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Abstract

For a quasilinear hyperbolic system with Dirichlet boundary conditions and
with hysteretic constitutive law describing waves in elastoplastic solids, we give
an overview of results on existence, uniqueness, and asymptotic stability of so-
lutions if either initial data or the time-periodicity condition are prescribed.
Convexity in the hysteresis diagrams implies the existence of a second order
dissipation term which in turn prevents the system from formation of shocks.
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Introduction

The main problem in quasilinear hyperbolic equations consists in the fact that shock-
free solutions exist in general only for small times even if the data are smooth, and
weak solutions are difficult to handle. A recent overview can be found e. g. in [4].
The situation is substantially different if the nonlinearity in the constitutive law has
a hysteresis character. In many cases, shocks do not occur and the solution remains
regular. The monograph [14] was an attempt to give an explanation of this fact. It was
shown that in the p -system, trajectories of entropy solutions to the Riemann problem
tend to follow the convex hull of the constitutive graph. If now the constitutive graph
consists of convex hysteresis loops , it is natural to expect that the solution trajectories
will follow the hysteresis branches and, in terms of gas dynamics, only rarefaction takes
place. There is a substantial difference between viscous (rate-dependent) and plastic
(rate-independent) dissipation in hyperbolic equations. While the former transforms
the problem into essentially a parabolic one with unbounded speed of propagation, the
latter preserves the hyperbolic character of the balance equations and the propagation
speed is bounded independently of the hysteresis term, see Proposition 1.0.2 below.

Existence, uniqueness, and qualitative properties of solutions to the wave equation
with elastoplastic hysteresis were studied in [14] for a fairly general class of hysteresis
operators and under mixed boundary conditions, where displacement is prescribed on
one end and stress on the other end of the space interval. The material presented here
is mostly new. Besides the interaction with additional lower order nonlinearities, we
consider the case of Dirichlet boundary conditions, where the displacement (or velocity,
depending on the setting) is prescribed on both ends. This is more difficult, since the
a priori estimate for the space derivative of the stress depends on the sup-norm of the
stress for which no boundary condition is available. The estimation technique thus has
to use more refined arguments based on special properties of the hysteresis memory. In
order to reduce the complexity, we restrict ourselves to the so-called Prandtl-Ishlinskii
hysteresis operator , although much of the results remain valid for a larger class of
convex hysteresis operators, and an example is presented in Subsection 1.4.

If convexity of the hysteresis loops is lost, like in Maxwell’s equations for large am-
plitude electromagnetic waves in ferromagnetic materials, then the regular behaviour
cannot be expected and shocks are again likely to occur. The only publication on this
subject seems to be [26], where existence of weak solutions on a bounded time interval
has been established for a very general class of hysteresis operators.

The text is organized as follows. In Section 1 we state and solve the problem of exis-
tence, uniqueness, and asymptotic stability of regular solutions to an initial-boundary
value problem for a wave equation with a Prandtl-Ishlinskii stress-strain law. We also
show that the regularity is preserved under nonlinear perturbations of the constitutive
law if convexity is not violated. The time-periodic problem is investigated in Section
2 and we again prove results of existence, uniqueness, and asymptotic stability for
this case. The last Section 3 is a collection of known results on the Prandtl-Ishlinskii
model. This part has an auxiliary character and has only be included in order to keep
the exposition as self-contained as possible.
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1 An initial-boundary value problem

We consider the model problem





∂tv = ∂xσ + f(σ, v, x, t) ,

∂tε = ∂xv ,

ε = F [λ, σ]

(1.0.1)

describing e. g. longitudinal oscillations of an elastoplastic beam, where (x, t) ∈ QT :=
]0, 1[× ]0, T [ . We assume that F is a hysteresis operator and f is a function, both
satisfying Hypothesis 1.0.1 below. For System (1.0.1) we prescribe initial and boundary
conditions

v(x, 0) = v0(x), ε(x, 0) = ε0(x) for x ∈ ]0, 1[ , (1.0.2)

v(0, t) = v(1, t) = 0 for t ∈ ]0, T [ . (1.0.3)

Hypothesis 1.0.1.

(i) F is a Prandtl-Ishlinskii operator of the form (3.5.2) with non-decreasing gen-
erating function h : [0,∞[→ ]0,∞[ , and with a given initial configuration λ ∈
C([0, 1]; ΛK) for some K > 0 ;

(ii) f : R2 ×QT → R is a given function such that f(σ, v, ·, ·), ∂tf(σ, v, ·, ·) : QT →
R are measurable for all (σ, v) ∈ R2 , f(·, ·, x, t), ∂tf(·, ·, x, t) : R2 → R are
continuous for a. e. (x, t) ∈ QT , f 0 := f(0, 0, ·, ·) ∈ C([0, T ]; L2(0, 1)) , and
there exist functions αf ∈ L1(0, T ) and βf ∈ L1(0, T ; L2(0, 1)) such that the
inequalities

{
|f(σ1, v1, x, t)− f(σ2, v2, x, t)| ≤ αf (t) (|σ1 − σ2|+ |v1 − v2|) ,

|∂tf(σ, v, x, t)| ≤ βf (x, t) ,
(1.0.4)

hold for a. e. (x, t) ∈ QT and every σ, σ1, σ2, v, v1, v2 ∈ R .

(iii) v0, ε0 ∈ W 1,2(0, 1) , v0(0) = v0(1) = 0 .

In the case without hysteresis, i. e. h(r) = h(0) for all r ≥ 0 , System (1.0.1) is
semilinear hyperbolic with wave propagation speed

c0 =
1√
h(0)

. (1.0.5)

We now show that even if hysteresis is present, the speed of propagation is bounded by
the same constant c0 independently of the initial data and of the hysteresis dissipation,
so that the hyperbolic character of the problem is not violated, at variance with the
case where viscosity is included into the model.
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Proposition 1.0.2. Let Hypothesis 1.0.1 be fulfilled, and let c0 be the constant in
(1.0.5). Let there exist an interval [x1, x2] ⊂]0, 1[ such that the data σ0, v0, λ, f satisfy
σ0(x) = v0(x) = λ(x, ·) ≡ 0 for x ∈ [x1, x2] , f(0, 0, x, t) = 0 for a. e. (x, t) ∈ Ω :=
{(x, t) ∈ QT ; x1 + c0t < x < x2 − c0t} . Then every solution (v, σ) of (1.0.1) vanishes
in Ω̄ .

Proof. We apply the classical energy method proposed by Courant & Hilbert, see [5].
Put U(x, t) = U [λ, σ](x, t) , where U is the potential energy operator associated with
F according to (3.4.1). We have the pointwise inequality

U(x, t) ≥ 1

2c2
0

σ2(x, t) a. e. (1.0.6)

For t ∈ [0, T ] set

A(t) = R

∫ t

0

αf (t
′) dt′ , where R = 1 +

√
1 + c2

0 . (1.0.7)

For a. e. (x, t) ∈ Ω we have by (3.4.2), (3.4.3), and (1.0.4) that

∂t

(
e−A(t)

(
1

2
v2 + U

))
− ∂x

(
e−A(t)vσ

)

= e−A(t)

(
−Rαf (t)

(
1

2
v2 + U

)
+ v (∂tv − ∂xσ) + ∂tU − σ∂xv

)

≤ e−A(t)

(
−Rαf (t)

(
1

2
v2 + U

)
+ v f(σ, v, x, t)

)

≤ αf (t) e−A(t)

(
−R

(
1

2
v2 +

1

2c2
0

σ2

)
+ |v| (|σ|+ |v|)

)
≤ 0 .

For an arbitrary τ ∈ [0, (x2 − x1)/(2c0)] ∩ [0, T ] we denote Ωτ = {(x, t) ∈ Ω; t < τ} .
The Green Theorem yields

0 ≥
∫∫

Ωτ

(
∂t

(
e−A(t)

(
1

2
v2 + U

))
− ∂x

(
e−A(t)vσ

))
dx dt

=

∫ x2−c0τ

x1+c0τ

e−A(τ)

(
1

2
v2 + U)

)
(x, τ) dx

+

∫ x1+c0τ

x1

e−A((x−x1)/c0)

(
1

2
v2 + U +

1

c0

vσ

)(
x,

x− x1

c0

)
dx

+

∫ x2

x2−c0τ

e−A((x2−x)/c0)

(
1

2
v2 + U − 1

c0

vσ

)(
x,

x2 − x

c0

)
dx .

All three integrals on the right-hand side of the above inequality are non-negative by
(1.0.6). This is only possible if both v and σ vanish in Ω̄ , which completes the proof.

¥

4



1.1 Existence and uniqueness of solutions

Theorem 1.1.1. Let Hypothesis 1.0.1 be fulfilled. Then there exists a unique solution
(v, σ, ε) ∈ C(Q̄T ;R3) of System (1.0.1)–(1.0.3) such that ∂tv, ∂xv, ∂tσ, ∂xσ, ∂tε belong
to the space L∞(0, T ; L2(0, 1)) , and (1.0.1) holds almost everywhere in QT .

Proof. The uniqueness argument is straightforward. We consider two solutions
(v1, σ1, ε1), (v2, σ2, ε2) , and put v̄ = v1 − v2 , σ̄ = σ1 − σ2 , ε̄ = ε1 − ε2 . The hy-
pothesis yields that v̄(x, 0) = ε̄(x, 0) = 0 for all x ∈ [0, 1] . From Proposition 3.2.1 it
follows that σi = F̂ [µ, εi] for i = 1, 2 , hence also σ̄(x, 0) = 0. For a. e. (x, t) ∈ QT

we have {
∂tv̄ = ∂xσ̄ + f(σ1, v1, x, t)− f(σ2, v2, x, t) ,

∂tε̄ = ∂xv̄ .
(1.1.1)

Testing the first equation in (1.1.1) by v̄ , the second by σ̄ , and using (1.0.4), we
obtain ∫ 1

0

(v̄ ∂tv̄ + σ̄ ∂tε̄) dx ≤ αf (t)

∫ 1

0

(|v̄|+ |σ̄|) |v̄| dx . (1.1.2)

Let c0 be as in (1.0.5). From (3.3.2) and the elementary inequality 2pq ≤ δp2 + q2/δ
for p, q, δ > 0 it follows for t ≥ 0 that

∫ 1

0

(
|v̄|2 +

1

c2
0

|σ̄|2
)

(t) dx ≤
(

1 +
√

1 + c2
0

) ∫ t

0

αf (τ)

∫ 1

0

(
|v̄|2 +

1

c2
0

|σ̄|2
)

(τ) dx dτ ,

(1.1.3)
and the Gronwall argument yields that v̄ = σ̄ = 0 a. e.

The existence statement will be proved by space semi-discretization. For n ∈ N we
consider the system of equations

v̇j = n(σj+1 − σj) + fj(σj, vj, t) , j = 1, . . . n− 1 , (1.1.4)

ε̇j = n(vj − vj−1) , j = 1, . . . n , (1.1.5)

εj = F [λj, σj] , j = 1, . . . n , (1.1.6)

coupled with “boundary conditions”

v0(t) = vn(t) = 0 , (1.1.7)

and initial conditions
vj(0) = v0

j , εj(0) = ε0
j , (1.1.8)

where we set

fj(σ, v, t) = n

∫ j/n

(j−1)/n

f(σ, v, x, t) dx , λj(r) = n

∫ j/n

(j−1)/n

λ(x, r) dx , (1.1.9)

v0
j = n

∫ j/n

(j−1)/n

v0(x) dx , ε0
j = n

∫ j/n

(j−1)/n

ε0(x) dx (1.1.10)
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for all admissible values of arguments and indices, except for the compatibility condi-
tion v0

0 = v0
n = 0. It follows from Propositions 3.2.1 and 3.2.2 that Eq. (1.1.6) can be

written in the form

σj = F̂ [µj, εj] (1.1.11)

with Lipschitz continuous operators F̂ [µj, ·] : C[0, T ] → C[0, T ] . System (1.1.4)–
(1.1.5) is of the type

ż(t) = Φ[z, ·](t) , z(0) = z0 (1.1.12)

for an unknown function z : [0, T ] → R2n−1 , z = (v1, . . . , vn−1, ε1, . . . , εn) , with a
mapping Φ : C([0, T ];R2n−1)× [0, T ] → C([0, T ];R2n−1) given by the right-hand side
of (1.1.4)–(1.1.5). We solve (1.1.12) as a fixed point problem in C([0, T ];R2n−1) for
the operator

S[z](t) = z0 +

∫ t

0

Φ[z, ·](τ) dτ . (1.1.13)

By Hypothesis 1.0.1 and Proposition 3.2.2 there exists a ∈ L1(0, T ) such that for all
z1, z2 ∈ C([0, T ];R2n−1) and t ∈ [0, T ] we have

|Φ[z1, ·](t)− Φ[z2, ·](t)| ≤ a(t) ‖z1 − z2‖[0,t] , (1.1.14)

hence

|S[z1]− S[z2]|(t) ≤
∫ t

0

a(τ) ‖z1 − z2‖[0,τ ] dτ . (1.1.15)

For t ∈ [0, T ] set A(t) = exp(
∫ t

0
a(τ) dτ) and

‖z‖A,[0,t] = max
τ∈[0,t]

(
1

A(τ)
‖z‖[0,τ ]

)
for z ∈ C([0, T ];R2n−1) . (1.1.16)

In particular, ‖·‖A,[0,T ] is a norm in C([0, T ];R2n−1) which is equivalent to ‖·‖[0,T ] .
By (1.1.15), we have for all t ∈ [0, T ] that

1

A(t)
‖S[z1]− S[z2]‖[0,t] ≤ 1

A(t)

∫ t

0

a(τ)A(τ)
1

A(τ)
‖z1 − z2‖[0,τ ] dτ (1.1.17)

≤ A(t)− 1

A(t)
‖z1 − z2‖A,[0,t] ≤

A(T )− 1

A(T )
‖z1 − z2‖A,[0,T ] .

We see that S is a contraction on C([0, T ];R2n−1) endowed with norm ‖·‖A,[0,T ] , and
its unique fixed point is a solution to (1.1.4)–(1.1.8).

We now derive estimates which enable us to pass to the limit as n → ∞ . To this
end, we differentiate Eqs. (1.1.4)–(1.1.5) and test by v̇j and σ̇j , respectively. From
Hypothesis 1.0.1 we obtain

v̈j v̇j ≤ n(σ̇j+1 − σ̇j)v̇j +
(
βj(t) + αf (t)(|σ̇j|+ |v̇j|)

)|v̇j| , (1.1.18)

ε̈jσ̇j = n(v̇j − v̇j−1)σ̇j , (1.1.19)
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where βj(t) = n
∫ j/n

(j−1)/n
βf (x, t) dx . The boundary conditions (1.1.7) yield

n−1∑
j=1

(σ̇j+1 − σ̇j)v̇j +
n∑

j=1

(v̇j − v̇j−1)σ̇j = 0 , (1.1.20)

and by virtue of Theorem 3.4.1 we have for all t ∈ ]0, T ] that

∫ t

0

ε̈jσ̇j dτ ≥ 1

2
(ε̇jσ̇j)(t−)− 1

2
(ε̇jσ̇j)(0+) . (1.1.21)

From (1.1.5) and (1.1.8) it follows that ε̇j(0+) = ε̇j(0) = n(v0
j − v0

j−1) . Using (1.1.11)
and (3.2.11) we obtain

|σ̇j(0+)| = lim
t→0+

1

t
|σj(t)− σj(0)| ≤ lim

t→0+

2

h(0)t
‖εj − εj(0)‖[0,t] =

2

h(0)
|ε̇j(0)| , (1.1.22)

hence
1

n

n∑
j=1

(σ̇j ε̇j)(0+) ≤ 2n

h(0)

n∑
j=1

|v0
j − v0

j−1|2 . (1.1.23)

The right-hand side of (1.1.23) can be estimated independently of n . To do so, we
decompose the sum as

n

n∑
j=1

|v0
j − v0

j−1|2 = n

(
|v0

1|2 + |v0
n−1|2 +

n−1∑
j=2

|v0
j − v0

j−1|2
)

. (1.1.24)

Formula (1.1.10) yields

n|v0
1|2 = n3

∣∣∣∣∣
∫ 1/n

0

∫ (1/n)−x

0

∂xv
0(x′) dx′ dx

∣∣∣∣∣

2

≤ n

∫ 1/n

0

∫ (1/n)−x

0

|∂xv
0(x′)|2 dx′ dx ,

and similarly

n|v0
n−1|2 ≤ n

∫ 1/n

0

∫ 1

((n−1)/n)−x

|∂xv
0(x′)|2 dx′ dx .

