof of the thermodynamical consistency of the Preisach
model which, as it was mentioned in Remark 3.9, formally follows from the rheological
construction. Recall that the Preisach potential energy ¢/ is given by (3.15), i.e.

(4.5) U u) = /000 G(pr (N, u),r)dr,

where G(v,r) = vg(v,r) — [ g9(z,7)dz = [J 2(z,r)dz. We further introduce the
dissipation operator

(4.6) DA\ u) 1= /000 rg(pr(\, ), r) dr.
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Theorem 4.3. Let the Preisach operator W satisfy (4.3)(i),(ii) and Assumption
3.10 and let R > 0 be given. For arbitrary X\ € Ar and u € W11(0,T) such that
[u|oo < R put w:= WA\ u), U :=U(\u), D:=D(\u). Then we have

6) U > ggu?(t) vt 0.7),
(i) @ult) -UE) = [D@)] ae.

Proof. For ae. (v,r) € RZ we have by Assumption 3.10 vg(v,r) < v?p31(r),

consequently

sign(v)g(v, ) (v,r) < Bu(r)|v[Y(r, v).
Integration with respect to v of this last inequality yields %gz (v,r) < B1(r)G(v,r) a.e.,
and using Holder’s inequality

51 pr (A, u) dr / B (r dr < 2U(t)b1(R)

we obtain (i).

Formula (ii) immediately follows from Lemma 4.1 and identity (1.8). Note that for
each t € Ly(u) (cf. (4.2)) all nonzero derivatives &,(t) have the same sign independent
of r as a consequence of Proposition 2.8. O

Theorem 4.3 enables us to prove that also the Della Torre model (3.30) - (3.32) is
thermodynamically consistent.

Corollary 4.4. Let the hypotheses of Theorem 4.3 hold and assume o : = m >
0. For arbitrary 0 < o < a3, A € Ag and u € WH1(0,T) put

Wy 1= )g\}()\,u) =W ()\, (I —aw(X, -))_1(u)),
Ua i= U u) =U (A (L= a WA, ) " (w)) - %wg,

Do := D\ u) =D (M (I —aW, ) (u),

«

where U, D are defined by (4.5), (4.6). Then we have
() Ualt) > =5202(t)  Vee [0,7)
(i) e (t)u(t) — Us(t) = |Da(t)] ace.
Proof. By Theorem 3.17 the operator I —aW(\,-) is invertible and its inverse is
Lipschitz in C([0,T7]). Put zq := (I —aW(), ))_1(u) Similarly as in Remark 1.3 we
obtain from Lemma 3.16 the estimate

|2a(t) = Za(s)|

2041

t
/|u(T)|dT forall 0<s<t<T

N\

o1 — @
analogous to (1.5). We have in particular z, € W11(0,7T) and using z, as input in
the identities wo, = W(A, 2a), U = 24 — QWq, Uy = U(N, 20) — %wi, D, =D\ z,) we
obtain the assertion directly from Theorem 4.3. U
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Remark 4.5. We see that for the models of Preisach and Della Torre the dissipation
rate ¢ in formula I(1.2) is given in terms of hysteresis operators of the same kind.
For the sake of completeness we give explicit energy dissipation formulas for Prandtl-
Ishlinskii operators (3.2). We restrict ourselves to the physically natural case where ¢
is convex (operators of play type) or concave (operators of stop type).

Proposition 4.6. Let R, \,u be as in Theorem 4.3 and let h € BVi,.(0,00) be a
given nonnegative function. For r > 0 put &. := p,(\u), x, :=u — &.. Then the
following two cases are thermodynamically consistent.

A. (Operators of play type) Assume that h is nondecreasing and put

w = h(O)u+/ & dh(r), U := §h(0)u2 + 5/ ff dh(r), D := / r&. dh(r).
0 0 0
Then we have

(4.8) wtyu(t) — UE) = [D@E)|  ae.

w = h(oo)u—/ z,dh(r), U := §h(oo)u2— 5/ z2dh(r), D : = —/ r&. dh(r).
0 0 0
Then we have

(4.9) wt)a(t) — U(t) = D) ae.

Proof. Lemma 4.1 is applicable here due to the linear dependence of the operator
on the play system. The rest of the proof is a special case of Theorem 4.3. O

Remark 4.7. Notice that the convexity of ¢ is not necessary for the thermodynam-
ical consistency of the Prandtl-Ishlinskii model. From Proposition 2.8 we easily derive
the necessary and sufficient condition in the form fOR rdh(r) > 0 for operators of play

type and fOR rdh(r) < 0 for operators of stop type for every R > 0.

Thermodynamically consistent “Preisach models of stop type” correspond for instance
to operators of the form I —aW(A,:) or (I + aW(A, -))_1 with W, a satisfying the
assumptions of Corollary 4.4. The derivation of explicit energy inequalities in these
cases is left to the reader.
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MoNOoTONICITY

It is obvious that hysteresis operators are never monotone with respect to the scalar
product in L2. On the other hand, Proposition 4.8 below states that Preisach operators
are locally monotone (“piecewise monotone” in the terminology of Visintin (1994)) under

natural assumptions.

Proposition 4.8. Let the Preisach operator W satisfy (4.3)(i) and Assumption
3.10. Let b > by, R >0, X € Agr and u € WH1(0,T) be given such that |u|s < R.
Put w := bu+W(A, u). Then

(4.10) (b—bo)i?(t) < w(t)u(t) < (b+bi(R))u*(t) ae.

Proof. ByI(3.22)(ii) we have 0 < &.(t)u(t) < 42(t) and (4.10) follows from Lemma
4.1. O

We immediately check that Della Torre’s operator is locally monotone in the above
sense. Another important concept of monotonicity based on inequality (1.4) is typical
for Prandtl-Ishlinskii operators and cannot be extended to more general Preisach-type
models. In fact, as a straightforward consequence of inequality (1.4) and Lemma 4.1 we
have

Theorem 4.9. Let h : [0,00[— [0,00] be a monotone function. For uj,us €
WLY0,T), M\, o € Ag and r > 0 put 57(1) = pr(Niyug), () P= U — ﬁz), w; 1=

Folhisui) = h(O)u; + [P0 dn(r), i = 1,2, @ = w1 — ug, @ = wy — wy, & =
D 6 7, = 2® —2®. Then

ro.

(4.11) w(t)a(t) > %% / E2(t)dh(r)| a.e. if h is nondecreasing,
(4.12) w(t)a(t) > %% [h(oo)u (t) —/ 2(t) dh(r )} a.e. if h is nonincreasing.
0

The case distinction in Theorem 4.9 corresponds again to operators of play type
and stop type, respectively. We now prove that for strictly convex (strictly concave)
generators ¢ inequalities (4.11), (4.12) are “almost strict”.

Theorem 4.10. Let the hypotheses of Theorem 4.9 be fulfilled and let h be strictly
monotone (increasing or decreasing). Suppose that the identity
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@13)) [ b d = ho)@) - 2 0) + 5 [ @) - E0) )

if h increases,

@) [ o= ghieo) @) - 20) - 5 [ @) - 220) i)

if h decreases

holds. Then
(414) Ul(t) - UQ(t) = )\(1) (Ro(t)) - /\(2) (Ro(t)),
where \{(r) : = 7@(0), i=1,2 and Ro(t) : = max{M (X, u;,t); i = 1,2}.

Proof. Assumption (4.13) and inequalities (4.11), (4.12) yield respectively ei-
ther w(t)a(t) = SL[n0)a2(t) + [o° () dh(r)] or a(t)w(t) = L4 [h(co)u?(t)—
Iy~ @2(t)dh(r)] for a.e. t €]0,T[, hence

(4.15) /0 h (M () — €D @®) (D (1) — 2P (@))dh(r) =0 ae.

Let now r > 0 be arbitrarily fixed. Analogously as in Corollary 2.9 we denote by L
the set of Lebesgue points of both 1,79, and define the sets L} :={t € L; u;(t) #
0}, Lxi:={t € Lrr € [o)(t), 0" )]}, i = 1,2. For each t € L\ (L' U L:2)
such that (4.15) holds we find &(¢t) > 0 such that ééi)(t) = éri)(t),i = 1,2 for all
o €]r —e(t),r +&(t)[. Inequality (1.4) and the strict monotonicity of h then imply

(&) = €2 ®) (= (1) =P (1) =0 ae.

We thus verified that condition (i) of Proposition 2.10 is fulfilled and (4.14) follows
from Proposition 2.10 (iii) and Remark 2.11. O

Corollary 4.11. Let wuy,us be absolutely continuous w-periodic functions and let
w1, ws be as in Theorem 4.10. Assume that h is strictly monotone and

/ ’ (1 (t) — a(t)) (w1 (t) — wo(t))dt = 0.

Then wuy(t) — uz(t) = const. for all t € RL.

Proof. The assertion follows from Corollary 2.7 and Theorem 4.10, where Rg(t)
is constant in |w, co[ by definition (2.12) of M (A, u,t). O
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The Prandtl-Ishlinskii operator exhibits a two-level monotonicity on periodic func-
tions: under the hypotheses of Corollary 4.11 with Ay = A, we have

(w1 (t) — wa(t)) (ur(t) —ua(t)) 20 Vi€ [w,o0].

We formulate this result more precisely in the following way.

Proposition 4.12. Let A € Ar and a Prandtl-Ishlinskii operator F, satisfying the
hypotheses of Theorem 4.10 be given. Let u be an absolutely continuous w-periodic
function and for ¢ € R' put 9(u,c) := F,(A\u(-) +c)(w) — Fp(A,u)(w). Then for every
c € R and t € [w,00[ we have F,(\ u(-)+ c)(t) — Fp(A u)(t) = I(u,c) and putting
R := max {R,|u|s +max{|c1], |c2|}} we have for all ¢; < ¢

C2 —C1

(4.16) (i) 2¢(

(i) 2¢(

) < ¥(u,c2) — I(u, ¢1) < h(R)(cy —¢1) if h increases,

[\

Cr —C1

) = 9(u,c2) — I(u, ¢q) = h(R)(cy — ¢1) if h decreases.

\)

Proof. For ¢ € R' put u.(t) := u(t) + ¢, & = p.(\, u.). From inequality (1.4)
we obtain %|§$2 (t) — €2 (t)]* <0 ae. forall r >0 and ¢y > c;. The functions &¢
are w-periodic for ¢t > w by Corollary 2.7, hence q(r,c) := £5(t) — £2(¢) is independent
of t for t > w. By (2.6), (2.7) we have 0 < £22(0) — £5(0) < ¢2 — ¢1, hence 0 <
q(r,c2) —q(r,c1) < cg —cp for all » >0, ca > ¢1. On the other hand, by Corollary 2.2
we have £22(t) — &5 (t) > 02 - 01 —2r for r € [0, 25%] and inequalities (4.16) follow
from the identity 9(u,c) c+ [y q(r,c)dh(r). O

The Preisach operator is in general not monotone in the sense (4.11) due to the
nonlinear dependence on the play system. We nevertheless mention a weaker result.

Proposition 4.13. Let VW be a Preisach operator (3.13) satisfying (4.3) and As-
sumption 3.10. For given ul,ug € WHY(0,T) and A\, Ay € Ag put ££Z) c= pr( Ny 1),
w; 1= Wi, u;) fo @ , r)dr,i=1,2. Then for a.e. t €]0,T[ we have

(din (£) — o (1)) (ur () — ua(t)) = [° (6 (8) — €2 (1)) 2 (9(6V (1), 7) — g(€2) (8), 7)) dr.

Proof. Put x&i) D= U — 57(«) for r > 0. We have at9< (1 ) r)(x 5«1) — $1(~2)) > 0,
%g( 7(~2),7’)($7(~2) — xﬁl)) > 0 a.e. by (4.3)(ii) and (1.1)(ii). The assertion then follows
from Lemma 4.1. O
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SECOND ORDER ENERGY INEQUALITIES

The concept of second order potential energy refers to geometrical properties of hys-
teresis loops rather than to the rheological structure of concrete hysteresis operators.
We therefore derive the energy inequalities for general rate-independent operators char-
acterized by the property 1(1.28). We first represent rate-independent operators locally
by superposition operators.

Proposition 4.14. Let F : C([0,T7]) — C([0,T]) be a rate-independent operator
and let w € C([0,T]) be a function which is monotone (nonincreasing or nondecreas-
ing) in [t1,t2] C [0,T), u(t;) = wu;, @ = 1,2. Then there exists a continuous func-
tion ® : Conv{ui,us} — R such that F(v)(t) = ®(v(t)) for all t € [t1,t2] and
for every function v € C([0,T]) which is monotone in [t1,t3] and v(t) = u(t) for
t € [0,T)\t1,t2]. If moreover F maps W11(0,T) into WH1(0,T) and is locally
monotone, then ® is nondecreasing and absolutely continuous.

Proof. For u; = up we have u(t) = u(B(t)) for every t € [t1,t2] and every
nondecreasing mapping [ of [t1,ts] onto [tq, 2], hence F(u) is constant in [t1,ts]. For
uy # up put

u(s) for s€[0,t1] U [ta, T,
i(s) 1= _
uy + (8 — tl)qg_?ll for s G]tl, tg[,
t for te[0,t1] U [te, T,
at) 1=
ty+ (u(t) —uy) 2= for €]ty to,
w(s) := F(a)(s) for se0,7].
Then wu(t) = @(a(t)) and we easily check that Proposition 4.14 holds for ®(v) :=
UA)(tl—{—(U—ul)iz:le). O

Remark 4.15. The function ® in Proposition 4.14 will be called trajectory of F
along u in [t1,ts]. If moreover F' is causal (cf.I(1.29)), then the assertion of Proposition
4.14 can be strengthened in the following way. For every uw € C([0,T]) and ¢; € [0,T]
we can find a function ® : Rt — R! such that ®(u(t;)) = F(u)(t;) and if a function
v € C([0,T]) satisfies v‘[o’m = u‘[()’tl], v monotone in [t1,t; + 6] for some ¢ > 0, then
for every t € [t1,t1 + 6] we have F(v)(t) = ®(v(t)). This is the case of the trajectories

®, of the Preisach operator given in Lemmas 3.18, 3.19.

We now recall some elementary results on monotone functions.

Lemma 4.16. Let |a,b[C R! be a given interval and let h € L (a,b) be a given

loc
function. Then h is nondecreasing if and only if for every nonnegative function n €
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Wh(a,b) which vanishes outside a compact interval [a,b] Cla,b] we have
b
(4.17) / h(v) 1 (v) dv < 0.

Proof. (i) Let h be nondecreasing and let 1 be given. For an arbitrary partition

a=vy<v; <...<wvy =0>b we define a piecewise linear approximation

h(vz) — h(’l)i_l)

Vi — Vj—1

(4.18) B(U) L= h(vi_l)—}—(v—vi_l) , UV E [’Uz‘_l,’Ui], 1=1,...,N.

Inequality (4.17) holds for h and refining the partition we obtain an equibounded
sequence of nondecreasing functions which converges to h at each point of continuity,
so we may pass to the limit in (4.17).

(ii) Let (4.17) hold and let vy, v2 €]a,b[, v1 < vy be arbitrary Lebesgue points of h.
For 0 < & < min{3(vs — v1),v1 — a,b—vs} put

= for v €lvy —e,v1 + €,
() : =< —5 for ve€vy —e,vy+¢],

0 otherwise.

Then (4.17) yields 2= [V h(v)dv < L [T h(v)dv for e sufficiently small, hence

2e Jvi—e 2e Jug—e¢

h(v1) < h(ve) and the proof is complete. O
Proposition 4.17. Let |a,b[C R' be a bounded interval and let f € L°(a,b),

n € Whl(a,b) be given functions, n(v) > 0 for all v € |a,b].

(i) Assume that the function f(v) — Kv is nondecreasing for some K > 0. Then

b b
(4.19) / F0) 1 (@) dv < FB—)n(b) — flat)n(a) — K / n(v) dv,

"' (v) n®)  nla) > n(v) vided fla
(4.20) /a ) dv > F0-)  Fat) —I—K/a 72(0) dv, provided f(a+) > 0.

(ii) Assume that the function f(v)+ Kwv is nonincreasing for some K > 0. Then

b b
(4.21) / F) i () do > F(b—)n(b) — flatin(a) + K / n(v) do,

"1 (v) n®) @ " W) vided #(b
(4.22) /a ) dv < 70 Flat) K/a 72(0) dv, provided f(b—) > 0.
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Proof. Part (ii) is obtained from (i) by symmetry. It therefore suffices to assume
that the function
fv) — Kv, v €a, b,
(4.23) h(v) := < f(b—) — Kb, v = b,
fla+) — Ka, v<a

is nondecreasing in R, and inequality (4.19) directly follows from (4.17) with 1 piece-
wise linearly extended to a function satisfying the hypotheses of Lemma 4.16 in a suf-
ficiently large interval. A similar argument can be applied to (4.20) provided we prove
that the function g(v) := f(v) +K [ fQ(S 7 s nonincreasing in ]a, b]. This can be done
in the following way. Let h be given by (4.23). We construct piecewise linear approxi—

mations h in [a,b] asin (4.18) and put f(v) : = h(v) + Kv, §(v) : = K[ L f2(s)
We have f'(v) > K a.e., hence §(v) > 0 a.e. and passing to the limlt as in the proof
of Lemma 4.16 we obtain the assertion. U

We are now ready to give a precise formulation of the second order energy inequalities.
Similarly as in Proposition 4.6, we consider separately the operators of “stop type” and
“play type” in Theorems 4.18, 4.19, respectively.

Theorem 4.18. Let F : C([0,T]) — C([0,T]) be a continuous rate independent
operator. Assume that there exist constants R > 0, bg > ar > 0, Kr > 0 such that
for every u € C([0,T)), |u|oo < R the trajectory ® of F along w in a monotonicity
interval [tq,ts] has the following properties.

(i) ® is absolutely continuous in J := Conv{u(t1),u(t2)}, ar < ®'(v) < bg for a.e.
v € IntJ,
(ii) if w is nondecreasing in [t1,ts], then ®(v)+ $Kpgv? is concave in J,
(i) if w is nonincreasing in [t1,ts], then ®(v) — $Kgv? is convex in J.

Then for every uw € W*(0,T), |uloo < R we have

(4.24) (i) w:= F(u) € W->(0,T),
(ii) the function P(t) := %w( t)u(t) belongs to BV (0,T) and
%%2@) < P(t) < %ngﬂ(t) a.e

(i) /:w(T)u(T)dT—P( )+ P(s) KR/ () Bdr

for almost all 0 < s<t<T.

Theorem 4.19. Let F : C([0,7]) — C(]0,T]) be a continuous rate independent
operator. Assume that there exist constants R > 0, bg > ar > 0, Kr > 0 such that
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for every u € C([0,T]), |u|looc < R the trajectory ® of F along w in a monotonicity
interval [tq,ts] has the following properties.
(i) ® is absolutely continuous in J := Conv{u(ty),u(t2)}, ar < ®'(v) < br for a.e.
v € IntJ,
(i) if w is nondecreasing in [t1,ts], then ®(v) — $Kpgv? is convex in J,

(i) if w is nonincreasing in [t1,t2], then ®(v) + $Kgv? is concave in J.

Let u € Wh(0,T) be a given function such that |u|le < R and w := F(u) €
W2(0,T). Then (4.24)(ii) holds and

t 1 t
(4.25) / w(r)u(r)dr — P(t) + P(s) > §KR/ |1l(7')|3d7'
for almost all 0 < s<t<T.

Remark 4.20.

(i) Trajectories of a hysteresis operator is precisely what we observe on a hysteresis
diagram. A hysteresis loop is formed by one trajectory along an increasing input and
one along a decreasing input. Theorems 4.18, 4.19 concern the situation where the
part of the plane contained in the interior of each sufficiently small closed hysteresis
loop is a conver set (see Fig. 10). The two cases differ only by the orientation of the
boundary analogously as on Fig. 3. In another context Krasnosel’skii and Pokrovskii
(1983) similarly introduce hysterons with positive or negative spin.

(ii) We observe an analogy between (4.24)(iii) and (4.9), and between (4.25) and
(4.8). This is why we call (4.24)(iii), (4.25) “second order energy inequalities” and their
right-hand side term 3 Kg|u(t)|* “lower bound for the dissipation rate”.

Fig. 10:  operators of stop type operators of play type
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We postpone the proof of Theorems 4.18, 4.19 and verify first that they can be applied
to hysteresis operators introduced in Sect. II1.3.

Proposition 4.21. Let h € BV},.(0,00) be a given nonnegative function and let
F := F,(Xo,-) be the Prandtl-Ishlinskii operator (3.2) for some R >0 and Ay € Apg.
Put

H+(R):=sup{w;0<a<b<}%},
H_(R) ::inf{W;o«zdmR}.

If Hy(R) <0, then the hypotheses of Theorem 4.18 are satisfied for Kr := —1H,(R).
If H_(R) >0, then the hypotheses of Theorem 4.19 are satisfied for Kg := $H_(R).

Proof. Let uwe C([0,7]) be given, |u|oc < R. At each time t the configuration
A(r) := pr(Ao,u)(t) satisfies A € Ag, A(r) =0 for r > R. We are in the situation of
Lemmas 3.18, 3.19, hence all trajectories of F,(\o,-) have the form analogous to (3.27)
f,\(o) h(mx(s)) ds for v > A(0),

— f:‘(o) h(mx(s))ds for v < X(0),

and we immediately see that & satisfies condition (i) of Theorems 4.18, 4.19. Assume
now H_(R) >0 and put Kp := 1H_(R). We have to prove

(4.26) ®(v) = 2(A0)) + {

(4.27) { Uy (v) 1= @(v) — 3 Kpv? is convex in  [A\(0), R,
U_(v) := ®(v) + 5 Kpov? is concave in  [—R, A(0)].
The functions h(r) — 2Kgr, r — A(r), 7 + A(r) are nondecreasing, hence also
C+(r) :=(h(r) — 2Kgr) + Kg(r — (1)),
C-(r) :=(h(r) — 2Kgr) + Kgr(r + A(r)).

are nondecreasing and we have W/, (v) = (4 (ma(v)) a.e. Since m, is increasing in
[A(0), 00] and decreasing in | — 0o, A(0)], we immediately obtain (4.27). The proof can
easily be adapted to the case H+(R) < 0. We leave the details to the reader. U

Proposition 4.22. Let )V be a Preisach operator satisfying Assumption 3.10 and
(4.3). Assume that there exists ¢ > 0 such that

(4.28) A, := infess{y(v,7); [v| +7 < 0} > 0.

Then there exists R > 0 such that for every A\g € Ar and b > 0 the operator
bl + W(Xo,-) and the Della Torre operator bl + W, (Ao, ) for a > 0 sufficiently small
satisfy the hypotheses of Theorem 4.19.
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Proof. We choose R €]0, o[ sufficiently small such that

1
Kgr = §AR—ROR>O,

where Cg is defined in Proposition 4.2. Lemmas 3.18, 3.19 for by = 0 and Assumption
3.10 entail that the trajectories of bI + W satisfy condition (i) of Theorem 4.19 with
agp = b and br = b+ b1(R). The proof for bl + )V will be complete if we prove that
for every A\ € Ar the trajectory (3.27) has the property (4.27).

We have @4 (v) — Kpv = (. (ma(v)) for a.e. v > A(0), @4 (v) + Krv = & (ma(v))
for a.e. v < A(0), where

Ci(s) := b—i—/osw(/\(s) +s—r,r)dr — Kg(s+ A(s)),

C_(s):= b—i—/osw(/\(s) —s+mrr)dr — Kg(s— A(s)).

For 0 < 51 < s9 < R we have by hypothesis

Ci(s2) —(4(s1) = /52 Y(A(s2) + s2 —r,7)dr — Kr(A(s2) + 52 — A(s1) — s1)+

S1

+/0 [w()\(SQ) + s —1,7) =P (A(s1) + 51—, r)]dr
2 (AR — Q(RCR + KR))(SQ — 81) 2 0

and analogously for 5_, hence éi are nondecreasing and we argue as in the proof of
Theorem 4.21.

We similarly prove that the trajectories of the operator I — aW(A,-) are uniformly
concave if u increases and uniformly convex if u decreases. Since the trajectories of the
inverse operator are obtained by inversion of trajectories and superposition of operators
corresponds to superposition of trajectories, we obtain the assertion for the Della Torre
operator. [

The rest of this section is devoted to the proofs of Theorems 4.18, 4.19.

Proof of Theorem 4.18. For every piecewise linear approximation u of u and
almost every 7 €]0,T| we have by Proposition 4.14 |F(@)(7)| < bg|t(7)|. Passing to
the limit we obtain |w(8) — w(«a)| < bgr ff |u(t)|dr for every 0 < a < 3 < T, hence
w is Lipschitz. The properties of ® imply the upper and lower bound for P(t). On
the other hand, if we prove (4.24)(iii), then P is the sum of one nonincreasing and
one absolutely continuous function, hence P € BV(0,T'). It remains to check that
(4.24)(iii) holds.

Let s <t be Lebesgue points of w and put Ay :={7 € [s,t]; @(7) = 0}. The set
Ap is closed, since u is absolutely continuous, and its complement A; :]s,t[\ Ay is a
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countable disjoint union Ay = |J Jag, Bk[ of open intervals. We have w(7) = 0 for a.e.
k=1
T € Ap, hence

ba(r)i()dr =3 BkwTﬂTT
(4_29) {fs ()()d Zk:1fak ()()dv

JHamPdr =352 [ Ja(r)|Pdr.

In [ay, Bk the function w is strictly monotone, hence w has the form w(t) = @ (u(t)),
where ®j is a trajectory of F.

a) Let u increase in [ay, Bx]. By hypothesis, the function ®(v)+ 3Kgv? is concave
and after substitution we obtain

Br u(Br) 9
I ::/ w(T)i(T)dT = %/ (I);“(U)di (i(u"(v)))" do.

k (ar) v

. Lo 2
We now apply Proposition 4.17 for f(v) = ®}(v), n(v) = 5 (a(u"'(v)))", K = Kg.

D[

From (4.21) we infer

B
(430) T > GB(u0) ~)it(h) - 3 (ulon) + )i (on) + 5K [ li(r)

b) Let u decrease in [ag, B]. Then @4(v) — 1 Kgv? is convex and

I, = 1/U(%) @;C(v)i (u(u_l(v)))de.
2 Jusn) dv
Using inequality (4.19) for f,n as above we obtain
431 T > S50+ — 2k (aton) )i + 2 [ it
ag

We have (o) = u(B;) = 0 for all j,k except possibly for the single case a; =
s, B = t. Combining (4.30) with (4.31) we obtain

- Lo 1o I N LN
Zlk > iw(t)u(t) - §w(s)u(s) + §KR Z/a |u(r)]°dr
k=1 k=1"
and identities (4.29) complete the proof. O

Proof of Theorem 4.19. Let 0 < s <t < T be Lebesgue points of @. We proceed
analogously as in the proof of Theorem 4.18. The upper and lower bound for P(¢) in
(4.24)(ii) is less obvious now; we use the fact that sequences of smooth inputs which
are strongly convergent in WP generate weakly convergent sequences of outputs and
pass to the limit.
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To prove (4.25) put A :={7 € [s,t]; w(7) = 0}, and let |ay, B[ be an arbitrary
component of the set ]s,t[\Ag. Both u and w are increasing in ]ag, B[, w(r) =
Py, (u(r)) for 7 € [ag, Bkl

a) Let u increase in [ay, Bg]. Then ®4(v) — 2Kgv? is convex and by substitution

we obtain
Br u(Br) g
I = / i (7)a(r)dr :/ 4 i (0)) i (0)) do
. (ar) MV
The function o(v) : = w(u_l(v)) is nonnegative and absolutely continuous in the in-

)l;

(v @7 (v)u(u=t(v)) a.e. We can use inequality (4.20) for

terval [u(ag),u(Bk)], o(v) =
50%(v), K = K to obtain
(

k
fv) = &3 (v), n(v) =

W? (Br) o) L s
2 S w3 -) @;(u<ak>+)+2KR/a ilr)ldr

k

b) Let u decrease in [ag, Bx]. Then ®x(v) + 2Kgv? is concave and we have

MO Y e
Ik:/u(ﬁk) %(w(u () w(u="(v))do.

Inequality (4.22) for f,n as above entails

;2 ;2 1 Bk
O (u(Br) +)  Cp(ular) =) 27 Ja,
and we argue as in the proof of Theorem 4.18. O

For the sake of completeness we mention the following variant of Theorems 4.18, 4.19.

Corollary 4.23. Let the operator I’ satisfy the hypotheses of Theorem 4.19. Then
for every u € WY0,T), |uloo < R assertions (4.24)(i),(ii) hold and (4.24)(iii) is
replaced with

(4.32) —/ w(r)i(r)dr + P(t) — P(s) > %KR/ () |Pdr

for almost all 0 < s <t < T.

Proof. We exactly follow the argument of the proof of Theorem 4.18, where in-
equality (4.19) is applied in case a) and (4.21) in case b). O

Remark 4.24. In Theorems 4.18, 4.19 we always have bgr — ar > 2RKpg. Indeed,
for a monotone input w such that u(0) = —R, u(T) = R the hypotheses yield either
bR—RKRZ(I)I(R) RKpRr > (I)/( R)+RKR>CLR+RKR or bR—RKR>¢/(—R)—
RKRr > ®(R)+ RKRr > ar + RKp.
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I1.5 Models for fatigue and damage

We discuss here briefly two rate-independent models for the accumulation of fatigue
in elastoplastic materials. Both admit a hysteretic interpretation and can be combined
with hyperbolic equations of motion.

The first model consists in a rheological combination of elasto-brittle-plastic elements
and leads to a generalization of the Preisach model with similar analytical properties
and energy inequalities. The fatigue is manifested by the decrease of the elasticity
modulus as a result of large amplitude loading.

The second model is based on the idea that the accumulation of fatigue due to a
large number of bounded amplitude oscillations obeys the same mathematical rules as
the accumulation of dissipated energy. In fact, it was shown in Brokate, Dressler, Krejci
(to appear/b) that the rainflow method of evaluation leads to a damage functional
in the form of total variation of the output of a Preisach operator. We have seen in
Theorem 4.3 that the same holds for the total energy dissipation which has the form

[\O/a,r} D(\, u), where D is the dissipation operator. We assume that the elasticity modulus

is a decreasing function of the dissipated energy and we observe that a singularity due
to the accumulated fatigue may occur in a finite time.

We do not deal with the rainflow method itself which has no connection to hyperbolic
equations. An interested reader can find a good information in Brokate, Sprekels (to

appear).
A NONLINEAR ELASTO-BRITTLE-PLASTIC MODEL

The basic rheological elements for the construction of a nonlinear elasto-brittle-plastic
model are the nonlinear elastic element from Remark 3.9
N : e=g(o), U=G(0) =ag(o) — [ g(
the brittle element from Example I.1.6
Bu i c@H(h— llolo) =0, o) [1 = H(h— |lollp.)] =0, U =0
with a fragility parameter h > 0, and the rigid-plastic element from Example 1.1.4
Ry : oc€[-nrr], élc—6)=20 Ve [-rr,U=0
with a yield point r > 0.
Let us assume now that a system {ANj; h,7 = 0} of nonlinear elastic elements is

given with a constitutive law ¢ = g(o, h,r) and potential energy U, = G(o,h,r) :=
og(o,h,r) fo v, h,7)dv. We define the rheological combination (see Sect. 1.1)

(5.1) M= MIR,
r>0
where M, is the nonlinear multibrittle element

(5.2) M:@[—ZMB-

h>0h’r h
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Assuming that the constitutive function ¢ fulfils the condition

dg 0%g
(5.3) (i) g is continuous in R' x [0, 00[*> together with its derivatives _g

do’ 9o’
. Jg 1
(ii) a—(a, h,r) >0 Y(o,h,r) € R*x]0, 00[?,
o
(iii) o-g(o,h,r)>0 Vo #0, h,r >0,

we argue similarly as in Example 1.1.7 to derive the constitutive relation for a single
elastobrittle element in the form

(54) N 1B = () = g (o) [1 = H(h = lolo,)] BT
consequently

llollo,e
(5.5) M :e(t) =g(o(t),0,7) +/0 g(o(t), h,r)dh.

The constitutive relations for the model M, | R, therefore read

(5.6) {020M+0R, or € [-rr], opmlogr —6) 20 Vo € [—r,1],

e(t) = g(oa(8),0,7) + [1710 g (g 0((), h, 7)dh.