For j = 2, . . . , n− 1 we have

n|v0
j − v0

j−1|2 = n3

∣∣∣∣∣
∫ 1/n

0

∫ (j/n)−x

((j−1)/n)−x

∂xv
0(x′) dx′ dx

∣∣∣∣∣

2

≤ n

∫ 1/n

0

∫ (j/n)−x

((j−1)/n)−x

|∂xv
0(x′)|2 dx′ dx .

From the above computations it follows that

n

n∑
j=1

|v0
j − v0

j−1|2 ≤
∫ 1

0

|∂xv
0(x′)|2 dx′ . (1.1.25)

7



We similarly have

1

n

n−1∑
j=1

|v̇j(0)|2 ≤ 1

n

n−1∑
j=1

(
n|σj+1(0)− σj(0)|+ |fj(σj(0), vj(0), 0)|)2

. (1.1.26)

From (1.1.11) and Propositions 3.2.1–3.2.2 it follows that

|σj+1(0)− σj(0)| ≤ 2

h(0)
|ε0

j+1 − ε0
j |

and arguing as in (1.1.25) we obtain

n

n−1∑
j=1

|σj+1(0)− σj(0)|2 ≤
(

2

h(0)

)2 ∫ 1

0

|∂xε
0(x)|2 dx . (1.1.27)

We further have

lim
n→∞

1

n

n−1∑
j=1

|fj(σj(0), vj(0), 0)|2 ≤
∫ 1

0

|f(σ(x, 0), v0(x), x, 0)|2 dx (1.1.28)

and
1

n

n−1∑
j=1

β2
j (t) ≤

∫ 1

0

β2
f (x, t) dx . (1.1.29)

Let us introduce auxiliary functions

Wn(t) =
1

n

n−1∑
j=1

v̇2
j (t) , Sn(t) =

1

n

n∑
j=1

σ̇2
j (t) . (1.1.30)

In the following series of estimates, C denotes any positive constant independent of
n and T , and CT is a constant independent of n and possibly dependent on T .

We integrate (1.1.18)–(1.1.19) from 0 to t . Combining the inequality ε̇j(t)σ̇j(t) ≥
h(0)σ̇2

j (t) (which follows from (3.2.17)) with (1.1.20)–(1.1.29), we obtain

Sn(t) + Wn(t) ≤ C


1 +

∫ t

0

√
Wn(τ)

∫ 1

0

β2
f (x, τ) dx + α(τ)(Sn(τ) + Wn(τ)) dτ


 .

(1.1.31)

Using the inequality W
1/2
n ≤ (1 + Wn)/2 and the hypothesis that the function α̃(t) =

(
∫ 1

0
β2

f (x, t) dx)1/2 + αf (t) belongs to L1(0, T ) , we obtain from (1.1.31) that

Sn(t) + Wn(t) ≤ CT

(
1 +

∫ t

0

(α̃(τ)(Sn(τ) + Wn(τ))) dτ

)
(1.1.32)

for almost all t ∈ ]0, T [ , and Gronwall’s Lemma yields that

Sn(t) + Wn(t) ≤ CT a. e. (1.1.33)
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We now define piecewise linear and piecewise constant approximations of (v, σ) by
the formula

v̂(n)(x, t) = vj−1(t) + n

(
x− j − 1

n

)
(vj(t)− vj−1(t)) , (1.1.34)

σ̂(n)(x, t) = σj−1(t) + n

(
x− j − 1

n

)
(σj(t)− σj−1(t)) , (1.1.35)

v̄(n)(x, t) = vj−1(t) , (1.1.36)

σ̄(n)(x, t) = σj(t) , (1.1.37)

σ(n)(x, t) = σj−1(t) , (1.1.38)

λ̄(n)(x, t) = λj(t) , (1.1.39)

f̄(σ, v, x, t) = fj−1(σ, v, t) , (1.1.40)

ε̄(n) = F [λ̄(n), σ̄(n)] (1.1.41)

for x ∈ [(j − 1)/n, j/n[ , j = 1, . . . , n , continuously extended to x = 1, where we set
f0(σ, v, t) = 0. Equations (1.1.4)–(1.1.5) then have the form

∂tv̄
(n) = ∂xσ̂

(n) + f̄(σ(n), v̄(n), x, t) , (1.1.42)

∂tε̄
(n) = ∂xv̂

(n) . (1.1.43)

From (1.1.34) it follows that the functions ∂tv̂
(n), ∂tσ̂

(n), ∂tv̄
(n), ∂tσ̄

(n) are bounded in
L∞(0, T ; L2(0, 1)) independently of n . We further have

∫ 1

0

∣∣f̄(σ(n), v̄(n), x, t)
∣∣2 dx =

1

n

n−1∑
j=1

f 2
j (σj, vj, t) (1.1.44)

≤ 1

n

n−1∑
j=1

(
fj(σj(0), vj(0), 0) +

∫ t

0

∂

∂τ
(fj(σj, vj, τ)) dτ

)2

≤ CT ,

hence also ∂xv̂
(n), ∂xσ̂

(n) are bounded in L∞(0, T ; L2(0, 1)) independently of n . De-
note H∞,2(QT ) = {u ∈ L2(QT ) ; ∂tu, ∂xu ∈ L∞(0, T ; L2(0, 1))} . By compact embed-
ding H∞,2(QT ) ↪→↪→ C(Q̄T ) we find functions v, σ ∈ H∞,2(QT ) and a subsequence
of {(v̂(n), σ̂(n))} (still indexed by n ) such that

∂tσ̂
(n) → ∂tσ

∂xσ̂
(n) → ∂xσ

∂tv̂
(n) → ∂tv

∂xv̂
(n) → ∂xv





weakly-star in L∞(0, T ; L2(0, 1)) , (1.1.45)

σ̂(n) → σ

v̂(n) → v

}
uniformly in C(QT ) . (1.1.46)
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We furthermore have for x ∈ [(j − 1)/n, j/n[ that

∣∣σ̂(n)(x, t)− σ(x, t)
∣∣2 ≤ |σj(t)− σj−1(t)|2 ≤

n∑
j=1

|σj(t)− σj−1(t)|2

≤ 1

n
‖∂xσ̂

(n)‖2
L∞(0,T ; L2(0,1))

and similarly

∣∣σ̂(n)(x, t)− σ̄(x, t)
∣∣2 ≤ 1

n
‖∂xσ̂

(n)‖2
L∞(0,T ; L2(0,1)) ,

∣∣v̂(n)(x, t)− v̄(x, t)
∣∣2 ≤ 1

n
‖∂xv̂

(n)‖2
L∞(0,T ; L2(0,1)) ,

hence
σ̄(n) → σ

σ(n) → σ

v̄(n) → v





uniformly in L∞(0, 1; C[0, T ]) . (1.1.47)

The results of Subsection 3.5 enable us to pass to the limit in (1.1.41)–(1.1.43) and
check that (v, σ) is a solution of (1.0.1)–(1.0.3). The fact that ε is continuous with
respect to x follows directly from Proposition 3.2.2 with λi(r) = λ(xi, r) and wi(t) =
σ(xi, t) , i = 1, 2 for any x1, x2 ∈ [0, 1] . ¥

1.2 Global boundedness

In order to investigate the asymptotic behaviour of solutions as t → ∞ , we first
establish conditions under which the solutions remain globally bounded. In particular,
we assume that the right-hand side of (1.0.1) is independent of σ . In other words, we
consider the system 




∂tv = ∂xσ + f(v, x, t) ,

∂tε = ∂xv ,

ε = F [λ, σ]

(1.2.1)

under the following hypotheses.

Hypothesis 1.2.1. The right-hand side f : R× ]0, 1[× ]0,∞[→ R of (1.2.1) is such
that the functions f(v, ·, ·), ∂tf(v, ·, ·) : ]0, 1[× ]0,∞[→ R are measurable for all v ∈
R , f(·, x, t), ∂tf(·, x, t) : R→ R are continuous for a. e. (x, t) ∈ ]0, 1[× ]0,∞[ , f 0 :=
f(0, ·, ·) ∈ L∞(0,∞; L2(0, 1)) , and there exist a constant γf > 0 and a function
βf ∈ L∞(0,∞; L2(0, 1)) such that for almost all arguments we have

−γf ≤ ∂vf(v, x, t) ≤ 0 , (1.2.2)

|∂tf(v, x, t)| ≤ βf (x, t) . (1.2.3)
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Hypothesis 1.2.2. Let h and κ be the functions associated with the operator F
according to (3.2.1) and (3.4.8). For p > 0 set

µ(p) = max

{
h(p),

h3/4(p)

κ1/2(p)

}
, (1.2.4)

and assume that

lim
p→∞

µ2(p) h(p)

p2
= 0 . (1.2.5)

Hypothesis 1.2.3. The function H defined by (3.2.3) satisfies the implication

∃L, m,R0 > 0 ∀r > 0 : R ≥ max{R0, Lr} ⇒ 2H(R− r)−H(R) ≥ mR . (1.2.6)

Remark 1.2.4. Condition (1.2.2) says that “negative friction” is excluded. The hys-
teresis dissipation is not strong enough to keep the solution away from resonance if the
energy supply becomes dominant. On the other hand, the results remain valid even if
no friction (∂vf = 0) is present.

The functions h(p) and κ(p) characterize the slope and the curvature of the hysteresis
branches, respectively. Condition (1.2.5) is fulfilled if, for example, there exist 0 <
h∗ ≤ h∗ , r0 > 0 , and −1 < α < 2/3 , such that

h∗ max{r0, r}α−1 ≤ h′(r) ≤ h∗ max{r0, r}α−1 a. e. (1.2.7)

A sufficient condition for (1.2.6) reads for instance

∃δ0 > 0 : lim sup
r→∞

H((1 + δ0)r)

H(r)
< 2 . (1.2.8)

Indeed, (1.2.8) can be rewritten in the form

∃δ0,m, q0 > 0 ∀δ ∈ ]0, δ0] : q ≥ q0 ⇒ H((1 + δ)q)

H(q)
≤ 2− (1 + δ0)m

h(0)
. (1.2.9)

Then (1.2.6) follows from (1.2.9) with L = 1 + 1/δ0 , r = δq , R0 = (1 + δ0)q0 ,
R = (1 + δ)q .

A variant of l’Hôpital’s rule implies that condition (1.2.8) is in turn satisfied if, for
example, h(r) is concave for large r .

The existence and uniqueness of a global solution to Problem (1.2.1) coupled with
(1.0.2)–(1.0.3) under Hypotheses 1.0.1 and 1.2.1 follows from Theorem 1.1.1. The aim
of this subsection is to prove the following global boundedness result.

Theorem 1.2.5. Let Hypotheses 1.0.1 and 1.2.1–1.2.3 hold. Then there exists a
constant C > 0 independent of t such that the solution (v, σ) to (1.2.1), (1.0.2)–
(1.0.3) satisfies a. e. the conditions

∫ 1

0

(
(∂tv)2 + (∂xv)2 + (∂tσ)2 + (∂xσ)2

)
(x, t) dx ≤ C , (1.2.10)

|v(x, t)|+ |σ(x, t)| ≤ C . (1.2.11)
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The proof of Theorem 1.2.5 is split into two parts. We first prove Lemma 1.2.6 below.
Since no boundary conditions for σ are prescribed, the transition from Lemma 1.2.6
to (1.2.10)–(1.2.11) is not straightforward and a deeper result on hysteresis memory
structure will have to be established in the subsequent Lemma 1.2.7.

In accordance with the previous notation, we define for t > 0 the sets Qt = [0, 1]×[0, t]
and for u ∈ L∞(Qt) put

‖u‖Qt
= sup ess {|u(x, τ)| ; (x, τ) ∈ Qt} . (1.2.12)

Lemma 1.2.6. Let Hypotheses 1.0.1 and 1.2.1–1.2.2 hold, and let (v, σ) be the solu-
tion to (1.2.1), (1.0.2)–(1.0.3). Then for every δ > 0 there exists p0 > 0 such that
for all p ≥ p0 the following implication holds true for a. e. t ≥ 0 .

‖σ‖Qt
≤ p =⇒ 1

p2

∫ 1

0

(
(∂tσ)2 + (∂xσ)2

)
(x, t) dx ≤ δ . (1.2.13)

Proof of Lemma 1.2.6. Taking into account the convergences (1.1.45)–(1.1.47), it
suffices to consider the discrete system

v̇j = n(σj+1 − σj) + fj(vj, t) , j = 1, . . . n− 1 , (1.2.14)

ε̇j = n(vj − vj−1) , j = 1, . . . n , (1.2.15)

εj = F [λj, σj] , j = 1, . . . n (1.2.16)

analogous to (1.1.4)–(1.1.6) with boundary and initial conditions (1.1.7)–(1.1.8), and
prove that for every δ > 0 there exists p0 > 0 independent of n and t such that for
all p ≥ p0 the following implication holds.

max
j=1,...,n

‖σj‖[0,t] ≤ p =⇒ 1

p2

(
1

n

n∑
j=1

σ̇2
j (t) + n

n−1∑
j=1

(σj+1 − σj)
2(t)

)
≤ δ . (1.2.17)

To do so, we define for j = 1, . . . , n− 1 auxiliary functions

Gj(v, t) = v fj(v, t)−
∫ v

0

fj(v
′, t) dv′ for (v, t) ∈ R× [0,∞[ , (1.2.18)

and set

E(t) =
1

2n

(
n−1∑
j=1

v̇2
j (t) +

n∑
j=1

ε̇j(t)σ̇j(t)

)
, (1.2.19)

S(t) =
1

n

n∑
j=1

|σ̇j(t)|3 , (1.2.20)

W (t) =
1

n

n−1∑
j=1

v̇2
j (t) , (1.2.21)

Z(t) =
1

n

n−1∑
j=1

(Gj(vj(t), t)− vj(t)v̇j(t)) . (1.2.22)
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We have by definition
−γf v2

j (t) ≤ Gj(vj(t), t) ≤ 0 , (1.2.23)

The boundary condition (1.1.7) and Eq. (1.1.5) yield

1

n

n−1∑
j=1

v2
j (t) ≤ n

n∑
j=1

(vj − vj−1)
2(t) =

1

n

n∑
j=1

ε̇2
j(t) . (1.2.24)

Assume now that maxj=1,...,n ‖σj‖[0,T ] ≤ p for some T > 0 and p ≥ K . From (3.2.16)

we obtain for t ∈ [0, T ] that

|ε̇j(t)| ≤ h(p)|σ̇j(t)| for j = 1, . . . , n . (1.2.25)

This, together with (3.2.17), implies that

1

n

n−1∑
j=1

v2
j (t) ≤ h(p)

1

n

n∑
j=1

ε̇j(t)σ̇j(t) . (1.2.26)

We now fix a constant c∗ > 0 such that

|Z(t)| ≤ c∗ h(p) E(t) (1.2.27)

for all t ∈ [0, T ] . Using (1.2.14)–(1.2.15) yields for a. e. t ∈ ]0, T [ that

Ż(t) + W (t) =
1

n

n∑
j=1

ε̇j(t)σ̇j(t) +
1

n

n−1∑
j=1

(∂tGj − vj ∂tfj)(t) (1.2.28)

≤ 1

n

n∑
j=1

ε̇j(t)σ̇j(t) +
1

n

n−1∑
j=1

|vj(t)| |βj(t)| ,

where βj is as in (1.1.18), hence, by (1.2.25)–(1.2.26),

Ż(t) +
1

2
W (t) + E(t) ≤ 3

2n

n∑
j=1

ε̇j(t)σ̇j(t) + C

(
1

n

n−1∑
j=1

v2
j (t)

)1/2

(1.2.29)

≤ C h(p)
(
1 + S2/3(t)

)
,

where C denotes as before any positive constant independent of n , T , and p . The
counterpart of (1.1.18)–(1.1.19) reads

v̈j v̇j ≤ n(σ̇j+1 − σ̇j)v̇j + |βj(t)| |v̇j(t)| , (1.2.30)

ε̈jσ̇j = n(v̇j − v̇j−1)σ̇j , (1.2.31)

hence
1

n

n−1∑
j=1

v̈j(t)v̇j(t) +
1

n

n∑
j=1

ε̈j(t)σ̇j(t) ≤ C W 1/2(t) a. e. (1.2.32)
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From Theorem 3.4.1 it follows that for all 0 ≤ s < t ≤ T we have

E(t−)− E(s+) +
1

4
κ(p)

∫ t

s

S(τ) dτ ≤ C

∫ t

s

W 1/2(τ) dτ . (1.2.33)

Let c∗ be as in (1.2.27). Inequalities (1.2.29) and (1.2.33) yield for all 0 ≤ s < t that

(Z + 2c∗ µ(p) E)(t−)− (Z + 2c∗ µ(p) E)(s+) (1.2.34)

+
1

2
c∗ µ(p)κ(p)

∫ t

s

S(τ) dτ +

∫ t

s

(
1

2
W (τ) + E(τ)

)
dτ

≤ C

∫ t

s

(
µ(p) W 1/2(τ) + h(p)

(
1 + S2/3(τ)

))
dτ ,

hence

(Z + 2c∗ µ(p) E)(t−)− (Z + 2c∗ µ(p) E)(s+) +

∫ t

s

E(τ) dτ (1.2.35)

≤ C

(
µ2(p) + h(p) +

h3(p)

κ2(p)µ2(p)

)
(t− s)

≤ C∗ (
1 + µ2(p)

)
(t− s) ,

where C∗ is some frozen value of C , and set

E1(t) = Z(t) + 2c∗ µ(p) E(t) , E2(t) =

∫ t

0

E(τ) dτ − C∗(1 + µ2(p)) t . (1.2.36)

By (1.2.35), the function E1 + E2 is non-increasing, hence for every non-negative
absolutely continuous test function η(t) and every t ∈ [0, T ] we have

∫ t

0

(E1 + E2)(τ) η̇(τ) dτ ≥ (E1(t−) + E2(t)) η(t)− E1(0+) η(0) , (1.2.37)

or equivalently,

E1(t−) η(t) ≤ E1(0+) η(0) +

∫ t

0

E1(τ) η̇(τ) dτ −
∫ t

0

Ė2(τ) η(τ) dτ . (1.2.38)

We choose

η(t) = eqt , q =
1

3c∗ µ(p)
. (1.2.39)

Using (1.1.23)–(1.1.28), we estimate E1(0+) by C(1 + µ(p)) , so that (1.2.38) yields

E1(t−) eqt ≤ C(1 + µ(p)) +

∫ t

0

(qE1 − E) (τ) eqτ dτ +
1

q
C∗(1 + µ2(p))

(
eqt − 1

)
.

(1.2.40)
We have qE1(τ)− E(τ) = qZ(τ)− 1

3
E(τ) ≤ 0 , hence

E1(t−) ≤ C(1 + µ(p)) e−qt +
1

q
C∗(1 + µ2(p)) , (1.2.41)
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that is,

E(t) ≤ 1

c∗ µ(p)
E1(t) ≤ C(1 + µ2(p)) for a. e. t ∈ [0, T ] . (1.2.42)

Using (1.2.26) we have

1

n

n−1∑
j=1

v2
j (t) ≤ Ch(p)(1 + µ2(p)) , (1.2.43)

and (1.2.14) yields

n

n∑
j=1

(σj+1 − σj)
2(t) ≤ Ch(p)(1 + µ2(p)) for t ∈ [0, T ] , (1.2.44)

and (1.2.17) follows from (1.2.5) and (3.2.17). This completes the proof of Lemma
1.2.6. ¥

Lemma 1.2.7. Let Hypothesis 1.2.3 hold, and let λ : [0, 1] → ΛK , ε, σ : [0, 1] ×
[0, T ] → R be continuous mappings, ε = F [λ, σ] . Assume that there exist constants
c1, c2, c3 independent of t such that

∣∣∣∣
∫ 1

0

ε(x, t) dx

∣∣∣∣ ≤ c1 ∀t ∈ [0, T ] , (1.2.45)

|σ(x, 0)| ≤ c2 ∀x ∈ [0, 1] , (1.2.46)
∫ 1

0

|∂xσ(x, t)| dx ≤ 2c3 ∀t ∈ [0, T ] . (1.2.47)

Put

R = max

{
Lc3,

c1 + 1

m
, c2 + 1, K,R0

}
. (1.2.48)

Then |σ(x, t)| < R for all (x, t) ∈ [0, 1]× [0, T ] .

Proof of Lemma 1.2.7. Assume that the statement is false. Then there exist x0, t0
such that one of the following two alternatives occurs.

(i) σ(x0, t0) = R , σ(x, t) > −R for (x, t) ∈ [0, 1]× [0, t0[ ;

(ii) σ(x0, t0) = −R , σ(x, t) < R for (x, t) ∈ [0, 1]× [0, t0[ .

The two cases are similar, we therefore consider only (i).

For all x ∈ [0, 1] we have

σ(x, t0) ≥ σ(x0, t0)−
∫ 1

0

|∂xσ(x, τ)| dτ ≥ R− 2c3 , (1.2.49)

15



hence, by definition (3.1.13) of the play,

pr[λ, σ](x, t0) ≥ σ(x, t0)− r ≥ R− 2c3 − r (1.2.50)

for all r > 0 . By Lemma 3.1.2, we have

pr[λ, σ](x, t) ≥ min{λ(x, r),−R + r} (1.2.51)

for all r > 0 and (x, t) ∈ [0, 1]× [0, t0] . We have

λ(x, r) =

{
0 for r ≥ K ,

λ(x, r)− λ(x,K) ≥ −K + r for 0 < r < K ,
(1.2.52)

hence
pr[λ, σ](x, t) ≥ min{0,−R + r} . (1.2.53)

Consequently, combining (1.2.50) with (1.2.53), we obtain

pr[λ, σ](x, t0) ≥ max{R− 2c3 − r, min{0,−R + r}} , (1.2.54)

and formula (3.2.1) with w replaced by σ yields for every x ∈ [0, 1] that

ε(x, t0) ≥ h(0)(R− 2c3) +

∫ R−c3

0

(R− 2c3 − r)dh(r) +

∫ R

R−c3

(−R + r)dh(r) (1.2.55)

= 2H(R− c3)−H(R) ≥ 1 + c1 ,

which is a contradiction with the assumption (1.2.45). ¥

We are now ready to pass to the proof of Theorem 1.2.5 and thus conclude this
subsection.

Proof of Theorem 1.2.5. By virtue of the boundary conditions for v , the solution to
(1.2.1) has the property

∫ 1

0

ε(x, t) dx =

∫ 1

0

ε0(x) dx

for every t ≥ 0 . We therefore can apply Lemma 1.2.7 and find a constant C̄ > 0
independent of t such that for every t ≥ 0 we have

‖σ‖Qt
≤ C̄

(
1 +

∫ 1

0

(∂xσ)2(x, t) dx

)
. (1.2.56)

By Lemma 1.2.6 and (1.2.56), we have the implication

∀δ > 0 ∃p0 > 0 ∀p ≥ p0 ∀t ≥ 0 : ‖σ‖Qt
≤ p ⇒ ‖σ‖Qt

≤ C̄ (1 + δp) . (1.2.57)

Choosing for instance δ = 1/(2C̄) , we see that |σ(x, t)| cannot exceed the value
2(p0 + C̄) . Using again Lemma 1.2.6 we obtain uniform L2(0, 1) -bounds for ∂tσ(·, t)
and ∂xσ(·, t) , which in turn (as a consequence of (3.2.16)) imply a uniform L2(0, 1) -
bound for ∂tε(·, t) . The bounds for ∂tv and ∂xv follow directly from the equations
(1.2.1). ¥
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1.3 Asymptotic stabilization

Solutions to hyperbolic equations with linear viscous terms and without forcing asymp-
totically vanish with exponential rate. This is not the case if hysteresis is the only
source of dissipation. In our situation, the decay rate is of the order 1/t , and Example
1.3.3 confirms that this estimate is optimal. Keeping initial and boundary conditions
(1.0.2)–(1.0.3), we consider the system with time-independent external forcing





∂tv = ∂xσ + f(v, x) ,

∂tε = ∂xv ,

ε = F [λ, σ]

(1.3.1)

under the following hypothesis.

Hypothesis 1.3.1. The function f : R× ]0, 1[→ R is such that the functions f(v, ·) :
]0, 1[→ R is measurable for all v ∈ R , f(·, x) : R → R is continuous for a. e.
x ∈ ]0, 1[ , f 0 := f(0, ·) ∈ L2(0, 1) , and there exists a constant γf > 0 such that for
almost all arguments we have

−γf ≤ ∂vf(v, x) ≤ 0 . (1.3.2)

The main result of this subsection reads as follows.

Theorem 1.3.2. Let Hypotheses 1.0.1 and 1.3.1 hold, and let

lim
p→∞

h(p)

p2
= 0 . (1.3.3)

Then there exists a constant C > 0 independent of t such that the solution (v, σ) to
(1.3.1), (1.0.2)–(1.0.3) satisfies a. e. the conditions

∫ 1

0

(
(∂tv)2 + (∂xv)2 + (∂tσ)2 + (∂xσ)2

)
(x, t) dx ≤ C , (1.3.4)

|v(x, t)|+ |σ(x, t)| ≤ C . (1.3.5)

If moreover the function κ from (3.4.8) does not vanish on [0,∞[ , then there exist
constants σ∞ ∈ R and C > 0 independent of t such that

∫ 1

0

(
(∂tv)2 + (∂xv)2 + (∂tσ)2 + (∂xσ + f 0)2

)
(x, t) dx ≤ C

(1 + t)2
, (1.3.6)

|v(x, t)| ≤ C

1 + t
, (1.3.7)

lim
t→∞

∣∣∣∣σ(x, t) +

∫ x

0

f 0(x′) dx′ − σ∞

∣∣∣∣ = 0 , (1.3.8)

and the limit in (1.3.8) is uniform with respect to x .
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Proof. We proceed as in the proof of Theorem 1.2.5. Relations (1.2.30)–(1.2.33) remain
valid with βj ≡ 0 and C = 0, hence E(t) is non-increasing in [0,∞[ . The value of
E(0+) is bounded by a constant according to (1.1.23)–(1.1.28), hence so is E(t) . In
order to simplify the notation, we argue formally using Eqs. (1.3.1), having however
in mind the discrete system of the form (1.2.14)–(1.2.16). With this convention, we
have ∫ 1

0

(
(∂tv)2 + ∂tσ ∂tε

)
(x, t) dx ≤ C , (1.3.9)

where C is some constant independent of t > 0 . We now fix T > 0 and p > 0 such
that

‖σ‖QT
≤ p . (1.3.10)

By (1.3.1) and (3.2.16)–(3.2.17) we have

∫ 1

0

(∂xv)2(x, t) dx =

∫ 1

0

(∂tε)
2(x, t) dx ≤ h(p)

∫ 1

0

(∂tσ ∂tε)(x, t) dx ≤ C h(p)

(1.3.11)
with a constant C (here and in the sequel) independent of t ∈ [0, T ] and p > 0 , hence

∫ 1

0

v2(x, t) dx ≤ C h(p) ∀t ∈ [0, T ] , (1.3.12)

and

∫ 1

0

(∂xσ)2(x, t) dx ≤ C +

∫ 1

0

(
(∂tv)2 + γfv

2
)
(x, t) dx ≤ C(1 + h(p)) . (1.3.13)

From Lemma 1.2.7 it follows that ‖σ‖QT
≤ C

√
1 + h(p) . Choosing p sufficiently

large we thus obtain from (1.3.3) the global bounds (1.3.4)–(1.3.5).

To prove (1.3.6)–(1.3.7), we pass again to the space-discrete approximations. Note
that a uniform upper bound for |σ(x, t)| is already available by virtue of (1.3.5). We
therefore do not have to consider the dependence on p in (1.2.25)–(1.2.34). Using
again the fact that βj ≡ 0 in (1.2.28), (1.2.30), and that κ is positive, we obtain the
counterpart of (1.2.29) and (1.2.33) in the form

Ż(t) + E(t) ≤ C S2/3(t) a. e. , (1.3.14)

E(t−)− E(s+) + c

∫ t

s

S(τ) dτ ≤ 0 ∀0 ≤ s < t (1.3.15)

with some constants c, C > 0 . In agreement with (1.2.27), we now fix some m > 0
such that

|Z(t)| ≤ 1

8m
E(t) a. e. (1.3.16)

and set

Em(t) := E(t) +
4m

1 + mt
Z(t) ≥ 1

2
E(t) . (1.3.17)
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We have for all 0 ≤ s < t that

Em(t−)− Em(s+) +

∫ t

s

(
c S(τ) +

4m

1 + mτ
E(τ) +

4m2

(1 + mτ)2
Z(τ)

)
dτ (1.3.18)

≤
∫ t

s

4mC

1 + mτ
S2/3(τ) dτ ,

hence, by Hölder’s inequality, there exists another constant C > 0 such that

Em(t−)− Em(s+) +

∫ t

s

(
4m

1 + mτ
E(τ) +

4m2

(1 + mτ)2
Z(τ)

)
dτ ≤

∫ t

s

C

(1 + mτ)3
dτ .

(1.3.19)
In view of (1.3.16), we have

4E(τ) +
4m

(1 + mτ)
Z(τ) ≥ 3Em(τ) a. e. , (1.3.20)

hence

Em(t−)− Em(s+) +

∫ t

s

3m

1 + mτ
Em(τ) dτ ≤

∫ t

s

C

(1 + mτ)3
dτ (1.3.21)

for all 0 ≤ s < t . We argue similarly as in (1.2.37). The function

t 7→ Em(t) +

∫ t

0

(
3m

1 + mτ
Em(τ)− C

(1 + mτ)3

)
dτ

is non-increasing, hence for every non-negative absolutely continuous test function
η(t) we have

∫ t

0

(
Em(τ) η̇(τ)−

(
3m

1 + mτ
Em(τ)− C

(1 + mτ)3

)
η(τ)

)
dτ (1.3.22)

≥ Em(t−) η(t)− Em(0+) η(0) .

For η(t) = (1 + mt)3 this yields

Em(t−) (1 + mt)3 ≤ Em(0+) + Ct . (1.3.23)

From (1.3.23) and (1.3.17) we obtain E(t) ≤ C (1 + t)−2 a. e., and inequalities
(1.3.6)–(1.3.7) easily follow. It remains to prove the convergence (1.3.8) of σ .