Let us choose for the sake of simplicity the virgin initial configuration A = 0 for the
stress o . Then o, = p,-(0,0), where p, is the play operator (2.6). From Proposition
(0,0) 10,y = max{0, ||o|/o,q —7}, and for the model (5.1)
we obtain a constitutive relation in operator form e = G(o), where

llello,¢
(5.7) Q(a)(t)::g(a(t),0,0)+/0 | ]g(a(t),h,O)dh—l—
-l-/o 9(pr(0,0)(t),0,7)dr + // 9(p,(0,0)(t), h,r)dhdr,

Qllollo,e1)

with the notation Q(R) := {(h,r) €]0,00[%*; h+r < R}.
We analogously derlve the corresponding formula for the potential energy

llel 0,t
638 U O) = Go.0.0)+ [ Glo0.h0)dh
+/ G(p-(0,0)(t),0,7)dr + // (pr(0,0)(t), h,r)dhdr,

Qllellfo,e1)
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The operator G is obviously rate independent and maps C([0,7]) into C([0,7]) and
WLP(0,T) into W1P(0,T), 1 < p < oo. Its properties are analogous to those of the
Preisach operator. We have in particular

Theorem 5.1. Let g satisfy (5.3) and let R > 0 be given. Then

(i) there exists a constant co(R) > 0 such that |G(01) —G(02)]co < co(R)|01 — 02|00
for every o1,02 € C([0,T]), |01]oos |02|c0 < R;

(ii) there exists a constant ci(R) > 0 such that |G(o1)—G(o2)|11 < c1(R)|o1—
for every 01,09 € WH1(0,T), |o1]1.1, o211 < R.

(iii) Assume that g(—v,h,r) = —g(v,h,r) for every (v,h,r) € R! x [0,00[2. Then
for every o € W11(0,T) the energy dissipation law

69 olt)% G0N~ L)t = SV (lolon) + |5 D)D) e

holds with a fatigue function

V() = f|i(0)\ [foyg(v,y,O)dv + foy oy_rg(v,y —r,r)dv dr} dy

which is nondecreasing in [|o(0)|, |o|~] and a dissipation operator
D(o)(t) = fooo rg(pr(0,0)(t),0,7)dr + ff Tg( +(0,0)(t), h,r)dh dr.
Qllello,e)
(iv) Assume that there exist o > 0, A, > 0 such that for |v|+ h+1r < p we have
2
99y, h,r) > A, and 24 (v, h,0) = 0. Then the trajectories of G satisfy the hypotheses
v e ov

of Theorem 4.19.

Proof. The inequalities in (i) and (ii) are easy consequences of Proposition 1.1. In
(iii), a similar computation as in Lemma 4.1 yields for a.e. ¢

i) := (1) % 6o ><>—%u< )= [ ol (6 0.0.1)lé (0ldr +
o(t)
+ [ RO nnElnd+ Zelon)] [ o lolo.0dv+
Q(llollfo,e)

oo, )
[ (& oo —rr)att) = Gl& e Ilio —r.r))dr].
0

where we denote &, : = p,.(0,0). We see that (5.9) holds if < (HUH[O 1) = 0.
Assume now that 2 (||lofpsy) > 0. Then o(t) = £ |00, &) = £(|lolljo.g —7)
for r < ||o[0,4, and

’dt // ’”dhdr: // 7“— (& (t), hyr) |60 (t)| dh dr+

Q(llello,e) Qllello,e)

d llo o,
+ Gilloloa) [ alloliog =7 leolioy —r.r)dr
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We therefore have
‘ d d llollo,4
i) = |5 D@01+ Zlelon)| [ st lolon.0) o+

ol pllollon —r
/ / v, ol —r,7) dvdr
and (5.9) follows.

To verify (iv) we proceed as in the proof of Proposition 4.22. Putting b(s) :=

0 99(0,h,0)dh, a := $2(0,0,0) we have

(5.10) G(o)(t) = (a+b( ’]))a(t)+/ooog({r(t),o,r)dr—l— // o(&x(t), h,r)dh dr.

Q(llello,e)

Let o be chosen in such a way that ||o||oc < R, where R is to be specified and assume
that o increases in [tg,t1]. For A(r) := p.(0,0)(tg) and t € [to,t1] Lemma 2.4 yields

(5.11) G(o)(t) = G(0)(to) + a(o(t) — a(to)) + b(llollo,g)o(t) = b(lloljo,k0))o (to)+

mx(o(t))
/ o(t) — r,(),r) — g()\(r),O,r)) dr +

0

ma(e(®)  plolion —r
/ / (9(a(t) = h,r) — g(A(r), h, 7)) dh dr.

0

_I_

+

Put oo : = ||o|j0 € [o(to), R]. The trajectory ® for v € [o(to), R] has the form

v pmx(s)
®(v) = ®(o(to)) + a(v —o(to)) —I—/ / 8—i(s —1,0,7)dr ds+
o Jo
bloo)(v—alte))  + [ [T (7799 (s —p b r)dhdrds for v < o,
_|_
b(v)v — b(oo)a(te) + [, fomk(s) I 89 (s =7, h,r)dhdrds forv > oy.

Similarly as in the proof of Proposition 4.22 we show that if R > 0 and Kr > 0
are chosen sufficiently small, then there exists a nondecreasing function ( such that
®'(v) — Krv = ((mx(v)) for v €]o(to), R[, and the assertion follows. The case where
o decreases is analogous. O

Remark 5.2. For the constitutive law ¢ = G(o) given by (5.10) the elasticity

modulus is equal to 7, hence it decreases with increasing value of [[o||jo,y-

-1
a+b([la]lj0,1
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A DIFFERENTIAL MODEL OF FATIGUE

The model of fatigue in Theorem 5.1 does not explain the phenomenon of cyclic
fatigue, where a large number of bounded amplitude oscillations may produce singular-
ities (cracks). The analysis of the rainflow method of damage evaluation in Brokate,
Dressler, Krejéi (to appear/b) suggests that the dissipated energy might be considered
as a measure of fatigue in such cases. A more general physical discussion on this point
can be found in Chapter 7.3 of Lemaitre and Chaboche (1985).

The model presented here is a modification of a one-yield elastoplastic model with
kinematic hardening as on Fig. 4, where the elasticity modulus is a decreasing function
of the dissipated energy. We shall see that the corresponding constitutive operator is
rate independent with locally convex/concave trajectories like in Theorem 4.19 and,

moreover, with a possibly finite lifetime as a result of material fatigue.

Let us consider the constitutive equation

(5.12) e(t) = %(1 + ag®(t))o(t) + Ap, (X, o) (1),

where E, a, A,r are given positive constants, p,.(A,-) is the play operator with initial
configuration A € A and ¢(¢) is the energy dissipated during the interval [0,¢]. A
natural choice of potential energy

(5.13) Ut) := %(1 +ag?(t))o*(t) + gpi(A, v)(t)

leads formally to a differential equation for ¢, namely

«

(5.14) G=éo—U =

where &, := p.(A,0).
We assume in the sequel that the material is initially for ¢ = 0 in an undeformed
and undamaged state, i.e.

(5.15) A =0, ¢(0) =0.
Equation (5.14) has the form
a .
q | = ——|&|;
(5.16) q 1_Cq02\€ |

where c:= % >0,a:= Ar > 0.

We immediately see that identity 5.12 defines a thermodynamically consistent rate
independent constitutive law provided ¢ is a solution of (5.16) and 1 — cq(t)a?(t) > 0.
A singularity occurs as soon as 1 — cq(t—)o?(t—) = 0.
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Our goal is to express (5.12) in terms of a continuous constitutive operator in the

space of continuous functions.
For o € C([0,T]) put

a

¢
(517 Vio)t) = aYare) = 2 [ (o(r) — & (n)dee (7).

We infer from Propositions 1.1, 1.4.11 and Theorem V.1.26 that V(o) is a nonde-
creasing continuous function and V : C([0,7]) — C([0,7T]) is a continuous operator.
Equation (5.16) can be rewritten in the form

(5.18) )= [ 4V()(7)

1 —cq(r)o?(7)’

Proposition 5.3. Let o € C([0,T]) be given. Put D :={(t,q) € [0,T[x[0,00[; 1 —
cqo®(t) > 0}. Then for each (tg,qq) € D there exists t; > to and a unique solution
q € C([to,t1]) of the equation

(5.19) a(t) = qo + /t 1 —df:/q((i))(;)(f)’ t € [to, ta].

Proof. Put 6:= %(1 — cq002(t0)) > 0. We find t; >ty such that
(5.20) Scqolo®(t) — o (to)| + c|a|§o(V(a)(t) — V(a)(to)) < 62

for all ¢ € [to,t1]. Let Zs C C([to,t1]) be the (convex) closed set

Zs :={u e C([to, t1]); ulto) = qo, 1 — cu(t)o?(t) =6 Vt € [to,t1]}
and let I' : Zs — C([to, t1]) be the operator

L(u)(t) := o + fy, Tomaioirtzys  t € [to. ta].

Using (5.20) we easily check that Zs is nonempty (the constant function u(t) = qo
belongs to Zs) and that I' is a contraction which maps Zs into Zs. The assertion now
follows from a standard fixed point argument. OJ

Corollary 5.4. For every o € C([0,T]) there exists a unique maximal solution
q : [0,T*[— [0,00[ of equation (5.18). This solution is continuous and nondecreasing
in [0,7*[ and (T*,q(T*-)) € dD.

Corollary 5.4 immediately follows from Proposition 5.3. The following result on
continuous dependence of ¢ on o plays a substantial role in the sequel.
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Theorem 5.5. Let o € C([0,T]) be given and let q : [0,T*[— [0,00] be the
maximal solution of (5.18). For an arbitrary ~ €]0,7*| put

§:=1 [071%1327] (1 —cq(t)a?(t)) > 0.

Let {o,;n € N} C C([0,T]) be a sequence, ILm |0 —0loo = 0 and let gy, : [0, T [—
[0,00[ be the corresponding maximal solutions Tgf C(2.18). Then there exists ng > 0 such
that for all n > ng we have

(i) T5>2T"—~
(i) 1—cq.(t)o2(t) =65 Vtel0,T* —4],
(i) - lim {|lgn = qlljo,r+—y =0

The proof of Theorem 5.5 relies on Gronwall’s inequality in the following form.

Lemma 5.6. Let w,( be nonnegative continuous functions in [0,7], ((0) = 0, ¢
nondecreasing, and let M, N be nonnegative constants. Assume that

w(t) <M+N/Otw(7')d§(7') vVt € [0,T].

Then w(t) < MeN<® vt € [0,1].

Proof of Lemma 5.6. From elementary identities

[ </ w@ac(n)) = [N O
/Os </0t w(T)dC(T)) de—NCt) — _N/OS o~ NC(®) (/Otw(T)d<(7)> dc(t)

and from the integration-by-parts formula V(1.22) we obtain

/0 ~NC(t) N/ —N¢(t) (/ (T)dg(¢)> d¢(t) + e Ne® /Osw(t)dg(t)

and Lemma 5.6 follows easily. O

Proof of Theorem 5.5. For t € [0,7* —~] and n € N put

= / (U))(T) |+ 552 / 4(1)]02(1) — a(7)[dV () (7).

1—cq o?(7)

N := 5 sup{|o,|%; n € N},

2

For each n € N we find a minimal ~, €]0,7[ such that

1 —cqn(t)o2(t) =6 Vte[0,TF — v,
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The quantities M,,, N were chosen in such a way that

an(t) — a(t)] < Ma(t) + N / 4 (r) — a(7)] dV () (7)

holds for all 0 < ¢ < min{T™* —~, T

— 7, } and Lemma 5.6 yields
(5.21) 0n() = 4O < [ Moo g™ 0.

We have 1 — cq(t)o?(t) > 26 for 6 € [0,T* —~] and lim || M,|/o,r+—+ = 0; from
(5.21) we infer TF —~,, > T* —~ for n sufficiently large and the assertion follows easily.
0

The right-hand side of (5.12) defines an operator F' with domain C([0,T])

1
(5.22) F(0)(1) = 1 (1+ ag?()(t) + Ap.(0.0)(1),
where ¢ is the solution of equation (5.18).

From Theorem 5.5 we derive the following properties of the operator F'.

Corollary 5.7. Let F' be the operator (5.22). Then for every o € C([0,T]) there
exists a critical time T €]0,T| such that F(o) is continuous in [0,T*[. Moreover, if
{on; n € N} C C([0,T]) is a sequence such that lim |0, — 0| =0 and T €]0,T] is
the critical time corresponding to o,, then e

() lim inf T3 > 77,

(i) F(o,) — F(o) locally uniformly in [0, T*].

We conclude this section with the formulation of sufficient conditions for the convex-
ity /concavity of the trajectories of F'.

Proposition 5.8. Let F be the operator (5.22) and let o € C([0,T]) be given such
that |o|s < 2r. Assume that o is monotone (nonincreasing or nondecreasing) in an
interval [ti,t2] C [0,T*[, where T* is the critical time. Then there exists a bounded
interval |vy,va[D Conv{o(t1),0(t2)} and a Lipschitz continuous function ® : [vy,va] —
R! such that

(i) @'(v) > 4 for a.e. v €Jvy,val,
(ii) @ is convex in [o(t1),v2] and concave in [vy,0(t1)],
(iii) F(o)(t) = ®(o(t)) for all t € [t1,ts].
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Proof. The operator F is odd. It suffices therefore to assume that o in-
creases in [t1,t3]. Then &.(t) = p-(0,0)(t) is given by formula (1.6), i.e. &.(t) =
max{&,(t1),0(t) —r} for t € [t1,ta]. We find ¢ € [t1,t2] such that

(1) = {&r(tl)v t e [ti,1],

o(t)—r, te]tta].

For ¢ =t we trivially have ¢ = const. in [t1, %3], hence ® is affine; otherwise ¢ has
the form ¢(t) = X (o(t)), where X is the solution of the problem

(5.23) (i) X(v)=gq(t1) forwv € [o(ty),o(t)],
o dX a
(11) % = m fOI'U>O'(E>.

The solution of equation (5.23)(ii) blows up for a finite value v — v*—; we choose vy
arbitrarily in the interval [o(t3),v*|.

We have o(t) = &.(t1) +r and Corollary 2.6 entails |&,.(t1)| = [, (t1) — &ju. (E1)] <
|u|oo — 7, hence o(t) > 0. The function ® has the form

1
(5.24) O(v) = 5 (14 aX?(v))v+ Amax{o(f),v} — Ar
for v € [o(t),v2] and we can check by a straightforward differentiation that ® is convex.
The case of ¢ nonincreasing is obtained by symmetry. U

Remark 5.9. The situation is not the same here as in Theorem 4.19 because of
singularities which may occur in a finite time. On the other hand, one can easily
formulate a sufficient condition in terms of the constants a,c which guarantees that
the solution of (5.18) blows up before |o(t)| attains the value 2r, so that the condition
lo(t)] < 2r is automatically satisfied in [0, 7], see Krejci (1994).
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I11. Hyperbolic equations with hysteretic
constitutive laws

The problem of coupling equation of motion 1(0.1) with an elastoplastic constitutive
law is not new. The existence and uniqueness of solutions for the Prandtl-Reuss model
with a single yield surface has been established in Duvaut, Lions (1972), a multiyield
Prandtl-Ishlinskii model was considered by Visintin (1987). In both cases, the solution
is constructed via penalization method for semilinear hyperbolic variational inequalities
which corresponds to an approximation of the rate independent plasticity by a rate
dependent visco-plasticity. This technique strictly requires that the elastic part of the
constitutive law is linear.

We present here an alternative approach which consists in transforming the semilin-
ear variational inequality into a quasilinear equation with a hysteresis operator. This
enlarges considerably the variety of problems which can be solved, especially in situa-
tions, where some knowledge of the memory structure is available. The strong energy
inequalities for scalar hysteresis operators derived in the preceding chapter enable us
to treat the following questions related either to uniaxial problems or to multiaxial
problems with a componentwise scalar hysteretic constitutive law:

e stability with respect to quasilinear perturbations,

e global boundedness of solutions (nonresonance),

e asymptotic decay of solutions,

e existence of periodic solutions,

e asymptotic stability of periodic solutions
by methods which have been developed essentially for the theory of semilinear equations,
such as compactness and monotonicity methods of Lions (1969) based on Galerkin-type
or discrete approximations and classical methods in the theory of periodic solutions of
Vejvoda et al. (1981)

IT11.1 Construction of solutions

We show here two typical examples of equations of motion I(0.1) with a hysteretic
constitutive operator which can be solved by classical functional-analytic methods. For
constitutive operators with a specific monotonicity property one can use Minty’s trick
to establish the solvability of an initial-boundary value problem in the general vector
case. In scalar (uniaxial) models, no monotonicity is required any more and strong a
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priori estimates for solutions of the space-discretized system enable us to pass to the
limit. In both situations, the main tool is the second order energy inequality 1(3.31),
11(4.25) for hysteresis operators. The hyperbolicity of the wave equation with hysteresis
is confirmed by the boundedness of the speed of propagation.

MONOTONICITY METHOD

Similarly as in Sect.I.1 we denote by T the space of symmetric tensors N x N

. N 1/2

endowed with the scalar product (§,m)y 1= >_;_; & mi; and norm €|T : = <£,£>T/ :
The symbol (-,-) is used for the scalar product (u,v) := Zf\il uv® in RV,

We consider the system of the type 1(0.1) with a normalized density o =1

(1.1) (i) uy = D*o +q(x,t),
(i) = Du,
(i) o= F(e),

(w,t) € Qx]0,T[, where  C RY is a given open bounded set with a smooth boundary,
T > 0 is a given number, D : WH2(Q,RY) — L2(Q,T), D* : WH2(Q; T) — L2(Q,RY)
are differential operators given by the formulae

1 (o' Ou Y doy;
1.2 D ii t = = D* L= J

q(z,t) is a given function and F' is a constitutive operator whose properties are specified
later. For the sake of simplicity we prescribe homogeneous Dirichlet conditions

(1.3) u(z,t) =0 for (z,t) € 0Nx]0,T|
on the boundary of 2 and initial conditions
(1.4) u(x,0) = ug(x), ur(x,0) = up(x), x € Q.

To simplify the notation, we introduce the spaces H := L2(;RY), HY := L2(Q; T),
HF .= WE2(Q;RY) for k > 1, H' := WH2(Q;RY), L := {e € L*(0,T;HY); &, €
L?(0,T;HY)}. The standard L?-norms in HY HY are denoted by |- |go,] - |0, TE-
spectively. By Korn’s inequality (see Necas, Hlavdcek (1981)) we can define in H', H!
equivalent norms |w|g1 : = <|w\%{o + \Dw[%[()) ) |w\ﬁl = |Dwlpgo.

T 1

The general regularity theory for scalar elliptic equations (see Chap. 8 of Gilbarg,

Trudinger (1983)) is applicable without modification to the vector elliptic operator D*D
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and we can define in H? an equivalent norm |w|g2 : = (w3, +|Dw|§{%+|D*Dw|§{O)1/2.
The norm in L is chosen in a natural way

T
lelr := (’5('70)‘%1%+/ !5t(‘,t)|§{;;dt>
0

The operator F' is assumed to act on L according to the formula

1/2

(1.5) F(e)(z,t) : = f(z,e(z,))(t), (z,t) € 2 x[0,T],

where f(z,-) : W12(0,T;T) — W12(0,T;T) for * € Q is a causal (see 1(1.29))
operator with the following properties.

Assumption 1.1. There exist constants a,b,c > 0 and a causal operator ) : {1 x
(Wt2(0,T; ']I‘))2 — W10, T) such that for every (z,y,e,9) € QxQx (WH2(0,T; ’]I'))2

we have

(1.6) () |f(z;e)e()lr < b] '( )hr a.e.,

(i) |f(,2)(T) - f(y. (M—yF+k 0) - 9(0) 3+
T
+/0 \Tdt>
(iil)  (f(z,e)(t) — f=z,9)(t), — (¢ >1r V(z,e,0)(t) a.e.,

(iv) V(x,e,9)(t) = V(:z:,'ﬁ,s)( ) >0, V(:l:,s,&t)( )=0 Vtel0,T],
(V) [V(z,€1,9)(0) = V(y, £2,9)(0)] < cmax {[e1(0)[r, [2(0)]r, [(0)[r} -
(|2 =y + |e1(0) — £2(0)[r),

T a
() if e € WO, then [ {f(w,2)rEr)pdr > GIADIR - HI0)
0

Using Proposition 1.3.9, Remark 1.3.10 and Theorem 1.3.16 we check that Assumption
1.1 is fulfilled for instance for

(1.7) flw,e) = (B =) +78 (¢(z,2(0)),¢)

for some E >~ > 0, where S is the stop operator I(3.11) with a Lipschitz continuous
initial configuration ¢ : QxT — Z. Other examples of operators f can be constructed
in the class of Prandtl-Ishlinskii operators of stop type 1(1.44).

The existence and uniqueness result reads as follows.
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Theorem 1.2. Let q € L?(0,T; H), up € H?> N H', u; € H' be given such that
g € LY0,T;H®) and let Assumption 1.1 be fulfilled. Then there exists a unique
uw € L>®(0,T; H') such that uy € L>(0,T; H®), Du; € L>(0,T; HY), initial conditions
(1.4) are satisfied a.e. and the identity

(1.8) /Q [ (up(x,t) — q(,t), w(x)) + (F(Du)(z,t), Dw(z))y |dz =0
holds for every w € H' and ace. t €10, 7.

Identity (1.8) is a weak formulation of (1.1) based on the integration formula for

regular functions

(1.9) /Q (o, Dw) + (D*o,w)] dx = Z /89 w'oyvidr,

2,7=1

where v = (v1,...,vn) is the unit outward normal vector to 0f). Before proving
Theorem 1.2 we verify that the integral in (1.8) is meaningful.

Lemma 1.3. Let Assumption 1.1 hold. Then the operator F defined by (1.5) maps
L into L and for every ¢,9 € L we have
(1.10) sup |F(e)(-t) = F(9)( )| mg < cle = I

te[0,T]

Proof of Lemma 1.3. Let € € L be given and let Q* C Q be the set of all
r € Q such that e(x,-) € WH(0,T;T), meas (2\ Q*) = 0, and for z € Q* put
o(z,") := f(z,e(z,-)) € WH3(0,T;T). Let {e";n € N} C C?*(Q2 x [0,T];T) be a
sequence such that lim |[¢" — €|, =0 and put ¢” := F(e"). By (1.6) we have

0" (x,1) — 0™ (y, )1 < |o™ (2, 1) — 0" (z,8)|7 + |0" (2, 8) — " (y, s)|r <
< (bt —8) + ez —y) 1+ T)(1+ ‘gn’CQ(ﬁx[O,T};T))7
hence o™ € C(Q x [0,T); T). From (1.6)(ii) and the causality of f we further infer for
x € Q* and t €[0,7]

‘ 1/2
|o(2,t) — " (x,t)|r < ¢ (Is(w, 0) — " (w,0)|r + / ler(z,7) = Ef(ﬂm)ﬁdf) ,
0

consequently o is measurable, 0 € L and lim sup |o(-,t) — 0" (-, t)[go = 0.
N0 te0,T)

We now choose a sequence {97} C C%(Q x [0,T];T) such that [9" — 9|, — 0.
Inequality (1.10) for ™, 9" follows from (1.6)(ii) and passing to the limit we obtain the
assertion. O
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Proof of Theorem 1.2.
Uniqueness. Let u,v be two solutions of (1.8), (1.4). We subtract the identities (1.8)
for v and v and put w(x) : = us(x,t)—v(x, t). Integrating with respect to ¢ we obtain

1 t
2 / lue — vy |* (2, 1) da +/ / (F(Du) — F(Dv), Du, — Dv;) (z,7)dxdr =0,
Q QJo

hence u = v by (1.6)(iii),(iv).

Existence. Let {ex;k € N} be a complete orthonormal system in HY of eigenfunctions
of the operator D*D in 2 with homogeneous Dirichlet boundary conditions, i.e.

(1.11) —D*Dey, = A\ger, A\ >0, eg e H*NnH'.

For a fixed n € N we define the vector v = (v1,...,v,) : [0,7] — R™ as the solution
of the system for k=1,...,n

(1.12) (1) = /Q [—(F(Du")(w,1), De())y + (gl 1), ex())] d,
(1.13) 0 (0) = /Q<u0(m),ek(:v))dx, i}k(O):/Q(ul(a:),ek(x))dm,

(1.14) u™ (z,t) ka ex(z) for (z,t) € 2x]0,T7.
Putting y = (y1,...,Yn) :=(01,...,0,) we can rewrite system (1.12) in the form
(1.15)

with a Lipschitz continuous causal operator G : C1([0,T];R") — C([0,T];R™) and a
given vector q € WH1(0,T;R™). Let K > 0 be a constant such that |G(u) —G(V)|e <
K(Ju—v|s + [t = V|). We define successive approximations y{,v{ in the following
way. For ¢ =0,1,... put & :=min{3, 5=}, t = kl, vi(t) :=v(0), y(t) := y(0)
for ¢ € [0,T7], and

{y;+1<t> y(0) + [0 [G(vh)(r) + (7)) dr,

vi(t) =v(0) + fo yi (T)dr,

(1.16) i=0,1,....

We ha’ve |Yj1+1 _yjl‘oo K(1+t1)|YJ _yJ 1|OO ~N 4|yJ _yj 1|00? hence {yj7 Jl -]

0,1,...} are uniformly convergent sequences in C([0,7T];R") and their limits y!,
satisfy (1.15) in [0,¢;]. Repeating the procedure in [t,tp+1] with yf“( ) = yi(t),

1
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vf“(t) = v'(t) for t € [0,t7], £ =1,2,... until ;41 > T we construct by induction a
continuously differentiable solution y,v of (1.15). Notice that the causality of G plays
a substantial role here. Coming back to system (1.12), (1.13) we conclude that it admits
a global solution v € W31(0,T;R").

We now derive estimates for the sequence {u(™} defined by (1.14) which enable us
to pass to the limit as m — oco. For an arbitrary t € [0,7] we differentiate (1.12),
multiply by ¥ (t), sum over k and integrate fg . Assumption (1.6)(vi) yields
A17) i 0o+ alug™ (O < i (0l + blug™ (5 0)] g, +

Hl

—}—2//<q7:1:7', (Tﬁ)x7'>d:vd7'

Upper bounds for the right-hand side of this last inequality can be found using

special properties of the basis {er}. Putting e := \/%Dek we have by (1.9)
Jo (ex(x),e¢(x))pdr = Oge, where dpy is the Kronecker symbol and Dugn)(x,()) =

Sy (fQ <Du1 (y), ek (y)>Tdy) er(x), hence fQ <Du§n)(x, 0) — Dul(x), Duin)(x, 0)>Tdac
= 0. This yields

(1.18) |u§n)(-,0)|ﬁll < |u1|ﬁ11 independently of n.

The L?-norm of u,g?)(-, 0) will be estimated using equation (1.12). The operator F
is causal; this means that there exists a function ¢ : @ x T such that F(e)(z,0) =
¢(z,e(,0)) and by (1.6)(ii) ¢ is Lipschitz. We have by (1.12), (1.9)

P O = 3= O <2 (1076t Dl O + - O
<orteou (0,

where c¢;1,cy are constants independent of n. We estimate |u(™(-,0)|go < |uo|go,

2 n 2

| Du™(., )Ho = i1 Mk UQ uo(x dfc‘ = D k=1 UQ <Du0($)75k(z)>de‘ S
|Du0|HO, ]D*Du(”)( 020 = dop_ 1)\2”9 ug(z), er(x)) dz|> < |D*Dug|go, conse-
quently

(1.19) w0020 < 1 + caluol e

Furthermore, fg Jo <qT(£IJ',T),ug—T7L-)(.CC,T)>d:C dr < sup |l (-, 7)|z0 fg‘qT(‘,T)lHodT.
T€[0,t]

By (1.17)-(1.19) there exists therefore a constant M > 0 which depends only on the
data wug,u1,q such that

(1.20) sup |ul? (-, )| go < M, sup [l (). <M
t€[0,T t€[0,T H
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and obviously also

(1.21) sup |[u™ (-, ). <M, |F(Du™)|, <M.
te[0,T] Ht

There exists a subsequence of {u(™} (still denoted by (™) and functions u €
L*>(0,T; Iifl), o € L such that u; € L*>(0, T ﬁIl),utt € L>=(0,T; H°) and u{]) — uy
in L°°(0,T; H°) weakly-star, Du(™ — Du, Du{™ — Du, in L*(0,T; HY) weakly-
star, F(Du(™) — ¢ in L weakly and by Theorem V.2.3, u(™ — u, uﬁ") — uy in
L?(0,T; H°) strongly. The limit function u satisfies initial conditions (1.4). Indeed,
from Hoélder’s inequality and (1.20) we infer |u,(5n)(-, t) —uﬁ")(-, 0)|go < Mt for t € [0,T
and n € N. Passing to the limit as n — oo we conclude |ui(-,t) — u1|go < Mt a.e.
and similarly |u(-,t) — ug|go < Mt a.e.

We now pass to the limit in (1.12) as n — oo. For an arbitrary v € L?*(0,T) the
limit functions u,o satisfy

(1.22) / / (e, £) — qla, ),y (E)ex(@)) + (o (@, ), (t) Dex())g |de dt = 0

for every k € N. The set of finite linear combinations of functions of the form ~(t)ex(x)

is dense in L2(0,T; H'), consequently
T
12 [ [ )~ a0 00 0) + (o), Dula,) ] dede =0
o Jo
for every w € L?(0,T; H'). On the other hand, from (1.12) it follows for a.e. ¢

(1.24) /Q [l 1) — g, 1), (2. 1)) 4+ (F(Du) @, 1), Duf™ (2,1)), ] do = 0.

Putting w = wu; in (1.23) we obtain using (1.24)

T T
(1.25) lim/ /Q<F(Du(”)),Du§n)>dedt:/ /Q<U,Dut>,[rdmdt.
0 0

For an arbitrary w € H', v € L?(0,T) and 6§ > 0 put z(z,t):= u(x,t) —

dw(x) fot ~v(7)dr. The monotonicity (1.6)(iii) enables us to use Minty’s trick in the
inequality

T
(1.26) /0 /Q<F(Du(”)) — F(Dz), Du{" — Dz} dxdt >

- x, Du™ (x, - z(x, - Z.
>~ [ V(@ Du (@, ). Defa. ) (0)d
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Passing to the limit as n — oo we obtain from (1.25), (1.26) and (1.6)(v),(iv)

(1.27) /OT /Q (o0(z,t) — F(Dz)(x,1), Dw(a:)>T7(t) dedt >0

and Lemma 1.3 yields for § — 0

(1.28) /Q (o(x,t) — F(Du)(z,1), Dw(az)>Tde‘ =0 a.e.

Identity (1.8) now follows from (1.23) and (1.28). Theorem 1.2 is proved. O

Remark 1.4. The results of Theorem 1.2 are comparable to those obtained by Du-
vaut, Lions (1972) or Visintin (1987) by penalization method for variational inequalities
in the case of constitutive operators of the form (1.7) or Prandtl-Ishlinskii operators of
stop type. The hysteresis approach, however, enables us to treat more general classes
of constitutive operators. This is particularly convincing in uniaxial models, where
the assumptions on the constitutive operator are formulated in terms of geometrical
properties of its trajectories without referring to variational inequalities.

COMPACTNESS METHOD

A one-dimensional version of system (1.1) will be considered here in the form
(1.29) g = Ug,

for (x,t) €]0,1[x]0,T[, where F is a given constitutive operator and ¢ is a given
forcing. Formally, system (1.29) is equivalent to the wave equation in displacements

(1.30) gy — F Hug)e = ¢

analogous to (1.8) provided the inverse F~! exists.

Substituting the electric field E for v, magnetic field H for ¢ and magnetic induc-
tion B = uH + M for e, where M is the magnetization and p is the permeability,
we can interpret system (1.29) with a hysteretic constitutive operator M = )W(H) as

one-dimensional Maxwell’s equations in a ferromagnetic medium.

For (1.29) we prescribe initial and boundary conditions

(1.31) v(x,0) = v°(2), o(x,0) = 0°(x) for z €]0,1],
(1.32) v(0,t) =c(1,t) =0  for t€]0,T].
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We assume again that operator F' has the form

(1.33) F(o)(z,t) := f(z,0(z,"))(t)
for inputs ¢ such that o(z,-) € C([0,T]) for all x € [0,1], where

(1.34) (i) f(z,-):C([0,T]) — C([0,T7]) is a hysteresis (i.e. rate-independent and causal)
operator for every z € [0, 1],
(ii) f:10,1] x C([0,T]) — C(]0,T]) is continuous and the trajectories of f(z,-)
introduced in Remark I1.4.15 fulfil the following hypothesis.