We fix constants R > K , F0 > 0 such that
∫ 1

0

|f 0(x′)| dx′ ≤ F0 , |σ(x, t)| ≤ R ∀(x, t) ∈ [0, 1]× [0,∞[ , (1.3.24)

and define auxiliary functions

σ̃(x, t) = σ(x, t) +

∫ x

0

f 0(x′) dx′ , (1.3.25)

λ̃(x, r) =

{
λ(x, r) for 0 ≤ r ≤ R ,

P [0, λ̃(x,R)](r −R) for r ≥ R ,
(1.3.26)

ε̃(x, t) = F [λ̃, σ̃](x, t) , (1.3.27)
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where the mapping P is defined by (3.1.16). Note that |λ̃(x,R)| ≤ F0 , hence λ̃(x, r) =
0 for r ≥ R + F0 . We now claim that

∂tε̃(x, t) = ∂tε(x, t) a. e. (1.3.28)

To check this conjecture, we denote

ξr(x, t) = pr[λ, σ](x, t) , ξ̃r(x, t) = pr[λ̃, σ̃](x, t) (1.3.29)

for r > 0 and (x, t) ∈ [0, 1]× [0,∞[ . By (3.3.1), we have

∂

∂t

(
ξ̃r(x, t)− ξr(x, t)−

∫ x

0

f 0(x′) dx′
)2

≤ 0 , (1.3.30)

hence
∣∣∣∣ξ̃r(x, t)− ξr(x, t)−

∫ x

0

f 0(x′) dx′
∣∣∣∣ ≤

∣∣∣∣ξ̃r(x, 0)− ξr(x, 0)−
∫ x

0

f 0(x′) dx′
∣∣∣∣ (1.3.31)

for all admissible values of r , x , and t . We have by (3.1.10), (3.1.16) that

ξr(x, 0) = P [λ(x, ·), σ(x, 0)](r) , ξ̃r(x, 0) = P [λ̃(x, ·), σ̃(x, 0)](r) ,

hence

ξ̃r(x, 0) = ξr(x, 0) +

∫ x

0

f 0(x′) dx′ for 0 < r ≤ R , (1.3.32)

and (1.3.31) implies that

∂

∂t
ξ̃r(x, t) =

∂

∂t
ξr(x, t) a. e. for 0 < r ≤ R . (1.3.33)

On the other hand, we have λ(x, r) = 0 for r ≥ R and |λ̃(x,R)− σ̃(x, t)| ≤ R , hence∥∥∥mλ̃(x,·)(σ̃(x, ·))
∥∥∥

[0,t]
≤ R for all x and t . From Lemma 3.1.2 we conclude that

∂

∂t
ξ̃r(x, t) =

∂

∂t
ξr(x, t) a. e. for r > R . (1.3.34)

Combining (1.3.33) with (1.3.34), we obtain (1.3.28) from the definition (3.2.1) of the
operator F . This enables us to rewrite the system (1.3.1) in the form

{
∂tv = ∂xσ̃ + f(v, x)− f(0, x) ,

∂tε̃ = ∂xv
(1.3.35)

together with the identity (1.3.27). In particular, we have for all t ≥ 0 that

∫ 1

0

ε̃(x, t) dx =

∫ 1

0

ε̃(x, 0) dx = const. (1.3.36)

Put s(t) =
∫ 1

0
σ̃(x, t) dx . The estimate

|ṡ(t)| ≤ C

1 + t
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which follows from (1.3.6) is not sufficient for concluding that s(t) converges as t →
∞ . To prove that this convergence indeed takes place, we have to use again special
properties of the operator F , more precisely Lemma 3.1.2. Set

s̄ = lim sup
t→∞

s(t) , s = lim inf
t→∞

s(t) , (1.3.37)

and assume that s̄ > s . We fix some α > 0 sufficiently small (it will be specified
below in (1.3.47)), and using (1.3.6) we find 0 < t0 < t1 < t2 such that

∫ 1

0

|∂xσ̃(x, t)| dx ≤ α , s− α ≤ s(t) ≤ s̄ + α for t ≥ t0 , (1.3.38)

s(t1) ≤ s + α , s(t2) ≥ s̄− α . (1.3.39)

For all x ∈ [0, 1] and t ≥ t0 we have

|σ̃(x, t)− s(t)| ≤
∫ 1

0

|∂xσ̃(x, t)| dx ≤ α ,

hence
σ̃(x, t1) ≤ s + 2α , σ̃(x, t2) ≥ s̄− 2α . (1.3.40)

For r > 0 set λi(x, r) = pr[λ̃, σ̃](x, ti) , i = 1, 2 . On the one hand, we have by
definition of the play that

λ1(x, r) ≤ σ̃(x, t1)+r ≤ s+2α+r , λ2(x, r) ≥ σ̃(x, t2)−r ≥ s̄−2α−r , (1.3.41)

on the other hand, Lemma 3.1.2 and the semigroup property (3.1.21) yield that

λ2(x, r) ≥ min{λ1(x, r), s̄− 2α + r} , (1.3.42)

hence

λ2(x, r) ≥ min{λ1(x, r), λ1(x, r)− 4α} = λ1(x, r)− 4α . (1.3.43)

Combining (1.3.43) with (1.3.41), we obtain

λ2(x, r) ≥ max{λ1(x, r), s̄ + 2α− r} − 4α , (1.3.44)

consequently

λ2(x, r)−λ1(x, r) ≥ max{0, s̄ + 2α− r−λ1(x, r)}− 4α ≥ max{0, s̄− s− 2r}− 4α .
(1.3.45)

Inserting the inequality (1.3.45) into the integral in the definition (3.2.1) of F (note
that h is non-decreasing), we obtain

ε̃(x, t2)− ε̃(x, t1) = h(0)(σ̃(x, t2)− σ̃(x, t1)) (1.3.46)

+

∫ R+F0

0

(λ2(x, r)− λ1(x, r)) dh(r)

≥ 2H

(
s̄− s

2

)
− 4α h(R + F0) .
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Choosing α > 0 such that

2H

(
s̄− s

2

)
− 4α h(R + F0) ≥ α , (1.3.47)

we obtain ∫ 1

0

(ε̃(x, t2)− ε̃(x, t1)) dx ≥ α (1.3.48)

in contradiction with (1.3.36). We conclude that

s̄ = s =: σ∞ , (1.3.49)

and the proof of Theorem 1.3.2 is complete. ¥

Note that ε(x, t) also converges uniformly to some function ε∞ ∈ C[0, 1] . Indeed, by
(3.2.11) we have for 0 ≤ s < t that

|ε(x, t)− ε(x, s)| ≤ C ‖σ(x, ·)− σ(x, s)‖[s,t]

with a constant C > 0 independent of x, t , and s . The convergence σ̃(·, t) → σ∞ is
uniform with respect to x , hence also ε(·, t) converge uniformly. Since all ε(·, t) are
continuous by Theorem 1.1.1, we conclude that ε∞ is continuous.

Example 1.3.3. In order to illustrate the optimality of the 1/t decay rate as t →
∞ , we consider the following ODE system describing an elastoplastic spring-mass
oscillator

v̇ = −σ , (1.3.50)

ε̇ = v , (1.3.51)

ε = F [0, σ] , (1.3.52)

with initial conditions
v(0) = 0 , ε(0) = ε0 > 0 , (1.3.53)

where F [0, ·] is the Prandtl-Ishlinskii operator (3.2.1) with λ ≡ 0 , and ε0 is given. In
fact, (1.3.50)–(1.3.52) is related to the space-discrete system (1.1.4)–(1.1.6) for n = 2
which is of the form

v̇1 = 2(σ2 − σ1) , (1.3.54)

ε̇1 = 2v1 , (1.3.55)

ε̇2 = −2v1 , (1.3.56)

εj = F [0, σj] , j = 1, 2 . (1.3.57)

Indeed, assuming ε1(0) = −ε2(0) and using the fact that both F and ist inverse F̂
(see Proposition 3.2.1) are odd, we obtain ε1 = −ε2, σ1 = −σ2 , so that, after suitable
rescaling, System (1.3.54)–(1.3.57) is equivalent to (1.3.50)–(1.3.52). We thus may use
the argument of the proof of Theorem 1.3.2 and conclude that there exists a constant
C > 0 such that

|v(t) + |σ(t)| ≤ C

1 + t
∀t ≥ 0 . (1.3.58)
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It will immediately follow from Proposition 1.3.4 below that this decay rate is optimal.
On the other hand, we show in Remark 1.3.6 that ε(t) does not asymptotically vanish,
but converges as t →∞ to some positive limit ε∞ > 0 . In mechanical interpretation,
this means in agreement with practical experience that the initial deformation is not
completely recovered during free elastoplastic oscillations.

Proposition 1.3.4. Let the generating function h of the Prandtl-Ishlinskii operator
F be locally Lipschitz continuous in [0,∞[ , h(0) > 0 , h′(r) > 0 a. e. Then there
exist sequences 0 = t0 < t1 < t2 < . . . and σ0 > σ1 > σ2 > · · · > 0 such that the
solution (v, σ) to (1.3.50)–(1.3.53) has the properties

lim
k→∞

(tk − tk−1) = inf
k=1,2,...

(tk − tk−1) = π
√

h(0) , (1.3.59)

(−1)kσ is increasing in [tk−1, tk] , (−1)kσ(tk) = σk , (1.3.60)

∃c > 0 : σk ≥ c

1 + k
∀k ∈ N . (1.3.61)

The proof will be carried out by induction. The following Lemma constitutes a basis
for the induction step.

Lemma 1.3.5. Under the hypotheses of Proposition 1.3.4, let t∗ ≥ 0 be such that

σ∗ := σ(t∗) > 0 , σ̇(t∗) = 0 (1.3.62)

∃r∗ ≥ σ∗ : pr[0, σ](t∗) = σ∗ − r for r ∈ [0, r∗] . (1.3.63)

Then there exists t∗ > t∗ such that σ̇(t) < 0 in ]t∗, t∗[ , σ̇(t∗) = 0 , and σ∗ := σ(t∗) ∈
]− σ∗, 0[ .

Proof of Lemma 1.3.5. By virtue of (3.2.16)–(3.2.17) we have v(t∗) = 0, v̇(t∗) < 0 ,
hence there exists t̄ > t∗ such that σ̇(t) < 0 in ]t∗, t̄[ . We set

t∗ = sup{t̄ > t∗ ; σ̇(t) < 0 in ]0, t̄[ , σ(t̄) > −σ∗} . (1.3.64)

As in the proof of Proposition 1.0.2, we compute the balance of the total energy
1
2
v2 + U [0, σ] , but in a slightly refined form. Let us first evaluate explicitly pr[0, σ](t)

for t ∈ [t∗, t∗] . Set λ∗(r) = pr[0, σ](t∗) . The identity (3.1.20) and assumption (1.3.63)
yield

pr[0, σ](t) =

{
σ(t) + r for r < 1

2
(σ∗ − σ(t)) ,

λ∗(r) for r ≥ 1
2
(σ∗ − σ(t)) ,

(1.3.65)

and formulæ (3.4.1)–(3.4.3) yield

d

dt

(
1

2
v2 + U [0, σ]

)
(t) = −

∫ ∞

0

∣∣∣∣
d

dt
pr[0, σ](t)

∣∣∣∣ r dh(r) (1.3.66)

= σ̇(t)

∫ (1/2)(σ∗−σ(t))

0

r dh(r) = σ̇(t) Γ

(
1

2
(σ∗ − σ(t))

)
,

23



where we set Γ(s) = sh(s) − H(s) for s ≥ 0 , H being given by (3.2.3). We denote
by H the function

H(r) =

∫ r

0

H(s) ds for r ≥ 0 . (1.3.67)

With this notation, we can integrate (1.3.66) from t∗ to t and obtain for t ∈ [t∗, t∗[
that

1

2
v2(t)− (σ∗ + σ(t)) H

(
1

2
(σ∗ − σ(t))

)
= −(σ∗ − σ(t)) H

(
1

2
(σ∗ − σ(t))

)
(1.3.68)

+ 4H
(

1

2
(σ∗ − σ(t))

)
.

The function H is strictly convex, hence the right-hand side of (1.3.68) is negative for
t ∈ ]t∗, t∗[ and σ∗+σ(t) thus remains negative even for t → t∗ . By definition (1.3.64)
of t∗ only one of the following two cases can occur.

(a) t∗ = ∞ , σ∗ := limt→∞ σ(t) > −σ∗ ;

(b) t∗ < ∞ , σ̇(t∗) = 0, σ∗ := σ(t∗) > −σ∗ .

Case (a) can easily be excluded. Indeed, we then would have

lim
t→∞

σ̇(t) = lim
t→∞

ε̇(t) = lim
t→∞

v(t) = 0 . (1.3.69)

We rewrite (1.3.68) in the form

1

2
v2(t)− 2σ(t) H

(
1

2
(σ∗ − σ(t))

)
= 4H

(
1

2
(σ∗ − σ(t))

)
, (1.3.70)

and passing to the limit as t →∞ we obtain

−2σ∗ H

(
1

2
(σ∗ − σ∗)

)
= 4H

(
1

2
(σ∗ − σ∗)

)
. (1.3.71)

This implies that σ∗ < 0 , and from (1.3.50) we obtain limt→∞ v̇(t) = −σ∗ > 0 , which
contradicts (1.3.69). Consequently, the case (b) takes place together with (1.3.71),
and the assertion of Lemma 1.3.5 follows. ¥

Proof of Proposition 1.3.4. We first apply Lemma 1.3.5 at t∗ = 0. We have by (3.2.4)
that σ0 := σ(0) = H(ε0) > 0 , hence the conditions are fulfilled with r∗ = σ0 . We
conclude that there exists t1 > 0 such that σ̇(t1) = 0, σ1 := −σ(t1) ∈ ]0, σ0[ , and
setting r0 := σ0 , r1 := 1

2
(σ0 + σ1) ∈ ]σ1, r0[ , we obtain from (1.3.65) that

pr[0, σ](t1) =





−σ1 + r for r < r1 ,

σ0 − r for r ∈ [r1, r0[ ,

0 for r ≥ r0 .

(1.3.72)
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Recall that the play operator pr[0, ·] is odd. We therefore may use again Lemma 1.3.5
for −σ instead of σ with t∗ = t1 , r∗ = r1 , σ∗ = σ1 , and find t2 > t1 such that
σ̇(t2) = 0, σ2 := σ(t2) ∈ ]0, σ1[ , σ > 0 in ]t1, t2[ , and

pr[0, σ](t2) =

{
σ2 − r for r < r2 ,

pr[0, σ](t1) for r ≥ r2 .
(1.3.73)

By induction we now construct a decreasing sequence {σk}∞k=1 of positive numbers,
and an increasing sequence 0 = t0 < t1 < t2 < . . . such that (1.3.60) holds, and

pr[0, σ](tk) =

{
(−1)k(σk − r) for r < rk := 1

2
(σk−1 + σk) ,

pr[0, σ](tk−1) for r ≥ rk .
(1.3.74)

for all r > 0 and k ∈ N . By Eq. (1.3.71), we furthermore have

σk =
2H(rk)

H(rk)
=: A(rk) ∀k ∈ N , (1.3.75)

hence
σk−1 − σk = 2(rk − A(rk)) =: B(rk) . (1.3.76)

We can differentiate the function B defined in (1.3.76) and obtain for all x > 0 the
identity

B′(x) =
4

H2(x)

∫ x

0

H(s)(h(x)− h(s)) ds . (1.3.77)

By hypothesis, h is positive, increasing, and Lipschitz continuous on [0, σ0] , hence B
is increasing, B(0+) = 0, and

0 < B(x) ≤ Cx2 ∀x > 0 , (1.3.78)

with the convention that, similarly as in previous subsections, C denotes any positive
constant independent of k . Using (1.3.75)–(1.3.78) we see, on the one hand, that the
limit σ∞ = limk→∞ σk fulfils B(σ∞) = 0, hence σ∞ = 0. On the other hand, we have

1

σk

− 1

σk−1

=
σk−1 − σk

σk σk−1

≤ C
rk

σk

≤ C
rkH(rk)

H(rk)
. (1.3.79)

The function x 7→ (xH(x)/H(x) is bounded in ]0, σ0] , since its limit at x → 0+ is
1/2 . Hence,

1

σk

− 1

σk−1

≤ C for k ∈ N , (1.3.80)

and (1.3.61) follows.

It remains to check that (1.3.59) holds. Assume for definiteness that k is even; the
other case is similar. For t ∈ [tk−1, tk] we have as in (1.3.65) and (1.3.74) that

pr[0, σ](t) =

{
σ(t)− r for r < r(t) := 1

2
(σ(t)− σ(tk−1)) ,

pr[0, σ](tk−1) for r ≥ r(t) ,
(1.3.81)
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hence, by (3.2.1),

ε(t)− ε(tk−1) = 2 H(r(t)) , (1.3.82)

or equivalently

σ(t)− σ(tk−1) = 2 H−1

(
1

2
(ε(t)− ε(tk−1))

)
. (1.3.83)

As a consequence of (1.3.50)–(1.3.51) and (1.3.83), the function ε solves the differential
equation (according to our notation we have σ(tk−1) = −σk−1 )

ε̈(t)− σk−1 + 2 H−1

(
1

2
(ε(t)− ε(tk−1))

)
= 0 . (1.3.84)

Testing (1.3.84) by ε̇(t) , integrating from tk−1 to t , and using the fact that ε̇(tk−1) =
0, ε̇ > 0 otherwise, we obtain

ε̇(t) =

√
2σk−1(ε(t)− ε(tk−1))− 8 Ĥ

(
1

2
(ε(t)− ε(tk−1))

)
, (1.3.85)

where

Ĥ(r) =

∫ r

0

H−1(s) ds . (1.3.86)

For t = tk we obtain from (1.3.85) in particular that

σk−1(ε(tk)− ε(tk−1)) = 4 Ĥ
(

1

2
(ε(tk)− ε(tk−1))

)
. (1.3.87)

Set pk = 1
2
(ε(tk)− ε(tk−1)) . Then (1.3.85) can be rewritten as

ε̇(t) =
2
√

2√
pk

√
1

2
(ε(t)− ε(tk−1)) Ĥ (pk)− pk Ĥ

(
1

2
(ε(t)− ε(tk−1))

)
. (1.3.88)

The substitution

s(t) =
1

2pk

(ε(t)− ε(tk−1))

yields

ṡ(t) =

√
2

pk

√
s(t) Ĥ(pk)− pk Ĥ(s(t)) , (1.3.89)

hence √
2

pk

(tk − tk−1) =

∫ 1

0

ds√
s Ĥ(pk)− pk Ĥ(s)

. (1.3.90)

The function ĥ = (H−1)′ is decreasing and

s Ĥ(pk)− pk Ĥ(s) = s

∫ pk

0

∫ r

sr

ĥ(z) dz dr
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for s ∈ [0, 1] , hence
√

2

pk

√
ĥ(pk)

∫ 1

0

ds√
s (1− s)

≥
√

2

pk

(tk − tk−1) ≥
√

2

pk

√
ĥ(0)

∫ 1

0

ds√
s (1− s)

. (1.3.91)

We have by (1.3.82) that pk = H(rk) , hence ĥ(pk) = 1/h(rk) , and we conclude that

π
√

h(rk) ≥ tk − tk−1 ≥ π
√

h(0) . (1.3.92)

We already know that limk→∞ rk = 0, and the proof of Proposition 1.3.4 is complete.
¥

Remark 1.3.6. We have seen that {ε(tk)} is an alternating sequence of decreasing
local maxima and increasing local minima of ε whose differences pk tend to 0 , hence
ε∞ = limt→∞ ε(t) exists. It cannot be expected, however, that ε∞ = 0. This follows
from the identity

ε∞ = ε0 + 2
∞∑

k=1

(−1)kpk =
∞∑

k=1

(p2k−2 − 2p2k−1 + p2k) , (1.3.93)

provided we put p0 := ε0 . We still have pk = H(rk) for all k ≥ 0 , and the relation

r2k−2 − 2r2k−1 + r2k =
1

2
(B(r2k−2)−B(r2k−1)) > 0 (1.3.94)

holds for every k ∈ N by virtue of (1.3.76)–(1.3.77). The function H is increasing
and convex, hence

p2k−1 = H(r2k−1) < H

(
1

2
(r2k−2 + r2k)

)
≤ 1

2
(p2k−2 + p2k) , (1.3.95)

and we see that ε∞ in (1.3.93) is positive. Similarly, the total energy E(t) = 1
2
v2(t)+

U [0, σ](t) does not asymptotically vanish. Putting Ek = E(tk) = U [0, σ](tk) for
k ≥ 0 , we obtain by a computation similar as in the proof of Lemma 1.3.5 that

E0 = H(σ0) , Ek−1 − Ek = (σk−1 − σk) H(rk) for k ∈ N . (1.3.96)

Since H is strictly convex, we have

(σk−1 − σk) H(rk) <

∫ σk−1

σk

H(s) ds = H(σk−1)−H(σk) ,

hence, using the fact that E(t) is non-increasing, we have

lim
t→∞

E(t) = E0 −
∞∑

k=1

(Ek−1 − Ek) > 0 . (1.3.97)

This fact is not surprising either. A non-zero part of the initial energy is stored in the
remanent deformation of the spring, the rest is dissipated into heat.

To conclude this section, let us note that if we allow h′(0+) to be infinite, then the
decay rate may be faster than 1/t . The computation in [14, Example III.2.6] shows,
however, that it is never exponential. The case where F in (1.3.52) is replaced by the
Preisach operator (3.2.18) is investigated in [15].
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1.4 Quasilinear perturbations

The results listed in the previous subsections are related to the variational and mono-
tone character of the Prandtl-Ishlinskii operator as linear combination of solution
operators to simple variational inequalities. For the existence of solutions, the convex-
ity of the hysteresis loops is, however, more substantial than monotonicity. We now
show that the existence and regularity result is stable also with respect to quasilinear
perturbations . In other words, no shocks occur provided the convex-concave hystere-
sis behaviour is preserved. Since monotonicity is lost, the question of uniqueness of
solutions is open.

To be more specific, we consider the stress-strain relation in the form

ε = F [λ,G(σ)] , (1.4.1)

where G : R → R is a smooth “almost linear” increasing function, and F is the
Prandtl-Ishlinskii operator given by (3.2.1). Note that the superposition F ◦ G is
the so-called generalized Prandtl-Ishlinskii operator as a special case of the Preisach
operator (3.2.18), see [9] for the relationship between the functions h , g , and ψ .
Similar operators play an important role in modelling of piezoelectricity, see [18].
Changing accordingly the notation, we rewrite system (1.0.1) with constitutive law of
the type (1.4.1) in a more convenient form with a parameter δ > 0 as





∂tv = ∂x(σ + δ g(σ)) + f(σ, v, x, t) ,

∂tε = ∂xv ,

ε = F [λ, σ] .

(1.4.2)

The existence part of Theorem 1.1.1 holds for δ sufficiently small in the following
form.

Theorem 1.4.1. Let Hypothesis 1.0.1 be fulfilled, let the function κ from (3.4.8) be
positive on [0,∞[ , and let g be a non-decreasing function in R with locally Lip-
schitz continuous derivative. Then there exists δ0 > 0 such that System (1.4.2),
(1.0.2)–(1.0.3) for 0 ≤ δ ≤ δ0 admits a solution (v, σ, ε) ∈ C(Q̄T ;R3) such that
∂tv, ∂xv, ∂tσ, ∂xσ, ∂tε belong to L∞(0, T ; L2(0, 1)) , and (1.4.1) holds almost everywhere
in QT .

Proof. We discretize the system (1.4.1) in space in the form similar to (1.1.4)–(1.1.6),
more precisely

v̇j = n(σj+1 − σj) + δn(g(σj+1)− g(σj)) + fj(σj, vj, t) , j = 1, . . . n− 1 , (1.4.3)

ε̇j = n(vj − vj−1) , j = 1, . . . n , (1.4.4)

εj = F [λj, σj] , j = 1, . . . n . (1.4.5)

For each fixed n and δ , the existence of solutions to (1.4.3)–(1.4.5) together with
conditions (1.1.7)–(1.1.10) is obtained in the same way as in the proof of Theorem
1.1.1. The estimates, however, have to be carried out in a more careful way.

28



We fix a bound p1 ≥ maxj=1,...n |σj(0)| independent of n , and for each p > p1 we
solve (1.4.3)–(1.4.5) with δ = δ(p) > 0 such that

δ(p) max
|s|≤p

g′(s) ≤ 1 , δ(p) sup ess
|s|≤p

|g′′(s)| ≤ κ(p)

4 h(p)
. (1.4.6)

We define the maximal time T (n, p) > 0 for which all |σj(t)| remain bounded by p ,
that is,

T (n, p) = max{t ∈ [0, T ] ; max
j=1,...n

|σj(t)| ≤ p} . (1.4.7)

The counterpart of (1.1.18)–(1.1.19) reads

v̈j v̇j ≤ n(σ̇j+1 − σ̇j)v̇j + δ(p)n
d

dt
(g(σj+1)− g(σj))v̇j (1.4.8)

+
(
βj(t) + αf (t)(|σ̇j|+ |v̇j|)

)|v̇j| ,
ε̈jσ̇j = n(v̇j − v̇j−1)σ̇j , (1.4.9)

hence

1

n

n−1∑
j=1

v̈j v̇j+
1

n

n∑
j=1

(1+δ(p)g′(σj))ε̈jσ̇j ≤ 1

n

n−1∑
j=1

(
βj(t)+αf (t)(|σ̇j|+|v̇j|)

)|v̇j| . (1.4.10)

We use Theorem 3.4.1 to obtain for all 0 ≤ s < t ≤ T (n, p) and all j = 1, . . . n that

∫ t

s

ε̈jσ̇j dτ ≥ κ(p)

4

∫ t

s

|σ̇j|3 dτ +
1

2
(ε̇jσ̇j)(t−)− 1

2
(ε̇jσ̇j)(s+) . (1.4.11)

We see that the function

t 7→ 1

2
(ε̇jσ̇j)(t) +

κ(p)

4

∫ t

0

|σ̇j|3 dτ −
∫ t

0

ε̈jσ̇j dτ

in non-increasing in [0, T (n, p)] . For each absolutely continuous non-negative test
function η and for all t ∈ [0, T (n, p)] we thus have

∫ t

0

(
1

2
(ε̇jσ̇j)(τ) η̇(τ) +

(
(ε̈jσ̇j)(τ)− κ(p)

4
|σ̇j(τ)|3

)
η(τ)

)
dτ (1.4.12)

≥ 1

2
(ε̇jσ̇j)(t) η̇(t)− 1

2
(ε̇jσ̇j)(0+) η̇(0) .

We now set η(t) = 1 + δ(p)g′(σj(t)) in (1.4.12). By hypothesis (1.4.6) we have 1 ≤
η(t) ≤ 2 for t ∈ [0, T (n, p)] , hence

1

2
(ε̇jσ̇j)(t) ≤ (ε̇jσ̇j)(0+) +

∫ t

0

(1 + δ(p)g′(σj(τ)))(ε̈jσ̇j)(τ) dτ (1.4.13)

+

∫ t

0

(
δ(p)g′′(σj(τ))(ε̇jσ̇

2
j )(τ)− κ(p)

4
|σ̇j(τ)|3

)
dτ .

29



From (3.2.16) and hypothesis (1.4.6) it follows that for all t ∈ [0, T (n, p)] we have

δ(p)|g′′(σj(t))ε̇j(t)| ≤ κ(p)

4
|σ̇j(t)| ,

hence the last integral on the right-hand side of (1.4.13) is non-positive. We therefore
have

1

2n

(
n−1∑
j=1

v̇2
j (t) +

n∑
j=1

(ε̇jσ̇j)(t)

)
≤ 1

2n

(
n−1∑
j=1

v̇2
j (0) + 2

n∑
j=1

(ε̇jσ̇j)(0+)

)
(1.4.14)

+
1

n

∫ t

0

(
n−1∑
j=1

(v̈j v̇j)(τ) +
1

n

n∑
j=1

((1 + δ(p)g′(σj(τ)))(ε̈jσ̇j)(τ)

)
dτ

for a. e. t ∈ ]0, T (n, p)[ . The initial conditions on the right-hand side of (1.4.14) can
be estimated independently of n and p similarly as in the proof of Theorem 1.1.1, and
as a consequence of (3.2.17) we have ε̇j(t)σ̇j(t) ≥ h(0)σ̇2

j (t) a. e. Combining (1.4.14)
with (1.4.10) and using Gronwall’s inequality we find a constant CT independent of
n and p (and possibly dependent on T ) such that

1

n

(
n−1∑
j=1

v̇2
j (t) +

n∑
j=1

σ̇2
j (t)

)
≤ CT ∀t ∈ [0, T (n, p)] . (1.4.15)

Arguing as in the proof of Theorem 1.1.1, we find a constant C̄T independent of n
and p such that

n

(
n∑

j=1

(vj − vj−1)
2(t) +

n−1∑
j=1

(σj+1 − σj)
2(t)

)
+ max

j=1,...,n
|σj(t)| ≤ C̄T ∀t ∈ [0, T (n, p)] .

(1.4.16)
We now fix any p0 ≥ max{p1, C̄T} and set δ0 = δ(p0) . Then we have T (n, p) = T
for all n ∈ N , and the estimates (1.4.15)–(1.4.16) hold a. e. in [0, T ] . This enables
us to complete the proof passing to the limit as n → ∞ similarly as in the proof of
Theorem 1.1.1. ¥

2 Periodic solutions

In this section, we consider the system (1.0.1) with boundary conditions (1.0.3) and
with the time-periodicity condition

v(x, t + T ) = v(x, t) , σ(x, t + T ) = σ(x, t) (2.0.17)

for all (x, t) ∈ [0, 1] × [0,∞[ instead of (1.0.2), where T > 0 is a fixed period. Our
analysis will be carried out in the spaces Lp

T = Lp
loc(]0, 1[×]0,∞[) for 1 ≤ p ≤ ∞ and

in the space C0
T of continuous functions, all satisfying the T -periodicity condition.

Having in mind Corollary 3.1.3 which states that outputs of hysteresis operators with
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periodic inputs may possibly become periodic only after one period, we define the
norms

‖w‖p =

(∫ 2T

T

∫ 1

0

|w(x, t)|p dx dt

)1/p

for w ∈ Lp
T , 1 ≤ p < ∞ , (2.0.18)

‖w‖∞ = sup ess {|w(x, t)| ; (x, t) ∈]0, 1[×]T, 2T [} for w ∈ L∞T . (2.0.19)

We endow the space C0
T with the norm ‖ · ‖∞ as well. Recall that the compact

embeddings
H2,3

T := {w ∈ L2
T ; ∂xw ∈ L2

T , ∂tw ∈ L3
T} ↪→↪→ C0

T

H3,2
T := {w ∈ L2

T ; ∂xw ∈ L3
T , ∂tw ∈ L2

T} ↪→↪→ C0
T

(2.0.20)

take place, and we fix constants M, M ′ > 0 such that

‖w‖∞ ≤
∣∣∣
∫ 2T

T

∫ 1

0
w(x, t) dx dt

∣∣∣ + M (‖∂xw‖2 + ‖∂tw‖3) ∀w ∈ H2,3
T ,

‖w‖∞ ≤
∣∣∣
∫ 2T

T

∫ 1

0
w(x, t) dx dt

∣∣∣ + M ′ (‖∂xw‖3 + ‖∂tw‖2) ∀w ∈ H3,2
T .

(2.0.21)

An estimate for M, M ′ can be found in [14, Appendix 2].

We find sufficient conditions for the existence and uniqueness of solutions to the
Dirichlet-periodic problem and prove its global asymptotic stability.

2.1 Statement of main results

In addition to Hypothesis 1.0.1, we impose the following more restrictive assumptions
on f .

Hypothesis 2.1.1. The following conditions hold for all admissible arguments.

(i) f(σ, v, x, t + T ) = f(σ, v, x, t) ;

(ii) f 0, βf ∈ L2
T ;

(iii) |∂σf(σ, v, x, t)| ≤ γf ;

(iv) −γf ≤ ∂vf(σ, v, x, t) ≤ 0 , where γf > 0 is a fixed constant.

In this subsection we list the main results on existence (Theorem 2.1.2), uniqueness
(Theorem 2.1.3), and asymptotic stability (Theorem 2.1.6) of periodic solutions to
System (1.0.1), (1.0.3). Proofs are postponed to the next subsections.

Theorem 2.1.2. Let Hypotheses 1.0.1 and 2.1.1 hold. Assume in addition to (3.2.15)
that the functions h and κ in (3.2.1) and (3.4.8) satisfy the condition

lim sup
p→∞

h(p)

p κ(p)
=: q < ∞ (2.1.1)
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with

4
√

TγfM q

(
1 +

T

2π
γf (1 + γfe

γf )

)
< 1 . (2.1.2)

Then Eqs. (1.0.1) with boundary conditions (1.0.3) and periodicity conditions (2.0.17)
admit a solution (v, σ) ∈ H3,2

T × H2,3
T , and Equations (1.0.1) are satisfied for a. e.

(x, t) ∈ ]0, 1[× ]T,∞[ .

The situation is similar as in Subsections 1.2–1.3, cf. Remark 1.2.4. We are able to
prove existence only if no negative friction is present. Moreover, uniqueness is obtained
only if f is independent of σ , that is, if Problem (1.0.1) has the form (1.2.1). On the
other hand, we can replace (2.1.1) by a weaker condition (2.1.3) below.