Assumption 1.5. There exist constants R > 0, bg > ar > 0, Kr > 0 such that
for every x € [0,1] and o € C(]0,T]), |0|eo < R the trajectory (zx,-) of f(z,-) along
o in a monotonicity interval [t1,ts] is absolutely continuous and satisfies

(1.35) (i) ¢ € C([ 1] x J), J = Conv{o(t1),0(t2)},

(il) ar < Z 5¢(x,0) <bp  forae o€lIntlJ,

(iii) if o is nondecreasmg in [t1,ts], then o — ¢(z,0) — 2 KRro?* is convex in J,
)

(iv) if o is nonincreasing in [t1,ts], then o +— ¢(z,0) + 1 Kro® is concave in J.

We now state a global existence theorem for system (1.29), (1.31), (1.32). The results
of Sections I1.3, I1.4 show that operators F' of the form (1.33) with f(z,-) :=al +
W(A(z,-),-), where a is positive and W is a Prandtl-Ishlinskii operator 11(3.2), a
Preisach operator 11(3.13), a generalized Preisach operator with fatigue II(5.7) or a
Della Torre operator 11(3.31) with initial configurations A € C([0,1]; Agr), where Ag
is endowed with the sup-norm, as well as perturbations of these operators of the form
f(x,u) = au + WA, u) + dg(u), where g : R! — R! is a smooth function and & > 0
is sufficiently small satisfy the hypotheses above. The case of the operator 11(5.22) is
more delicate and we refer the reader to Krejéi (1994).

Theorem 1.6. Let the constitutive operator I satisfy (1.34) and Assumption 1.5

and let v° 0% € W12(0,1), ¢ € L*(0,T;L?(0,1)) be given such that v°(0) = 0%(1) =
0, ¢ € L'(0,T;L*(0,1)) and the inequality

(1.36) /0 3¢ (2, 0) + 2|02(x) > + £|vg(x)|2]dx+
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is fulfilled. Then there exists at least one solution (v,o,e) € |C(][0, [O,T])]3 of
(1.29), (1.31), (1.32) such that v, vy,0¢,04,60 € L*(0,T; L2(0,1)) |a|oo < & and
(1.29) holds almost everywhere in ]0,1[x]0,T7.

The restriction on the size of the data is related to the boundedness of the convexity
domains of the operators f(z,-). We see from (1.36) that for operators satisfying
Assumption 1.5 for every R > 0 and ar > ag > 0 we have global existence for any
regular data.

Nothing is known about uniqueness of solutions in the general case. In the next
section we prove uniqueness results for equations with Preisach or Prandtl-Ishlinskii
constitutive operators.

The solution will be constructed by discretization in space. For n € N and j =
0,...,n we denote Fj := f (%, ) and consider the system of ODE’s for t €]0, 77,

(i) &;(t) = Aj-1v(t),
(iil) e;(t) = Fj(o;)(?),

where Ajo :=n(oj41 — 0j), Aj_1v :=n(v; — vj_1), g;(t) := nf q(z, t)dx, j =
1,...,n— 1. We prescribe initial and “boundary” conditlons
(1.38) v;(0) = UO(%), ;(0) = 00(%), G=0,...,n, vo(t) = op(t) = 0.

The global solvability of (1.37), (1.38) for a fixed n € N will be established in the

following two lemmas.

Lemma 1.7. Let the hypotheses of Theorem 1.6 hold and let to € [0,T[, V >0 be
given. Assume that {(vj,0;,¢;);7 =1,...,n — 1} are absolutely continuous functions

satisfying (1.37), (1.38) for t € [0,t], max ||o}||j0.,] < &, max|v;(to)] < V. Then the
j j

solution {(v;,0;,€;)} can be extended to the interval [0,to+ s] N [0,T] in such a way
“ T o1 ~1
that max o5 llj0,t0+s] < R, where s := Ron (v 4 2nTR+n [y [y lq(x, t)|dx dt)

Proof. The hypotheses of Lemma 1.7 are automatically satisfied for ¢, = 0 and
V.= %@. Initial conditions for e; follow from the assumption of causality of the
operators f(z,-) which entails that there exists a continuous function 7 : [0,1] x R! —
R! such that €;(0) = n(Z,0;(0)).

For an arbitrary tqg € [0,T| satisfying the hypothesis we denote

o) 1= o;(t) for te0,t],
P00 ayte)  for t €]to,to + 5]
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and for £ € N we define the sequences {(vé?, ok ,e¥);k € N} recursively by the formulae

(1.39) (i) vf(t) (to)+/ (A; R (T) + g (T ))dr,
(i) () = g;(to) /AJ of

for ¢t € [0,to + s]. The transition 5k+1 - 0;”1 will be performed in the following way.

Let Rpy1: C([to,to + s]) — C(]to, to + s]) be the linearization operator

t—t;
(140) Rk+1(u)(t) L= u(tz) + lfl—t(u(tj+1) — u(tz)) for t € [ti, ti_|_1],
i+1 — Ui
where t; : =ty + kH,i:O,...,k—l—l, and put
b1 (%) for t € [0, to],
£; (t) : = b1
Rip1(e5TH)(t)  for t € [to, to + s].

Assume that for some k € NU {0} we have
(1.41) oM lj0,t0+5) S R forall j=1,....,n—1.

From (1.39) we infer [v¥(t)| < V 4 2nTR + nfOT fol lq(z,t)|dzdt and [e¥T(1)] <

<k+1
2n max|v;?(t)| < RQ;? for a.e. t €]0,ty + s|, therefore also ]5j+ ()] < RQZR a.e.
J

The function é?“ is monotone in [t;_1,¢;],7=1,...,k+1. For t € [0,%y] we define
af“ (t) := 0;(t) and continue by induction over ¢ sumlarly as in the proof of Theorem

I1.3.17: assummg that O';H_l is defined in [0,t;]; the causality of F) entails that its

trajectory ' : [-R, R] — R' along J;“H in [t;,t;4+1] is independent of the values of

gj

Jt;,t:1]- Ve therefore can put

(1.42) ot (t) 1= (<p§-)_1(é§“(t)) for ¢t € [ti,tit1],i=0,...,k.

Formula (1.42) is meaningful provided (1.41) holds for af“ From the construction and

assumption (1.35)(ii) it follows |ak+1( t) k“( t)] < £ a.e., hence |ak+1(t)| <

0¥ (ko) + [, loF (7] dr <
We thus have equ1bounded equ1cont1nuous sequences {vj,af,ej,sj, k € N} in

C([0,tp + s]|) satisfying (1.39) and (1.41), é"; = Fj(o j),|<€‘7 - 5§“|oo < max{|5j( ) —

(Mt —7] < £} < Ban By Arzela-Ascoli Theorem V.2.1 there exist uniformly

convergent subsequences in [0,ty + s (still indexed by k) such that their limits

k k
Jo Jo

| < ople

v; 1= lim v;

oj := lim o7}
k—o0

k—o0

gj = lim 5J lim 5? fulfil Lemma 1.7. L]

k—o0 k— o0
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Lemma 1.8. Let inequality (1.36) hold and let {v;,0;,e;;j = 1,...,n — 1} sat-
isfy system (1.37), (1.38) in an interval [0,to] C [0,T], |lojllj0,tg) < R. Put Cy :=

1/2 2
[fo (2,0) + |o9(x)|* + ﬁ|v2(m)|2)dx+ ( (;50 ( 01 qtz(:v,t)d:v) dt) . Then
R ,
(1.43) ill0,te] < X lvilljo,0) € VORCT Vji=1,...,n—1.

Proof. We differentiate (1.37)(i),(ii) 24 and multiply by ©;,5;, respectively. Sum-
ming and integrating fot we obtain

(1.44) 21 E@?(tH/Ot éj(T)dj(T)dT} :21 {%@?(0)+/Ot qj(T)@j(T)dT].

The operators F; satisfy the hypotheses of Theorem 11.4.19 and ¢; € W*1(0,T), o; €
W1ee(0,T) for all j=1,...,n— 1, hence

min{de?(t),éé?(t)} > ¢,(1)65(t) > max {and? (), big ) ae.,
/0 Ej(m)oj(r)dr > %éj(t)&j(t) - ge / l6;(T)Pdr  ae.

Combining this last inequality with (1.44) yields

145 Z_:[ —|—€] O'J( +KR/ ‘0'] 3d’7':| X

Z [ )+ _5 2(0) + 2/(: Qj(T)@j(T)dT} a.e.

From (1.45), (1.37), (1.36) and from the inequalities
n—1 .t t
1 1/2 1/2
1.46) - ;. H— H /
(1.46) n;/o q; (1) 05 (7 [0,4] < qu > dr
1/2 rt 1 1/2
L 2
<[zl [ ([ ) o
2 n—1 1
(1.47) Zv <= Z (041 —05)> + ¢ ](0) < 2/0 [109(2)[2 + ¢*(, 0)] d,

(148) /|v )|2dz,

(La9) | /Olq yirl <2 [t o ([ [ atenar) )

2
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we obtain for a.e. t €]0, |
(1.50) (i) = Z ) +ard?(t)] < Cy,
1 ! R
i) S A0 < Cai— 2(Ch + | i) <7
j=1 0
i, 1
(i) Z A 0()]? = = ) &5(t) < brCh,

(iv) ‘UJ Z loiv1(t) — 04(t)] <

J

(v)  |vi(t) Zm —v;_1(t)] < VbrCH

and Lemma 1.8 is proved. 0

Proof of Theorem 1.6. From Lemmas 1.7, 1.8 it follows that system (1.37), (1.38)
has a classical solution in [0,T] for every n € N and estimates (1.50) hold for a.e.
t €]0,T[. For x € [£, 2] j=0,...,n—1 and t € [0,T] we define the functions

o™ (z,t) 1= 051 (t), 6 (2,t) :=0;(t)+ (z — %) Ajo(t),
(1.51) v (z,t) 1= v;(t), 3 (z,t) 1= v (t) + (z — %) Aju(t),
g™ (.I',t) C= gj-l—l(t)a q(n) (.I',t) =g (t)

continuously extended to x = 1.

Estimates (1.50) show that functions a,E”) ,S”) (n), 5, ~(n) 58 58 are bounded
in L>(0,7;L?(0,1)) independently of n, |o(™ (z,t) — a(”)(:z:,t)|2 < Zj:_ll loj+1(t) —
oi®)? < &, M (2,t) — 3™ (z,1)]? < &S The space WHP(]0,1[x]0,T[) for
p = ((00,2), (00,2)) is compactly embedded in C([0,1] x [0,7]) by Corollary V.2.5;
there exist therefore functions v,o € C([0,1] x [0,T]) and & € L>(0,T;L%*(0,1))
such that v, vy, 04,0, € L™ (O,T : L2(0, 1)) and subsequences of the sequences above
(still indexed by n) such that v — v,0(™ — 5,5 — 2,6 — & uniformly,
vg n o, Vg, U ( ) vt,a,g n o, Ut,a,g n o, at,&:g n o, &, Vg THRRN Vg O ( R o, weakly-star
in L (o,T, L?(0,1)).

System (1.37) has the form

(1.52) (1) o™ =& 4 ¢,
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where F(") is the operator F()(u)(x,t) := f (j%l,u(:r, D) (t) for z € [%, %] ,J =

0,...,n and arbitrary w such that u(zx,-) € C([0,7]) for all x € [0,1].
For each n € N and t € [0,7] we have

Jjt+1 J

1 n—1 zl
/0 " (2, t) — gl t)|dz < nZ/J la(a,t) — q(&, t)|d d,
j=1"7%

n
KA
n

hence ¢(™ — ¢ in L' by Mean Continuity Theorem (Proposition V.1.14). Furthermore,
assumption (1.34)(ii) yields |F(“)(a(”))(x,t) — F(o)(z,t)| = |f (j%l,a(")(x, ) () —
f(z,0(z,-))(t)] — 0 uniformly in [0,1] x [0,T] as n — oo, hence (") converge
uniformly to ¢ = F(o) and ¢; = £. Passing to the limit in (1.52) we obtain (1.29).
We moreover have |o(™(y,0) — o%(y)]? < %fol 109 (2)|2dz, 0™ (y,0) — O(y)] <
%fol 100 (x)|2dz for every y € [0,1], 6" (1,t) = 9™ (0,¢) = 0. Conditions (1.31),
(1.32) then follow from the uniform convergence. Theorem 1.6 is proved. O

Let us mention here an additional regularity result.
Proposition 1.9. Let v,0,e be as in Theorem 1.6. Then the functions v,,o, :
[0,T] — L?(0,1) are weakly continuous.

Proof. The argument is standard (see Arosio (1981)). Let ¢, — to € [0,T] be an

arbitrary sequence and let § > 0 be given. For each ¢ € L?*(0,1) we find e w21(0,1)
such that |1) — 1|y < 6. Then

/2

‘/01 (U;r(x,tn) - Um(w,to))w(x)dx‘ < 2582p (/01 |ag(x,t)|dx>1 .
+ ‘ /1 (o(z,tn) —J(x,to))q;’(x)dx’
0

and similarly for v,. The assertion now follows from the estimates (1.50) and continuity
of v and o. OJ
To conclude this section we prove under a natural energy condition that system (1.29)

is hyperbolic in the sense of bounded speed of propagation.

Proposition 1.10. Let the hypotheses of Theorem 1.6 be fulfilled. Assume that
there exists a potential energy operator U : [0,1] x W1>°(0,T) — W1>(0,T) and a
constant ¢ > 0 such that for every u € W1°°(0,T)

(1.53) () U(m,u)(t)}%zﬂ(t) V(z, 1) € 0,1] x [0,T),

() ult) 2 (e, u)(1) > S0 w)(D) e,
(i) Ulz,u)(0)=0 if u(0)=0.
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Let there exist an interval [a,b] C]0,1[ such that the data o°v°, q satisfy o%(z) =
vW(x) =0 for x € [a,b], g(z,t) = 0 for (z,t) € Q:={(z,t) € [0,1] x [0,T]; a + ct <
x < b—ct}. Then every solution (v,o) of (1.29) vanishes in Q.

Proof (cf. Courant, Hilbert (1937)). Put y(o)(z,t) := U(z,0(z,"))(t). For
(z,t) € Q we have (502 —H/{(a))t — (vo), < 0. For an arbitrary 7 € [0, bz_c“} we denote
Qr :={(z,t) € Q; t < 7}. A straightforward integration yields

// v +U(0)), — (v J)x}da:dt = /ab_m <%v2 +L{(a))(:c,r)d:1:+

“+cT
a+cT 1 9 1 T —
+ Y +U(o) + —vo ),

&
e[ (o= ) (o

and the assertion follows from (1.53)(i). O

a)dac+

Remark 1.11. The expressions @ : = %02 +U(0), ¥ :=vo are the energy density
and energy flow density, respectively. Note that the hypothesis is fulfilled for the oper-
ator f(z,-) = %I+ W (Az,),-), where W is a Preisach operator 11(3.13) with initial
configuration A(z,-) = 0 for x € [0,1], a Della Torre operator 11(3.31) or a Preisach
operator with fatigue I1(5.7).

ITI1.2 Uniqueness and asymptotics

Further investigation of qualitative properties of global solutions to system (1.29),
(1.31), (1.32) constitutes the objective of this section. In general, the problem of
uniqueness is open. Besides the easy case, where F' is monotone as in Theorem 1.2, we
explicitly formulate a uniqueness condition if F' is a Preisach operator.

The main part is devoted to the asymptotic behavior of solutions as t — oco. In
the previous section we proved that the convexity of loops of the constitutive operator
implies that shocks do not occur. Here, we prove that strict converity of loops implies

nonresonance and decay of solutions.
UNIQUENESS

Theorem 2.1. Let Ry > 0 and a function A € C([0,1];Ar,) with Ar, endowed
with the sup-norm be given. Let the constitutive operator F be of the form (1.33),
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where f(xz,-) := F, (A(z,-),-) is the Prandtl-Ishlinskii operator II(3.2) and let h be
nondecreasmg, a = h(0+) > 0. Then for every v°,c° € W2(0,1), ¢ € L'(]0, 1[x]0, T[)
such that v°(0) = ¢°(1) = 0, ¢, € L*(0,T; LQ(O 1)) there exists a unique solution
(v,0,6) € (C[0,1] x [0, T]))3 of (1.29), (1.31), (1.32) such that v¢,vy,04,0,,6¢ €
L*>(0,T;L*(0,1)) and (1.29) holds a.e.

Proof. Existence follows from Theorem 1.6, since R > 0 can be chosen arbitrarily
large and ar > a > 0. Uniqueness follows from inequality II(4.11) similarly as in the
proof of Theorem 1.2. O

Theorem 2.2. Let )V be a Preisach operator satisfying the hypotheses of Theo-
rem 11.4.22 and let F be of the form (1.33) with f(z,-) = al + W (A(z,-),"), a >
0, A € C([0,1];ARr). Let ¢,v°, 0% satisfy condition (1.36) and let (v, o ¢®) ¢
(C[0,1] x [0,T])3, i = 1,2, be two solutions of (1.29), (1.31), (1.32) such that O'ti) €
Lt (O,T; L>(0, 1)), i=1,2. Then v =93 o) =52 (1) =)

We see that the regularity o, € L>(0,7;L?(0,1)), |0 < & obtained in Theorem
1.6 is not sufficient in Theorem 2.2. To obtain uniqueness we have to assume that the
solution ¢ is more regular with respect to x. However, the problem whether more

regular data guarantee more regular solutions remains open.

Proof of Theorem 2.2. Put w® := W\ ¢®), i =1,2. From (1.29) we infer in
a standard way that

1d (!
¢ [(U(l)_U(Q))Q—I—CL(o'(l)_0'(2))2} (z, t)dx+/ (w] 1) §2))(o(1)—a(2))da;:0 e,
0 0

For &«i) c=pr(N\,0®), r>0,i=1,2 it follows from Proposition I1.4.13

1
%;lt [( (1) _ @2 4 g (6D — (2))](:,; t)da +
/ / (& -7) at(@” r) = g(& ) (@ dzdr <O ace,

hence for a.e. t € [0,T] we have
1
255 ) [<v<” —v<2>>2+a<a<” o)’ / P(ED, P)ED — €2)2dr (2, t)dw <

- / / <s£1>—5£2>>(¢<5ﬁ”,> U(ED. 1) 2 €] (@ )da dr.
o Jo ot
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Put k(t) := Supess{|a,§i)(x,t)|; z €]0,1[, i = 1,2}. Then we have k € L'(0,T) and
260 (gt )‘ k(t) for ace. (r,z,t) €]0,00[x]0,1[x]0,T. From (2.1) we obtain

1d ! R
5%/ [(v(l) — v(z))z + a(o‘(l) _ 0(2))2 + AR/ (€£1) _ £§2))2dr (z,)dz <
0 0
3 1 R
S §CRk(t)/ / €MD — ez, t)drdz aee.,
0 0

where Ag,Cpg are positive constants from Propositions 11.4.22, 11.4.2. The assertion
now follows in a standard way from a Gronwall type argument like Lemma I1.5.6. [

Exercise 2.3. Let the hypotheses of Theorem 2.1 be fulfilled and let the number
H_(R) from Proposition 11.4.21 be strictly positive for all R > 0. Use inequality
II(4.11) to prove that the solution of problem (1.29), (1.31), (1.32) is stable with re-
spect to quasilinear perturbations of the form ¢ = F(o) 4 dg(o), where ¢ is a smooth
increasing function and ¢ — 0+.

NONRESONANCE

We have seen that the convexity of hysteresis loops of the constitutive operator pre-
vents system (1.29) from the formation of shocks. We now show that if the hysteresis
loops are strictly convex and the right-hand side ¢ is bounded, then the solution re-
mains globally bounded due to the hysteretic dissipation of energy. This phenomenon

is called nonresonance and the precise statement reads as follows.

Theorem 2.4. Let the hypotheses of Theorem 1.6 be fulfilled with Kr > 0 and
q,q¢ € L>(0,00; L*(0,1)). Let condition (1.36) be replaced with

(2.2) (i) Qi1Krbgp? <1,
1
(i) 6max{Ey, YQ1} + Q3 < ZRQ,

3
where we put Ep := 5 fo (Jo2(z) + q(z,0)]> + -1 \vo( )?)dx, Y 1= 6b2K5" + tbrQ,

Qo := supess{(f0 xtdac)2 t>0}, Q1 .—supess{(fo q; gct)dx)2 t>0}.

Then system (1.29), (1.31), (1.32) admits a solution (v,o,¢) € |J C([0,1] x [0,T])
T>0

such that |o(z,t)| < &, |v(z,t)] < (6bg maX{EO,YQl})% for all (x,t) € [0,1] x [0, oo,
V¢, Ugy Ot, Oy, €t € L (O,OO,L2(O, ].))

Conditions (2.2) express the requirement that the solution does not leave the con-
vexity domain of F'. If the operator F' is globally convex, i.e. for every R > 0 there
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exist b > ag > a >0 and Kpr > 0 such that condition (1.35) holds and if moreover
we assume

2

. — o . R _
@ dm Kb =0, i ok =0

Nl=

then assumption (2.2) is automatically satisfied without any restriction on the size of the
data for R sufficiently large. Let us note that operators satisfying (2.3) exist. It suffices
to consider a Prandtl-Ishlinskii operator I1(3.2) with h(r) := a + 2¢r® with a,c¢ > 0
and « €]0,1]. Indeed, by Proposition I11.4.21 we have br = h(R), Kp = caR*™!.

Proof of Theorem 2.4. It suffices to check that the assertion of Lemma 1.8 holds
for every tg > 0 with C; = 6 max{FEy, YQ1}. Lemma 1.7 then guarantees that system
(1.37), (1.38) has a globally bounded solution in [0,00][. The argument of the proof
of Theorem 1.6 then shows that for every fixed T" > 0 the sequence (1.46) contains a
subsequence which converges uniformly in [0,1] x [0,7] to a solution of (1.29), (1.31),
(1.32). Let {v(V oD (D1 denote the corresponding convergent subsequence for
T = 1. By induction we construct for ¢ € N subsequences {v(”’@,a(”’@,é(”’@} of
{p(t=1) gt=1) (=D which converge in [0,¢]. To each ¢ € N we find n, such
that for m,n > n; we have [v(™8 — (0| 4 |gmO — GO 4 |glml) _ (O] < 1,
The sequence {v(”f’@, o) c(net).p e N } then converges locally uniformly to a global
solution of (1.29), (1.31), (1.32) satisfying the assertion of Theorem 2.4.

To derive estimates (1.43) we proceed analogously as in the proof of Lemma 1.8. The
counterpart of (1.44)

(2.4) S [%(i’?(t) —97(s)) + /St éj(T)dj(T)dT} = S/: G (T)0;(T)dt

holds for every t > s > 0. To simplify the computation we introduce the notation

E(t) := % ._ (07 (1) +€;(1)55(1)),
S = -3 I )P,
V(t) ::% y o3 (t),
j=1
1 n—1
Z(t) i = —— > vi(t)0;(t)
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and choose an arbitrary function ¢ € W1°°(0,00) such that

(2.5) o(t) > (/01 qf(x,t)dx)i vt > 0.

For almost all ¢t > s > 0 we obtain from (2.4), Theorem I1.4.19 and equation (1.37)

(2.6) E(t)— E(s) + %/S S(r)dr < %z;:l/s q;(1)0;(T)dT

n—1

(2.7) 200+ V(1) = - 3 [£5(06,5(0) — v (0)is ()]

j=1
Using Holder’s inequality for sums and the inequalities
-1 1. 1/2
{ v ()] < %Z?:l 1A;_v(t)] < (£ > i &)%) a.e.,
€ (t)] < brloj(t)], %Z? L G5 (t) < [y gi(w, t)da a.e.

we infer from (2.6), (2.7)

(2.8)

(2.9) E(t) — E(s) + % / S(r)dr < / t A (T)VE(r)dr,
(210) Z(t)+ B(0) + 3V(0) <ba (558 (0) + (151 (1)) < b (351 + 20'()).
We now fix a constant C' > 0 which will be specified later and put B(t) : = %ﬁﬂ'
The inequalities
POV < SConV () + 550 (0),
33 (1) < s +2B)S (0
combined with (2.9), (2.10) yield for a.e. t>s>0
(2.11) / Co(r E(7))dr <
< /S [210 + 16?;203 + bRGC 92(7)] o*(r)dr.

We can choose in particular o(7) = Q% and put C := %K;%b;z%, E(t) := E(t) +
CQ? Z(t). By (2.2)(i) and (2.8) we have |CQ2Z(t)| < LE(t) a.e., hence

2

(2.12) “E(t) < E(t) <
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Inequality (2.11) for o(7) = QI% then yields

ol

(2.13) B(t) — E(s) + gccg% / B <YCQi(—s) ae

. 1oy 3
The function f(t) := E(t) + 2CQ7 fst E(1)dr — YCQZt is nonincreasing in |0, oo|
1
by (2.13); from inequality I1(4.21) for n(t) = 3@t and K =0 it follows

A

R 1 3 1
E(t—) < E(s4)e3C¢@1 (=1 4 5Y i1~ e3CRT (s=1))

3
< 3 max{FE(s+),Y@Q1} forall t>s>0,
consequently
(2.14) E(t—) < 3max{E(0+),YQ1} Vt>0.

We have E(s) < £ S77} (02(s) + LE (s)) for a.e. s> 0, hence E(0+) < Ep and

3=

(2.15) E(t) < 3max{Ep, YQ1} a.e.

We have by (1.37) and (2.8)

1
2

o0 < (255516 0F) < (0rB®)} ae.
(2.16) o0 < EXT A0 < BT () + g0

1
< )+ fo (z,1) d:v) ©ae
and estimates (1.43) with C; = 6 max{Ey, Y@} follow from (2.15) and (2.2)(ii). The-
orem 2.4 is proved. O

DECAY OF SOLUTIONS

A natural question about the decay of solutions of (1.29), (1.31), (1.32) as t — oo if
the right-hand side decays to 0 can be answered in the following way.

Theorem 2.5. Let the hypotheses of Theorem 2.4 hold and assume that the function
0 € WH(0,00) in (2.5) can be chosen in such a way that
(2.17) Jim o(t) =0, 0<-o(t) < Mg*(t) a.e.

for some constant M > 0. Then there exist constants A > 0 and ty > 0 such that
each global solution (v,o,¢) of (1.29), (1.31), (1.32) satisfies

{ vz, t)| < V2bRA Q( );

(2.18)
(2, )] < (2402(1) + [} ¢2(&.)de)

V(z,t) € [0,1] x [to, o0-

Nl=
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The best estimate of the decay rate for ¢ = 0 that Theorem 2.5 can yield is %
Example 2.6 and Remark 2.10(i) below show that it cannot be improved.

Proof of Theorem 2.5. Using inequalities (2.16) and the locally uniform con-
vergence of the approximate solutions we see that it suffices to derive from (2.11) the
inequality

(2.19) E(t) < Ag(t) for a.e. t > t.

for suitable A > 0 and ty5 > 0.
We fix some § € } —[ and put

(2.20) to 1= sup {t > 0; Mg(to)bi >4}

In inequality (2.11) we denote

AM 1 166%C% 1
= B+ —brCo?(to).

2.21 N
(2.21) 1-55° 20T KL 6

We have |Mo(t)Z(t)] < 6E(t) for a.e. t > to and the function E(t) := E(t) +
Co(t)Z(t) satisfies
1-9

(2.22) s Bt < E(t) <

1-90
1—50

E(t) for a.e. t > .

We rewrite inequality (2.11) for a.e. ¢ > s > ¢y in the form

(2.23)  B(t) - +o/ () 2(n))dr < L/ & (7)dr.
Hypothesis (2.17) yields

o(T)E(r) — o(r)Z(7) > o(7) (B(7) — |Mo(r)Z()))
> (1 - 8)o(r)E(r) > (1 - 56)0(r)E(r) ace.

and from (2.23) we conclude
R X t R t
(2.24) E(t)— E(s) + 4M/ o(T)E(T)dr < L/ o*(T)dr for ae. t > s> t.

Put P(t) := ft 7)dr for t > to. Similarly as in the proof of Theorem 2.4 we
use 1nequallty 11(4.21) for f(t):= E(t) + 4Mft VE(r)dr — Lft 7)dr and
n(t) : = e*MP®  We obtain for a.e. t > s> tg.

t
(2.25) MPOL() — e MPOIE(s) < L / o (r)e*M P dr



124

From hypothesis (2.17) it follows - (o?(7)e*MP(M) > 20 g3 (7)e*MP(7) > 0, hence

e—4MP(t) <2 (t)

(2.26)

fst 93(T>64MP(T)d7_ < ﬁ (gQ(t)e4MP(t) _ 02(8)64MP(3)).

Combining (2.26) with (2.25) we obtain

. L A L
AMP(t) L9 < L9
0 (o) - 41720) < Blto) - 176%0)

and either E(to+) < g2 0%(to) and E(t) < {5 0%(t) for ae. t >ty or E(to+) >
ﬁQQ (to) and E(t) < QEQ((Z?) 0%(t). Inequality (2.19) now follows from (2.22) with A =
% max {ﬁ, %} and the proof is complete. O

The rest of this section is devoted to the problem of optimality of estimates (2.18)
for ¢ = 0.

Example 2.6. Let us consider the system of ODE’s

v = —o,
(2.27) i =,

o = F,(0,u),
(2.28) u(0) =uy >0, v(0) =0,

describing the oscillations of an elastoplastic spring-mass system, where F,(0,-) is the
Prandtl-Ishlinskii operator 11(3.2) with zero initial memory configuration. We assume

(2.29) h is nonincreasing in ]0,00[, 0 < h(r) < h(0+) for all r > 0.

By Proposition 11.4.6 B every solution of (2.27) satisfies

(2.30) %(%v%) + U(t)) = —|D(#)],
where
=Jy —u(t)) 2 r)dr
(2.31) {U(t) 0 (gr(t) (£)) 5:&r (£) h(r) dr,
D(t) = [y~ 5 (r&(®) h(r) dr,
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with &-(¢) : = p,(0,u)(t).

The technique of construction of the solution to system (1.15) is applicable here and
we conclude that system (2.27), (2.28) admits a unique global classical solution. Our
aim is to derive the following properties of the solution.

Proposition 2.7.

(i) There exists a sequence 0 = tg < t; < ... such that (—1)¥u is increasing in
s

tr—1,1 lim t —tp_1 = .
[ k—1, k]7 oo k k—1 \/m
(ii) There exists a decreasing positive function I' :]0,00[—]0,00[ and positive con-

stants ki, 1 = 1,2,3,4 such that lim I'(t) = lim w =0 and
t—o0o t—o0o

(2.32) k1D (kat) < |o(t)| + Jv(t)| < k3T(kat) VE>0

Statement (ii) means that the solution decays to 0, but the rate of decay is not
exponential. In the proof we find an explicit formula for I' in terms of the generator
¢ of the operator F, and we show that under the hypotheses of Theorem 2.5 we have
I'(t) = 7. The proof of Proposition 2.7 is based on Lemmas 2.8, 2.9 below.

Lemma 2.8. Let (u,v,0) be a solution of (2.27) and assume that for some so > 0
we have v(sg) = 0, 0(sg) # 0. Put A(r) := p,(0,u)(so). Then there exists s; > s
such that u,o are strictly monotone in [sg, s1], v(s1) =0, o(s1)o(so) < 0 and putting
S := —sign (0(s0)), r*(t) := mx(u(t)) we have for ¢ € [sg, s1]

(2.33) %vz(t) = (A(0) = A(r*(t)) — Sr*(t)) o(s0) —

r*(t)
- /0 (S + N () (A=) = A(r) + S(r*() — 7)) h(r)dr,

‘0
(2.31)  o(t) = o(s0) + /0 (S + N () h(r)dr.

Proof of Lemma 2.8. There exists 6 > 0 such that signo(t) = signv(t) = S for
t €]so, 80 + 0. Put s1 : = inf{t > sp; Sv(t) < 0} with the convention inf@ = 4o0c. In
|50, 51| we have SD(t) > 0 and energy identity (2.30) entails

(2.35) %vz(t) +U(t) + SD(E) = U(so) + SD(s0).
Using formula (2.31) for &.(sg) = A(r), &-(t) = A(r) for r > r*(t), Sr(t) = u(t) — Sr for

r €]0,7*(t)[ we obtain (2.33) directly from the identity w(¢t) = A(r*(¢)) + Sr*(t) and
(2.35). Formula (2.34) follows immediately from the deﬁnltlon II(3 2).
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Assume that s; = +o00. Then Sv = Su > 0, hence S6 = =S¥ > 0 in ]sg, +oo[ by
Proposition I1.4.8. This yields S© = S > 0 in ]sg, +oo[, Su(4+00) = +00. We have A €
A for R = |ulljo,s,] by Corollary I1.2.6, hence r*(t) = |u(t)| and o(t) = Se(|u(t)])
for ¢ sufficiently large. This means in particular So(t) = —So(t) > 0 for ¢ sufficiently
large which is a contradiction. We therefore have s; < oo, So(s1) = —Sv(s;) > 0 and
Lemma 2.8 is proved. O

Lemma 2.8 enables us to define the sequence 0 = tg < t; < ... such that (—1)*u
increases in [tr_1,t], v(tx) = 0, (=D o(tx) > 0. Put wuy := u(ty), o : = o(ty),
ai 1= |okl, Ae(r) = pr(0,u)(tg) for r > 0, rg := ug, 741 : = my, (ugs1) for £ > 0.
For r > 0 we define auxiliary functions

o(r) := /0 ¢(0)do,

o) s=2( 2 o)) = =2 [ ot - panto)
0

50y = 220 =2 [ gy hiyde,

)= [ 24,

)
p(r) := h(0+) — h(r).

From hypothesis (2.29) we easily derive the following properties of the above func-
tions.

(2.36) (1) a(0+)=0,0<da/(r) <2u(r) for r >0,

(ii) B(0+) =0, B(+00) = 2¢(+0), h(r) < B'(r) < h(0+) for r >0,
h(r)
2p(r)

(iii) ~(r) > log -2, v'(r) <0 for r>0.
r

Lemma 2.9. For every k € N we have ar_1 > @o(ry) > ag, ax—1 = B(rr), ax =

20(rk) — ap—1, Tk = 5|uk — up—1].

Proof of Lemma 2.9. We proceed by induction. We have o¢ = ¢(rg), S = —1 in
10, t1[, Ao(r) = max{0,rp — r} and the function

fo(o) := (uo — Xolo) + 0)o0 + /09 (1= X6(r) (Mo(o) = Xo(r) — 0+ 1) h(r)dr

satisfies fo(0) = 0, fo(ro) = —roa(re) < 0, f(0) > 0 for p € }0,90_1(%) [, file) <0
for o > @‘1(%). From (2.33) we infer that ¢ = r1 is the unique positive root of the
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equation fo(o) = 0, hence ry €]0,ro[, 11 = 2(uo — w1) and B(r1) = 0p. By (2.34) we
have o1 = 0¢g — 2p(r1) and the assertion for £k =1 follows.

Assume now that for some k € N the assertion of Lemma 2.9 holds. We analogously
define the function

fi(0) == (ur — Mie(0) + So)oy + /09 (S = XL(r) (Ae(0) = Ai(r) — S(o —r)) h(r)dr,

where S = (—1)*, and using the formula A\ (r) = up — (=1)*r for r €]0,7%[, \e(r) =
Ak—1(r) for r > rp and the induction hypothesis we obtain fi(0) = 0, fi(rx) =
2rpap — 4®(ry) = —2rpa(ry) < 0, fi(0) > 0 for ¢ € }0,@0‘1 (%’“) [, fi(e) < 0 for
o> 1 (%’“) From (2.33) we again infer that ¢ = ryy; is the unique positive root of
the equation fx(0) = 0, hence 1,41 €]0, 7], Th11 = %(uk — ug+1) and B(rg+1) = ag.
Identity agy1 = 2¢(rg+1) — ar follows from (2.34). We obviously have ay — @(rgy1) =
Ta(rpg1) > 0, hence ax1 — ¢(rp4+1) < 0 and the induction step is complete. O

Proof of Proposition 2.7. We rewrite the identities in Lemma 2.9 in the form

(2.37) ax—1 = B(rk), B(rr) — B(ri+1) = a(re).
Both sequences {ax},{rr} are decreasing, klim ai = klirn ry = 0. The difference

tr+1 — tr can be directly estimated using the formula

Uk 41 Uk+1 dx
(2.38) tey1 — te = / (u™ Y (x) dx = /

‘ w TN (@)

where u™! : Conv{ug, ug41} — [tk, tes1] is the inverse function to ul; By (2.33)

thothy1]”
we have

—v%(t) = |u(t) — uglar — 4@(%@@) — )

and (2.38) yields

Teyp [ dr
(2.39) topr — b =4/ / _
2 Jo Vr®(rps1) — ree1®(r)
! ds

Tk+1

V2 Jo \/s®(ris1) — @(srs1)

From the integral formula s®(r) — ®(sr) = s [ ffg h(z)dzdo we infer

r2 r
k2+1 s(1 —s)h(rgs1) < sP(rgr1) — P(sre41) < kot 1 s(1 — s)h(04),
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hence
T T
(2.40) ——— <1 — U  —Y——=
h(0+) h(rk+1)
and statement (i) of Proposition 2.7 is proved.
The function I' in (ii) is defined as
(2.41) () :=~"(t) for t>0,

where 71 :]0, 00[—]0, ro[ is the inverse function to |- By (2.36)(iil) we have

log T(t 1
lim T() = 0, Tim 28T _ gy, 18T
t—00 t—oo  t r—0+ (r)

and (2.37) yields

a(re—1)

Vk € N.
a(ry)

(2.42) L<y(re) = y(re—1) <

a(rg—1)—a(r a(rg—1)—a(r 2u(re—1 .
By (2.37),(2.36) we have (Z(ri,l)( B = ﬁgrz,lgfﬁgr:)) < f((r:il)), and similarly

The1—Tk B(re—1)—PB(rk) 2p(rr—1)
Tr—1 S re—1h(ry—1) h(Tk—1)7hence

Tk

(2.43) fm QURD g

= 1.
k—oo Oé(?”‘k) k—oo TEp_1

Using (2.40), (2.42) we find positive constants ¢;, i = 1,2,... independent of k such
that c1k > v(ry) = k, cok > t,, > csk and

(2.44) r(itk) <re <T(2t) VkeN.
()] C3

Using once more identities (2.33), (2.34) in [tx—1,t,] with r*(¢) = S|u(t) — u(tp—1)|

we obtain

o?(t) + S05:;—(?;))1)2(75) =0r - 2a(r* (1)) e (r (1)),
consequently
(2.45) of < o?(t) + Mv2(t) <oi, Vteltp_a,til.



129
By (2.37), (2.43) we have o7 | < cyri, oi > csri_y, and (2.44), (2.45) entail

C5F2(it) e <o)+ Mv%) < ear? < eal2(24).
©2 r(t) c3

The assertion now follows from the fact that r*(t) €]0, 7| and h(0+4) > ‘pgf;;(g)) > cg >
0 for all ¢ €]ty_1,tk[. A suitable choice of constants k1, ko, k3, k4 now completes the

proof. 0

Remarks 2.10.
1

(i) It is easy to check that the estimate ; of the order of decay in the context of

Theorem 2.5 is optimal. By Proposition 11.4.21, the hypotheses of Theorem 2.5 are
fulfilled if there exist constants 0 < k1 < ko such that

(2.46) ki(r—s) < h(s) —h(r) < ka(r—s) forall ro>r>s>0.

In this case we have %17“2 <a(r) < %27“2, hence %;O)(% — %) < (r) < %?H(% — %)

for r €]0,79[. The definition of T' then yields

3T0h(7“0) <

< f t> 0.
1—|— kQT()t o

3T0h(0—|—)
2.47 ') < ——=
( ) ( ) 1 + ]{Tlrot

(ii) While the stress o and velocity v vanish as t — oo, the displacement u in

Example 2.6 tends to a positive value u,, which corresponds to a remanent deformation

of the spring. This follows from the formula r; = (_21)k (up — ug—1), 7o = uo which

entails ueo = Y peo(—1)%(rk — rit1). By (2.37) we have B(ri_1) —26(rg) + B(ry41) =
a(ri—1)—a(rg) > 0, hence B(ry) < 5(B(rk—1)+B(rk+1)). The function 3 is increasing

and concave, hence 1, < %(rk_l + 7ri41) for all &k € N. We thus conclude uy =

ZZO:()(T% — 2rok41 + Tak42) > 0.

(iii) We similarly prove that the energy E(t) = 3v2(t) + U(t) does not vanish as
t — oo. Putting Ejy = Uy : = U(tx) we obtain from (2.31)

Eo = rop(ro) — ®(ro), Ex = Ep—1 —rpa(ry) for k € N.

Lemma 2.9 and formula (2.37) then yield

[e’e] [e’e] B ar +a
B = By = Y_rea(re) = Bo = ¢ (525 ) (@ — ap).
k=1

2
k=0
The function ¢!

is strictly convex in its domain of definition. We therefore have
9071 (ak+§«k+l> (ak o ak—i—l) < ar

— a _
anir @ Y(s)ds and Ey > Eo— [ ¢! (s)ds = 0.
We see that a positive part of the initial energy is stored in the remanent deformation
of the spring, the rest is dissipated in the form of heat.
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I11.3 Periodic solutions

The nonresonance property of wave equations with strictly convex hysteretic consti-
tutive operators which was proved in Sect. III.2 is manifested from another viewpoint
by the fact that time-periodic forcing terms imply the time-periodicity of solutions. For
a general hysteretic constitutive operator we prove the existence of a periodic solution
in its convexity domain by Galerkin method. In the case of Prandtl-Ishlinskii operators
we apply the Minty-Browder method to prove the existence and uniqueness of periodic
solutions even in the multidimensional case and, in dimension one, we prove that this

solution is asymptotically stable.

COMPACTNESS METHOD

We pursue here the study of the scalar system (1.29) coupled with boundary condi-
tions
7T
(3.1) v(0,t) = 0’(5,15) =0 for t>0
and time-periodicity condition
(3.2) v(x,t) =v(z,t +w), o(z,t) =o(x,t +w) for (x,t) €]0, g[x](), ool

where w > 0 is a given period.
We introduce the spaces of w-periodic functions

LP = {ue LV (0,00); u(t+w)=u(t) forae t>0}

loc

endowed with the norm of LP(0,w), and C, as in Corollary II1.2.7. For the sake
of simplicity we write C,([0,%]) instead of C([0,%];C,) and LZ(0, %) instead of

LP(0,5; LP). The corresponding LP-norms are still denoted by |- |,, since confusion is

unlikely.

Theorem 3.1. Let the hypotheses of Theorem 1.6 be fulfilled with Kr > 0 and
¢,q: € L2(0,%). Let condition (1.36) be replaced with

(3.3) g, + chla|? <R,

where %, = 5\/g—l— 7<1 + \/g(l + i)): Cp = KE% [13_0 + 2(“”5?’%)% (% + %)} and

1 z -
vi=1(2)7°® (l (%)% + 1) . Let the operator F satisfy the periodicity condition

w

=

(34)  Flu)(at+w)=Fu)(x,t) Vue (), g]), V(x,t) € [0, g] X [w, o0).
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Then there exists at least one solution (v,o,e) € (Cy ([0, g]))?’ to (1.29), (3.1), (3.2)
such that vy, 0, € L? (0 ) €4,0¢, Uy € L3( ) |o|loo < R, V|00 < brR and identities
(1.29) hold for a.e. (x,t) €]0, 5 [x]w, oo].

From Corollary 11.2.7 we immediately see that assumption (3.4) is satisfied for
Prandtl-Ishlinskii, Preisach and Della Torre operators as well as for the fatigue oper-
ator II(5.7). Condition (3.3) represents again the restriction to the convexity domain
of F. Similarly as in previous cases, for Prandtl-Ishlinskii operators II(3.2) gen-
Zrett with a,¢ > 0 and « €]0,1] we have
br = a+2cR*, Kr = caR®"!, hence (3.3) is automatically satisfied for every ¢ and

erated by functions ¢(r) = ar +

for R sufficiently large.

The uniqueness of periodic solutions is an open problem in general except for the
case where F' is a Prandtl-Ishlinskii operator. In Theorems 3.4, 3.9 below we show
how the two-level monotonicity established in Theorem I1.4.9 and Proposition 11.4.12
implies uniqueness and stability of periodic solutions.

Proof of Theorem 3.1. The solution will be constructed by Galerkin method. Let
Z denote the set of all integers. We define basis functions {e;;j € Z} by the formula

sin 2U’Tjt for 7>0
(3.5) e;(t) : = o :

cos <1 jt for 7<0
and for a fixed n € N we solve the algebraic system for j = —-n,...,n, k=0,...,n
(3.6) (i) / /2 (vﬁ") — o) — q) e;(t)sin(2k + 1)z dz dt = 0

2w g
(ii) / / o), — v(")) j(t)cos(2k 4+ 1)z dedt =0

M:
M:

(iii) o™ (x,t) 1= vjk € (t) sin(2k + 1)z,

<
I
|
3
X
(@]

3
3 |

(iv) o™ (z,t):= ok e;j(t) cos(2k + 1)x
j=—nk

Il
o

where {vji,05k;7 =—n,...,n,k=0,...,n} are to be found.
Instead of solving directly system (3.6)(i),(ii) we consider the following modified sys-
tem

(3.7) / / (n) (") ) i (t)sin(2k 4+ 1)x de dt =0,
2w
(i) / / ™), — (M) (1) cos(2k + V)a da dt = 0,
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j=-n,...,n, k=0,...,n with a parameter « € [0,1] and operators F, have the
form Fi,(u)(z,t) = (1—a) Fu(0,u(x,-)(t)) + aF (u)(z,t), where F,(0,-) is the Prandtl-
Ishlinskii operator II(3.2) with initial configuration A = 0 and generator ¢(r) = agr +
Kgrr? for r > 0. By Proposition 11.4.21 and Remark I1.4.24 operators F,, a € [0, 1]
satisfy the hypotheses of Theorem 3.1, in particular Assumption 1.5.

Let V € X := R2(m+D2n+1) he the vector with components vjz, ojx; j = —n,...,n,
k=0,...,n. System (3.7) has the form

(38) P(a7 V) =0,

where P : [0,1] x X — X is a continuous mapping such that P(0,-) : X — X is odd.
We endow the space X with the norm

1
(3.9) VI ::max{’a(")‘oo,g‘v(")’oo}.

To establish the existence of a solution V' =V,, of (3.8) for every « € [0, 1] it suffices
to prove the implication

(3.10) P(a,V)=0= V| #R.

Indeed, the Brouwer degree d(P(a, -), Br(0), 0) of the mapping P(«,-) with respect to
the set Br(0) ={V € X; |[V| < R} and the origin 0 € X (see Fucik, Kufner (1980))
is then independent of «; the degree d(P(O -), Br(0), O) of the odd mapping P(0,-) is
odd, hence in particular d(P(«,-), Br(0),0) # 0 and for every « € [0,1] there exists a
solution V,, € Br(0) of (3.8).

We now prove implication (3.10). Let o™, o™ satisfy (3.7) for some a €
[0,1], [[V]] < R. Using the fact that é;(t) = 2Xje_;(t) for every j € Z we multi-

ply (3.7)(i) by (2—”])2vjk and (ii) by (%”])20]7{. Summing up we obtain

w

2w
(3.11) / / o™) ol — agol” qd:cdt:o

Similarly, multiplying (3.7)(i) by ijv_j7k and (ii) by %ﬂja_j,k yields

2w
(3.12) / / ™)™ — (v{™)? 4 aqv,gn))dx dt = 0.

We now apply Corollary I1.4.23 to identities (3.11), (3.12). From II1(4.32) and 11(4.24)(ii)
it follows

(3 13) { lKR f()w f()% ’Utn)|3d$ dt f f02 |Qt’ yvgn)’dx dt,
| Iy

<
Jo© JoE 1ot Pda de <Jo S (orlot™ 2 + lal [of™ ) da dt.
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Put S := ‘ain) 5 Y = |fu§”)‘2, Q1 :=|a
rewrite (3.13) in the form

5 Qo 1= ‘q|2. Using Holder’s inequality we

(3.14)

1 2
Put Mg := (w;?‘) . From (3.14) we infer Y2 < (2MR)3Q3Y3 + Q2, hence

1 2
Y2 <AMRQ:+3Q3 < (2MRQf +/3Q0)",

S <2(Y+(2)Y) < 2K +2MR)QF + /20

R

(3.15)

From (3.7) we directly obtain
(3.16) 0]y <Y + Qo.

On the other hand, for an arbitrary function w € Lin {e;(t)cos(2k + 1)z; j =
-n,...,n, k=0,... ,n} equation (3.7)(ii) yields

o 13
(3.17) / / ow da dt < |Fa(0™), 3 ]y < bpSlwly.
0 0

By density, inequality (3.17) holds for all w € LU%J (0, 5). We therefore have
(3.18) (M]3 < bRS.

The embedding theorem V.2.4 enables us to estimate the sup-norm of ¢, v(") using
boundary conditions (3.1). In order to fulfil condition V(2.5) we find integers (1, ¢> such
that %(%)% << %(%)%—H, %(g)% <y < %(%)%—1—1 and put 17 := bw, T := low.
For arbitrary (z,t) € [0, 5] x [0,w] formula V(2.6) for py = qo = 3, p1 = ¢1 = 2 and
estimate (3.16) yield

‘a(”)(af),t” — |O-(n)<q;’t) — g(n)(g,t)‘
s T 1 z Ty 3
T AT [T ) o )
<2)'[( [ [ 1ot aras) en( [ [ )
= 2(5) 7 [5E S + 7L (Y + Qo)

and similarly L )
[0 (2, 8)] < 2(5)° [563 brS + T3 Y].
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=

For ¢:= <£(§)% + 1) we thus obtain from estimate (3.15) and assumption (3.3)
VI <2e(3)* (55 +7(Qu+ (14 ;-)Y)) < R
2 br S

This estimate ensures that implication (3.10) holds, hence for every n € N system (3.6)

has a solution such that the sequences {|at(n)|3, |crg(cn)|2, |vg(cn)|3, |vtn)|2, 10|, [0 |0

n € N} are bounded. By Corollary V.2.5 there exist functions o,v € C,(0,%) and
subsequences (still indexed by n) such that o™ — o, v — v, F(c™) — F(0)

uniformly in C,,(0, %), Ulgn) — oy, F(e™), — F(o),, oM s, weakly in L2 (0,Z),

) ’2
o = oy, v,gn) — v, weakly in L2(0,%). We pass to the limit in (3.6) and Theorem

3.1 is proved. 0

MONOTONICITY METHOD

To illustrate the method we consider the scalar equation
(3.19) uyy — ~F(Vu) =¢q, (z,t) € Qx]0, 0]
with homogeneous Dirichlet boundary condition
(3.20) u(z,t) =0 for (z,t) € 02x]0,00[
and time-periodicity condition
(3.21) u(z,t +w) =u(x,t) for (x,t) € Qx]0,00],

where Q C RY is an open bounded set with a Lipschitzian boundary, w > 0 is a

given number, Vu is the gradient vector Vu :=(01u,...,0nu), ju := g—;‘i and the

constitutive operator F' has a special diagonal form

(3.22) (F(Vu)), := F;(0;u), i=1,...,N,

where Fy,...,Fy are scalar Prandtl-Ishlinskii operators of the form I1(3.2), i.e.
(3.23) Fi(0iu)(z,t) = Fop, (Ni(w, ), Osu(z, ) (1)

satisfying for every ¢ =1,..., N the following hypotheses.
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Assumption 3.2.
(i) Ro>0 and \; € C(Q;AR,) for i=1,...,N are given;
(i) i(r) = [y hi(s)ds, where h; € W>(0,00), i = 1,...,N are given functions
such that h;(oco) =0 and there exist b > a > 0, a; €]0,1] such that

(3.24) a[ max{r, Ro}}aﬁ2 < —hi(r) <br*i=2  for a.e. 7> 0.

From Assumption 3.2(ii) we immediately derive the following properties of ;.

(3.25) (i) h(r) > _“a_rai—l for > Ry,
(i)  i(r) < ﬁro‘" for r>0.

We shall deal with anisotropic spaces defined in Appendix V.2. Let us first mention
the following easy result.

Lemma 3.3. Operators F; map LP(Q;C,) into LO%(Q,C’W) for p € [1,00[, 1 =
1,..., N and for every v,w € LP(Q2,C,) we have

2b
(3.26) IFi(0) = Fi(w)]( 2 00) < Sl =l

a; (1 — oy

Proof. By II(3.3)(ii) and (3.25) we have for every v,w € C(Q,C,,) and x €

2% o
) |U(:L‘, ) - ’LU(Z‘, ) 00

F@)) = B e < oo

hence (3.26) holds. The functions F;(v)(z,-), F;(w)(z,-) are w-periodic for ¢ > w and
we can assume that they belong to C(Q;C,,). The assertion follows from the density of

C(Q,C,) in LP(Q,C,). O
We now fix multiindices p = (p;), p’ = (p}), where p; =14+ «a;, p, =1+ al (note

that we have Z%—kz% =1) for i=1,...,N and put ap := min{a;; i =1,..., N}. Our
basic functional framework consists of the space

(3.27) Z :={ue L' L2); uy € L*(Q; LZ), diu € LP(Q;C.,),
diug € LP(Q; LE),i=1,...,N}

endowed with the natural norm

(3.28) Uz = |u|(14a0,3) + [tel2 + [VU|(p,oo) + [Vt (p,3)
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with the notation of Appendix V.2.

Let {ug; k € N} C L?(Q) be the complete orthonormal system of eigenfunctions of
the Laplacian

(3.29) —Auy, = Apug,  ur € WH3(Q), A\ > 0.
We define a system of basis functions

w

(3 30) kL sin -0 uk(x) for £=1,2,..., k=1,2,...,
. w" =
cos—szt ug(x) for ¢=0,—-1,-2,..., k=1,2,...

and subspaces of Z

Zy :  closure in Z of Lin{w"; ¢ € Z, k € N},
Zy . closure in Z of Lin{w"; ¢ # 0, k € N},
Zy : closure in Z of Lin{w"’; k € N},

We now state the main existence and uniqueness theorem.

Theorem 3.4. Let 2 C RN be an open bounded set with a Lipschitzian bound-
ary and let the operator F given by (3.22), (3.23) satisfy Assumption 3.2. Let @ €
3

LP'(Q;C,,) be given such that Qu € LP (; L2). Then there exists a unique u € Z
such that for every z° € Z, we have

2w
(3.31) /Q/ —wezy + (F(Vu) + Q, V2°)dt dz = 0.

The integral in (3.31) is meaningful, since by Lemma 2.3 the operator F maps
(continuously) LP(€;C.,,) into LP'(Q,C,,). The method of proof consists in splitting
the unknown function into two components u = v+ w, v € Zy, w € Zy following the
idea of Prodi (1966), cf. also Lions (1969), Sect.7.1 of Chap.4. We consider two auxiliary
problems.

Auxiliary Problem 1. Find v € Z; such that

2w
(3.32) / / —vz} + (F(Vv) +Q,Vz')dtde =0 Vz' € Z.
QJw
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Assume first that we are able to solve Auxiliary Problem I. It remains to determine

w € Zy such that u := v + w satisfies identity (3.31). We have indeed u; = v; and

20 = 2} for every 20 =21+ 22 27 € Zj, 3 =0,1,2. It is therefore natural to require

(3.33) /Q /Qw <<F(Vv +Vw) — F(Vv),V2°) + (Q + F(Vv), V22>>dt dz = 0.

By Proposition 11.4.12 the function F(Vv 4+ Vw) — F(Vv) is independent of ¢ for
t > w; we denote by ¢; the function corresponding to F; by Proposition 11.4.12 and
for i=1,...,N, ( € RN put

(3.34) (@(Vv(a:, -),C))i D= 192-(81-1)(:1:, -),Q).
We then have for a.e. z € Q
(3.35) F(Vv+ Vw)(z,t) — F(Vv)(z,t) = ©(Vu(z, ), Vw(z))

and (3.33) is equivalent to

(3.36) /Q<@(Vv(x, ), Vw(z)) + Q(x), V22(x))de V22 € Zs,
where
(3.37) Oz) : = i / " (Q + F(V0)) (a, )dt.

We therefore state

Auxiliary Problem II. Let v be a solution of Auxiliary Problem I. Find w € Z,
such that identity (3.36) holds.

Before solving Auxiliary Problems I, II we mention an elementary, but useful property
of periodic functions.

Lemma 3.5. Let o € D(R!) be an odd function. Then for each f € L? we have
/ / o(s —1t) f(s) f(t)dtds = 0.
0 —o00

Proof. The assertion follows from obvious integral identities
Jo 7o ols =) f(s) f(t) dtds = [[% o(r) [5" (F(s)f(s = 7) = f(s +7)f(s)) dsdr,
IS ) f(s—m)ds= [} f(s+7)f(s)ds VT eR.



138

Lemma 3.6. Let the hypotheses of Theorem 3.4 be fulfilled. Then there exists a
unique solution v of Auxiliary Problem I.

Proof. Uniqueness. Let v, € Z; be two solutions of (3.32) and let v € D(R!)
be a nonnegatlve even function, [7 ~(s)ds = 1. For m € N put 2 (x,t) =
m [7_y(m(s — t)) (vi(z,s) — vt(:v,s))ds. We have 2" ¢ 7, and (3.32) yields for
2l = z(m)

(3.38) /Q / - (B — v0) 2™ + (F(Vv) — F(VD), V™)) dt dz = 0.

By Lemma 3.5 we have for a.e. x € ()

/jw(vt_vt "t = m// m(s —t)) (v — 0¢) (@) (vp — 0¢) (2, 8) dsdt =0

and passing to the limit as m — oo in (3.38) we obtain using the Mean Continuity
Theorem (Proposition V.1.14)

2w
(3.39) / / (F(Vv — V1), Vo, — Vi) dt dow = 0.
Using the fact that [\ v(z,t)dt = [ 0(x,t)dt = 0 a.e., we conclude from (3.39) and

Corollary 11.4.11 Vv = Vv, hence v = 0.

Exzxistence. We proceed by Galerkin method analogously as in the proof of Theorem
3.2. For a fixed n € N we consider the system of equations

2w
(3.40) / / —o{M k4 (F(Vo™) 4+ Q, Vw*) dtdx = 0

for k=1,...,n, {=—n,...,n, {#0, where

(3.41) 0™ (2,1) Z Z vge Wt (2, 1)

k=14=—n
(40
and vy, € R! are to be determined from (3.40).

We now derive a priori estimates which imply the existence of a solution {vis} to
(3.40) and enable us to pass to the limit as n — oo in the same way as in the proof of
Theorem 3.2.

Assume that (3.40) holds. Multiplying (3.40) by (%E)Svk,,g we obtain

2w 2w
(3.42) // F(Vo™) t,Vv(n)>dtdx:// <Qtt,Vv,§n)>dtd:1:.
QJw
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Proposition 11.4.21 and Theorem 11.4.18 applied to F; yield
- (n) L[ m 3
(3.43) / / FA(0w™), i d de > / K™ (@) 0, (x, )| de
QJw Q

with K (z) = Linf{—R}(r); 0 < r < R™(2)}, R™ (z) = max{Rq, |8;v™ (z,-)|s}-
We have [ ;0™ (x,t)dt = 0, hence |9;0 (z, )| < w§|8iv§n)(m, )]s for a.e. x € Q.
Assumption 3.2(ii) then implies

(3.44) KM (x) > (maX{ROM%wivlgn)(l‘,')|3})ai_2.

a
2
We define the sets M :={z € |8iv§n)(x,-)|3 > Row 3}, M' :=Q\ M. In the

estimates below we denote by ¢y, ca,... suitable positive constants depending only on
a,b,w,Q, Ry and @Q. From (3.44) it follows

/ K ()| 0™ (2, ) [3de = ( / +/ V™ @) 00" (@, |32
Q oML

201/
M

and using (3.43), (3.42) and Holder’s inequality we conclude

00" (2, )L de > e / 00 (, Y+ de — e
(9]

i
+

n 2 (n)
(3.45) !V’U( )‘(p,oo) < w3 |V, |(p,oo) < cs.
Inequality (3.26) is valid in particular for w = 0, consequently

(3.46) |F(Vo™ N

)‘(p’,w)

A second estimate is obtained by multiplying equation (3.40) by vk which yields

n) |2 w n "
o< o SR IO (IF(T0™)] + Q) dt dr < cs,
(3.47)
<

‘U(n)’@,oo) w2 < cs.

Estimates (3.45) - (3.47) and the Brouwer degree theory entail similarly as in the proof
of Theorem 3.2 that system (3.40) has a solution {wvg,} for every n € N; moreover,
there exist subsequences (still indexed by n) and functions o € LP (Q; L), v € Z,
such that Vo™ — Vo in LP(Q; L), F(Vo™) — ¢ in LP(Q;LP) and v™ — v
in L2(Q; L) weakly-star, Vo™ — Vo, in LP(Q;L3) and v\™ — v, in L2(Q;L2)
weakly. Passing to the limit in (3.40) as n — oo we obtain

2w
(3.48) / / (—wz +{(c+Q,Vz"))dtde =0 Vz' € Z.
QJw



140

The monotonicity of F enables us to use Minty’s trick similarly as in the proof of
Theorem 1.2. Putting 2! =m[>_ (s —t))ve(x, s)ds in (3.48) we obtain for
m — oo in the same way as in (3.38) for the same choice of ~

2w
(3.49) / / (04 Q,Vuy)dtds = 0.
QJw

On the other hand, multiplying equation (3.40) by 2Zfv; _, we have

2w
/ (F( (Vo) 4+ Q, Vvtn Ydtdz =0 Vn €N, hence

2<,u 2w
(3.50) lim // F(Vo™), ( )>dtd:z:— —// (Q, Vu,)dt dx

2w
/ / o, Vvt>dt dx

by (3.49). Let now z' € Z; be arbitrary. For § > 0 we define an element (%) € Z; by
the formula

20z, t) 1= v(x, t) — 6(/(: 2, 8)ds + i /Ow szl(x,s)ds>.

Theorem 11.4.9 yields for all n € N and § > 0
2w
(3.51) / (F(Vo™) — F(V2®), Vo™ — vzt dz > 0
QJw
and combining (3.50), (3.51) we obtain
(3.52) / <a F(Vz),vz')dtdz > 0.
Q

The operator F' is continuous by (3.26); for 6 — 0+ we infer from inequality (3.52)
Jo fjw (o0 — F(Vv),Vzt)dtdz = 0 for every z' € Z; and identity (3.48) completes the
proof. O

Lemma 3.7. Let the hypotheses of Theorem 3.4 be fulfilled and let v € Z; be
the solution of Auxiliary Problem I. Then there exists a unique solution w € Zy of
Auxiliary Problem II.

Proof. The space Zs is reflexive and continuously embedded into the Sobolev

o)
space W1 1T20(Q) hence we may define an equivalent norm ‘ . }Z2 as |w‘Z2 i= ’Vw‘p.
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We denote by Z5 the dual space of Z5 and by ((+,-)) the duality pairing between Z
and Z3. Let T : Zy — Z5 be the mapping

(3.53) (Tw, z2)) : / (0(Vo(z,-), Vw(z)) +Q(w),sz(x)>dx,

w,zs € Zo, where ©,(Q are given by (3.34), (3.37). By Browder’s Theorem (Fucik,
Kufner (1980), Thm. 29.5) existence of a unique solution w € Z, to Auxiliary Problem
II is ensured provided T' is

(a) demicontinuous: |w, — w‘ZZ — 0= (Tw, —Tw,29)) = 0 Vzy € Zo;

(b) bounded: if B is a bounded subset of Zs, then T'(B) is a bounded subset of Z3;

)
(¢) strictly monotone: ((Twy — Tws,w; — ws)) > 0 for wy # wo;
(d) (Tw,w))

coercive: lim
‘w|Z2

|w|22_)00

= Q.

Properties (a) - (c) are obvious consequences of inequalities 11(4.16)(ii) for each of
the functions ¥;, 1 = 1,..., N. To verify the coerciveness of T we introduce for every
w € Zo the sets

Mi(w) : = {2 € & [;w(x)| = max{ Ry, |div(z, )|} },
Mi(w) : = {:I: € O |0w(z)| < |0v(x, ')’oo}v
Mi(w) := O\ (M U M)

By c1,ca, ... we denote again suitable positive constants independent of w. For z € M}
inequalities 11(4.16)(ii) and (3.25)(i) yield

9 (Opv(, -), O;w(z)) O;w(x) = hi(|0;v(x,-)|oo + [Diw(2)])|Diw ()
> hi (2|0w(2)])|0iw(@)* > 1|dw (@ )|1+0"-

For z € M} we obtain from I1I(4.16)(ii) and (3.25)(ii)

9 (E)iv(ac7 ), 8iw(x))3iw(x) 2|10;v(x, )| 0o gol( |0;v(x, )|OO)

< co|Opv(z, ) |2

and for a.e. x € M4 we trivially have 9;(d;v(z, ), diw(z))d;w(z) < cs.
This yields

(Tw,w)) > clz/ ‘8iw(;1;)‘1+aid$
—042/ !81} Haz T — C5 —

> 06‘w|22 —Cr = CS‘wlzy
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hence T is coercive and Lemma 3.7 is proved. 0

Proof of Theorem 3.4. Put u:= v + w, where v,w are solutions of Auxiliary
Problems I, II, respectively. The assertion follows from Lemmas 3.6, 3.7 and identities
(3.33)-(3.37). OJ

The same technique can be applied to the equation of motion (1.1) of an elastoplastic
continuum with a constitutive operator of diagonal type o;; = Fj;(e;j), where Fj;
are scalar Prandtl-Ishlinskii operators satisfying Assumption 3.2. The coercivity of
the mapping T defined by (3.53) then follows from the generalized Korn inequality in
W1P(Q) proved by Necas (1966).