Theorem 2.1.3. Let Hypotheses 1.0.1 and 2.1.1 hold with f independent of σ . As-
sume, instead of (2.1.1), that

lim sup
p→∞

h3/4(p)

p κ1/2(p)
=: q̃ < ∞ (2.1.3)

with

2 T 1/4
√
‖βf‖2 M q̃

(
1 +

T

2π
γf

)
< 1 . (2.1.4)

Let further % ∈ R be given. Then Problem (1.2.1) with the periodicity conditions
(2.0.17) admits a unique solution (v, σ) ∈ H3,2

T × H2,3
T , Eqs. (1.2.1) are satisfied for

a. e. (x, t) ∈ ]0, 1[× ]T,∞[ , and

1

T

∫ 2T

T

σ(0, t) dt = % . (2.1.5)

Remark 2.1.4. From (2.1.1) it follows that

lim sup
p→∞

h(p)

p (h(p)− h(p− 1))
≤ q , (2.1.6)

hence
1

(q + 1)p
≤ h(p)− h(p− 1)

h(p)
≤ log h(p)− log h(p− 1) (2.1.7)

for p larger than some p1 > 0 . We thus obtain that

lim
p→∞

h(p) = ∞ , lim
p→∞

√
h(p)

p
= lim

p→∞

√
h(p)

p κ(p)

√
κ(p)

p
= 0 . (2.1.8)

In particular, if condition (2.1.1) is satisfied, then (2.1.3) holds with q̃ = 0. The class
of functions satisfying (2.1.1) is non-empty. For example, for every locally Lipschitz
continuous function h such that

h∗ max{r0, r}α−1 ≤ h′(r) ≤ h∗ max{r0, r}α−1 a. e. , (2.1.9)
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where 0 < h∗ ≤ h∗ , r0 > 0 , α ∈ ]0, 1] are given numbers, we have for p > r0 that
κ(p) ≥ h∗ pα−1 , h(p) ≤ h(0)+h∗ pα/α , hence (2.1.1) holds. For the validity of (2.1.3),
it suffices to have for instance

h∗ max{r0, r}α1−1 ≤ h′(r) ≤ h∗ max{r0, r}α2−1 a. e. (2.1.10)

with some α1 ∈ ]− 1, 1] and α1 ≤ α2 ≤ (2/3)(α1 + 1) .

Remark 2.1.5. Below in Remark 2.3.1 at the end of Subsection 2.3 we comment on
the non-uniqueness related to the fact that % is arbitrary. Also the value of % can be
determined uniquely if we consider the Dirichlet boundary conditions in displacements
instead of velocities.

To conclude this subsection, we state, as a complement to Theorem 2.1.3, a result on
asymptotic stability of periodic solutions.

Theorem 2.1.6. Let Hypotheses 1.0.1, 2.1.1 hold with f independent of σ , and let
κ(p) > 0 for all p > 0 . Let us define the set

B =
{
(v, σ) ∈ L∞( ]0, 1[× ]0,∞[ )2 ; (2.1.11)

∂tv, ∂tσ, ∂xv, ∂xσ ∈ L∞(0,∞ ; L2(0, 1)) , v(0, t) = v(1, t) = 0
}

,

and assume that (v, σ) ∈ B is a solution of the problem




∂tv = ∂xσ + f(v, x, t) ,

∂tε = ∂xv ,

ε = F [λ, σ] ,

(2.1.12)

where λ ∈ C([0, 1] ; ΛK) and K > 0 are fixed. Then there exists λ ∈ C([0, 1] ; ΛK)
with K = max{K, ‖σ‖∞} and a periodic solution (v, σ) ∈ B of (1.2.1) such that

lim
t→∞

(|v(·, t)− v(·, t)|L∞(0,1) + |σ(·, t)− σ(·, t)|L∞(0,1)

)
= 0 . (2.1.13)

Remark 2.1.7. The assumptions of Theorem 2.1.6 are satisfied for instance under the
hypotheses of Theorem 1.2.5. In such a case, condition (2.1.3) automatically holds.

2.2 Existence

This subsection is devoted to the proof of Theorem 2.1.2. We fix some % ∈ R and
consider the problem

∂tv = ∂xσ
∗ + f(σ∗ + σ̂, v, x, t)− 1

T

∫ 2T

T

f(σ∗ + σ̂, v, x, τ) dτ , (2.2.1)

∂tε
∗ = ∂xv , (2.2.2)

ε∗ = F [λ, σ∗] (2.2.3)

d

dx
σ̂(x) = − 1

T

∫ 2T

T

f(σ∗ + σ̂, v, x, τ) dτ , σ̂(0) = % (2.2.4)
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together with the T -periodicity condition and

v(0, t) = v(1, t) = 0 ,

∫ 2T

T

v(x, t) dt =

∫ 2T

T

σ∗(x, t) dt = 0 (2.2.5)

for all admissible arguments. We observe that if (v, σ∗, σ̂, ε∗) is a solution to (2.2.1)–
(2.2.5), then (v, σ) with σ = σ∗+σ̂ and ε = F [λ, σ] satisfy the conditions of Theorem
2.1.2, since by Proposition 3.3.1 we have ∂tε = ∂tε

∗ for a. e. t > T .

The solution will be constructed by the Galerkin method. For j ∈ Z , k ∈ N ∪ {0} ,
t ≥ 0 , x ∈ [0, 1] we define basis functions

ej(t) =

{
sin 2πj

T
t if j > 0 ,

cos 2πj
T

t if j ≤ 0 ,
(2.2.6)

ϕk(x) = sin kπx , ψk(x) = cos kπx . (2.2.7)

For all relevant values of j, k, x, t we have

d

dt
ej(t) =

2πj

T
e−j(t) ,

d

dx
ϕk(x) = kπ ψk(x) ,

d

dx
ψk(x) = −kπ ϕk(x) . (2.2.8)

For each fixed n ∈ N we set Jn = {−n,−n + 1, . . . ,−1, 1, . . . , n − 1, n} , and define
functions v(n), σ(n), ε(n), σ̂(n) by the formulæ

v(n)(x, t) =
∑
j∈Jn

n∑

k=1

vjk ej(t) ϕk(x) , (2.2.9)

σ(n)(x, t) =
∑
j∈Jn

n∑

k=1

σjk ej(t) ψk(x) , (2.2.10)

ε(n)(x, t) = F [λ, σ(n)](x, t) , (2.2.11)

d

dx
σ̂(n)(x) = − 1

T

∫ 2T

T

f(σ(n) + σ̂(n), v(n), x, τ) dτ , σ̂(n)(0) = % , (2.2.12)

where vjk, σjk are solutions of the system

∫ 2T

T

∫ 1

0

(
∂tv

(n) − ∂xσ
(n) − f(σ(n) + σ̂(n), v(n), x, t)

)
ej(t) ϕk(x) dx dt = 0 , (2.2.13)

∫ 2T

T

∫ 1

0

(
∂tε

(n) − ∂xv
(n)

)
ej(t) ψk(x) dx dt = 0 (2.2.14)

for all j ∈ Jn , k = 0, 1, . . . , n . We first have to prove that (2.2.13)–(2.2.14) has a
solution. The unknown in the problem is the vector v = (vjk, σjk) , j ∈ Jn , k =
0, 1, . . . , n , with vj0 = 0 for all j ∈ Jn , hence v can be considered as an element of
V := R2n×n × R2n×(n+1) . The mappings which with v ∈ V associate the functions
ε(n) ∈ C0

T and σ̂(n) ∈ C[0, 1] are continuous, hence the system (2.2.13)–(2.2.14) is of
the form

Φ(v) = 0 , (2.2.15)
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where Φ is a continuous mapping from V to V . We define a homotopy Φs : V → V
with parameter s ∈ [0, 1] by the left-hand side of the system

∫ 2T

T

∫ 1

0

(
∂tv

(n) − ∂xσ
(n) − s f(σ(n) + σ̂(n)

s , v(n), x, t)
)

ej(t) ϕk(x) dx dt = 0 , (2.2.16)

∫ 2T

T

∫ 1

0

(
∂tε

(n) − ∂xv
(n)

)
ej(t) ψk(x) dx dt = 0 , (2.2.17)

where

ε(n)(x, t) = F [sλ, σ(n)](x, t) , (2.2.18)

d

dx
σ̂(n)

s (x) = − s

T

∫ 2T

T

f(σ(n) + σ̂(n)
s , v(n), x, τ) dτ , σ̂(n)

s (0) = % . (2.2.19)

We now check that (2.2.16)–(2.2.19) has no solution on the boundary of a sufficiently
large ball independently of s ∈ [0, 1] . The operator F [0, ·] corresponding to the initial
configuration λ ≡ 0 is odd, hence also Φ0 is odd in V , so that its Brouwer degree with
respect to this ball and to the point 0 ∈ V is nonzero. By homotopy, also the degree
of Φ1 = Φ is nonzero, hence a solution exists inside the ball. We thus establish the
existence of a solution to (2.2.16)–(2.2.19) provided we prove the following statement.

There exist p∞, p̃∞ > 0 independent of n ∈ N and s ∈ [0, 1] such
that if v ∈ V is a solution of (2.2.16)–(2.2.19) with ‖σ(n)‖∞ = p ,
then p ≤ p∞ and ‖v(n)‖∞ ≤ p̃∞ .



 (2.2.20)

To prove the conjecture (2.2.20), we consider some p ≥ K , where K is as in Hypothesis
1.0.1, some n ∈ N , s ∈ [0, 1] , and a solution of (2.2.16)–(2.2.19) with ‖σ(n)‖∞ ≤ p . We
test (2.2.16) by (2πj/T )2vjk , (2.2.17) by (2πj/T )2σjk , and sum them up. Integrating
by parts and using the T -periodicity we obtain

∫ 2T

T

∫ 1

0

∂ttε
(n) ∂tσ

(n) dx dt =

∫ 2T

T

∫ 1

0

∂tv
(n)∂t

(
s f(σ(n) + σ̂(n)

s , v(n), x, t)
)

dx dt .

(2.2.21)
Similarly, testing (2.2.16) by −(2πj/T )v−jk and (2.2.17) by −(2πj/T )σ−jk yields

∫ 2T

T

∫ 1

0

|∂tv
(n)|2 dx dt (2.2.22)

=

∫ 2T

T

∫ 1

0

(
∂tε

(n) ∂tσ
(n) + s ∂tv

(n) f(σ(n) + σ̂(n)
s , v(n), x, t)

)
dx dt .

By Hypothesis 2.1.1, we have the pointwise relations

∂tv
(n) ∂t

(
s f(σ(n) + σ̂(n)

s , v(n), x, t)
) ≤ |∂tv

(n)| (γf |∂tσ
(n)|+ |βf |

)
(2.2.23)

s f(σ(n) + σ̂(n)
s , v(n), x, t) ∂tv

(n) = ∂t

(
s F (σ̂(n)

s , v(n), x, t)
)

(2.2.24)

− s (∂tF )(σ̂(n)
s , v(n), x, t) + s

(
f(σ(n) + σ̂(n)

s , v(n), x, t)− f(σ̂(n)
s , v(n), x, t)

)
∂tv

(n) ,
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where we set F (σ, v, x, t) =
∫ v

0
f(σ, v′, x, t) dv′ . We have (∂tF )(σ, v, x, t) ≤ |v||βf | a. e.

Combining (2.2.21)–(2.2.24) and using (3.4.10) and (3.2.16) we obtain that

1

4
κ(p) ‖∂tσ

(n)‖3
3 ≤ ‖∂tv

(n)‖2

(
γf‖∂tσ

(n)‖2 + ‖βf‖2

)
, (2.2.25)

‖∂tv
(n)‖2

2 ≤ h(p)‖∂tσ
(n)‖2

2 + γf‖σ(n)‖2‖∂tv
(n)‖2 + ‖βf‖2‖v(n)‖2 . (2.2.26)

We now use the embedding inequalities

‖∂tσ
(n)‖2 ≤ T 1/6‖∂tσ

(n)‖3 , ‖σ(n)‖2 ≤ T

2π
‖∂tσ

(n)‖2 , ‖v(n)‖2 ≤ T

2π
‖∂tv

(n)‖2

(2.2.27)
(note that both σ(n)(x, ·) and v(n)(x, ·) have zero average on [0, T ] ) and set

x(p) = 1
p
sup{‖∂tσ

(n)‖3 ; ‖σ(n)‖∞ ≤ p}
y(p) = 1

p
sup{‖∂tv

(n)‖2 ; ‖σ(n)‖∞ ≤ p}
z(p) = 1

p
sup{‖∂xσ

(n)‖2 ; ‖σ(n)‖∞ ≤ p}





, (2.2.28)

where the supremum is taken over all possible solutions of (2.2.16)–(2.2.19) and over
all n ∈ N . From (2.2.25)–(2.2.28) we obtain

1

4
p κ(p) x3(p) ≤ y(p)

(
T 1/6γf x(p) +

‖βf‖2

p

)
, (2.2.29)

y2(p) ≤ T 1/3h(p) x2(p) +
T

2π
y(p)

(
T 1/6γf x(p) +

‖βf‖2

p

)
, (2.2.30)

and an elementary computation based on hypothesis (2.1.1) and (2.1.8) yields that

lim sup
p→∞

√
h(p) x(p) ≤ 4T 1/3γfq , lim sup

p→∞
y(p) ≤ 4T 1/2γfq . (2.2.31)

We estimate z(p) using Eq. (2.2.16), which yields

‖∂xσ
(n)‖2 ≤ ‖∂tv

(n)‖2 + ‖f 0‖2 + γf

(‖σ(n)‖2 + ‖v(n)‖2 + ‖σ̂(n)
s ‖2

)
(2.2.32)

≤
(

1 +
T

2π
γf

)
‖∂tv

(n)‖2 +
T

2π
γf‖∂tσ

(n)‖2 + ‖f 0‖2

+ T 1/2γf

(∫ 1

0

|σ̂(n)
s (x)|2 dx

)1/2

.

To estimate the last term on the right-hand side of (2.2.32), we use Eq. (2.2.19) and
obtain

d

dx

∣∣σ̂(n)
s (x)

∣∣ ≤ s

T

∫ 2T

T

∣∣f(σ(n) + σ̂(n)
s , v(n), x, t)

∣∣ dt (2.2.33)

≤ γf

∣∣σ̂(n)
s (x)

∣∣ +
1

T

∫ 2T

T

|f 0(x, t)| dt +
γf

T

∫ 2T

T

(|σ(n)|+ |v(n)|) (x, t) dt ,
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hence

max
x∈[0,1]

∣∣σ̂(n)
s (x)

∣∣ ≤ eγf
(|%|+ T−1/2

(‖f 0‖2 + γf

(‖σ(n)‖2 + ‖v(n)‖2

)))
. (2.2.34)

Combining (2.2.32) with (2.2.34) yields

‖∂xσ
(n)‖2 ≤ T 1/2γfe

γf |%|+ (1 + γfe
γf ) ‖f 0‖2 (2.2.35)

+

(
1 +

T

2π
γf (1 + γfe

γf )

)
‖∂tv

(n)‖2 + γf
T 7/6

2π
(eγf + 1) ‖∂tσ

(n)‖3 ,

hence, in view of (2.2.31),

lim sup
p→∞

z(p) ≤ 4T 1/2γfq

(
1 +

T

2π
γf (1 + γfe

γf )

)
. (2.2.36)

By virtue of (2.1.2), (2.1.8), (2.2.31), and (2.2.36), we may choose p∞ > 0 such that

M(x(p) + z(p)) < 1 for p ≥ p∞ . (2.2.37)

In other words, from (2.0.21), (2.2.28) and (2.2.37) it follows that whenever we have
a solution of (2.2.16)–(2.2.19), then the implication

(
p ≥ p∞ , ‖σ(n)‖∞ ≤ p

)
=⇒ ‖σ(n)‖∞ < p (2.2.38)

holds, hence ‖σ(n)‖∞ < p∞ independently of n ∈ N . From (2.2.17), (3.2.16),
and (2.2.31) we further obtain that ‖∂xv

(n)‖3 ≤ h(p∞)‖∂tσ
(n)‖3 ≤ p∞ h(p∞) x(p∞) ,

‖∂tv
(n)‖2 ≤ p∞ y(p∞) , hence also ‖v(n)‖∞ < M ′p∞(h(p∞) x(p∞) + y(p∞)) as a conse-

quence of (2.0.21). We thus proved the conjecture (2.2.20) which implies that (2.2.16)–
(2.2.19) has a solution for every n ∈ N . Moreover, we have found a bound independent
of n for σ(n) in H2,3

T and for v(n) in H3,2
T . Using the compact embedding (2.0.20),

we may find a subsequence (still indexed by n ) and some elements σ∗ ∈ H2,3
T and

v ∈ H3,2
T such that

∫ 2T

T
v(x, t) dt =

∫ 2T

T
σ∗(x, t) dt = 0 a. e., and

v(n) → v , σ(n) → σ∗ uniformly, (2.2.39)

∂tv
(n) → ∂tv , ∂xσ

(n) → ∂xσ
∗ weakly in L2

T , (2.2.40)

∂xv
(n) → ∂xv , ∂tσ

(n) → ∂tσ
∗ weakly in L3

T . (2.2.41)

We can pass to the limit as n → ∞ in (2.2.11)–(2.2.14) and find ε∗ ∈ C0
T , σ̂ ∈

W 1,2(0, 1) such that

ε∗(x, t) = F [λ, σ∗](x, t) , (2.2.42)

d

dx
σ̂(x) = − 1

T

∫ 2T

T

f(σ∗ + σ̂, v, x, τ) dτ , σ̂(0) = % , (2.2.43)

∫ 2T

T

∫ 1

0

(∂tv − ∂xσ
∗ − f(σ∗ + σ̂, v, x, t)) ϑ(x, t) dx dt = 0 , (2.2.44)

∫ 2T

T

∫ 1

0

(∂tε
∗ − ∂xv) ϑ(x, t) dx dt = 0 (2.2.45)
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for every test function ϑ ∈ L2
T such that

∫ 2T

T
ϑ(x, t) dt = 0 a. e. We now obtain

(2.2.1)–(2.2.2) (and thus complete the proof of Theorem 2.1.2) by putting ϑ = ∂tv −
∂xσ

∗−f(σ∗+ σ̂, v, x, t)+(1/T )
∫ 2T

T
f(σ∗+ σ̂, v, x, τ) dτ in (2.2.44), and ϑ = ∂tε

∗−∂xv
in (2.2.45).