ASYMPTOTIC STABILITY

To conclude this section we consider again the scalar hyperbolic initial-boundary value
problem (1.29), (1.31), (1.32) with an w-periodic right-hand side ¢ and a constitutive
operator F' of Prandtl-Ishlinskii type. Theorem 3.2 gives sufficient conditions for the
existence of w-periodic solutions to (1.29), (1.32). Here, we prove by Ficken-Fleishman
method (see Vejvoda et al. (1981) for further references) that under natural assumptions
the periodic solution is unique and asymptotically stable.

Assumption 3.8.
(i) h € W,n>°(0,00) is an increasing function, a : = h(0) > 0 and for R > 0 we denote
br 1= h(R), Kgr := 1 infess{h/(r);0 <r < R};
(ii) F : C(]0,1];ARr) x C(]0,1] x [0,T]) — C([0,1] x [0,T]) for arbitrary R > 0 and

T > 0 is an operator of the form
FOL0)(@.t) i= F (M), oz, ) 1),

where F, is the Prandtl-Ishlinskii operator 11(3.2) and Ar is endowed with the

sup-norm.

To simplify the notation we introduce the space S of pairs (v, o) of functions defined
for (z,t) € [0,1] x [0, 00]

S:={(v,0) € (Loo(]o»l[x]oyoo[))g; Vi, Vg, O, Oy € Lw(O,oo;Lz(O,l)),
v(0,t) =o(1,t) =0 Vt >0},

1
endowed with norm ‘(fu,a)‘s := [v]oo + 0|00+ ]| f01(|vt|2—|—|vm|2+|Ut|2—|—|c7x|2)(ac,-)dm|§o.
Theorem V.2.4 entails that for (v,0) € S both v and o are %—Hélder continuous in
[0,1] % [0, oo.
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For (v,0) € S, ¢ € L*=(0,00; L?(0,1)) and A € C([0,1]; Ag) we further denote

(3.54) EAv,0,9) = (;EA_;)? _ zm)

The main result reads as follows.

Theorem 3.9. Let F fulfil Assumption 3.8 and let ¢ € L™ (O,oo;LQ(O, 1)) be a
given function such that ¢q; € L™ (0, oo; L2(0, 1)), q(z,t +w) = q(x,t) for a.e. (z,t) €
10, 1[x]0, oo[. Assume that the set

Jr = {(0°,0") € (W"2(0, 1))2; v°(0) = ¢°(1) = 0 and conditions (2.2) hold}

is nonempty for some R > 0. Then there exists a unique element (v*,o*) € SN
(C([o,1]; C’w))2 such that
(i) E\,v*,0%,q) =0 forevery A € C([0,1];Ar) and a.e. (z,t) €]0, 1[x]w, o],
(i) for every (v°,0%) € Jr and X\ € C([0,1];AR) the solution (v,0) € S of the
equation

(3.55) E(N\v,0,q9) =0

satisfying initial conditions (1.31) has the property

(3.56) lim (|v(-,t) — v*(~,7§)|oo + |o(t) — (-, )]

t—o0

) =0.

Proof. For (v,0),(0,6) €S and A\, A e C([0,1]; Ag) we define the functional

Vv, 0,0,6,\A)(t) : = /0 [a(g — )2, t) + (v — 0)2(x, )+

2

n / (Ao ) O — e (M, 1, 5,) ) ()] e

If now equation (3.55) is satisfied for both v,0, A and 0,4, 5\, then Theorem I1.4.9 yields

(3.57) %V(v,@,a,&,A,X)(t) <0 ae.

Inequality (3.57) provides a sufficient tool for proving the uniqueness of periodic solu-
tions to (i). Assume that for (vf,0%) € SN (C([0, 1],Cw))2 and \; € C([0,1]; Ag) we
have E(\*,v%, 0%, q) =0, i = 1,2. Then V(v!,v?, 01,02 A1, \2) is w-periodic for t > w,
hence %V(UI,U2,01,02,)\1,)\2)(?5) =0 for a.e. t > w. From Theorems I1.4.9, 11.4.10
we obtain o} (z,t) — oZ(z,t) =0 for a.e. t> w.
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For r > 0 and z € [0,1] put &i(z,t) := p,(Ni(z,"),0(x,))(t), i = 1,2. From
inequality I11(1.4) it follows %K}(x,t) — &(z,t)]* < 0 a.e.; since & are periodic for
t > w, we conclude F'(\,0%); = F()\g,0?); for t > w, hence v! =v? and o! = o2. We

see in particular that it suffices to prove statement (i) for one special \* € C([0, 1]; Ag).

In order to construct (v*,o*) with the required properties we consider arbitrary
A € C([0,1];Ag) and (v°,0%) € Jr. By Theorems 2.3, 2.1 there exists a unique
solution (v,0) € S to system (3.55), (1.31), (1.32). Let {(v™,0c(™);n € N} C S be
the sequence

o™ (2,t) 1= v(x, t+ nw), o™ (x,t) 1= oz, t +w); (z,t) €[0,1] x [0, 00].
The semigroup property 1(1.27) applied to the play operator reads
(3.58) pr(Az, ), 0(z, ")) (t + nw) = pr(An(z, ), o™ (z, D)) for ¢>0,

where A, (z,7) := pr(A(z,-),0(z,"))(nw) € C([0,1];AR). For every n € N we can
rewrite (3.55) in the form

(3.59) EMn, 0™, 0™ ) =0 ae.

The sequence { (v(”),a(”)} is equibounded in S. By Theorem V.2.4 there exists a
subsequence {n;; k € N} C N and an element (v*,0*) € S such that (v(™) o)) —
(v*,0*) in S weakly-star, v(") — v* (") — o* locally uniformly in [0, 1]x [0, co[. In-
equality 11(2.9) yields |\, (x,7)—An(y, )| < max{|\(z,7)—A(y,7)|,|o(z,") =0 (Y, )]0}
hence {A,} is an equicontinuous sequence in C([0,1];Ar). Since Apr is compact in
C([0, R]), we can assume using Arzela-Ascoli Theorem V.2.1 that there exists A* €
C([0,1]; AR) such that A,, — A* uniformly. From (3.57) it follows

‘V(U(nk),v*,o.(nk)’a*, )‘“w)‘*)‘oo < V(,U(T'Lk),,v*,o.('ﬂk)jo.*’ Angs A)(0),

hence
1
(3.60) klim ‘ / (|U(""“) +v*(z, ) — |o™) — ¥ 2 (, ))dm‘ = 0.
— 00 0 o0
We now prove that v*,c* are w-periodic. Put v**(x,t) : = v*(x,t+w), c**(x,t) : =

o*(z, t+w), \*(z,7) : = p.(\*(z,-),0%(z, ")) (w). Passing to the limit in (3.59) as k —
oo we obtain for a.e. (z,t) €]0,1[x]0, 00|
(3.61) (i) EA",v*,0%,q) =0,

(ii) EAN™, 0™, 0", q) = 0.
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Put 3:= lim V(v™W,v,6M 0, 1, \)(t) > 0. For every ¢t > 0 we have

k—o00

(3.62) B = lim V(omF o) gt gl N\ A, ()

k—o0

— V(/U**7/U*7O-**’O-*7 A**7 )\*)(t)’

hence

1d s,k ok _kk kY kk )k _ ! 10 *k *\2
0= GGV A0 = [ (Gl — e+
+/ (pr(X**,0%) = pp(N*, 0%))° (x, t)dh(r)] -
0

— (F(\™*,0%) = F(\*,0%)) (0™ — 0™)(x, t))da;.

Theorems 11.4.9, 11.4.10 yield o**(z,t) — o*(x,t) = A\** (:v,Ro(:I;,t)) —A* (:v,Ro(:IJ,t)),
where Ro(z,t) : = max {M(\**(z,),0**(z,-),t), M(A\*(z,"),0*(z,-),t)}. For every
x € [0,1] the function Ry(z,t) is monotone; there exists therefore the limit s(x) : =
tli)rgo o**(x,t) — o*(x,t). Since o* is bounded, we necessarily have s(z) = 0.

From Proposition I1.2.10 we similarly infer that for every x and r there exists
the limit z(x,r) := tlirglopr(A**(x, D, 0% (z,) () — pr(M(2,-),0%(,-))(t) and that
z(xz,7r) = 0.

Let 0 > 0 be given. Since ¢* is uniformly continuous, there exists Ty > 0 such that

(3.63) 0" (t+w)—o*(t)| <6 forall t>Tp.

By (3.60) there exists ¢ € N such that
1

(3.64) \/ 0" (2,) — o™ (, )2dz| _ < 6 for k>
0

Put Ty : =Ty + nyw. For s > T we have s — nyw > T}, hence

(3.65) |o(,s+w)— J(-,s)}2 <lo(,s4+w)—o*(- s — new —|—w){2—|—
+

o (s —nw+w) —o*(-, s — ngw)‘Q + ‘a*(-,s — Nyw) — a(-,s)!2 < 30.
Let now t > 0 be arbitrary. We fix k > ¢ such that t 4+ ngw > T7. Then
‘a*(-,t +w) — J*(-,lf)’z < ‘0*(-,1& +w)— J”"“(-,t—i—w)’2—|—
+|U*(-,t) — (7(”’“)(-,75)‘2 + ‘U(-,t +ngpw +w) —o(-,t+ nkw)‘2 < 50.

Since 6 > 0 was arbitrary, we conclude from this last inequality that o* = ¢**, i.e.

o* € C([0,1];Cy). By (3.61), v/ is w-periodic and v} is w-periodic for ¢ > w. We
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thus have v*(z,t + w) — v*(z,t) = v*(z,w) — v*(x,0), hence v}(z,w) = vi(x,0) a.e.
and v** = v* € C([0,1]; C,). Passing to the limit as t — oo in (3.62) we obtain [ =0,
hence A\** = \*.

Let now {d,} be the sequence
dp 1= V0™, 0%, 6™ o* A, \*)(0).

By (3.57) we have d,,41 < d,, for every n and klim dy, =0, hence lim d,, =0 and
(3.57) yields

1
‘ / (Jo™ —o* 2 4 |6 — 6%} (2, )dz| — 0 as n — oo.
0 o0

The whole sequence {(v™,o(™);n € N} therefore converges locally uniformly to
(v*,0*) in [0,1] x [0, col.
We fix again an arbitrary 6 > 0 and find ng such that for every n > ng and
(x,t) € ]0,1] x [0,w] we have
W™ (z,) — v*(x, )| + [0 (2,t) — 0¥ (2,1)| < 6.

For each t > now we find n > ng such that ¢ — nw € [0,w|. Then

(-, t) —v*(,8)|  + |o(,t) — o™ (1 1)] =
= |v(")(-,t —nw) —v* (-t — nw)|oo + }J(")(-,t —nw) —o* (-t — nw)’oo <0

and Theorem 3.9 is proved. O
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IV. The Riemann problem

We illustrate here the connection between hysteresis and hyperbolic equations from
another point of view. We consider the Riemann problem for a system of the form
IT1(1.29) with a non-hysteretic constitutive operator F' which is generated by a single-
valued not necessarily monotone scalar constitutive function ¢. This is different from
the approach of Keyfitz (1986), where a nonmonotone constitutive law is replaced with
a hysteretic one. We assume no hysteresis in the data and transform the Riemann
problem for self-similar solutions into a boundary-value problem for a singular first-
order ordinary differential equation. One observes the following facts.

e If the constitutive function is nonlinear, then even smooth data admit infinitely

many solutions.

e The Second Principle of Thermodynamics does not guarantee uniqueness of solu-

tions if and only if the constitutive function has at least one inflection point.

e The Lax (1957) entropy condition does not guarantee uniqueness of solutions if the
constitutive function has at least two inflection points.

The investigation of monotone solutions separately for forward and backward waves
shows that they can be represented by their trajectories along the graph of the con-
stitutive function, where shocks correspond to straight segments connecting two points
on the constitutive graph. These trajectories are convex if the solution increases and
concave if the solution decreases (see Fig. 14 on page 167). The solutions themselves
therefore exhibit a hysteretic behavior which thus appears as an intrinsic property of
quasilinear hyperbolic equations.

We obtain existence and uniqueness in the Riemann problem by splitting the solution
into the backward and forward part with an auxiliary transition condition which is to be
found. Each of the two parts is then subjected to a new form of the maximal dissipation
principle which selects the solution with minimal L2-norm, or equivalently the monotone
solution with the minimal convex (maximal concave) trajectory along the convex hull
of the constitutive graph similarly to the idea of Leibovich (1974), see Fig. 15 on page
170. We prove that this selection rule is compatible with the shock admissibility criteria
of Lax (1957), Liu (1981) and with the vanishing viscosity criterion, but not with the
Dafermos (1973) maximal entropy rate criterion in general.

We concentrate our attention to particular aspects of the Riemann problem; a more
complete information can be found for instance in the recent monograph by Chang and
Hsiao (1989).
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IV.1 Weak self-similar solutions

Quasilinear hyperbolic systems with regular data may exhibit singularities in a finite
time. To be able to continue the solution, one has to pass to a generalized concept of
weak solutions where discontinuities are allowed. Self-similar solutions then naturally
arise as the limit case when we magnify the scale of observation of a solution in a
neighborhood of an isolated discontinuity. We show that weak solutions are in general
not uniquely determined by the data and further physically motivated conditions have
to be prescribed.

NONEXISTENCE OF SMOOTH SOLUTIONS

We start with a modification of an example of John (1976).

Example 1.1. Let us consider the system

(L1) { b= el

Et = Vg

analogous to II1(1.29) with constitutive law o = g(¢), ¢'(c) = c2(g).

We prescribe initial conditions

P(z)
(1.2) e(x,0) = ®(x), v(z,0) = /0 c(s)ds,

where ¢, ® : R! — R! are given smooth functions. We further assume that there exist
constants «, 3 > 0, cp, oo € R! and an interval [z, 25] C R! such that

(1.3) sup{|®'(z)|;z € R'} <, sup{|cd(s)];s € R'} <3,
(1.4) c(s) =co+ ps for s € [s1,s9],
(1.5) O(x) =po+ax for x € [xy,xs],

where s; := ®(x;), i =1,2. Put ¢y := aiﬂ, xo := —to(co + Beo)-

According to the classical general theory of Courant, Hilbert (1937), problem
(1.1),(1.2) has a unique local smooth solution. In fact, this solution can be directly
found.

Using the Banach Contraction Principle we define the functions ,v : R! x [0, to[— R!
implicitly by

e(z,t)
(1.6) e=®(x+tcle)), v(z,t):= /0 c(s)ds.
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The elementary identity e;(x,t) = c(e(z,t))e,(x,t) implies that €,v solve (1.1), (1.2)
for t < tg.

We now show that the limits of e(x,t),v(z,t) as (z,t) — (zo,tp) do not exist. Let
A\, for p € R! denote the segment

A i={(z,t) € R x [0,t0; z = p — te(®(p))}.

For (z,t) € A, we have e(z,t) = ®(p + t(c(e(z,t)) — ¢(®(p)))), consequently e(xz,t) =
®(p). For p € [x1,x2] the equation of A\, reads z —xo = (p — zo)(1 — %), hence all
Ap’s intersect each other at the point (zo, o).

WEAK SOLUTIONS

Example 1.1 suggests that an appropriate functional framework for describing the
global behavior of solutions to quasilinear systems should include discontinuous func-
tions.

An alternative approach to systems of the type (1.1) consists in a formal transforma-

tion into a single quasilinear wave equation

(1.7) utr = g(Uz)z

for u(z,t) == [y e(&1)d¢, (z,t) € R := R'x]0,00[, where g is a function defined in
an (unbounded or bounded) interval Ja,b[C R! with values in another (unbounded or
bounded) interval ]c,d[C R!. Throughout this chapter we assume only that

(1.8) (i) g :]a,b[—]c,d[ is locally Lipschitz,
(i) gla+) =, g(b—) = d.
The fact that the function g is not necessarily monotone (so that equation (1.7) may
change type) plays here a less important role than the fact that ¢ is allowed to be

nonlinear.
We prescribe initial conditions

(1'9) u(:z;,()) = 90(1‘)’ ut('x?()) = Yﬁ(iﬁ),

where ¢, 1) : R! — R! are given functions.
A suitable function space for the superposition operator generated by the function g
is L°°; we thus define a weak solution to (1.7) as a function w such that

(1.10) (i) wewh °°(R2) +(2,t) € la,b[ ae., glu,) € L(R?),
(ii // uror — g(ugz)oz)dzdt =0 Vo € D(RY).
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According to this definition we require
(1L11)  9(0) =0, p € WES(RY), ¢/(x) la,bl ae., gl¢) € L¥(RY), p € LX(RY).

We have to interpret condition (1.9) which is not well defined in L. If g is linear
(say g(v) = k?v for some k > 0), then the solution to (1.10), (1.9) is given by the

formula

x+kt

(1.12) ) = 5ela— k) + oo +h) + 5 [ (e,

kt

and under the hypothesis (1.11) we have
(1.13) ug, uz € C([0,00[; L (RY)).

One could equivalently choose a different L] -space with an exponent p € [1,c0l.
We shall see that (1.13) with p = 2 expresses the fact that the energy is continuous.

Conditions (1.9) can therefore be understood as the limit as t — 0+ with respect to
the metric in the Fréchet space L2 _(R').

In the nonlinear case, we consider (1.13) as a prescribed regularity in addition to
(1.10)(i).

In general, the problem of existence of solutions of (1.10), (1.9) is open, except for the
special case, where the function g is increasing and has suitable convexity properties.
The solution can then be constructed by compensated compactness method, see DiPerna
(1983), Serre (1986). Here, we do not relax the assumptions (1.8) and concentrate our
attention to local properties of weak solutions.

To derive some necessary conditions for the local behavior of isolated discontinuities,

we assulne

(1.14) (i) ¢(0) =0 and there exist the limits ¢'(0+) = Vi, 1(0+) =
(ii) there exists 6 > 0 and a local solution defined in Q5 : =] — 6 5 [ 10, 6] such
that u € W1o°(Qs), ug, u, € C([0,0]; L2(=4,6)), identity (1.10)(ii) holds for
all o € D(Qs) and conditions (1.9) are satisfied for a.e. x € ] —9,0[;
(iii) for all (x,t) € Qs there exists the limit a(x,t) : = Vli_}rrgo yu(Z, %) such that
are strong limits in the Banach space

Uy = lim u,(= Uy = hm we(

SareuSac A% 7))

C([0,6]; L*(—46,9)).

v’“'y)

We immediately see that the limit function @ can be extended to (z,t) € Ri, belongs
to W1>°(R?%) and satisfies the self-similarity condition

t
(1.15) a(z,t) = vﬂ(—, —) for all (z,t) € R% and v > 0.
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Let us define an auxiliary function

(1.16) f(2) :=a(z,1) for zecR.
Then f is Lipschitz and (1.15) entails

(1.17) m@wzpﬁi)fmau(%weRi

Passing to the limit as v — +o0o we easily check that @ satisfies equation (1.10) (ii)
with initial conditions

xVy forxz >0 D, forz>0
(1.18) a(x,0) = , U(x,0) = .
zV_ forxz <0 D_ forx <0

We now reformulate problem (1.10),(1.18) for self-similar solutions by introducing a new
unknown function

_ Y

(1.19) 0(z) =

(z) forz e R,
where f is defined by (1.16).

Proposition 1.2. Let (1.8) hold and let Vi € |a,b[, D+ € R! be given. A function
@ satisfies conditions (1.10), (1.13), (1.17), (1.18) if and only if the function 6 defined
by (1.19) has the following properties:

) 0(2) € la,b[ ae., 0,9(0) € L®(RY),

) the function z s 2%6(z) — g(#(2)) is Lipschitz in R,
ii) %(fm@—gw@»):%m@ ae.,

) 6(£o0) = V4,

V. forz<0

— 00

- V. forz>0
(v) / (0(z) — Po(2))dz = Dy — D_, where Py(z):= { * >

Equation (1.10) with initial conditions (1.18) constitute the Riemann problem. Sys-
tem (1.20) represents its equivalent formulation for self-similar solutions. However, the
question of existence of non-self-similar solutions to the Riemann problem seems to be
open.

Before proving Proposition 1.2 we state an auxiliary result.
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Lemma 1.3. Let 0 satisfy conditions (1.20)(i)-(iv). Then there exists a constant
R > 0 such that for |z| > R we have 0(z) = Py(z).

Proof of Lemma 1.3. We choose an arbitrary open bounded interval J C R! such
that Vi € J C J Cla,b] and put

L ::sup{‘g—g(s)

r—s

;s €, r;«és}.

We find R > /L sufficiently large such that 6(z) € J for |z| > R and put ¢ : = R? —
L > 0.

Integrating equation (1.20)(iil) [ é dz for £ > R we obtain

3
(1.21) £2(0(8) — 0(R)) — g(0(€)) + 9(9(R)) = / 22(0(2) — 0(R))dz,

R

hence 6|0(§) —0(R)| < fé 2z|0(z) — 0(R)|dz and Gronwall’s inequality (Lemma I1.5.6)
yields 6(§) = 6(R) for all £ > R. The argument for z < —R is analogous. O

Proof of Proposition 1.2. Let 6 be an arbitrary solution to (1.20). We choose
arbitrarily f(0) € R! and define u by (1.17). Let o € D(R3) be an arbitrary
test function. For 2 € R! put 77 = [;7 o(zt, t)dt. Then n € D(R') and using
the identities [ to,(2t,t)dt = fo tos(zt t)dt —(zn(2)), L(zf(2)n(z)) =
20(2)n(z) + f(z )dz (zn(z)) we obtaln from (1.20)(iii)

(1.22) 0— /°° [(220(2) — (9(2))% +2:0(2)n(2)|dz
/ /R — 20(2))tor(zt, t) — g(0(2))t0s (=t t)]dz dt,

hence @ is a solution of (1.10).

Conversely, let @ satisfy (1.10)(ii) and let 7 € D(Rl) be na arbitrary test func-
tion. Putting o(x,t) := n(£)u(t) for some p € D(J0,00]), [;° pu(t)dt =1 we conclude
analogously as in (1.22) that (1.20)(ii),(iii) hold.

We now prove that the initial condition (1.18) is equivalent to (1.20)(iv),(v). Assume
first that (1.18) is fulfilled. Then for each K > 0 we have

K
(1.23) Oztl—i%l—i— _K\aw(:z:,t)—Po( x)| dx—gli)rgog/ 2)|?dz.
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Formula (1.21) for a fixed R > 0 and arbitrary & > R entails £2(0(¢)—V,)—g(0(&))+
g(0(R)) = [522(6(z) — Vi)dz + R2(6(R) — V), hence

|9<5>—v+|<gg(e(s»—gw(mn ggw ~Vil+ / 6(2) — Vi |dz
<\g< >|OO+R2|9\OO>+2< /\9 v, dz)

Combining the last inequality with (1.23) and (1.10)(i) we obtain V. = hrf 6(¢) and
similarly V_ = ‘ lim 60(¢).

We further have for each K > 0

K

lim |Gy (z,t) — Pi(z)]*de =0, where Pi(z):= {
t—0+ _K

D, forz>0
D_ forz<0

Choosing R as in Lemma 1.3 we infer from elementary computations

0= tim L[ NG) = 20) = PP

§H+oo£ !

Eggnoog/ 1£(0) / (0(s) — Vi )ds — D, [2dz +
+ lim - |f( ) —20(z) — 1(z)|2dz+

—R 0
+ lim ! ) |f(0)—/ (0(s) — V_)ds — D_|*dz,

consequently

R 0
(1.24) 0= f(0) +/ (0(z) = Vy)dz — Dy = f(0) — / (0(z) —V_)dz— D_,
0 -R
and condition (1.20)(v) follows again from Lemma 1.3.
The proof of the converse, namely that conditions (1.20)(iv),(v) imply (1.18), follows
immediately from Lemma 1.3 provided that f(0) is chosen according to (1.24).
Proposition 1.2 is proved. 0

A naive approach to problem (1.20) consists in a formal differentiation of equation
(1.20)(iii), i.e.

(1.25) 0'(2)(2* — g'(0())) = 0,
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where prime denotes derivative. Identity (1.25) suggests that there are two types of so-
lutions, namely the constant states §'(z) = 0 and rarefaction waves 0(z) = (g')~1(2?).
We shall not try to justify this procedure which can be useful in concrete examples, but
in general it leads to serious difficulties, since both 6 and ¢’ are in principle arbitrary
bounded measurable functions, so that equation (1.25) is unmanageable. We proceed
in a different way which will be explained in detail in the next sections. The rest of this
section is devoted to examples and counterexamples related to the problem (1.20).

MULTIPLICITY OF WEAK SOLUTIONS

We first mention the following classical result which is an immediate consequence of
the continuity condition (1.20)(ii).

Lemma 1.4. (Rankine-Hugoniot condition).

Let 6 be a solution of (1.20) and let there exist two sequences z, — z,%, — z such

that lim 0(zq) =61 # 62 = lim 6(2,). Then 22 = 2p)=g(%2)

We have already noticed that constant functions always solve equation (1.20)(iii).
Lemma 1.4 gives us a tool for constructing piecewise constant solutions of the form

(126) ‘9(2) =0, for ze€ ]zi_l,zi[, 1=1,...,N
corresponding to a partition
(1.27) —00 =2 <2 <...<2zZy =400

and to a sequence {01,...,0,} Cla,b[, 0; # 0,11 forall i=1,...,N — 1.

The criterion is obvious and can be expressed in the following way.

Proposition 1.5. A function 6 of the form (1.26) is a solution of (1.20) if and only
if the following conditions are fulfilled.

(1.28) Q) 6=V, 0y=V,,
(i) zf:9(9;“)_Z(ei),izl,...,N—L
+1 — YUq
N-1

(iii) > 2(0; —0;41) =Dy — D_.

=1
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Remark 1.6. The case where g is a linear function of the form g(v) = k?v with
k > 0 is trivial. We immediately see that the piecewise constant function

V_ for z < —k
0(z)=< Vi forz>k
Vo forze]—k k|
with Vo = 5z(D4 — D + k(V4 + V_)) is the unique solution of (1.20).

In the nonlinear case, even smooth data do not ensure the uniqueness of weak solu-
tions. The exact statement reads as follows.

Proposition 1.7. Let g be a nonlinear function satisfying (1.8). Let V. = V_ €
la,b[ and D, = D_ € R! be given. Then there exist infinitely many distinct piecewise

constant solutions to (1.20).

Problem (1.20) with V4 = V_ and Dy = D_ obviously admits the trivial con-
stant (i.e. smooth) solution. The construction of non-smooth solutions is based on the

following lemma.

~

Lemma 1.8. Let |a,b[,]¢,d[Cc R' be given intervals, 0 € |a,b[N]é,d[, and let § :
Ja, b|—]é,d| be a nonlinear locally Lipschitz function such that §(r)r > 0 for all r # 0.
Then there exist a < ¢ <0 <p< b such that

(1.29) either (1) SW 9@ 90 =) oy g
p—q p—r

or (il ap) —9(a) _ 9(s)—gla) . 0,

P—q s—q o

Proof of Lemma 1.8. Let us assume that for every a < ¢ <0 <p < b both sets

9(p) —9(a) _ 9(s) — 4(a) }
pP—q $—4q
9(p) —9(q) _ 9(p) — 9(r) }
p—q p—r
are non-empty. Put 7:=maxA_(p,q), $:= min A, (p,q) and assume for instance
7 < 0. By hypothesis, the set A_(p,7) is a non-empty subset of A_(p,q) which
contradicts the definition of 7. We therefore have 7 = 0 and similarly s = 0. The

inequalities %g(q) <8 (If’), w < @ combined with the elementary identity

Ay(p,q) = {s € [0, p[;

N

A-(p,q) = {r €]a.0};

_pr9lp)—9(e) g
(1.30) _ e : g )

9(p) —g9(a)  g(q) 13(
p—q a q

>

b—
yield @ = @ for all @ < g < 0 < p < b. We conclude that § is linear in ]d,l;[,

which is a contradiction. O
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Proof of Proposition 1.7. Put V:=V, = V_ g(r):=g(r + V) — g(V) for
rela,b[:=]a—V,b— V[. We distinguish four cases (see Fig. 11)
A. §(r)r>0 for r €]a,b[\{0} and (1.29)(i) holds for some & < ¢ < 0 < p < b.

For some r € |q,0[ which will be specified later we define

(131) 2 - 9(p) — 9(q) 9p)—9(r)  _ @7
p—q p—r r

an
(V for z < 2,
V+q for z € |z, 29,
(1.32) 0(z) ;= V+p  for z€]z,zs],
V4r for z € |zs, 24,

\%4 for z > zy.

\

Lemma 1.8 and identity (1.30) ensure that we have z; < 29 < 23 < z4 and 6
defined by (1.32) is a solution to (1.20) according to Proposition 1.5 provided condition
(1.28)(iii) holds. Here it reads

(1.33)  —Val@)a+ (@) —3@)p—q) — V(Gp) — g(r)(p—1) =V g(r)r =

Let us denote by h(r) the left-hand side of equation (1.33). We have h(0) > 0,h(q) < 0,
hence (1.33) is satisfied for a suitable r € ]q,0].

B. §(r)r >0 for r € ]a,b\{0} and (1.29)(ii) holds for some a@ < ¢ < 0 < p < b.

Analogously as above we define for s € ]0, p|

(1.34) = 1/ 9(r) — §(a) _ 8 =g [a(s)
1 p—q S —dq ’ ' S

an
(V for 2z < zq,
V+p for z €]z, 23],
(1.35) 6(z) :=¢ V+gq for z € |z9, 23],
V+s for z € |zs, 24,

1% for 2z > 2.

\

Similarly as in the case A we check that 6 solves (1.20) provided s € ]0,p[ is a
solution of the equation

(1.36)  /pa(p) — v () — 3(0))(p — @) + V/(3(s) — 9(0))(s — @) + v/s4(s) = 0.
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Denoting by h(s) the left-hand side of equation (1.36) we easily obtain h(0) <
0, h(p) > 0, hence (1.36) holds for some s € ]0,p|.

C. There exists p > 0 such that g(p) = 0. We then put ¢ := min{r < 0;g(r) > 0}
and fix some ¢y € ]a, rol.

7 g(qo) [ put ¢ : = max{u € [qo, ro); (—p = ~}. By Proposition

1.5, the function 6 defined by (1.31), (1.32) for some r € |g,7o[ is a solution to (1.20)
provided condition (1.33) holds. For the auxiliary function A(r) as in (1.33) we have

h(rg) > 0, h(q) < 0 with the same conclusion as above.

For an arbitrary v € ]0

yll ylk
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D. There exists ¢ < 0 such that g(q) = 0. We put sg : = max{r > 0;g(r) < 0} and

fix some pg €]sg, b[. For a fixed v € ]0, %[ put p := min{s € [s,, Po); ﬁ&*; =~}

For s € |sp,p| we define the function 6 by formulas (1.34),(1.35). Similarly as in the
previous cases we choose s such that equation (1.36) is satisfied.

It remains to check that there exist in fact infinitely many solutions of the form above.
This is obvious in the cases C and D, where for each v we obtain a different solution.
In the situation A we similarly find a continuum of solutions parametrized by v €

19 9P =3[ given by formulas (1.31),(1.32) with ¢ replaced with ¢y := max{u €

P’ p—q
lq,0[; w =~} and with a suitable r. Case B is analogous. This completes the
proof of Proposition 1.7. O

Our task now is to find convincing arguments for the exclusion of pathological solu-
tions described in the proof of Proposition 1.7. The first attempt in Sect. IV.2 will be
the dissipation condition deduced from the 2°¢ Principle of Thermodynamics. We shall
see in Proposition 2.3 that the solutions above violate the dissipation condition if g is

monotone; this need not be the case if nonmonotonicities are allowed.

IV.2 Dissipation of energy

In the preceding section we observed that the Riemann problem in the form (1.20)
may admit in general infinitely many solutions. To reduce the multiplicity, we impose,
in addition to (1.20), a condition based on the 2°¢ Principle of Thermodynamics which
states that the dissipation rate is nonnegative. We shall see that this condition ensures
existence and uniqueness for system (1.20) if and only if g is globally convex or globally
concave in |a, b[. In other words, to obtain existence and uniqueness in the general case,
the dissipation condition has to be strengthened. This will be done in Section IV.3.

DISSIPATION CONDITION

Let us come back to equation (1.7). We associate to each weak solution u the
functions
1

(2.1) E(u) := §uf + G(ug), F(u):= ug(uy)

called energy density and energy flow density, respectively (cf. Remark II1.1.11), where
G is a primitive function to g

(2.2) G(v) : = /Vv g(u)du for v €a, b|
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with an arbitrarily fixed V €]a,b].
Smooth solutions satisfy the Energy Conservation Law

0 0

(2:3) 2t =g,

- F(u).

For weak solutions, one cannot ensure that the energy is preserved even if the nonlin-
earity ¢ is monotone and regular. This will follow from Theorem 3.15 in Sect. IV.3.
Instead of (2.3), according to the 2°¢ Principle of Thermodynamics we require that the

energy dissipation rate is nonnegative, i.e.

0 0 . o
(2.4) 8755( u) — %.7:( u) <0 in the sense of distributions.

For self-similar solutions we can rewrite condition (2.4) in the following way.

Proposition 2.1. Let the hypotheses of Proposition 1.2 hold. Then the solution @
of (1.10), (1.18) satisfies condition (2.4) if and only if the corresponding solution 6 of
(1.20) satisfies the dissipation condition

(2.5)  The function z — G(6(2)) — 0(2)g(8(2)) + —92 / Co*(¢)

is nondecreasing for z > 0 and nonincreasmg for z < 0.

Proof. Condition (2.4) means
(2.6) // 2 +G( ux)>gt(a:,t) — g(0y)0s(2,t) |dzdt >0 Vo€ D(RY), 0= 0.
R2
Analogously as in the proof of Proposition 1.2 we rewrite inequality (2.6) in the form

(2.7) / TG0+ 00)) L) + (F — B)9(0) ()] dz <0

oo z

for every n € D(R'),n > 0.
The identity

d% ((z%0 — g(0))fn) = (%0 — g(9))f§—z ++((220 — 9(6))0 + 226f)n

combined with (2.7) entails

[ ()~ 090) + 56) - (onte) + 20202z <0 v € DR >0,

— 00
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or equivalently
I [(G0) - 09(0) + 562) %2 + 2026, [ a2 <,

2 I2 [(G0) — 09(0) + 562) 2 + 2022 dz > 0

for every & € D(]0,0]), &2 € D(] — 00,0]), &1,&2 = 0. The assertion now follows from
Lemma I1.4.16. 0

Remark 2.2. For a discontinuity of the first kind, i.e. such that the limits
01 :=0(z—), 03 := 0(2+) exist and are not equal, condition (2.5) and Lemma 1.4
entail

(2.9) 2| G62) - G01) - %(ez — 01)(9(02) + 9(61))] > 0,

where the left-hand side expresses the energy dissipation across the jump.

Inequality (2.9) has a clear geometrical meaning: the bracketted expression represents
the signed area between the graph of the constitutive function ¢ and the straight
segment with slope 22 between the points (01, g(61)) and (02, g(02)) (see Fig. 12)

Y
y = g(u)

i
Fig. 12 |
|
|
|
|
|
|

0, 0 g

We can try to apply condition (2.9) to the situation described in Proposition 1.7.
The result reads as follows.

Proposition 2.3. Let the hypotheses of Proposition 1.7 hold and let 6 be a solution
of (1.20) satisfying condition (2.5). If g is nondecreasing, then 6 is constant.

Proof. Put V:=V, =V_,D:= D, =D_. For u € ]a,b[ and z € R! we define

auxiliary functions

G = [ “(g(r) — g(V))ar.

v

f(z) = D~ /0 T 0() ~ Vyde + /O 96 de,
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®(2) 1= 5 (f(2) - 20(2) = D)* + G(0(2)),
U(z) :=(f(2) = 20(z) = D)(9(6(2)) — g(V))-
From (2.7) and (1.22) it follows

> d d
: - - <
(210) | @3 + ¥ )z <0
and by Lemma I1.4.16 the function E(z) : = ¥(2)+2®(z)— [; ®(£)d¢ is nondecreasing.
We find R > 0 sufficiently large such that 6(z) = V for |z| > R. The functions ®,W¥
are chosen in such a way that ®(R) = ®(—R) = ¥(R) = V(—R) = 0,P(z) > 0 for all
€ [-R,R].

The inequality E(R) > E(—R) yields ffR@(ﬁ)df < 0, hence ®(z) = 0 for almost
all z € ] — R, R[. This implies G(6(z)) = 0 for all z, hence g(6(z)) = g(V) for all
z € R! and (1.20)(ii),(iii) entail # = const. =V in ] — oo, 0[U]0, oo. O

The following example shows that the monotonicity assumption in Proposition 2.3
is substantial. Under the hypotheses of Proposition 1.7 we construct a nonconstant
solution of (1.20) which satisfies the dissipation condition (2.5).

Example 2.4. We restrict ourselves for instance to the case B of the proof of
Proposition 1.7. Assuming that |c,d[ = | — oo, +00[ we define the solution € of (1.20)
by formulas (1.34), (1.35). We now introduce a new function ¢ satisfying (1.8) such
that € is a solution of (1.20) and condition (2.5) holds with ¢ replaced with g.

Let 1 € D(|V+4¢q,V]), 2 € D(]V V+s[) 903 € D(]V+s V +p[) be given auxiliary
functions such that f“//+ o1 (v = 2, fv dv = 3, f“//jsp = 2. For
K >0 and v € ]a,b] put

9 (v) : = g(v) + K(p1(v) = p2(v) + p3(v)).

Then gx satisfies (1.8) and € is a solution of (1.20) with ¢ replaced with gx. By
Remark 2.2 and inequality (2.9), condition (2.5) holds if and only if the following four
conditions corresponding to jumps at the points z1, 2o, 23, 24 are fulfilled:

1 V4p
0< 5plgx(V+p) +9x(V)) — /V g (v)dv =
1 V+p
= 5ploV ) +oV) = [ g)dv+ K,
1 V4p
02 5= Dlox(V+p)+ox(V+) = [ gielv)do -
Vg

V+p

— -0V +p) gV +a) - [ glo)dv- K.
V+q
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V+s

0< 56— Dlon(V+9) +ox(V+0) — [ gre(wpdo =
Vtq
1 V—|—8
— 56D+ +9V+a) - [ gl K
V4q
1 V+S
0< 5s(arlV+9) + (V) = [ guee)do =
14
1 V+S
= Es(g(V+s) +9(V)) —/V g(v)dv + 3K.

The example is complete if we put g := gx for K sufficiently large.

MULTIPLICITY OF DISSIPATIVE SOLUTIONS

We now present another negative result showing that the dissipation condition (2.5)

does not guarantee the uniqueness of solutions of (1.20) even in the “regular” case when

g is increasing and smooth.

Proposition 2.5. Let g :]a,b[—]c,d[ be an increasing smooth function which has
an inflection point qo €]a,b|. Then there exist V,,V_ € |a,b[, Dy, D_ € R' such that

problem (1.20) has infinitely many distinct solutions satisfying condition (2.5).

Proof. We choose an interval |qo—k1, go+k2[ C |a, b such that one of the situations

(i) ¢">01in |go—Fk1,q g”" <0 in ]go,qo + k2,
(i) ¢”" <0 in Jgo— k1,9, ¢" >0 in ]go,qo + k2|,
occurs. The construction will be different in each case (see Fig. 13)

(i) We fix some numbers gg — k1 < V_ < qo < pp < 19 < Vi < qo + k2 such that

(2.11) /VTO g(v)dv < %(ro — V) (g(ro) + g(V2)),
9(ro) — g(po) g(ro) —g(V_)
(2.12) p— < P

and define #(z) by the formula

V_ for z < zq,

r for z € |z, 29|,
(2.13) 0(z) : = 2122l

D for z € ]z9, 23],

Vi for z > zs,
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o gr)—g(V-) g(r)—g@)  [9(V4) —g(p)
(214) zZ1 = — T,Zz.—— ﬁ,zg,.— ﬁ

for each (r,p) in a small neighborhood of (rg,pg) such that (2.11), (2.12) hold for (r, p).
We put D_ :=0, Dy := h(po,70) with

h(p,r) ==/ (g(r) — g(Vo))(r — Vo) =/(g(r) — gp))(r — p)—/(9(V1) — g(p)) (Vs — p).

By Proposition 1.5, 6 is a solution of (1.20) if and only if h(p,r) = h(po,ro). We
obviously have a%h(p, r) > 0 and by the Implicit Function Theorem there exists a
function p(r) defined in a neighborhood of ry such that h(p(r),r) = h(po, o) which
determines a one-parametric family of solutions of (1.20) satisfying condition (2.5).

y = g(u) y = g(u)

|

|
ro V. Q V. Do U
Fig. 13: case (i) case (ii)

(ii) Similarly as above, we fix some numbers gy — k1 < rog < V_ < qo < V4 < pp <
qo + k2 such that inequalities (2.12) and

(2.15) [ e < 50 = ro)ateo) +otr0)

hold. We put here D_ := h(pg,r9), D+ := 0. We easily check that the argument of
(i) remains valid for the function 6 defined by (2.13), (2.14). O

Remark 2.6. We can observe that the point z = 0 plays a particular role for
solutions of (1.20). By Lemma 1.4, the function z +— g(f(z)) is continuous at the point
z = 0, hence the value

(2.16) Q = g(0(0))

is well defined for each solution 6 of (1.20). Moreover, all possible discontinuities of 6
across z = 0 are compatible with the dissipation condition (2.5). If equation (1.7) is
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interpreted as equation of motion, where wu,u,, g(u,) are the displacement, the strain
and the stress, respectively, condition (2.16) represents a boundary stress condition at
the point x = 0.

The idea now is to replace condition (1.20)(v) with the boundary condition (2.16) for
an unknown value of @ € |c,d[ which is to be identified in such a way that (1.20)(v)
holds for given D,,D_. This procedure enables us to consider separately the cases

z < 0 and z > 0. Introducing the functions
(2.17) w(s) := 0(£/s) for s >0
we can easily rewrite the problem (1.20)(i)-(iv), (2.16) in the following way.

Proposition 2.7. A function 6 is a solution to (1.20)(i)-(iv), (2.16) if and only if
each of the functions w = w4, w = w_ defined by formula (2.17) satisfies the conditions

(2.18) (i) w,g(w) € L*=(0,00), w(s) € |a,ba.e.,
(ii) the function s+ sw(s)—g(w(s)) s Lipschitz in ]0,+o0],
(iii) %(sw(s) —g(w(s)) =w(s) for a.e.s>0,
(iv) w(+o0) =V, g(w(0)) = Q

for V.=V, ,V = V_, respectively.

Moreover, the dissipation condition (2.5) is equivalent to the condition

(2.19) The function D(w) : s +— G(w(s)) — w(s)g(w(s)) + %wQ(s) - %/08 w?(o)do

is nondecreasing in ]0, +oo

for each of the functions w = w4, w = w_.

The proof of Proposition 2.7 is elementary and we omit it here.
We conclude this section with the following complement to Proposition 2.5 which will
be proved in the next section (see Remark 3.14).

Theorem 2.8. Let g :]a,b|—]c,d[ be a convex or concave function and let V., V_ €
la,b[ be given. Then there exists an interval A, B[C R such that

(i) problem (1.20) has a unique solution satisfying (2.5) provided D — D_ € |A, B|,
(ii) problem (1.20) has no solution satisfying (2.5) provided Dy — D_ ¢ A, B|,
(iii) if ¢ = —o0 then A= —o0 and if d =+oc0 then B = +00.
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IV.3 Minimal solutions

The aim of this section is to strengthen the dissipation condition (2.5) in order to
ensure existence and uniqueness of solutions to the Riemann problem in the form (1.20)
for an arbitrary nonlinearity ¢ satisfying conditions (1.8).

The fact that the dissipation rate is nonnegative has been equivalently expressed for
a solution w of system (2.18) by the condition that the function D(w) in (2.19) is
nondecreasing in ]0, 0o[. Among all solutions to (2.18) we now select that one denoted

by w* which mazimizes the dissipation in the sense that

(3.1) the total increment D(w*)(4+o00) — D(w*)(0) of the dissipation function is
maximal with respect to all solutions w of (2.18).

Condition (3.1) is meaningful if the set ¢~'(Q) contains a single point; otherwise
the “initial” value w(0) =V € ¢~ 1(Q) can be arbitrarily chosen without affecting the
dissipation condition (2.19). With the intention to eliminate the influence of the concrete
choice of V|, we formally compare only solutions with the same initial value V and using
the identity D(w)(+00)—D(w)(0) = G(V)—G(Vo)—Vg(V)+VoQ+3 [ (VZ—w?(s))ds

we reformulate condition (3.1) in a more convenient way.

Definition 3.1. Let V €a,b] and Q €]c,d[ be given. A solution w* of (2.18) is
called minimal, if the inequality

(3.2) / (w*2 (s) —w?(s))ds <0
0
holds for every solution w of (2.18).
This section is devoted to the proof of the following two statements.

Theorem 3.2. For every V €la,b| and Q) €]lc,d| there exists a unique minimal
solution w* of (2.18).

Theorem 3.3. Let V_,V, €]a, b begiven. Then there exists an interval |A, B[C R!
with the following properties.

(i) Forevery D €A, B there exists a unique Q € |c,d] and a unique solution to (1.20)
for Dy —D_ = D such that each of the functions w,w_ defined by formula (2.17)
are minimal solutions of (2.18) with boundary conditions g(w(0)) = g(w_(0)) =
Q, wy(+o0) =Vy, w_(+o00) =V_.

(ii) For D € R'\]A, B[ no solution with the above property exists.

(iii) If ¢ = —o0, then A = —o0 and if d = 400, then B = 400.

The minimal solution will be found explicitly. The construction is based on the
investigation of monotone solutions.
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MONOTONE SOLUTIONS

We start with an auxiliary lemma.

Lemma 3.4. Let w : [s1,s2] — R! be a monotone function, w(s1) = v1,w(s2) = vy
and let its inverse w~! be defined by the formula

sup S_(u for w € |vg,v if w is nonincreasing,
(3.3) w(u) 1= { () [vz, v1] 8

sup S5 (u) for w € [vy,v] if w is nondecreasing,

where Sy (u) :={s € [s1, $2]; Tw(s) < u}. Then we have

34) () /:w(s)ds + / w (uw)du = sy — s1v1,

U1

(ii) / i w?(s)ds + 2/ 2 uw ™ (u)du = syv3 — 5103
s1 V1

Proof. Both assertions follow from Fubini’s theorem. We consider just the case of
w nondecreasing (otherwise we pass from w to —w).

Let K be the rectangle [s1,s2] X [v1,v2]. We define the maximal monotone graph
'y :={(s,u) € K; w(s—) < u < w(s+)}, where we put w(s;—) := w(s1), w(sz+) : =
w(s2), and the sets Ay :={(s,u) € K; v1 < u < w(s—)}, By :={(s,u) € K;w(s+) <
u < va}. The function w™! is nondecreasing in [vi,vs] and we have By = {(s,u) €
K; si<s<wl(u-)}, K=T1UA;UBy, AN By =), meas I'; = 0, hence

(55 — 51) (3 — v1) :/Al duds-l—/Bl dsdu:/sg(w(s)—vl)ds—i-/w(w_l(u)—sl)du

S1 v1

and (3.4)(i) follows easily.
To prove (3.4)(ii) we consider the cylinder in cylindrical coordinates

C ::{(7‘7@75);7‘ € [07U2 - U1]7S0 € [07 27T]73 € [51752]}7

define the sets I'y :={(r,p,s) € C; (s,7+v1) €1}, A2 :={(r,¢,5) € C; (s,r+v1) €
A}, By :={(r,¢,s) € C; (s, +wv1) € By} and argue as above. O

Formulas (3.4) enable us to identify monotone solutions of (2.18) with their trajecto-
ries in the phase plane. This will be done in the next three lemmas.

Lemma 3.5. Let V €]a,b[ and Q €]c,d]| be given and let w be a solution of (2.18)
which is monotone in 0, 00[, w(0+) =: Vo € ¢71(Q), w(+o00) = V. Let w™! be the
inverse of w according to formula (3.3). For v € Conv{Vy, V'} put

v

(3.5) g (v):=Q +/ w™ (u)du.

Then g(w(s)) = g*(w(s)) for all s> 0.
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Proof. By Lemma 3.4 and equation (2.18)(iii) we have for each s >0

w(s) s

[ wt wdu=su(s) - [ w(o)ds = glus) - Q,

Vo 0

hence g*(w(s)) = g(w(s)) by definition of g*. O
The function y = ¢g*(u) describes the trajectory of the solution w along the strain-

stress diagram y = g(u) (see Fig. 14). From Lemma 3.5 we immediately derive two
important properties, namely

(3.6) (i) g¢* is convex and increasing in [V, V] if w is nondecreasing and concave and

increasing in [V, Vp] if w is nonincreasing,
(i) if g*(v) # g(v) for some v € Conv{Vy, V}, then ¢g* is affine in a neighborhood
of v.

|
i
|
|
|
|
|
|
i
i
|
|
|
|
|
|
i
i
|
|
|
i
V

<Y

|
|
|
Y |
U % Vo
Fig. 14: Trajectories of a nondecreasing and nonincreasing solution
The proof of the converse of Lemma 3.5 is slightly more complicated.

Lemma 3.6.

(i) Let Vo,V €]la,b| be given such that Vo <V, g(Vp) < g(V), and let g* : [Vo, V] —
le,d| be a convex increasing function such that ¢*(Vp) = g(Vo), ¢*(V) = ¢g(V) and
implication (3.6)(ii) holds. Put 5:= g* (V—), w*(s) : = inf{v € [Vp,V];9* (v) > s}
for s €]0,5], w*(s) :=V for s > 5. Then w* is a nondecreasing solution of (2.18)
with Q = g(Vp), w*(0+) = Vi and its trajectory g** defined according to Lemma 3.5
by the formula

v

(3.7) g () = g(W) + /V w*fl(u)du for v € [V, V]

coincides with g*.
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(ii) Let Vi,V €]a,b| be given such that Vo >V, g(Vo) > g(V), and let g* : [V, V] —
le,d| be a concave increasing function such that g*(Vy) = g(Vo), g*(V) = g(V) and
implication (3.6)(ii) holds. Put 5:= g* (V+), w*(s) := sup{v € [V,Vo];¢9* (v) > s}
for s €10,5[, w*(s) :=V for s > 5. Then w* is a nonincreasing solution of (2.18) with
Q =g(W), w*(0+) = Vi and its trajectory g** defined by (3.7) coincides with g*.

Proof. It suffices to prove the statement (i). Part (ii) is then obtained by passing
from g(v) to —g(—v).
The definition ensures that w* is nondecreasing and

(3.8) g (w*(s)) —g"(v) < s(w*(s) —v) forall s>0 and wve [V, V],
hence

s1(w”(s2) —w™(s1)) < g™ (w"(s2)) — 9" (w"(s1)) < s2(w™(52) — w"(s1))

for all so > s7 > 0. This yields

w*(s1)(s2 = s1) < s2w”(s2) — g"(w¥(s2)) — s1w"(s1) + 9" (W (51)) < w"(s2)(52 — 51),

therefore the function W*(s) : = sw*(s) — ¢g*(w*(s)) is Lipschitz in 0, oo, W* (s) =
w*(s) a.e.

To prove that w* solves (2.18) it suffices to check that ¢g*(w*(s)) = g(w*(s)) for all
s > 0. Assume on the contrary g*(w*(s)) # g(w*(s)) for some s > 0. Then g* is affine
in a neighborhood of w*(s), say ¢* (w*(s) —8) = ¢g* (w*(s) + ) = s, which contradicts
the definition of w*.

It remains to verify that ¢** = ¢g*. In fact, we prove more, namely g*/ (u+) = w*

(u)
for all u €]Vp, V[. Indeed, for an arbitrary s > w*  (u) we have by (3.3) u < w*(s)
and the definition of w*(s) entails ¢* (u+) < s, hence g¢* (u+) < w* (u) for all
u €]Vo, V]. Conversely, for s > g* (u+) there exists § > 0 such that w*(s) > u+ 6,

hence s > w*fl(u). Consequently, w*fl(u) = ¢*' (u+) and Lemma 3.6 is proved. [

Lemma 3.4 enables us to express the value of the integral [~ (w}(s) — w3(s))ds for
two monotone solutions wy,wy of (2.18) in terms of their convex (concave) trajectories
91+ 95-

We first observe that integrating equation (2.18)(iii) we obtain

(3.9) (V) - Q= / TV w(s))ds

for each solution w of (2.18). If moreover we assume that w is monotone, then w is
nondecreasing if @ < g(V'), nonincreasing if @ > ¢g(V) and constant if @ = g(V).
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Let now wi,ws be two monotone solutions of (2.18) for given conditions V € ]a,b]
and @ € |c,d]. We distinguish two cases.

A. Q< g(V). Then both w; and wy are nondecreasing.

Assume for instance wy(0+) =: V4 < Vo 1= wy(0+) < V, g(V1) = g(Va) = Q. The
convex trajectories g7, g5 corresponding to wi,wy are given by a formula analogous to
(3.5) and satisfy g (u) = w; ' (u) for a.e. ue]V;, V[, i=1,2. Identity (3.4)(ii) yields

00 14
/ (wi(s) — V?)ds + 2/ ugl (w)du =0, i =1,2,
0 Vi
and integrating by parts we obtain
1 [ee] 9 9 V2 174
a10) 5 [ i) —ude)ds = | i)~ Qdut [ (o1 - g3u)du

B. @ > g(V). Then both wy and wy are nonincreasing.

Assume wq(0+) =: Vi = Vo :=wq(04+) > V, g(V1) = g(V2) = Q. For the corre-
sponding concave trajectories ¢j, g5 we have analogously as above
Va

oo Vl
) g [ i) —ude)ds = [ Q-sidut | (g3~ giu)du

Vs \%4

We see that the minimization problem (3.2) in the class of monotone solutions con-
sists in finding the minimal convex trajectory in the case A and the maximal concave

trajectory in the case B. This suggests the following definition (cf. Fig. 15)
Definition 3.7. Let V €]a,b[ and Q €]c,d| be given. Put

{max (67" @)NJa, V]) if Q< g(V),
Vo:=4 . .
min (=1 (@Q) N[V;b])  if Q> g(V),
QQ,V) = Conv{(u,y) S (ConV{VQ,V})x]c,d[; = g(u)} Then the function g*
defined for u € Conv{Vy,V} by the formula
min{y €Je,df; (u,y) € AUQ,V)} i Q <g(V),
(3.12) 9" (u) := ¢ max{y €]c,d; (u,y) € AQ,V)} if Q@>g(V),
g(u) it Q=g(V),

is called the minimal trajectory from @ to V.

We immediately see that the minimal trajectory satisfies the hypotheses of Lemma
3.6. From identity (3.11) we easily conclude that the solution w* of (2.18) associated
to g* by Lemma 3.6 is minimal with respect to all monotone solutions. We now prove
that it is minimal in the sense of Definition 3.1.



Fig. 15: Minimal convex trajectory Maximal concave trajectory

EXISTENCE AND UNIQUENESS OF MINIMAL SOLUTIONS

Theorem 3.2 will be proved in the following form.

Proposition 3.8. Let V €a,b[ and @ €]c,d[ be given and let g* be the minimal
trajectory from (@) to V. Let w* be the solution associated to g* by Lemma 3.6 in
the case Q # g(V), w* =V if Q = g(V'). Then for every solution w # w* of (2.18) we
have

(3.13) /000 (w*2 (s) — w?(s))ds < 0.

This fact is less obvious. Its original proof in Krejéi, Straskraba (1993) is relatively
complicated. We present here a simple and elegant proof which is due to Lovicar (1994).
It consists of two steps (Lemmas 3.9 - 3.10).

We first observe that the case @ = g(V') follows trivially from identity (3.9) which
entails for every solution w of (2.18)

OO’[UZS— 2 S = oO'LUS— 28 OO’[US— S
/0( (s) — V2)d /0<<> v>d+2v/0<<> V)d
:/0 (w(s) — V)*ds > 0.

On the other hand, passing from w* to —w* and from ¢(v) to —g(—v) we see that
the cases @ > ¢g(V) and @Q < ¢g(V) are symmetrical. For the sake of definiteness we
assume in the sequel Q < g(V).

Let us suppose now that there exists a solution w # w* of (2.18). We introduce the
functions

(3.14) for s> 0.

{ W (s) : = sw(s) — g(w*(s))
W(s) : = sw(s) — g(w(s))
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Both W and W* are Lipschitz, W' = w, W = w* a.e., W* is convex and there exists
L > 0 such that W(s) = W*(s) = sV —g(V) for s > L, W(0+) = W*(0+) = —Q.
We define the sets

My :={s>0; W*(s) = W(s)},
(3.15) My i={s>0; W*(s) > W(s)},
M_ :={s>0; W*(s) < W(s)}.

We have [L,+o0[C My, hence both M, and M_ are open bounded sets. They have

the form My = Ulof, B85, M- = Ulay, B3 [, with aki,ﬁki € My, provided we
include the case ozki =0.

For almost all s € My we have w*(s) = w(s), hence

(3.16) /M (w* () — w?(s))ds = 0.

Lemma 3.9. For all £k € N we have

2

By
(3.17) /+ (w* (s) — w?(s))ds < 0.

Proof. We have W*(s) > W(s) for all s €laf,3 [, W*(a)) = W(a)),
W*(BF) = W(B;), hence

for each bounded nondecreasing function 7 :Jo;’, 3, [— R!. Indeed, this follows trivially
from the integration by parts provided r is smooth. In the general case we approximate
r by a pointwise convergent sequence r,, — r of smooth nondecreasing functions and
pass to the limit.

This yields

B ) B ) B
0</a+ (w(s) — w(s)) ds=/a+ (w?(s) —w* (S))dS_Q/a+ w*(s) (w(s) — w*(s))ds

and Lemma 3.9 is proved. 0
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Lemma 3.10. For all £k € N we have

2

P
(3.18) / (w* (s) — w?(s))ds < 0.

k

Proof. Lemmas 3.6, 3.5 and inequality (3.8) yield
(3.19) sw*(s) — g(w™(s)) = sv —g"(v) = sv—g(v)

for all s > 0 and v € [Vp,V]. On the other hand, for s €|a, ,3, [ we have by
hypothesis sw*(s) —g(w*(s)) < sw(s)—g(w(s)), hence w(s) ¢ [Vo, V] for s €la,, B, [

Put Ay :={s €la,, B, [ w(s) >V}, A_ :={s €]oy, B, [; w(s) < Vo}. We have
lag B, [= A UA_ and

/ (w2(s) — w*Q(s))ds > (Vo + V)/ (w(s) —w* (s))ds,

/ (w?(s) — w*())ds > (Vo + V) / (w(s) — w*(s))ds,
Ap

Ay

therefore

B )
/ (w?(s) —w* (s))ds > (Vo + V) (W(By) = W (B, ) — W(ay,) + W*(e,)) =0,

k

and inequality (3.18) is proved. O

To finish the proof of Proposition 3.8 which in turn implies Theorem 3.2, it suffices
to combine Lemmas 3.9, 3.10 and identity (3.16).

The natural question whether the minimal solution of (2.18) satisfies the dissipation
condition (2.19) can easily be answered.

Proposition 3.11. For every V €]la,b] and Q €]c,d| the minimal solution w* of
(2.18) fulfils the dissipation condition (2.19).

Proof. By Lemmas 3.4, 3.6 we have for all s >0

s, w”(s) _1
—/ w* (o)do = —sw*(s) —/ uvw*  (u)du
0

Va
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The function D(w*) in (2.19) has therefore the form

w”(s)
D)) = [ o) - 6" () du + (V) ~ Qi
@
For @ < ¢g(V) we have g(u) > g*(u) for all u € [V, V] and w* is nondecreasing,
for @ > g(V) we have g(u) < ¢g*(u) for all u € [V,Vp] and w* is nonincreasing, for
Q@ = g(V) the solution w* is constant, hence in all cases condition (2.19) holds. O

EXISTENCE AND UNIQUENESS IN THE RIEMANN PROBLEM

Let us state now two easy lemmas which enable us to prove Theorem 3.3.

Lemma 3.12. Let Q1,Q2 €]c,d| and V €]la,b[ be given such that Q1 < Q2 <
g(V). According to Definition 3.7 put V; := Vg, and ¢;(u) : = min{y € ¢, d[; (u,y) €
QAQ;,V)} for uw € [V;,V],7 = 1,2. Then ¢f(u) < gi(u) for all u € [V,,V] and
gt (u) = g5 (u) for a.e. uelVa, VI

Proof. Weobviously have Q(Q2,V) C Q(Q1,V) and V > V5 > Vi, hence g7 < g3
in [Va,V]. Let us assume now ¢ (u) < g5 (u) for some Lebesgue point u €]Va, V| of
both ¢* and g3 . Then gi(u) < g5(u) < g(u), hence g* is affine in a neighborhood of
u. Put @ := min{v €lu, V[;g(v) = g7 (v)}. The points (@, g(a)) and (u,gs(u)) belong
to 2(Q2,V), hence for all a €]0, 1] we have g5 (at+ (1 —a)u) < ag(a)+ (1 —a)gs(u),
or equivalently

g3(uta(@a—u)—gi(w) _ g(a) —g3(u)

a(t —u) h a—u

Passing to the limit as a — 0+ we obtain

g;'(u) < g(azj__gf(u) < g(ﬂzl—_gg (u) _ gfl(u).

which is a contradiction. O

Lemma 3.13. Let V €a,b] and ¢ < Q1 < Q2 < d be given. Let wj, w3 be the
minimal solutions of (2.18) for Q = Q1,Q = Q2, respectively. Then wi(s) < w5 (s) for
all s> 0.

Proof. The cases Q1 < g(V) < Q2 or @1 < g(V) < Q2 are obvious. We may
therefore assume Q1 < Q2 < g(V) (the opposite situation g(V) < Q1 < Q2 is again
covered by the usual transformation g(v) — —g(—v)). By Lemma 3.6 we have for all
>0

wi(s) = inf{u € [V;, V];g7 (u) > s}, i = 1,2,
where V;, g/ are as in Lemma 3.12. For all s >0 and u € [Va, V] such that u < wi(s)
we have by Lemma 3.12 g¢5 (u+) < ¢F (u+) < s. This entails u < w3(s), hence
wi(s) < wi(s). O
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Proof of Theorem 3.3. For an arbitrary @ €]c,d[ we denote by wf,w

the minimal solutions of (2.18) with boundary conditions g(wf(())) = g(w®(0)) =
Q,w_c’g(—l—oo) =V, w?(—l—oo) = V_, and put

bo(z) = wf‘z(z2) for z>0,
Qv w(22) for z<0.

By Proposition 2.7, f¢(2) solves (1.20)(i) - (iv) for all @ €]c, d[. To handle condition
(1.20)(v) we introduce the function

(3.20) o(Q) = / " (6o(2) - Po(2))d=

— 00

with the intention to put
(3.21) A:=p(ct), B:=p(d-).

The proof of Theorem 3.3 will be complete as soon as we prove that the function ¢
defined by (3.20) is continuous and increasing and implications (iii) hold.

The fact that ¢ is increasing follows immediately from Lemma 3.13. To prove
the continuity, we fix an arbitrary compact interval [¢/,d'] C]e,d[ such that g¢(V.),
g(V_) €ld,d'[. Put o :=min{v €la,b[;g(v) > '}, b := max{v €a,b[;g(v) < d'},
L= Sup{|w| d <v<u<b}<+oo.

From Lemma 3.6 we infer that HQ( ) = Po(z ) for all |z| > VL’ and all Q € [¢/,d'].

Integrating equation (1.20)(iii) dz and - dz we obtain for all @ € [¢/,d’
0 ﬁ

(3.22) { L'vy —g(Vy)+ Q = 2]0 " 200(2)dz,

—L'V_+g(V_)—-Q = 2f_\/ﬁz9Q( 2)dz,
hence
VI 00
(3.23) / o el(0,(2) — B, () = / 1el(00,(2) =~ Dau(2))dz = Q1 = Q:

for all Q1,Q2 € [¢,d'], @1 > Q2. Note that by Lemma 3.13 we have 6, (2) > 6g,(2)
for a.e. z € R!. Using the estimates

P(Q1) — p(Q2) = /_00 (00, (2) — b0, (2))d=
VQ1—Q2 1 o0
<[ 0= t0.N+ e [ A0, () = b0, ()

<O -d)+1)VQ1 - @



175

we conclude that ¢ is locally 1-Hélder continuous in |e, d].
Parts (i), (ii) of Theorem 3.3 now follow from (3.20). It remains to prove one of the
implications (iii), the other one is analogous. Assume for instance d = 400, V. > V_|

and put

gw) —g(Vy) "

L::sup{ TV ;
- V+

E]V+,b[} > 0.