2.3 Uniqueness

In this section, we prove Theorem 2.1.3. Since the nonlinearity f is now independent
of σ , the counterpart of (2.2.1)–(2.2.5) reads

∂tv = ∂xσ
∗ + f(v, x, t)− 1

T

∫ 2T

T

f(v, x, τ) dτ , (2.3.1)

∂tε
∗ = ∂xv , (2.3.2)

ε∗ = F [λ, σ∗] (2.3.3)

d

dx
σ̂(x) = − 1

T

∫ 2T

T

f(v, x, τ) dτ , σ̂(0) = % (2.3.4)

together with the T -periodicity condition and

v(0, t) = v(1, t) = 0 ,

∫ 2T

T

v(x, t) dt =

∫ 2T

T

σ∗(x, t) dt = 0 . (2.3.5)

We will not repeat all details of the existence proof which exactly follows the lines of
the proof of Theorem 2.1.2. Estimates analogous to (2.2.25)–(2.2.26) for the system
(2.3.1)–(2.3.5) have the form

1

4
κ(p) ‖∂tσ

(n)‖3
3 ≤ ‖βf‖2 ‖∂tv

(n)‖2 , (2.3.6)

‖∂tv
(n)‖2

2 ≤ h(p)‖∂tσ
(n)‖2

2 + ‖βf‖2‖v(n)‖2 (2.3.7)

which, with the notation of (2.2.28), yields similarly as in (2.2.31) that

lim sup
p→∞

√
h(p) x(p) ≤ 2T 1/12 q̃

√
‖βf‖2 , lim sup

p→∞
y(p) ≤ 2T 1/4 q̃

√
‖βf‖2 . (2.3.8)

Instead of (2.2.32) we directly have

‖∂xσ
(n)‖2 ≤

(
1 +

T

2π
γf

)
‖∂tv

(n)‖2 + ‖f 0‖2 , (2.3.9)

and the rest of the existence argument is identical to the one in the previous subsection.

To prove the uniqueness, we consider two solutions (v1, σ
∗
1), (v2, σ

∗
2) of (2.3.1)–(2.3.5)

(with ε∗i , σ̂i , i = 1, 2 having the corresponding meaning) associated with two different
values %1, %2 of % in (2.3.4). Set v̄ = v1 − v2 , σ̄ = σ∗1 − σ∗2 , ε̄ = ε∗1 − ε∗2 . As f is
non-increasing in v , we obtain from (2.3.1)–(2.3.2) that

∫ 2T

T

∫ 1

0

∂tε̄ σ̄ dx dt =

∫ 2T

T

∫ 1

0

v̄(f(v1, x, t)− f(v2, x, t)) dx dt ≤ 0 . (2.3.10)
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By Proposition 3.3.2 there exists σ0 ∈ W 1,2(0, 1) such that σ̄(x, t) = σ0(x) for t ≥ T .
In view of (2.3.5), we have σ0 ≡ 0 , hence σ∗1 = σ∗2 , consequently also ε∗1 = ε∗2 and
v1 = v2 . We thus have

σ̂1(x) = σ̂2(x) = %1 − %2 (2.3.11)

for all x ∈ [0, 1] , and the uniqueness follows.

Remark 2.3.1. The ambiguity due to the arbitrary choice of % in (2.3.4) can be
removed by considering the Dirichlet boundary conditions in displacements instead
of velocities. More specifically, we denote by (v, σ∗, σ̂0) the solution of (2.3.1)–(2.3.5)
corresponding to % = 0. We know from (2.3.11) that (v, σ∗, σ̂0+%) is then the solution
to (2.3.1)–(2.3.5) for any % . For (x, t) ∈ [0, 1]× [T,∞[ and % ∈ R set

ε(%)(x, t) = F [λ, σ∗ + σ̂0 + %](x, t) , u(%)(x, t) =

∫ t

T

v(x, t′) dt′ +
∫ x

0

ε(%)(x′, T ) dx′ .

(2.3.12)
We then have ∂tu

(%) = v , ∂xu
(%) = ε(%) , u(%)(x, t + T ) = u(%)(x, t) for all (x, t) ∈

[0, 1]× [T,∞[ , and u(%)(1, t) =
∫ 1

0
ε(%)(x, T ) dx . We claim that

∃! % ∈ R : u(%)(1, t) = 0 ∀t ≥ T . (2.3.13)

This conjecture follows from the fact that for %1 > %2 we have by (3.3.6) and (2.3.11)
that ε(%1)(x, t)− ε(%2)(x, t) ≥ h(0)(%1 − %2) , and that ε(%) depends continuously on % .

2.4 Asymptotic stability

This subsection is devoted to the proof of Theorem 2.1.6. For λ1, λ2 ∈ C([0, 1] ; ΛK) ,
(v1, σ1), (v2, σ2) ∈ B , we define the functional

V (λ1, λ2, v1, v2, σ1, σ2)(t) =

∫ 1

0

(
h(0) (σ1 − σ2)

2 + (v1 − v2)
2
)

dx (2.4.1)

+

∫ 1

0

∫ ∞

0

(pr[λ1, σ1]− pr[λ2, σ2])
2 dh(r) dx .

Using (3.3.2) we check that whenever (vi, σi) for i = 1, 2 are solutions of (1.2.1) with
the respective choice of λ = λi , then

d

dt
V (λ1, λ2, v1, v2, σ1, σ2)(t) ≤ 0 a. e. (2.4.2)

For n ∈ N and x ∈ [0, 1] , t ≥ 0 , r ≥ 0 we define the sequences

vn(x, t) = v(x, t + nT ) , σn(x, t) = σ(x, t + nT ) , λn(x, r) = pr[λ(, ·), σ(, ·)](nT ) .
(2.4.3)

By Lemma 3.1.2 and Proposition 3.1.1 we have λn ∈ C([0, 1] ; ΛK) for all n , and
putting εn(x, t) = F [λ, σ](x, t + nT ) we obtain for all x ∈ [0, 1] and t ≥ 0 that

εn(x, t) = F [λn, σn](x, t) . (2.4.4)
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The sequence {(vn, σn) ; n ∈ N} is equibounded in B ; there exists therefore a subse-
quence {nk} in N and an element (v, σ) ∈ B such that

(∂tvnk
, ∂xvnk

, ∂tσnk
, ∂xσnk

) → (∂tv, ∂xv, ∂tσ, ∂xσ)

weakly-star in L∞(0,∞ ; L2(0, 1)) ,

(vnk
, σnk

) → (v, σ)

locally uniformly in [0, 1]× [0,∞[ .





(2.4.5)

From (3.1.14) it follows that {λn} is an equibounded and equicontinuous sequence in
C([0, 1] ; ΛK) . Since ΛK) is a compact subset of C[0, K] , we may use the Arzelà-
Ascoli Theorem and assume that the subsequence {nk} is such that

λnk
→ λ ∈ C([0, 1] ; ΛK) uniformly in [0, 1]× [0, K] . (2.4.6)

All elements (vn, σn) are solutions to (1.2.1) with εn given by (2.4.4). Passing to the
limit as nk → ∞ we conclude that (v, σ) is a solution to (1.2.1). For all k ∈ N we
have by (2.4.2) that

d

dt
V (λnk

, λ, vnk
, v, σnk

, σ)(t) ≤ 0 a. e. , (2.4.7)

hence

sup
t≥0

V (λnk
, λ, vnk

, v, σnk
, σ)(t) ≤ V (λnk

, λ, vnk
, v, σnk

, σ)(0) . (2.4.8)

The right-hand side of (2.4.8) tends to 0 as k →∞ , and we conclude that

lim
k→∞

sup
t≥0

∫ 1

0

(|vnk
− v|2 + |σnk

− σ|2) (x, t) dx = 0 . (2.4.9)

We now prove that both v and σ are T -periodic. Put v+(x, t) = v(x, t + T ) ,
σ+(x, t) = σ(x, t + T ) , λ+(x, r) = pr[λ(, ·), σ(, ·)](T ) , and

β = lim
t→∞

V (λ+, λ, v+, v, σ+, σ)(t) ≥ 0 . (2.4.10)

For all t ≥ 0 we have

β = lim
k→∞

V (λnk+1, λnk
, vnk+1, vnk

, σnk+1, σnk
)(t) = V (λ+, λ, v+, v, σ+, σ)(t) ,

(2.4.11)
hence (d/dt)V (λ+, λ, v+, v, σ+, σ) = 0 a. e. in [0,∞[ . By construction we have
λ+(x, 0) = σ+(x, 0) , λ(x, 0) = σ(x, 0) for all x ∈ [0, 1] . From Proposition 3.3.2 it
follows that there exists a function R(x, t) such that R(x, ·) is non-decreasing for ev-
ery x and σ+(x, t)− σ(x, t) = λ+(x,R(x, t))− λ(x,R(x, t)) . For every x there exists
therefore the limit σ∞(x) = limt→∞(σ+(x, t)−σ(x, t)) = limt→∞(σ(x, t+T )−σ(x, t)) .
Since σ is bounded, we have

lim
t→∞

(σ+(x, t)− σ(x, t)) = 0 ∀x ∈ [0, 1] . (2.4.12)
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Using again Proposition 3.3.2, we similarly obtain

lim
t→∞

(pr[λ+, σ+](x, t)− pr[λ, σ](x, t)) = 0 ∀x ∈ [0, 1] ∀r > 0 . (2.4.13)

Let δ > 0 be arbitrarily given. We fix some m ∈ N and tm > 0 such that for all
t ≥ tm and all j = 1, . . . , m we have

|σ(j/m, t + T )− σ(j/m, t)| < δ/2 . (2.4.14)

For each y ∈ [(j − 1)/m, j/m] and t ≥ 0 we have

|σ(y, t)− σ(j/m, t)| ≤ 1√
m

(∫ j/m

(j−1)/m

|∂xσ(x, t)|2 dx

)1/2

≤ C√
m

(2.4.15)

with some constant C independent of t and m . We thus can find t∗ > 0 such that

|σ(·, t + T )− σ(·, t)|L∞(0,1) < δ for t ≥ t∗ . (2.4.16)

Let ` ∈ N be such that, by virtue of (2.4.9), we have

∣∣∣∣
∫ 1

0

|σ(x, ·)− σnk
(x, ·)|2 dx

∣∣∣∣
L∞(0,∞)

< δ2 for k ≥ ` . (2.4.17)

Put t∗∗ = t∗ + n`T . For s ≥ T ∗∗ , we have s− n`T ≥ t∗ , hence

|σ(·, s + T )− σ(·, s)|L2(0,1) ≤ |σ(·, s + T )− σ(·, s− n`T + T )|L2(0,1) (2.4.18)

+ |σ(·, s− n`T + T )− σ(·, s− n`T )|L2(0,1)

+ |σ(·, s− n`T )− σ(·, s)|L2(0,1)

≤ 3δ .

Let now t ≥ 0 be arbitrary. We fix k ≥ ` such that t + nkT ≥ t∗∗ . Then

|σ(·, t + T )− σ(·, t))|L2(0,1) ≤ |σ(·, t + T )− σnk
(·, t + T )|L2(0,1) (2.4.19)

+ |σ(·, t + nkT + T )− σ(·, t + nkT )|L2(0,1)

+ |σ(·, t)− σnk
(·, t)|L2(0,1)

≤ 5δ .

Since δ > 0 was arbitrary, we obtain σ(x, t + T ) = σ(x, t)) for all x and t , and from
the fact that (v, σ) is a solution to (1.2.1) we obtain also v(x, t+T ) = v(x, t)) . Using
(2.4.11) and (2.4.13) we obtain β = 0 and λ+ = λ .

To conclude the proof, consider the sequence

dn := V (λn, λ, vn, v, σn, σ)(0) . (2.4.20)
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By (2.4.2), we have dn+1 ≤ dn for all n ∈ N . As dnk
→ 0 , the whole sequence {dn}

converges to 0 and using (2.4.2) again, we obtain

lim
n→∞

sup
t≥0

∫ 1

0

(|vn − v|2 + |σn − σ|2) (x, t) dx = 0 . (2.4.21)

Combining (2.4.21) with the elementary interpolation inequality

|w|L∞(0,1) ≤ |w|L2(0,1) + 2|w|1/2

L2(0,1)|∂xw|1/2

L2(0,1) ,

we see that the whole sequence {(vn, σn)} converges uniformly to (v, σ) in [0, 1] ×
[0,∞[ . It remains to prove that (2.1.13) holds. To this end, we consider again any
δ > 0 and find n0 such that |vn(x, t) − v(x, t)| + |σn(x, t) − σ(x, t)| < δ for all (x, t)
and all n ≥ n0 . For t ≥ n0T we find n ≥ n0 such that t− nT ∈ [0, T ] . Then

|v(·, t)− v(·, t))|L∞(0,1) + |σ(·, t)− σ(·, t))|L∞(0,1) (2.4.22)

= |vn(·, t− nT )− v(·, t− nT ))|L∞(0,1) + |σn(·, t− nT )− σ(·, t− nT ))|L∞(0,1) < δ ,

and Theorem 2.1.6 is proved.

3 Hysteresis operators

The first axiomatic approach to hysteresis was proposed by Madelung in [19], and
a basic mathematical theory of hysteresis operators has been developed by M. Kras-
nosel’skii and his collaborators. The results of this group are summarized in the mono-
graph [10] which constitutes until now the main source of reference on hysteresis. Our
presentation here is based on more recent results from [14] which are needed here,
in particular the energy inequalities in Subsection 3.4. The so-called play operator
introduced in [10] is the main building block of the theory.

3.1 The play operator

For our purposes, it is convenient to work in the space GR(R+) of right-continuous
regulated functions of time t ∈ R+ , that is, functions w : R+ → R which admit the
left limit w(t−) at each point t > 0 , and the right limit w(t+) exists and coincides
with w(t) for each t ≥ 0 . More information about regulated functions can be found
e. g. in [1, 2, 7, 16, 24].

We endow the space GR(R+) with the system of seminorms

‖w‖[0,t] = sup{|w(τ)| ; τ ∈ [0, t]} for w ∈ GR(R+) and t ∈ R+ . (3.1.1)

With the metric

∆(u, v) = sup
T>0

‖u− v‖[0,T ]

1 + ‖u− v‖[0,T ]

for u, v ∈ GR(R+) , (3.1.2)
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the set GR(R+) becomes a Fréchet space. Similarly, BV loc
R (R+) will denote the space

of right-continuous functions of bounded variation on each interval [0, T ] for any T >
0 , and C(R+) is the space of continuous functions on R+ . We have BV loc

R (R+) ⊂
GR(R+) and the embedding is dense, while C(R+) is a closed subspace of GR(R+) .