We distinguish two cases.
A. L < 4o
Then for every @ > g(V5) the slope of the minimal trajectory (3.12) from @ to V4

does not exceed the value of L, and therefore 0g(z) =V, for z > +/L. Using formula
(3.22) for L' = L we obtain

VL
320 @ > [ 0 vtz L [ s viaes L@ g0

B. L = +.

Put L := limsup M < +00. For A > L we define
v—V,

V) :=min {v €]Vy,b]; 9) = 9(V4) =}, Q= g(Vy).
v— Vi

The minimal trajectory ¢* from @ to V. is then affine, namely ¢*(u) = g(V) +
AMu—V4) for w e [V, Vy]. This yields

Vi for z >/
00, (2) = ¢ W for 2 €10,V
w9 (22) > V_ for 2z <0,

therefore

VAN
(325  p(Q) > / (00r (=) — Vi )dz = (G — (V) (Vs — V2.

In both cases (3.24), (3.25) we obtain ¢(Q) — +oo as  — 4o0o. Theorem 3.3 is
proved. 0

Remark 3.14. Theorem 3.3 enables us now to prove Theorem 2.8 from the preceding
section. In fact, it suffices to prove that for a convex constitutive function ¢ the
dissipation condition (2.19) and the minimality criterion (3.2) for solutions of (2.18)
coincide. The case of g concave is then obtained in a standard way. We prove the
following theorem.
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Theorem 3.15. Let g be convex and let V €a,b[, Q €]|c,d| be given. Let w be a
solution of (2.18) satisfying the dissipation condition (2.19) and let w* be the minimal
solution of (2.18). Then w = w* a.e.

In the proof we make use of an auxiliary lemma. Notice that a convex function
satisfying (1.8) is increasing, hence every solution w of (2.18) can be continuously
extended to s = 0.

Lemma 3.16. Let the hypotheses of Theorem 3.15 hold. Assume that there exist
Lebesgue points s1,82 of w such that 0 < s; < s and w(sy) =: v1 < v9 = w(S2).
Then s > ¢'(va—), s1 < ¢ (v1+), w(s) = inf{u € [v,v2];9'(u) = s} for ae. s €
[s1, 9" (va—)[, w(s) = vy for s €lg’'(va—), sa].

Proof of Lemma 3.16. The function wy : [0,00[—]a, b] defined as wy(s) : = w(s)
for s €]s1,s2[,wo(s) := vy for s € [0,s1],wo(s) := vg for s € [s2,+00[ solves (2.18)
with V' = v9,@ = g(v1). The minimal convex trajectory g from g(v1) to ve coincides
with ¢ and the corresponding minimal solution wyg is given by the formula (cf. Lemma
3.6) wi(s) = inf{u € [v1,v2],¢'(u) > s} for s € [0,¢'(va—)[, wi(s) = vy for s >
g (va—), wi (u) = ¢'(u) for a.e. u € vy, val.

By (2.19) we have D(w)(s2) = D(w)(s1), hence

Lo

1 [ 2 1
—/ w?(s)ds < —/ ug' (w)du + = s9v3 — ~s103.
2 /s, v 2 2

Lemma 3.4 yields — [ ug'(u)du = § [~ (wa‘Z(s) — v})ds, therefore 1 [ (wd(s) —
w§2 (s))ds < 0.
By Proposition 3.8 we conclude wy = w(j a.e. and Lemma 3.16 follows. 0

Proof of Theorem 3.15. The assertion is an immediate consequence of Lemma
3.16 if @ < g(V) (we simply put s; =0 and let so tend to +o00). The case @ > g(V)
is slightly more complicated. In fact, it suffices to prove that w is nonincreasing in
[0, +00], since the only concave trajectory from @ to V in this case is the minimal one
which is affine.

Let us suppose on the contrary that there exist Lebesgue points si,se of w such
that 0 < s1 < s2 and w(sy) : = v1 < w2 := w(sy). We distinguish 2 cases.

A. g(vn) <Q.

Put o := supess{w(s);s € [0,s1]}. Then © > ¢~ '(Q) > v; and there exists a
sequence {o,} C [0,s1] of Lebesgue points of w such that o, — 5 < s1,w(0,) — .
Passing to the limit as n — oo in the identity f;i w(s)ds = s1v1 — g(v1) — opw(oy,) +
g(w(oy)) we obtain 0 > ['(w(s) — v)ds = g(v) — g(v1) — s1(0 — v1), hence s; >

%ﬂf”l) > ¢'(v1+), which is in contradiction with Lemma 3.16.
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B. g(v1) > Q.

Analogously as above put v := infess{w(s); s € [s2,+0oo[}. We have v < V < v
and w(s) =V for sufficiently large, therefore there exists a convergent sequence {o,,} C
[s2,+00[ of Lebesgue points of w such that o, — s > sy, w(o,) — v as n — 0.
Passing to the limit in the identity f;" w(s)ds = opw(oy) — sav2 — g(w(on)) + g(va)
yields 0 < fi(w(s) —v)ds = g(va) — g(v) — s2(v2 —v) hence sy < 9lva)—9() g’ (va—)

V2 —U
which again contradicts Lemma 3.16. 0

At the end of this section we show an interesting example.

Example 3.17. Let g be the function g(u) :=e* —1 for u € R}, V, =V_ := 0.
Then the hypotheses of Theorem 2.8 are fulfilled with a = —o00, b = d = +00, ¢ = —1
and we can explicitly compute the values of A and B. In fact, we have B = +o0o by
Theorem 3.3.

The minimal solution w* of (2.18) with V' =0 is given by the formula

log(1+ Q) for 0§S<OL
w*(s :{ Ql g(1+Q) if @ >0,
0 for S>w
log(1+ Q) for 0<s<1+Q
w*(s) = ¢ logs for 1+Q<s<1 if Qe]—1,0].

0 for s>1
The function ¢ defined by (3.20) has the form

2,/Qlog(1+ Q) for @ >0,

_ Oow* z2 z =
SD(Q)—2/O (27)d {4(m_1) for Qe€]-1,0]

By (3.21) we have A = —4. Since g is convex, we infer from Theorems 3.15, 3.3 that
problem (1.20) with Dy — D_ < —4 has no solution satisfying the dissipation condition
(2.5). On the other hand, putting for an arbitrary u < 0.

. u for |z| < %
(3.26) 0.(2) : =
0 for |z| > %
we see that 6, solves problem (1.20) with Vi, =V_ =0, D, — D_ = fj;o 0.(2)dz =
—2y/ug(u), hence for arbitrary D, < D_ there exists a solution of (1.20) of the form
(3.26). In other words, problem (1.20) with D+ —D_ < —4 admits only solutions which
violate the dissipation condition!
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IV.4 Entropy conditions

In this section we study the relationship of the minimal solution from Definition 3.1
to entropy conditions arising from various physical or geometrical considerations. We
already proved Theorem 2.8 and Propositions 2.5, 3.11 which state that the minimal-
ity always implies the dissipation condition (2.5) and that these two conditions are
equivalent (modulo some smoothness) if and only if ¢ is convex or concave.

Here we recall four more or less classical selection rules for the relevant solution.
Three of them, namely the Lax entropy condition, Liu’s shock admissibility criterion
and the vanishing viscosity criterion are compatible with the minimal solution, while

Dafermos’ maximal entropy rate condition is not in general.

LAX ENTROPY CONDITION

The Lax (1957) shock admissibility condition for systems of conservation laws can be
defined only under some regularity assumption. Following Aumann (1969) we introduce
here the space R(c, 3) of requlated functions as the space of all functions f :]a, 3[— R!
such that there exist finite limits f(a+), f(8—) and f(r+), f(r—) for all r €], ([, and
this space is endowed with the sup-norm |- |.

It is clear that regulated functions are bounded and have at most countable many dis-
continuities. More information about the spaces R(«a, 3) can be found e.g. in Frankova
(1991) or Tvrdy (1989).

Definition 4.1. Let us assume that the derivative ¢'(u) = g—z belongs to R(a,b).
A weak solution 6 of system (1.20) is said to satisfy the Lax entropy condition at a
point z € RY if the one-sided limits 6(z+) # 0(2—) exist and

() 2g(0(—)1) > 2 > 2g(0(4)-) i 0(s—) < 6(+),
(ii) 29" (0(z2—)—) = 23 > 29’ (0(2+)+) if  0(z—) > 0(z+).

The fact that the minimal solution follows the minimal trajectory along ¢ implies
immediately the following result.

Proposition 4.2. Let the hypotheses of Theorem 3.3 be satisfied and let g’ belong
to R(a,b). For Dy —D_ €]A, B[ denote by 6 the solution of problem (1.20) defined in
Theorem 3.3. Then 0 satisfies the Lax entropy condition at each point of discontinuity
z € RL

Notice that the Lax entropy condition does not follow from the dissipation condition
(2.5) if ¢g has inflection points: the solutions defined by formula (2.13) in the proof of
Proposition 2.6 obviously violate the Lax entropy condition. On the other hand, it is
easy to infer from inequality (2.9) that the Lax entropy condition does not necessarily
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imply the dissipation condition if g is allowed to have more than one inflection point.
Below in Example 4.3 we show that even the combination of both Lax condition and
dissipation condition does not guarantee the uniqueness of solutions of the Riemann
problem. It suffices to work with smooth increasing constitutive functions g having at
least two inflection points.

Example 4.3. Let g :]a,b[—]c,d] be an increasing smooth function and let there
exist numbers a < V_ < ¢ < V4 < s < b such that
() ¢ >0 in Vo qlUlVi,slg" <0in Ja, Vi,
(ii) there exists t €]g, V.| such that g(tiif/(_‘/*) = g(sg:g‘,/(_v,) = max{%;u €
V_,s]} (see Fig. 16)

Fig. 16

We fix some r €]V, s[ such that [, g(u)du < 3(r —V_)(g(r) + g(V_)) and put

[9(r)=9(V-)
V_ for z< — %,

(4.1) 0(z) =1 r for ze] VA= O RVEC =T {

r—V_ r—Vy

vV, for 2> ,/o0=glrs),

Then 6 is a solution of (1.20) with

(42) Dy —D-=/(g(r) = g(Vo))(r = Vo) + V/(9(r) — g(Vi))(r = V).

For p € [r,s| we further define

wr(2?) for 2z <0,

(4.3) 0,(z) := 4 P for ze€ {0, N = [
Vi for z > \/—g(p;:‘({/iv*),
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where w;; is the minimal solution of (2.18) with V =V_,Q = g(p) and we check that

the value of p can be chosen in such a way that 6, satisfies (1.20) with Dy —D_ given
by (4.2). Using Lemmas 3.4, 3.6 we obtain

|- e = [ (e dzw NV =
/\/gp dU+\/ ) (0 — Vi),

where g5 is the minimal (concave) trajectory from g(p) to V_. Put

/ \/ 95 (u du+\/ ) (p—Vi)—

—Jlgtr) = g(vV)) (r— Vo) ¢ (o) — sV — V).

We claim that p € [r, s[ can be chosen in such a way that h(p) = 0. Indeed, we have

W(s) =/ (g<s> —g(V.)) )+ 4/ (g(s ) (s — Vi)
—/(gtr )r— Vo) - wg( ) - <v+>)<r ~ Vi) >0,

and Holder’s inequality yields

| o< gt - g0 = v,

V_

hence h(r) < 0. The function h is continuous in [r,s|, hence h(p) = 0 for some
p € [r,s[. We thus dispose of two solutions 6,6, of problem (1.20) with Dy — D_

given by formula (4.2). Both 6 and 6, satisfy the Lax condition and the dissipation
condition. To check that ¢ # 6, we notice that g;(t) = g(t), hence % =

g(p; f(t) < 9(82 f(t) (ti:f/(ivf) = gg(tiifﬁ(v_). This implies that gy is not affine,

consequently the solutions 0,6, are distinct.

L1U’S SHOCK ADMISSIBILITY CRITERION

Definition 4.4. (Liu (1981)) A solution € to problem (1.20) is said to satisfy Liu’s
shock admissibility criterion at a point z € R! if the limits 0(z2+) # 0(z—) exist and

g(u) —g(0(z—))  g(8(z+)) —g(0(2—))
(4.4) z( T P R ey P ) >0 Vue Conv{f(z—),0(z+)}.
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It is obvious that the minimal solution defined in Theorem 3.3 satisfies Liu’s criterion
at each point of discontinuity. The converse is true in the class of regulated functions.

Proposition 4.5. Let the problem (1.20) admit a solution 6 € R(—o0,00) such that
condition (4.4) holds at each point z € R! of discontinuity of . Then 6 is minimal in

the sense of Theorem 3.3.

Proof. Let us first assume for instance that 6 is nondecreasing in ]0,00[. Let
w4 (s) := 0(y/s) be the corresponding solution of (2.18) and let ¢g* be its trajectory
according to Lemma 3.5. If for some u €]0(0+), V4[| we have g(u) # ¢*(u), then by

Lemma 3.5 there exists s > 0 such that u €]Jw(s—),w(s+)[ and g*(u) = g(w(s—)) +

(e ) 8 —g((s )
(u = w(s=) et

the minimal trajectory. The same argument works for € nonincreasing and for the

. Condition (4.4) then entails g(u) > g*(u), hence g¢* is

interval | — oo, 0.

On the other hand, condition (4.4) excludes nonmonotonicities of ¢ in | —o0,0] and
]0,00[. This can be seen again by considering just the interval ]0,oco[ only. Let us
assume for instance that there exist z3 > z; > 0 and zy € [z71, 23] such that the values
v1 1= 0(z1—), v3 : = 0(z3+), v2 : = Inf{0(2); 2 € [z1, 23]} satisfy va < v1 < v3, v =
O(zo+) or vy = 0(z2—), 0(2) € [ve,v1] for z € [z1, 23], O(2) € [va,v3] for z € [z, 23]
(the other possibilities are analogous).

It is more convenient to work with the solution w of (2.18) defined by the formula
w(s) := 0(\/s) for s > 0. Put s; := 22 for i =1,2,3, A:={s €sq, s3[;w(s+) = v
or w(s—)=wv1}. For A # () put s4 := inf A. Integrating equation (2.18)(iii) we obtain

(4.5) so(va —v1) — g(v2) + g(v1) = /52(w(s) —wvy)ds <0,

S1

(4.6) s2(vy —v2) — g(v1) + g(v2) = /SA (w(s) — vy)ds.

52

Put s :=inf{s € [so,s3];w(s+) > v1}. We have either § = s5 or § > s5. In the
latter case it follows from (4.5), (4.6) that [s2,5]N A = (), hence in both cases we obtain
w(s—) < v1 < w(s+). Put 9 :=w(5—) € [vg,v1[. Hypothesis (4.4) and Lemma 1.4
then yield

- o) ~g®)
consequently
(4.8) /S(w(s) —v1)ds = 5(5— v1) — g(5) + g(v1) > 0.

By construction, we have fjl (w(s) —wv1)ds < 0, which is a contradiction. Proposition
4.5 is proved. O
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DAFERMOS MAXIMAL ENTROPY RATE CRITERION

The idea of Dafermos (1973) is similar to that which leads to the minimality condition
(3.1), namely to maximize the dissipation of energy. Its advantage is that it can easily
be formulated for arbitrary (not necessarily self-similar) solutions to equation (1.1).

Definition 4.6. A solution u of problem (1.9) - (1.11) is said to satisfy the Dafermos
maximal entropy criterion, if for every solution @ to (1.9) - (1.11) we have

(4.9) d [~ (1 1

S| (G + G = (5 + i) )do < 0

in the sense of distributions.
In the class of self-similar solutions we can rewrite condition (4.9) in a simple way.

Proposition 4.7. For r €]a,b[ and z € R' put G(z,7) := G(r) — rg(r) + 322r2.
Then a self-similar solution w of (1.9) - (1.11) satisfies condition (4.9) with respect to
all self-similar solutions @ of (1.9)-(1.11) if and only if

(410 | (6000 - gtz 0)d= < 0

— 00

for all solutions 6 to (1.20), where 6 is the solution to (1.20) associated to u according
to Proposition 1.2.

The proof of Proposition 4.7 is a simple exercise analogous to the proof of Proposition
1.2 based on the integration-by-parts formula

/ T (2= e = / " 220 — 0f)dz — — / 10020 — g(0)) — (220 — 9(0))]d=

— o0 — 00 — 00

and we leave it to the reader.

The comparison of the maximum principles (3.2) and (4.10) is not easy in general. We
can better understand their meaning when looking at piecewise constant solutions of the
form (1.26). Let us denote by A(6;,0;41) := G(0i1) — G(6;) — 2 (041 — 0;)(9(0i41) +
g(0;)) the signed area between the graph of the constitutive function g and the segment
connecting the points (0;,9(0;)) and (0;11,9(0;11)) which represents the trajectory of
the shock at the point z = z;. While condition (4.10) consists in maximizing the sum

(4.11) Z 2 A0, 0i11),

z; ERL
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condition (3.2) requires to maximize separately the expressions

(4.12) D> A, 6i41), =Y A6i,0i41)

z;>0 z;<0
with an unknown intermediate condition g(6(0)) = @ which is to be identified.

The construction in Example 2.4 shows that these conditions are not equivalent.
Condition (4.12) naturally selects the constant solution. On the other hand, the expres-
sion (4.11) vanishes for the constant solution and is positive for the nonconstant one.
Paradoxically, the constant solution does not maximize the entropy rate in Dafermos’

sense.

VANISHING VISCOSITY

It has been observed in various situations that the fact of neglecting small dissipation
effects may lead to a loss of well-posedness of the problem (one example of this kind
has recently been studied by Lovicar, Straskraba, Krejéi (1993).

Here, the nonlinear elastic-stress constitutive law o = g(¢) can be considered as the
limit case of the parallel viscoelastic law o = g(e) + né (see Sect. 1.1 on rheological
models) as the viscosity coefficient 1 tends to 0. In the case that the solutions u" of
the corresponding equation of motion

(4.13) ufy — g(ul)e — nug,, =0

converge in some sense to a solution of equation (1.7), it is natural to declare that this
limit is the relevant solution of equation (1.7). In other words, the selection rule is
imposed by the limit process.

With respect to self-similar solutions, it is more convenient to replace (4.13) with the
equation
(4.14) = g (W) = Stuly, = 0,
where g, k € C'(]Ja,b[) is a regularization of the function g that we briefly describe
here.

Let g satisfy condition (1.8). For a fixed compact interval K Cla,b[ and a number
n >0 put

“1
(4.15) Gn i (u) = e%(uK_“)g(uK) +/ Eeﬁ(”_u)g(v) dv for u €]a, b,
UK

where ux := min K. The identity

(4.16) N9y x (W) = g(u) — gy (u)  Vu €la,b]
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has the following immediate consequences (the proof is left to the reader).

Lemma 4.8. Let K Cla,b] be a compact interval. Put Lk := Sup{|% ;
u,v € K,u # v}. Then for every 1 > 0 the function g, i is continuously differentiable
in |a,b| and for every u € K we have

(i) l9(u) = gn.x (u)| < Nlk,

(i) |97, 5 (W)] < Lk

In terms of self-similar solutions, approximating equation (1.7) by (4.14) corresponds
to the approximation of problem (2.18) by the equation

/

(4.17) n(sw,'?(s)) = wy(s) — (swy(s) — gy,x (wy(s)))

/

for a suitable choice of boundary conditions and of the compact interval K. This can

be done in the following way.

Let @,V be given data in (2.18) and let us define Vg as in Definition 3.7. We can
assume for the sake of definiteness that @ < g(V') leaving the other cases to the reader.

We fix an open bounded interval J, [Vg,V] C J C J Cla,b[ and put K := J. For
an arbitrary (3 > Lx we prescribe boundary conditions

(4.18) wy(n) = Vo, wy(B)=V.
We first verify that problem (4.17), (4.18) cannot have multiple solutions.

Lemma 4.9. Let 0 < 0 < s1 < s2 be given and let w,w be two solutions of (4.17)
in the interval |s; — 0, s9 + 6[. Assume w(s;) = w(s;) for i =1,2. Then w(s) = w(s)
for all s €]s; — 9,52 + 4.

Proof. If the set B :={s € [s1,s2];w(s) = w(s)} is infinite, then it contains a
convergent sequence and its limit point § satisfies w(s) = w(s), w'(5) = @’(5). The
general theory of ordinary differential equations then yields w = w.

Assume that B is finite. We choose two consecutive points 01,09 € B, so that for
instance w(o;) = w(o;) for i = 1,2, w(s) > w(s) for s €|oy,03[. Integrating f;f ds
the identity

(ns(w’ —a@"))" = (w =) = (s(w — @) — g(w) + g(@))’

we obtain

02

loa(w'(02) ~ (02) ~ o1 (w(0r) = ()] = [ (w—d)ds >0,

o1

hence either w’(o2) > w'(02) or w'(o1) < W'(01), which is a contradiction. O



185

For a fixed n > 0 we have the following existence result.

Theorem 4.10. Problem (4.17), (4.18) has a unique classical solution w,,. Moreover,
there exists 19 > 0 such that for n < ng the solution w, can be extended to an interval
lay, +o00[ for some o, €]0,n], it is twice continuously differentiable and increasing in
its domain of definition.

Proof. We define recursively for s € [, 5] a sequence {w(™(s);n € NU{0}} by
the formula

(0) =V . §—1
w®(s) := Vg + (V =V, ,
( ) Q ( Q)ﬁ—ﬁ
s (9 @ ()

n T

where , - 1
r (InwT(0) -
C(n_l) :(V — VQ) {/ le%fn (Kf*l)dad,r
T
n

We immediately see that {w(™} c C?([n,[]) is a sequence of increasing functions
satisfying boundary conditions (4.18) and that there exists a constant M, independent
of n such that 0 < ¢™ < M,), }w(”)/(sﬂ < M, for all s €ln, 5.

From the Arzela-Ascoli theorem V.2.1 it follows that there exist convergent subse-
quences of {c(™} and {w(™} (still indexed by n) such that the limits ¢, := lim (™,

n—oo

wy 1= nh_)ngo w(™ satisfy

S 1 - g’ (wn (o))
(4.19) wy(s) = Vo + Cn/ Zendn ( — _1)61"d7—7
T
n

hence w, is a solution of (4.17), (4.18).

The function w, can be extended to a maximal solution of (4.17) w, :]a,, By[—]a, b]
for some o, < n, B, > B. Identity (4.19) remains valid for s €]a, §,[, hence w, is
twice continuously differentiable and increasing in its maximal domain of definition.
Lemma 4.9 then entails that this solution is unique.

It remains to prove that 3, = +oo for n sufficiently small. Put

Yo = sup{s Elay, Bylswn(s) € K}, 6:= 1(5 L)

We have ~, > 8 and the identity

(4.20) (sw)(s)) = =
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combined with Lemma 4.8 (ii) entails for s €]Lx + 6,7y |

/ —0

4.21 swi(s)) < ———sw’.(s).
(1.21) (suy () < s ()
Putting p := ﬁ > 0 we rewrite (4.21) in the form (e%‘ssw%(s))/ < 0, hence also
(egswg(s))/ < 0. This yields for s €]Lg + 20,7, ]

p L+26 b »

den*wy (s) < / en'w) (t) dt < en L2 (7 _ vy,
Lk+9
hence
V-V p

(4.22) wy(s) < wy(Lr +30) + ue_% for s €]Lx + 36,7y

op

For n > 0 sufficiently small, say 7 < 9, we thus have w,(s) € K for all s €]ay,, 5],
hence (3, = +oo. This completes the proof of Theorem 4.10. 0

We now pass to the limit as n — 0+. The following Theorem says that the solution
obtained by the vanishing viscosity selection rule coincides with the minimal solution
defined in Sect. IV.3.

Theorem 4.11. Let @ €lc,d| and V €]a,b[ be given and let w,, be the solution of
(4.17), (4.18) for n €]0,n0[. Let w* be the minimal solution of (2.18). Then w(s) —
w*(s) as n — 0+ for a.e. s> 0.

Proof. For n < ny we define auxiliary functions

4.23 Wy(s) 1=
(4.23) (5) Vo, s € [0,n][.

{wn(s)a s € [n, 400,

It suffices to assume @ < g(V') (Q > g(V') is analogous and @ = g(V') is trivial). By
(4.22), the system {w,;n < no} converges uniformly to the constant V' on [3— 9, +o0|
as 7 — 0+. On [0,08],{w,;n > 0} is an equibounded system of continuous nonde-
creasing functions, and from Helly’s Selection Principle (Kolmogorov, Fomin (1970))
we deduce the existence of a nondecreasing function @ : [0,5] — [V, V] and of a
sequence 7, — 0+ as k — oo such that

(4.24) Wy, (s) = @W(s) Vse[0,8] as k— oo.
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Let ¢ € D(0,00) be arbitrarily chosen. For k sufficiently large we have

[ 10005 = e (1) 5) + i 515 s =
=i [ 6) 56 () ds

and passing to the limit as £k — oo we obtain

/Ooo [(S’LT)(S) - 9(@(3)))90/(3) —+ E(S)QO(S)] ds = 0.

Consequently, @w is a nondecreasing solution of (2.18) with @w(s) =V for s > § and
w(0+) =V € [Vg,V].
For each 7 > 0 and s > n we have

(425) 1wl () = sl () + suns) = 1V = e (9) + 01c(V) — [ wy(0)do

and integrating the last identity [ nﬁ ds we obtain

8
(8 — mn*w, (n) = n[BV —nVq — / wy (s)ds]+

B s
+/0 (Slfm(s) - gn,K(wn(s)) + gn,K(VQ) — /0 U%(U)do)ds.

For n =7, we pass to the limit as £ — oo. This yields

8 Jim i, () = [ " (sw(s) - gl@(e)) + 9(Ve) - / (o)do)ds

We conclude
(4.26) V =V, Jim niwy, (k) = 0.

According to Lemma 3.5, we define the convex trajectory ¢g* of the solution @ by

the formula .

g'wi=Q+ [ @

Va

analogous to (3.5). We are done if we prove

(4.27) g(u) = g*(u) Vue Vg, V]



188

Indeed, then g¢g* is the minimal trajectory from @) to V and by Lemma 3.6, @ is
the minimal solution of (2.18). The limit function @ is then independent of the choice
of the sequence {ny}, so the assertion of Theorem 4.11 holds.

To prove (4.27), we choose an arbitrary u €]V, V| and find s > 0 such that u €
[@(s—), w(s+)]. Following Lemma 3.5 we have g*(@w(s+)) = g(w(s+)), hence it remains
to consider the case

(4.28) @(s—) < u < w(s+).

Let {sx} be the sequence such that w,, (sx) = u for all £ € N and let us assume
that a subsequence (denoted again by si) converges to some § # s. For 5 > s and
o €]s, 5] we have w(s+) < w(o) = kli)ngo wy, (0) < u, which is a contradiction. The case
5 < s is analogous, so sy — s as k — o0.

Put A :=g(u) — ¢*(u). Lemma 3.4 entails

A =g(u)—g(Vo) — su +/ w(o)do
0
= e (0 (5)) =~ 9 () = sk (50) b+ [ () + i,
Nk

where

I, := (9(u) = gn () = (9(V0) = gneic (Vo)) +
+ (s — s)u + /0 (w(o) — iy, (0))do — / wy, (0)do.

We have klim I;, = 0 and identity (4.25) yields A = mgspw), (sx) — npwy, () + Ik

From (4.26) we conclude
. /
A= klirr;o Nkskwy, (sk) =0

which is nothing but inequality (4.27). Theorem 4.11 is proved. O
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V. Appendix: Function spaces

The calculus of functions of one real variable with values in a Banach space has
originally been developed as an auxiliary tool for the semigroup theory, see for instance
Hille, Phillips (1957), Yosida (1965) or Brézis (1973). Special results that we need here
either do not exist at all or, as the opposite extreme, exist only in a form which is too
general for our purposes. This is also the case of embedding theorems for anisotropic
Sobolev spaces that we use in Chapter III for solving partial differential equations with
hysteresis.

About 20 pages are thus devoted here to a survey, where new results incorporated
into a simplified general theory constitute an exposition that the reader will hopefully
find elementary and consistent.

V.1 Integration of vector-valued functions

In this section we recall basic notions of the Bochner integral and of the theory of
functions of bounded variation that are directly needed in the preceding chapters. One
of the main goals is to give a self-contained proof of Theorem 1.15 on the relationship
between the strong and weak convergences of integrable functions which seems to be
new and plays a important role in the study of vector hysteresis operators in Sect. 1.3.

For the reader’s convenience, we include those proofs which are simple enough and
do not require special knowledge of other branches of analysis.

Definition 1.1. Let X be a real Banach space endowed with norm |- |x and let

[a,b] C R be a compact interval. A function w : [a,b] — X is called
N
(i) simple, if there exists a partition [a,b] = |J E) of the interval [a,b] into a finite
k=1
union of pairwise disjoint Lebesgue measurable sets {Ey; k=1,..., N} and a sequence

{zk; k=1,...,N} C X such that for almost all t € [a,b] we have

k=1

where X, Is the characteristic function of the set E},

o 0 if t¢ E,
BTN i te By
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(ii) strongly measurable, if there exists a sequence {u,; n € N} of simple functions
such that lim |u,(t) —u(t)|x =0 for a.e. t € [a,b].

It is easy to see that for a strongly measurable function w : [a,b] — X the scalar-
valued function t — |u(t)|x is Lebesgue measurable.

In order to fix the terminology we first list basic properties of Lebesgue measurable
and integrable functions.

Theorem 1.2. (Egoroff) Let {f,;n € N} : [a,b] — [0,00[ be a sequence of Lebesgue
measurable functions. Then the following conditions are equivalent:
(1) lim fn(t) =0 for almost all t € [a,b];
(ii) ?orogvery d > 0 there exists a measurable set Ms C [a,b], meas(Ms) < § such that
nli—>Irolo sup{ fn(t);t € [a,b] \ M5} = 0, where meas denotes the Lebesgue measure.

An elementary proof of Egoroff’s Theorem can be found in Yosida (1965). The
following two statements deal with Lebesgue integrable functions. Proposition 1.3 is a
straightforward consequence of the additivity of the Lebesque integral and Proposition
1.4 follows from Egoroff’s Theorem and Proposition 1.3.

Proposition 1.3. (Absolute continuity of the integral). For each Lebesgue integrable
function f :[a,b] — R' we have

(1.2) Ve>0 30>0 VAC]a,b]: meaS(A)<5:>/|f(t)|dt<€.
A

Proposition 1.4. (Fatou’s Lemma). Let {fx; k € NU{0}} : [a,b] — [0,00] be
a sequence of integrable functions, fo(t) = klim fr(t) for a.e. t € [a,b]. Then

J2 fo(t)dt <limint [ fi(t)dt.

We shall study more in detail the relationship between the pointwise convergence
almost everywhere and convergence of integrals. Let us recall that a set S of integrable
functions f : [a,b] — R! is called equiintegrable, if relation (1.2) holds for ¢ independent
of the choice f € S.

Proposition 1.5. Let {fi; k& € N} be an equiintegrable sequence such that
lim fi.(t) =0 for ae. ¢ € [a,b]. Then lim 12 fu(t)dt = 0.

We omit the proof which is very easy (one can use for instance Egoroff’s Theorem
and property (1.2)).
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Let us come back to vector-valued strongly measurable functions. We first show some
kind of countable structure in the convergence almost everywhere.

Proposition 1.6. (Diagonalization Principle). Let {u,; n € N} and {v*; k,n € N}
be two sequences of strongly measurable functions [a,b] — X and let u : [a,b] — X be
a function such that

lim |u,(t) —u(t)|x =0, a.e,

klim 0¥ (t) —un(t)|x =0 ae. VneN.
Then there exists a sequence {k,; n € N} C N such that lim |[vf~(t)—u(t)|x =0 a.e..

One immediately realizes that the statement is false if the convergence almost every-
where is replaced with convergence at each point t € [a, b]; it suffices to choose w in
the second Baire’s class and v* continuous.

Proof of Proposition 1.6. By Egoroft’s Theorem, for each n € N there exists a set
M, C [a,b], meas(M,) < 27" and a number k, € N such that for every j > k, and

oo o0

t € a,b]\M,, we have v} (t)—u,(t)|x <. Put M := () |J M,. Then meas(M) =0
l=1n=l

and for each ¢ € [a,b]\ M we have for n sufficiently large [vF" (£)—u(t)|x < *4|un(t)—

u(t)|x and the assertion follows. O

We leave to the reader the detailed proof of the next three consequences of Egoroft’s
Theorem and of the Diagonalization Principle.

Corollary 1.7. Let {u,; n € N} : [a,b] — X be a sequence of strongly measurable
functions such that lim |u,(t) — u(t)|x = 0 a.e. Then w : [a,b] — X is strongly

measurable.

Corollary 1.8. A function u : [a,b] — X is strongly measurable if and only if
there exists a sequence {u,; n € N} of continuous functions [a,b] — X such that
lim |u,(t) —u(t)|x =0 a.e.

Corollary 1.9. (Lusin’s Theorem). A function u : [a,b] — X is strongly measurable
if and only if for every 6 > 0 there exist a closed set Fs C [a,b] and a continuous
function w : [a,b] — X such that meas([a,b] \ Fs) < 6, u(t) = w(t) for all t € F5 and

sup [w(t)[x < sup[u(t)|x.
[a,b] [a,b]
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BOCHNER INTEGRAL

We now introduce the Bochner integral in a standard way following Yosida (1965)
and Hille, Phillips (1957).

Definition 1.10. For a simple function u : [a,b] — X of the form (1.1) we define
its Bochner integral over a measurable set A C [a,b] by the formula.

(1.3) /Au(t)dt D= Z:ck meas(ErNA) € X.
k=1

An arbitrary function wu : [a,b] — X is said to be Bochner integrable in [a,b] if there
exists a sequence {u,;n € N} of simple functions [a,b] — X such that lim f; |un (t) —
u(t)|xdt =0 and we define its Bochner integral over a measurable set A C [a,b] as

(1.4) /Au(t)dt c= lim | w,(t)dt € X.

n—oo A

Notice that the sequence x, := [, un(t)dt in Definition 1.10 is fundamental in X
and its limit (1.4) is independent of the choice of the sequence {u,}. The definition
immediately implies

(1.5)

/Au(t)dt‘xg/Am(t)lxdt<oo

for each Bochner integrable function u and measurable set A C [a, b].
Bochner’s Theorem 1.11 below gives an elegant characterization of Bochner integrable
functions.

Theorem 1.11. (Bochner’s Theorem). A function u : [a,b] — X is Bochner inte-
grable if and only if it is strongly measurable and f; lu(t)|xdt < oo.

We show here a simple proof which is based on the following Lemma.

Lemma 1.12. Let {u,;n € N} be a sequence of Bochner integrable functions
l[a,b] — X such that

b
Ve >0 dn.eN Vm,ﬁ}nsz/ [t () — we(t)| x dt < e.

Then there exists a strongly measurable function wu : [a,b] — X and a subsequence
{un, } € {u,} such that

(1.6) lim |up, (t) —u(t)|lx =0 forae. t€la,b].

k—o0
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Proof of Lemma 1.12. We choose nj in such a way that the implication m, ¢ >
ng = f; [t (£) — e (t)| xdt < 272F holds. Put My :={t € [a, bl; |un, (1) =tUny,, (B)|x =
2Ry M = ﬁ fj M. Then meas(My) < 27%, hence meas(M) = 0 and for each
t € la,b]\ Met_ﬁekfiinit u(t) := klirgo Un, () exists.

To prove that u is strongly measurable it suffices to prove that every Bochner inte-
grable function v : [a,b] — X is strongly measurable. So, let {w,} be a sequence of
simple functions such that lim f; |wy, (t) — v(t)|xdt = 0. The above argument shows
that there exists a function ZU_):OTa, b] — X and a subsequence {w,, } C {w,} such that
kli)ngo |wp, (t) —w(t)|x = 0 a.e. The function w is strongly measurable by definition

and from Egoroff’s Theorem we conclude that v(t) = w(t) a.e. O

Proof of Theorem 1.11. The “only if” part follows from Lemma 1.12 and inequality
(1.5). To prove the converse we choose an arbitrary strongly measurable function w :
[a,b] — X with f; |u(t)|xdt < oo and an arbitrary sequence {wy} of simple functions
such that klir{)lo |wi(t) —u(t)|x =0 a.e. For every n € N we apply Egoroft’s theorem to
find a set M, C [a,b], meas(M,) < + and an index k, such that |wg, () —u(t)|x < %
for all ¢ € [a,b] \ M,,. Putting

(1) wg,, (t) for t€[a,b]\ M,
W (t) 1=
0 for te M,

we obtain f; | (t) — u(t)|xdt < =2+ [, |u(t)|xdt and it suffices to use Proposition
1.3. 0

We define in a standard way in the class of strongly measurable functions an equiva-
lence relation u ~ v < u(t) = v(t) a.e. Identifying in an obvious sense functions with
their equivalence classes we can define the normed linear spaces

(1.7) (i) L(a,b; X) of Bochner integrable functions u : [a,b] — X endowed with norm
uly = [ Jult)|xdt,
(i) LP(a,b;X) for 1 < p < oo of functions u € L'(a,b; X) such that |ul, :=
(f; lu(t)[5 dt v < o0, endowed with norm |- |,,
(iii) L*°(a,b; X) of a.e. bounded strongly measurable functions w : [a,b] —
X endowed with norm |u|e := inf{sup{|u(t)|x;t € [a,b] \ M}; M C
[a, b], meas(M) = 0},
(iv) C([a,b]; X) of continuous functions u : [a,b] — X endowed with norm |- |w.

The fact that |- |, is a norm is well known (Adams (1975)). It is not difficult to
infer from Lemma 1.12 and Propositions 1.4, 1.5 that LP(a,b, X) are Banach spaces
for p € [1,00[. The completeness of L*(a,b; X) and C([a,b]; X) is obvious, indeed.
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Let us mention the following classical results.

Proposition 1.13. (Lebesgue Dominated Convergence Theorem). Let {v,;n €
NU{0}} c LP(a,b; X),{gn; n € NU{0}} C LP(a,b;R') be given sequences for some
p € [1,00][. Let us assume

() Jim_ [, lgn(t) = go()Pdt =0,
(ii) nll_{rgo [on(t) —vo(t)|x =0 a.e,
(iii)  |vn(t)|x < gn(t) a.e. forall n e NU{0}.

Then lim |v, —vol, = 0.
n—oo

Proof. Put fu,(t) = |vn(t) —vo(t)|5x for all t € [a,b]. We have 0 < |f,(¢)] <
(gn(t) + g0(2))P < 271 (|gn(t) — go(t)[P + 2P|go(t)|P), hence {f,} is an equiintegrable
sequence and we use Proposition 1.5. O

Proposition 1.14. (Mean Continuity Theorem). For every p € [1,00] and u €
LP(a,b; X) we have

b—d

. P _
(1.8) Jim ; |u(t) — u(t + 6)| dt = 0.

Proof. Let € >0 be given. For n € N put E, :={t € [a,b];|u(t)|x > n}. We
find 7 > 0 such that [, [u(t)[% < e for each set A C [a,b] with meas(A) < n, and
no € N such that meas(E,,) <. Put ug(t) := u(t)(1 — xg,, (t)) for t € [a,b]. Then
|uoleo < Mo and by Lusin’s Theorem (Corollary 1.9) there exists a set M, meas(M) <
<nio)p and a function v € C([a,b]; X) such that |v| < np and v(t) = ug(t) for all
t € [a,b]\ M.

We fix dp > 0 such that sup{|v(t) — v(s)|%; t,s € [a,b],|t — s| < do} < %. The
triangle inequality in LP for § €]0,d¢[ then yields

(/ " uo(t) — ot + o)) < / o — o+ o))

1
+2(/ o () — o(t) dt Y <o tae,
M

therefore

b—4 1/p
</ lu(t) — u(t + 5)]’;(dt> <T7e for ¢ <y,

and (1.8) is proved. O
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We now state the main result of this section.

Theorem 1.15. Let X be a Hilbert space endowed with a scalar product <-, > Let
{vp;n € NU{0}} C LY(a,b; X),{gn;n € NU{0}} C L'(a,b;R') be given sequences
such that

(i) lim I (on(t), 00Vt = [ (vo(t), ()t Ve € C([a,b]; X),
(i) Tim [7[gn(t) — go(t)|dt = 0,
(i) [oa()lx < galt) ac. VR EN,

() Jo(®)lx = golt) ace.

Then lim |v, —vgly = 0.
n—oo

Notice that Theorem 1.15 does not follow from Proposition 1.13, since we do not
assume the pointwise convergence here.

Proof of Theorem 1.15. We first prove that property (i) is satisfied for every
¢ € L*(a,b; X). For a fixed ¢ € L>®(a,b; X) and § > 0 we use Lusin’s Theorem to
find a function ¢ € C([a,b]; X) and a set Ms C [a,b] such that meas(Ms) < § and
Y(t) = @(t) for all t € [a,b] \ Ms, |t|oo < |p|oo- We then have

‘/ v (t) — vo(t >dt‘ /(vn — v (t >‘+
20l [ )~ it +2 [ oty

and Proposition 1.3 entails

(1.9) lim/ <vn(t),gp(t)>dt:/ (00(t), o(8))dt Vo € L (a,b: X).

n—oo

Let us note that the transition from (i) to (1.9) is related to the Dunford-Pettis
Theorem, see Edwards (1965). To prove Theorem 1.15 we put for ¢ € [a, b]

0 if wo(t) =0,
p(t) 1= vo () .
O] if w(t) # 0.

Then ¢ € L™ (a,b; X) and the inequality

o (t) = vo(B)[% < gn(t) — 2(vn(t), v0(t)) + g5 (t) =

= |9a(t) = 9o(O)* + 290(t) [gn (t) — go(t) + (vo(t), 2(t)) — (va(t), ¢(t))]
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holds for a.e. t € [a,b]. By Holder’s inequality we have

/ on(t) — vo(t)xdt < / gn(t) — g0(8)] di+

and the assertion follows from (1.9). O

FUNCTIONS OF BOUNDED VARIATION

Definition 1.16. A partition S :={{tg,...,tn};a = to < t; < ... < ty =
b} of the interval [a,b] is said to be ¢-fine for § > 0, if max{|t; — t;—1];1 =
1,...,N} <d. We denote by As(a,b) the set of d-fine partitions of the interval [a,b],
A (a,b) = | As(a,d).

6>0

Definition 1.17. Let S = {to,...,tn} € A¢(a,b) and a function u : [a,b] — X be

given. We define the S-variation Vs(u) of u and the total variation [Vabl]"u of u in
a,

[a,b] by the formulae

Zlu —u(ti-1)|x,

[Val,)] i= sup{]sj( u); S € Ag(a,b)}.

We denote by BV (a,b; X) :={u: [a,b] — X; ?/abl]ru < oo} the set of all functions of
bounded total variation. 7

The definition entails that every function w € BV(a,b; X) is bounded, the one-
sided limits u(t+) (u(t—)) exist for all t € [a,b] (t €]a,b], respectively) and the set
{t € [a,b]; u(t+) # u(t) or u(t—) # u(t)} of discontinuity points is at most countable.

An important example of functions of bounded variation are the step functions

(1.10) Z%X]tj Lt ‘|‘2ng{1§}

as a special case of (1.1), where S :={tg,...,tn} C Ap(a,b) is a given partition and
{z;},{y;} € X are given sequences.
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The following statement shows that functions of bounded variation are strongly mea-
surable and that BV (a,b; X) endowed with the norm

(1.11) lul gy : = sup{|u(t)|x;t € [a, b]}-l-[V%)l]"u

is a Banach space.

Proposition 1.18.
(i) For every u € BV (a,b; X) there exists a sequence {&,; n € N} of step functions

such that lim sup |u(t) — &, (t)|x =0, Y% &n < [Vaﬁu.
00 [q ) a. a.

(ii) Let {un;n € N} C BV(a,b; X) be a sequence and let u : [a,b] — X be a function
such that lim |u,(t) —u(t)|x =0 for all t € [a,b]. Then P/alﬁu lim inf [Va;)l]r Up -
Proof. (i) The function V(¢t) := Yagu is nondecreasing in [a,b]. For n € N put
a,t

N(n) := max(NN[0,nV(b)]) and t7 := sup{t € [a,b]; V(t) < %} for j=1,...,N(n),

tN(ny+1 =0, 15 := a. The assertion holds for &,(t7) := u(t}), & (1) == u(s (t” + 7))
for ¢ €]t?,t%, [, j = 0,...,N(n), & (b) := u(b), with the convention [t7,t7,,[= 0 if
=t

Part (ii) follows immediately from Definition 1.17. O

As a consequence of Proposition 1.18 we see that step functions form a dense subset of
BV (a,b; X) with respect to the so-called strict metric defined by the formula dg(u,v) =

sup{[u(t) — v(t)]x; t € [a,b]} + [ Varu — Varv].

Let us pass to another important concept.

Definition 1.19. A function u : [a,b] — X is called absolutely continuous, if for
every € > 0 there exists 6 > 0 such that the implication

Zbk—ak <5:>Z|ubk —u(ak)‘ <€
k=1 k=1

holds for every sequence of intervals |ay,bi[C [a,b] such that ]ay,bx[N]a;,bj[= 0 for

k#j.
Exercise 1.20. Prove the implication: u is absolutely continuous in [a,b] = u €
C([a,b]; X) N BV (a,b; X).

The following result is taken from Brézis (1973) (Proposition A.2). We cite it without
proof.
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Proposition 1.21. Let u be absolutely continuous and put V (t) := Varu for t €

[a7

[a,b]. Then V : [a,b] — [0, 00| is nondecreasing, absolutely continuous and

. 1
(1.12) V(t) = }lllrrb ’— (t+h) —u(t ))!X for a.e. t €la,b|.
In general, the problem of differentiability of absolutely continuous vector-valued
functions is nontrivial (see Brézis (1973)). For our purposes it is sufficient to consider

a simpler case, namely
(1.13) X s a separable Hilbert space.

Proposition 1.22. Let (1.13) hold. Then for every absolutely continuous function
u: [a,b] — X there exists an element 1 € L'(a,b; X) such that

(i) a(t) = hn’b (u(t+h) —u(t)) ae.,
(i) w(t) —u(s) = [Ta(r)dr forall a<s<t<b.

Proof. Let <-, > be a scalar product in X, let {ex;k € N} be an orthonormal
basis in X and let w : [a,b] — X be an absolutely continuous function. Then the
real-valued functions vy (t) := (u(t),e) are absolutely continuous. There exists a set
M C [a,b] of measure zero such that for all ¢ €]a,b[\M identity (1.12) holds and the
derivative vy (t) = %’“(t) exists for all k£ € N.

Let Xy C X be the space of finite linear combinations = = ij:l agek, {a,...,an}

C R!. For each t €]a,b[\M we define a linear functional ®; : X; — R! by the formula
1
Zakvk = hm <m E u(t+ h) —u(t)) for z € Xy,

and (1.12) entails
(1.14) @ ()] < Jax V(D)

for all € Xy and ¢ €]a,b[\M.
From the density of X; in X we infer that the closure of ®; (still denoted by ®;)
is a bounded linear functional on X and can be represented by an element wu(t) € X

in the form
(1.15) ®y(2) = (z,u(t)) Ve e X, Vtela,b\M.

We have in particular oy (t) = (eg,u(t)) for all ¢ and k and

(1.16) %(u(t +h) —u(t)) — a(t) weaklyin X as h — 0.
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From (1.12), (1.16) we obtain
(1.17) lu(t)|x < V()  Vt€la,b\M.
On the other hand, putting «(™(t) : = 25:1 vi(t)er we have for all t €]a, b\ M

lim |2 (t) —a(t)], =0,

N—o0

N N N
lim [N () — h(u( (t+h)—u™NM(@E)|, =0, VNEN,

and the Diagonalization Principle (Proposition 1.6) entails that @ : [a,b] — X is
strongly measurable. Using Bochner’s Theorem and inequality (1.17) we check that
w € L' (a,b; X).

For t € [a,b] put v(t) := u(a +f 7)dr. We have (z,v(t)) = (z,u(t)) for all
x € Xy and t € [a,b], hence (ii) holds. This implies in particular V() — V(s) <
f ()| xdr, consequently V(t) < |u(t)|x a.e. It follows from (1.17), (1.12) that the
convergence in (1.16) is strong and Proposition 1.22 is proved. U

Similarly as in the scalar-valued case we denote by Whl(a,b; X) the space of abso-
lutely continuous functions with values in a Hilbert space X and by W'P(a,b; X) for
p €]1,00] the space of all functions u € W' (a,b; X) such that u € LP(a,b; X). The
spaces WP are Banach spaces endowed with the norm |uly , : = |ul, + |],.

STIELTJES INTEGRAL

Let X be a separable Hilbert space with a scalar product <,> For arbitrary
functions v € C([a,b]; X) and ¢ € BV(a,b; X) and for an arbitrary partition S =
{to,...,tn} € As(a,b) we define the Riemann-Stieltjes sum

(1.18) Is(u,€) 1= > {u(tr), £(tr) — E(tr—1))

k=1

with the intention to pass to the limit as § — 0.
We denote by 1, (8) the modulus of continuity of a function u € C([a, b]; X), i.e.
(1.19) o (8) : = sup{|u(t) — u(s)|x; |t — s| < d}.

Lemma 1.23. Let u € C([a,b]; X) and & € BV (a,b; X) be given. Then for every
e > 0 there exists § > 0 such that for arbitrary partitions S,S" € As(a,b) we have

[Is(u,&) — Is/(u,§)] < e.
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Proof. Let € >0 be given. We find § > 0 such that ,,(9) ?/ezl]"f <e. For 5,8 ¢

As(a,b), S = {to,...,tn}, S = {s0,...,5x} we define S:=SUS = {ry,... 71} €
As(a,b). For each k=0,...,L there exist jp € {1,...,N},ir € {1,..., K} such that
Tk €t 15t ]NSiy,_,» 8i, | and we have

L
15w, ) = L (. )] = | 3 (ults) = u(si, ), €(m) = ()| < () Varg <

1 [a,b]

Lemma 1.23 is proved. ([l

Lemma 1.23 shows that the limit 5lir£1+ Is(u,&) exists and is independent of the
choice of S € As(a,b). This limit is called the Riemann-Stieltjes integral and denoted

b
by f? (u(t), de(1)).
It is easy to see that the Riemann-Stieltjes integral is linear with respect to both u
and ¢ and that the estimate

b
(1.20) | (). de@)] < lulo Vare
holds for all u € C([a,b]; X) and & € BV (a,b; X).

Exercise 1.24. Prove that for every u € C([a,b]; X) N BV (a,b; X) we have

(121 [ Guto).aut) = L@~ @R

Hint. Use the identity (u(ty), w(te) —u(ti-1)) = 5 (lu(ts) — ultp—1)% +|ulte) % —
ute-1)[%)-

An immediate consequence of identity (1.21) is the integration-by-parts formula

12 [ (i) + [ (g0, dun) = (). €0) - (u(a). @)

for every u,& € C([a,b]; X)N BV (a,b; X).

The relation between Riemann-Stieltjes and Lebesgue integrals can be expressed in

the following way.

Lemma 1.25. For all u € C([a,b]; X) and & € Whl(a,b; X) we have

b b
(1.23) /(u(t),d§(t)>:/ {u(t),€(t))dt.



201

Proof. For an arbitrary partition S = {to,... tN} € Ag(a b) we have by
Pr0p051t10n 1.22(ii) ‘f (u(t),&(t))dt —Is(u,&)| = ‘Zk 1 tk . (u(t) ),f(t)>dt‘ <

(6) [ 1€(8)|xdt, so (1.23) holds. -

We can derive useful integration formulas in the case that £ is a step function of the
form (1.10). For an arbitrary u € C([a,b]; X) we then have

N— 1

b
(1.24) /a < > :cj+1—wj>+<u xl—y0>+<u(b),yN—a:N>.

If moreover u € Wh1(a,b; X), then

(1.25) /ab<()d§(> {(u(b),yn) — (ula),yo) — /(5

Notice that the integrals (1.24), (1.25) are independent of the values of yi,...,yn_1!

The Riemann-Stieltjes integral depends continuously on the functions u and ¢ in
the following sense.

Theorem 1.26. Let {u,;n € N} C C([a,b]; X),{&;n € N} C BV (a,b; X) be given
sequences and u,§ : [a,b] — X be given functions such that

(i) le |tun, — u|oo =0,
(i) Tim [6,(t) — &(D]x = 0 for all t € [a,b].

(iii) ?/ar &n(t) < ¢, where ¢ > 0 is a constant independent of n.
Then lim [ Ul (t), dén (1)) = [7 (u(t), dé(t)).

Notice that the integral f; (u(t),d&(t)) is meaningful by Proposition 1.18. The proof
of Theorem 1.26 relies on three Lemmas.

Lemma 1.27. For every u € Wb l(a,b; X) and every sequence {&,;n € N} of step
functions such that |£,|e < ¢ and lim &,(t) =0 for all t € [a,b] we have

(1.26) lim/ (u(t),d&,(t)) = 0.

n—oo

Proof. It suffices to use formula (1.25) and Proposition 1.13 for X = R! and
p g 1, I:'
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Lemma 1.28. For every u € Whl(a,b; X) and every sequence {&,;n € N} C
BV (a,b; X) such that |{,|e < ¢ and lim &,(t) =0 for all t € [a,b] identity (1.26)
holds.

Proof. For every n € N we find a step function én such that |, — én|oo < %
For every partition S = {to,...,tn} C As(a,b) we have

an

f’n tk f’n lk-1 > Z én tk én(tk—l» + <u(b)7§’n(b) - é’n(b>>_
k=1

N—

— (u(a), &n(a) = &ua)) = > (ulturr) — ultr), &nltr) — Enltr)).

k:0

>_A

Passing to the limit as § — 0+ we obtain

/ (), dent) / (ult), dEn (1)) + - (2luloc + lily)

and the assertion follows from Lemma 1.27. O

Lemma 1.29. For every u € C([a,b]; X) and every sequence {{,;n € N} C
BV (a,b; X) such that ?/argn ¢ and hm &n(t) =0 for all t € [a,b] identity (1.26)

holds.

Proof. Let £ >0 be given. We choose @ € Wht(a,b; X) such that |u—i|e < £

2¢
(for instance @ piecewise linear). By Lemma 1.28 there exists ng such that for n > ng
we have f (a(t),d&,(t)) < . From inequality (1.20) we obtain

)/<u L dén(t) )/<u —at), dén(t) +‘/ ), dén() ‘<s

hence (1.26) holds. O

We now can finish the proof of Theorem 1.26.
Proof of Theorem 1.26. Using the inequality

/<un ,d&n (1) /<u , d&(t)
<| / (un(t) u<t>,d§n<t>>\ +| / () - SION

we obtain the assertion from inequality (1.20) and Lemma 1.29. O
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To conclude this section, we prove another important theorem.

Theorem 1.30. For every & € C([a,b]; X) N BV(a,b; X) put

——

b
M) s=sup { [ (ut).de(0): uw & C(a b X), ulc < 1
Then M(§) = ?/%)11"5
Indeed, Theorem 1.30 does not hold for arbitrary £ € BV (a,b; X). Easy counterex-
amples can be found in the class of step functions according to formula (1.24).

Proof of Theorem 1.30. Let a =ty <t; <...<txy =0b bean arbitrary partition.
For k=1,...,N put
o i &) = E(tk-1),
" {@ﬁﬂﬁﬁ if &(tk) # &(th)-
For 0 < e < gmin{ty —ty_1;k = 1,...,N} we define a function v € C([a,b]; X) b

the formula

v, tElat; —egl,

vn, tE€Jtn_1+¢,0],

v, tE€ |tk +tetr—cel, k=2,...,N—1,
linear in [ty —e,tp +¢|, k=1,...,N —1.

u(t) : =

Using formulas (1.22), (1.23) we obtain

(1.27) / (u(t), dé(t)) =D |&(tk) — Elta-r)| +
a k=1

N-1

tr+e
+ i Z /t <Uk+1 — Uk,f(tk) — f(t)>dt

k=1 Ytk —€

We obviously have |u|o < 1, hence (1.27) yields

N-1
E:Ktk §(te—1)]x < M) + p1e() D [oksn = vl
k=1

where (¢ is the modulus of continuity (1.19). Letting € — 0+ we obtain Zszl 1€ (t) —
E(tp—1)|x < M(£), hence [V%)l]"f < M(€). From (1.20) it follows M (§) < [Va;)l}"{’ and the

proof is complete. O

Remark 1.31. Theorem 1.26 and Proposition 1.18(i) immediately imply that for-
mula (1.25) holds for arbitrary £ € BV (a,b; X) and u € Whl(a,b; X) with £(a) =
Yo, £(b) = yn-
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V.2 Embedding theorems

Classical monographs Adams (1975), Kufner, John, Fuc¢ik (1977), Besov, Il'in,
Nikol’skii (1975) on Sobolev spaces and their embeddings deal mainly with isotropic
spaces, where the derivatives with respect to different variables belong to the same
LP-space. The anisotropy in Besov, II'in, Nikol’skii (1975) concerns merely the LP-
space itself. However, hysteresis operators which occur in partial differential equations
produce in a natural way functions which behave differently with respect to the time
and space variables. For the readers’s convenience we prove by classical methods of
Adams (1975) or Kufner, John, Fuéik (1977) the simple Theorem 2.4 below which
is extensively used in Chap. III and does not immediately follow from well-known
embedding formulas.

Let us first recall the following classical result the proof of which is elementary and
can be found e.g. in Yosida (1965).

Theorem 2.1 (Arzela - Ascoli). Let X,Y be compact metric spaces endowed with
metrics dx,dy, respectively. Let C(X;Y) be the space of continuous functions f :
X — Y endowed with the metric d.(f1, f2) : = max{dy (fi(z), f2(z)); € X}. Then
a subset A C C(X,Y) is relatively compact if and only if it is equicontinuous, i.e.

(2.1) Ve>030>0Vfec AVry, 20 € X 1dx(z1,22) <0 = dy(f(arl),f(xz)) <e.

Definition 2.2. Let X,Y be Banach spaces endowed with norms |- |x,|- |y, re-
spectively. We say that
(i) Y isembedded in X and denote Y — X if Y C X and

(2.2) Je>0Vy eY : |ylx < yly;

(ii) Y is compactly embedded in X and denote ¥ —— X if Y — X and every
bounded set in Y is relatively compact in X.

For the sake of completeness we mention Sobolev Embedding Theorems for isotropic
spaces in the following classical form (see any of the monographs cited above).

Theorem 2.3. Let QO C RY be a bounded open domain with a Lipschitzian bound-
ary. Then for N =1 we have

(2.3) 1) WhP(Q)— —C(

’ s Q) for 1<p<oo,
(i) WhHH(Q)—C(Q), WH(Q)—— LIQ) for 1< q< oco.
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For N >1 and 1<p< oo put s:=

% % with the convention é = 0. Then
(2.4) (i) s<0=WP(Q)——C(Q),
(i) s=0=W'"P(Q)——L9Q) for 1< q< oo,

1
(iii) s >0= WHP(Q)— LY3(Q), W'P((Q) —— LI(Q) for 1<q< ~.
S

In Chap. IIT we deal with anisotropic function spaces of the type LP (O,T ; LY (Q)),
Lq(Q;LP(O,T)),L‘?(Q;C([O,T])) for 1 < p,q < 0o, where Q C RY is a regular open
bounded set and 0,77 is a time interval. According to the general theory of Besov,
II'in, Nikol’skii (1975), these spaces are Banach spaces endowed with norms of the form
(1.7). Another kind of anisotropy is related to functions u € L!'(€2x]0,T[) whose gen-
eralized partial derivatives Ogu : = %—?, oiu = g—;fi, 1 =1,..., N belong to the spaces
Lpi (O,T; L‘“(Q)) with 1 < p;,¢; < 00,4 = 0,...,N endowed with norms | - |, 4.
given by (1.7). We denote such a space by W1P(0,T;), where p is the multiindex
{(po,q0),---,(pn,qn)} and easily check that it is reflexive if 1 < p; < 00,1 < ¢; < 0
for all i =0,...,N. We similarly treat the spaces with J;u € L% (Q; LPi(0, T))

We do not give an exhaustive list of embedding formulas for all possible combina-
tions of multiindices. Instead, we present a detailed proof of one typical anisotropic
embedding theorem which is used several times in Chap. III.

Theorem 2.4. Let [a,b] C R! be a compact interval and let T > 0 and a multiindex
P = ((Pquo)a (P17Q1)) be ngGH, 1< D0, 90, P1,4q1 < 0. Put

a::l—qil+qio, 6::1_2%04_1%1’ K::(l_pio)u_q%)_mlqo

with the convention - = 0 and assume r > 0. Then for every u € W'P(0,T}]a, b])
and every (z,t),(y,s) €]a,b[x]0, T such that

(2.5) max{[t — s|V/*, |z — y|'/?} < min{T"*, (b—a)'/"}
we have

(2.6)  Ju(z,t) —uly, s)| <

S

(alut|(p0,q0) + ﬁ|u$|(P1,Q1)) max{|t - s|ga |$ - y|ﬁ}

Proof. We follow the strategy of Adams (1975) or Kufner, John, Fuéik (1977).
Assume first

(27) 1 < Po,q0,P1,q1 < 0.
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Then the space C'([a,b] x [0,7T]) is dense in W1P(0,T;]a,b[) and it suffices to assume
u € C([a,b] x [0,T7).
Let (x,t),(y,s) be two distinct points of |a, b[x]0,T[. Put
(2.8) n = max{|t — s, |z — y|7}.

Let Q :=[x1,m2] X [t1,t2] Cla,b[x]0,T[ be a rectangle such that

(2.9) i) (z,1),(y,s) € 0Q,
(11) tg—tlzﬁa, xg—aclznﬁ.

We choose arbitrarily (£,7) € @ and for o € [0,1] put ¢(0) :=u(z + o7 (£ — ),
t+o%(t —t)). We have

(2.10) u(&,7) —u(x,t) = /0 [ﬁaﬁ_l(f — x)um(:v + Oﬁ(f —x),t+ 0% (1 — t))+

+ac® M1 — thu (z + ol (& —x),t+o%(1 — t))] do.

and integrating identity (2.10) with respect to (£,7) we obtain
@11) | [[ uendedr -+ ue )| <
Q
1
< »377ﬁ/ o1 // |us (2 + 07 (€ — 2),t + 0%(r — t))|dE dr do +
0 Q
1
—|—omo‘/ 00‘1/ ’ut(ac—i—aﬁ(ﬁ—m),t+aa(T—t))|d§dea.
0 Q

The substitution ¢ — ¢ = x4+ (6 —2), 7+ 1 = t +0%(7 —t) and Holder’s inequality
yield

(2.12) //Q |ug (2 + 07 (& — 2),t + 0(1 — t))|dé dr =

t+0%(ta—t) pr+oP(ze—x)
= 0‘“‘”/ / |z (0, %) |dip dp
t x

+o(t1—t) +oP(x1—x)
_a B a(l--L)+p8(1-L
< ‘UCC } (pl’ql) o n a /)7 P i

and similarly

(2.13) //Q\ut(x+o—ﬁ(§_x),t+ga(T_t))|dgdr<

_a _ B a(l-L)+8(1-L
S ‘ut’(iﬂo,%)g o " o
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We thus obtain from (2.11)
@1 | [[ wendedr - ntoutw0)] <
Q
1
S na+ﬁ+m(ﬁ|u$|(m7m) + a|ut|(Po#10)) /O 0"~ do

The same inequality (2.14) holds for and we conclude

fo u(€7 T)d€ dr — na—i—ﬁu(ya S)

(2.15) u(z,t) —u(y, s)| <

a e

nli (5|ux|(p1,q1) + O‘|ut|(P0,qo))

and (2.6) follows.

Let now u € WP(0,T;]a,b[) be arbitrary and let {u(™;n € N} ¢ C'([a,b] x [0,T])
be a sequence such that u(™ — u in W1P(0,T;]a,b]). By inequality (2.6) for u(™ and
Arzela - Ascoli Theorem 2.1 the sequence {u(™} converges uniformly to u and we can
pass to the limit in (2.6).

To complete the proof we have to remove assumption (2.7). Let po,qo,p1,q1 be
arbitrary. We construct sequences {p(()n), q((]n),pgn), qgn); n € N} satisfying assumption
(2.7) such that a = 1—?4—(1817), 8= I—Kln)—kfln), K @ = (1—#) (1_?)_105?1(13")
> 0, p§") /" Di, qgn) /' qi as n — 00,1 = 0,1. Every u € WHP(0,T;]a,b) satisfies
lu(z,t) — u(y, s)| < %(a|ut|(pén)7qén)) + ﬁ|u$|(pgn)7q§n))) max {|t — s|% T — y|%n} and
passing to the limit we obtain the assertion. 0

)

Combining Arzela - Ascoli Theorem 2.1 and Theorem 2.4 we obtain the following
embedding result.

Corollary 2.5. Under the hypotheses of Theorem 2.4 the compact embedding
WLP(0,T;]a, b)) — — C([a,b] x [0,T]) holds.
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