The uniform approximation problem for real-valued regulated functions by functions
of bounded variation has actually an interesting solution. For each w ∈ GR(R+) , a
parameter r > 0 , and an initial condition ξ0

r ∈ [w(0) − r, w(0) + r] , there exists a
unique ξr ∈ BV loc

R (R+) in the r -neighborhood of w with minimal total variation,
that is (see Figure 1 for ξ0

r = w(0)),

|w(t)− ξr(t)| ≤ r ∀t ≥ 0 , (3.1.3)

ξr(0) = ξ0
r , (3.1.4)

Var
[0,t]

ξr = min{Var
[0,t]

η ; η ∈ BV loc
R (R+), η(0) = ξ0

r , ‖w − η‖[0,t] ≤ r} ∀t > 0 .(3.1.5)

�rr 0 t

y

y = ξr(t)

y = w(t)

Figure 1: Optimal BV-approximation.

This result goes back to A. Vladimirov and V. Chernorutskii for the case of continuous
functions w ; for a proof see [23]. An extension to L∞(R+) has been done in [17].
The function ξr can also be characterized as the unique solution of the variational
inequality

|w(t)− ξr(t)| ≤ r ∀t ≥ 0 , (3.1.6)

ξr(0) = ξ0
r , (3.1.7)∫ t

0

(w(τ)− ξr(τ)− y(τ)) dξr(τ) ≥ 0 (3.1.8)

∀t ≥ 0 ∀y ∈ GR(R+) , ‖y‖[0,t] ≤ r ,

where the integration in (3.1.8) is understood in the Young or Kurzweil sense, see
[16, 17]. If moreover w is continuous, then ξr is continuous, we can restrict ourselves
to continuous test functions y , and (3.1.8) can be interpreted as the usual Stieltjes
integral.
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Let W 1,1
loc (R+) denote the space of absolutely continuous functions on R+ . It is an

easy exercise to show that if w ∈ W 1,1
loc (R+) , then the solution ξr to (3.1.6)–(3.1.8)

belongs to W 1,1
loc (R+) and fulfils the variational inequality

ξ̇r(t) (w(t)− ξr(t)− y) ≥ 0 a. e. ∀y ∈ [−r, r] . (3.1.9)

Let us consider the mapping p̂r : R×GR(R+) → BV loc
R (R+) which with each ξ̂0

r ∈ R
and w ∈ GR(R+) associates the solution ξr of (3.1.6) – (3.1.8) with

ξ0
r = max{w(0)− r, min{w(0) + r, ξ̂0

r}} . (3.1.10)

Then p̂r is a hysteresis operator called the play , and alternative equivalent definitions
of the play can be found in [3, 10, 25]. Figure 2 shows a typical w− ξr diagram. The
horizontal parts of the graph are reversible, motions along the lines ξr = w ± r are
irreversible.

�w
−r

r

ξr

Figure 2: A diagram of the play.

More complex hysteresis behavior can be modelled by considering the whole family
{ξr}r>0 corresponding to a given w ∈ GR(R+) . In fact, [3, Theorem 2.7.7] shows that
a very large class of hysteresis operators admits a representation by means the one-
parametric play system which accounts for the hysteresis memory and the parameter
r plays the role of memory variable. We introduce the hysteresis state space

Λ = {λ : R+ → R ; |λ(r)− λ(s)| ≤ |r − s| ∀r, s ∈ R+ , lim
r→+∞

λ(r) = 0} , (3.1.11)

and choose the initial condition {ξ̂0
r}r>0 in the form

ξ̂0
r = λ(r) for r > 0 , (3.1.12)

where λ ∈ Λ is given. We define the operators pr : Λ × GR(R+) → BV loc
R (R+) for

r > 0 by the formula
pr[λ,w] = p̂r[λ(r), w] (3.1.13)

for λ ∈ Λ and w ∈ GR(R+) . Consistently with the definition we set p0[λ,w](t) = w(t)
for all t ≥ 0 .

The following result was proved in [14, 17].
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Proposition 3.1.1. For every λ ∈ Λ , w ∈ GR(R+) , and t ≥ 0 , the mapping r 7→
λt(r) = pr[λ,w](t) belongs to Λ , and for all λ1, λ2 ∈ Λ , w1, w2 ∈ GR(R+) and t ≥ 0
we have

|pr[λ1, w1](t)−pr[λ2, w2](t)| ≤ max{|λ1(r)−λ2(r)|, ‖w1 − w2‖[0,t]} ∀r ≥ 0 , (3.1.14)

The play operator thus generates for every t ≥ 0 a continuous state mapping Πt :
Λ×GR(R+) → Λ which with each (λ,w) ∈ Λ×GR(R+) associates the state λt ∈ Λ
at time t .

In order to study further properties of the play, we first derive an explicit formula for
pr[λ,w] if w is a step function of the form

w(t) =
m∑

k=1

wk−1χ[tk−1,tk[ (t) for t ≥ 0 (3.1.15)

with some given wi ∈ R , i = 0, 1, . . . , m− 1 , where 0 = t0 < t1 < · · · < tm−1 < tm =
+∞ is a given sequence and χA for A ⊂ R is the characteristic function of the set A ,
that is, χA(t) = 1 for t ∈ A , χA(t) = 0 otherwise. We define analogously to (3.1.10)
for λ ∈ Λ and v ∈ R the function P [λ, v] : R+ → R by the formula

P [λ, v](r) = max{v − r, min{v + r, λ(r)}} , (3.1.16)

see Fig. 3. In particular, P can be considered as a mapping from Λ × R to Λ. One
can directly check as a one-dimensional counterpart of [16, Proposition 4.3] using the
Young or Kurzweil integral calculus and the inequality

(P [λ, v](r)− λ(r)) (v − P [λ, v](r)− z) ≥ 0 ∀|z| ≤ r (3.1.17)

that we have

ξr(t) =
m∑

k=1

ξ
(r)
k−1χ[tk−1,tk[ (t) for t ≥ 0 , (3.1.18)

with
ξ

(r)
k = λk(r) , λk = P [λk−1, wk] , λ−1 = λ . (3.1.19)

for k = 0, . . . m− 1 , see Figure 3.

Every function w ∈ GR(R+) can be approximated uniformly on every compact in-
terval by step functions of the form (3.1.15). Proposition 3.1.1 enables us to extend
Eq. (3.1.19) to the whole space GR(R+) and obtain for a function w ∈ GR(R+) which
is monotone (non-decreasing or non-increasing) in an interval [t0, t1] the representation
formula

pr[λ,w](t) = P [λt0 , w(t)](r) = max{w(t)− r, min{w(t) + r, λt0(r)}} (3.1.20)

for t ∈ [t0, t1] , see Figure 2. It is perhaps interesting to note that (3.1.20) has originally
been used in [10] as alternative definition of the play on continuous piecewise monotone
inputs, extended afterwards by density and continuity to the whole space of continuous
functions.
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w0

w1

r

y = λ1(r) = P [λ0, w1](r)

y = λ(r)

y = λ0(r) = P [λ,w0](r)

Figure 3: Distribution of play operators in consecutive times.

More generally, the play possesses the semigroup property as a time-continuous version
of (3.1.19), namely

pr[λ,w](t + s) = pr[λs, w(s + ·)](t) (3.1.21)

for all w ∈ GR(R+) , λ ∈ Λ and s, t ≥ 0 .

The choice (3.1.11) of the state space is justified by the fact that it consists of elements
which are asymptotically reachable from the reference initial state λ ≡ 0 , that is,

∀λ ∈ Λ ∃w ∈ GR(R+) ∀ε > 0 ∃T > 0 : sup
r>0

|λ(r)− pr[0, w](T )| < ε . (3.1.22)

Instead of a formal proof of this statement, we rather illustrate the construction of
w on Figure 4. We set for instance Tk = 2k for k = 0, 1, 2, . . . and fix a sequence
εk → 0 as k → ∞ . The function w will be defined as a step function successively
in [Tk, Tk+1] with a maximum absolute value at Tk + 1 and with jumps of decreasing
amplitude at points Tk + 1 < t1 < t2 < · · · < Tmk

< Tk+1 . The graph of the
function λk(r) = pr[0, w](Tk+1) is piecewise affine with alternating slopes +1 and −1
for 0 ≤ r ≤ |w(Tk + 1)| , and is chosen so as |λ(r)− λk(r)| < εk for k = 0, 1, 2, . . . .

Consider now a subset ΛK of the state space Λ defined as

ΛK = {λ ∈ Λ ; λ(r) = 0 for r ≥ K} (3.1.23)

for any K > 0 . We now prove another property of the play which is used several
times throughout the text.

Lemma 3.1.2. Let w ∈ GR(R+) and t ≥ 0 be given. Set

wmax(t) = sup
τ∈[0,t]

w(τ) , wmin(t) = inf
τ∈[0,t]

w(τ) . (3.1.24)
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w(Tk + 1)

w(t1)

w(t2)

w(t3)

w(Tk+1)

r
y = λ(r)

y = pr[0, w](Tk+1)

Figure 4: Construction of w in (3.1.22) at times Tk + 1 < t1 < t2 < t3 < Tk+1 .

Then for all λ ∈ Λ and r > 0 we have

pr[λ, w](τ) ≤ max{λ(r), wmax(t)− r} ∀ τ ∈ [0, t] , (3.1.25)

pr[λ, w](τ) ≥ min{λ(r), wmin(t) + r} ∀ τ ∈ [0, t] , (3.1.26)

pr[λ,w](t) = λ(r) for r > ‖mλ(w(·))‖[0,t] , (3.1.27)

where for v ∈ R we put mλ(v) = inf{r ≥ 0 ; |λ(r) − v| = r} . In particular, for
K > 0 , λ ∈ ΛK we have λt ∈ ΛKt for all t ≥ 0 , where Kt = max{K, ‖w‖[0,t]} .

Proof. By density and continuity, it suffices to prove the assertion for step functions
w of the form (3.1.15) using the recurrent formula (3.1.19). We show by induction
that

λk−1(r) ≤ max{λ(r), wmax(t)− r} ∀ r ≥ 0 (3.1.28)

for every tk−1 ≤ t . Indeed, (3.1.28) holds for k = 0. Assume now that for some
k > 0 , tk−1 ≤ t , and r > 0 , we have λk−1(r) > wmax(t) − r . By virtue of (3.1.16),
(3.1.19) and of the induction hypothesis, we have λ(r) ≥ λk−2(r) > wmax(t)−r , hence
λk−1(r) ≤ λk−2(r) ≤ λ(r) , and (3.1.25) follows. The proof of (3.1.26) is similar. To
check Eq. (3.1.27), we notice that the function r 7→ r−|v−λ(r)| is non-decreasing for
every v ∈ R , hence for r > ‖mλ(w(·))‖[0,t] and for all τ ∈ [0, t] we have |λ(r)−w(τ)| ≤
r , that is, λ(r)− r ≤ w(τ) ≤ λ(r) + r . Then (3.1.16), (3.1.19) yield immediately that
λk−1(r) = λ(r) . For λ ∈ ΛK and v ∈ R we have max{K, |v|} ≥ mλ(v) , and using
(3.1.27) we easily complete the proof. ¥

Let us derive some consequences from Lemma 3.1.2. Assume that mλ(w(·)) attains
at a point t̄ ≥ 0 its maximum over [0, t̄] , that is,

r̄ := mλ(w(t̄)) = ‖mλ(w(·))‖[0,t̄] . (3.1.29)
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The case r̄ = 0 is trivial, as it implies w(t) = λ(0) for all t ∈ [0, t̄] . For r̄ > 0 we
distinguish the cases

(i) w(t̄) = λ(r̄) + r̄ ,

(ii) w(t̄) = λ(r̄)− r̄ .

If (i) holds and w(t) > w(t̄) for some t ∈ [0, t̄] , then λ(r̄)+r̄ < w(t) , hence mλ(w(t)) >
r̄ which contradicts (3.1.29). We thus have w(t̄) = wmax(t̄) , and Lemma 3.1.2 together
with (3.1.6) yield

pr[λ,w](t̄) = max{λ(r), w(t̄)− r} . (3.1.30)

Similarly, in the case (ii) we have w(t̄) = wmin(t̄) and

pr[λ,w](t̄) = min{λ(r), w(t̄) + r} . (3.1.31)

From the above considerations we conclude

Corollary 3.1.3. Let w ∈ GR(R+) be T -periodic that is w(t + T ) = w(t) for all
t ≥ 0 , with a fixed period T > 0 . Then pr[λ,w] is T -periodic for t ≥ T for all
λ ∈ Λ .

Proof. We may again consider only step functions w and then pass to the uniform
limit, if necessary. The function mλ(w(·)) is T -periodic and attains its maximum at
some point t̄ ∈ [0, T ] , hence also at all points t̄ + kT , k ∈ N . From (3.1.30)–(3.1.31)
and the semigroup property (3.1.21) we obtain the assertion. ¥

3.2 Prandtl-Ishlinskii operator

We describe here a construction which has been suggested in [8, 21] as a model for
elastoplastic hysteresis. Each individual play represents a rigid-plastic element with
kinematic hardening, and their linear superposition corresponds to a combination in
series of such elements. A passage to the whole one-parametric continuum of plays
can be done by homogenization, see e. g. [6].

Given a distribution function h ∈ BV loc
R (R+) , we define the value of the Prandtl-

Ishlinskii operator F : Λ × GR(R+) → GR(R+) generated by h for an initial state
λ ∈ Λ an an input w ∈ GR(R+) by the formula

F [λ,w](t) = h(0) w(t) +

∫ ∞

0

pr[λ, w](t) dh(r) . (3.2.1)

By (3.1.27), the definition is meaningful if and only if

∫ ∞

0

λ(r) dh(r) < ∞ . (3.2.2)
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This is always true if for instance λ ∈ ΛK for some K > 0 . The function

H(s) =

∫ s

0

h(r) dr (3.2.3)

is the so-called initial loading curve which depicts the reaction of a hysteresis system
with no previous memory to an input which monotonically increasing from zero. In-
deed, assuming λ ≡ 0 , w(0) = 0, and w increasing in [0, T ] , we obtain from (3.1.20)
that pr[λ,w](t) = P [0, w(t)](r) = max{w(t)− r, 0} , hence

F [λ,w](t) = h(0) w(t) +

∫ w(t)

0

(w(t)− r) dh(r) = H(w(t)) . (3.2.4)

Let us have a short look at the hysteresis branches starting from the initial loading
curve at time t0 . Assume that w(t0) > 0 , λt0 = max{w(t0) − r, 0} , and that w
decreases in [t0, t1] , t1 > t0 , w(t1) > −w(t0) . By (3.1.20) we have

pr[λ,w](t) =





w(t) + r for 0 < r < 1
2
(w(t0)− w(t)) ,

w(t0)− r for 1
2
(w(t0)− w(t)) ≤ r < w(t0) ,

0 for w(t0) ≤ r ,
(3.2.5)

hence

F [λ,w](t) = H (w(t0))− 2H

(
1

2
(w(t0)− w(t))

)
. (3.2.6)

A similar computation in the case w(t0) < 0 , λt0 = min{w(t0) + r, 0} , w increases in
[t0, t1] , t1 > t0 , w(t1) < −w(t0) , yields

F [λ,w](t) = H (w(t0)) + 2H

(
1

2
(w(t)− w(t0))

)
. (3.2.7)

We see that the hysteresis branches are homothetic copies with factor 2 of the initial
loading curve, reversed if w decreases. This phenomenon is known in plasticity as the
“Masing law”. Figure 5 shows two typical situations, where h(r) ≥ 0 and

• either h is non-decreasing and the loops are oriented counterclockwise,

• or h is non-increasing and the loops are oriented clockwise.

We will see below that the orientation of the loops is important for the energy dis-
sipation properties of the model. Furthermore, it was shown in [11] that the two
cases correspond to mutually inverse operators associated with mutually inverse ini-
tial loading curves (note that if H is convex, then H−1 is concave and vice versa).
The following result is a variant of [14, Corollary II.3.4].

Proposition 3.2.1. Let h ∈ BV loc
R (R+) be such that h(r) > 0 for all r > 0 , and let

H given by (3.2.3) be unbounded. Let H−1 be the inverse function to H , let F̂ be
the Prandtl-Ishlinskii operator of the form (3.2.1) generated by ĥ = dH−1/dr . Then
for all w ∈ GR(R+) , K > 0 , λ ∈ ΛK , and t ≥ 0 we have

F̂ [µ,F [λ,w]](t) = w(t) , (3.2.8)
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Figure 5: Clockwise and counterclockwise hysteresis in ζ(t) = F [0, w](t) .

where µ ∈ ΛH(K) is given for s ≥ 0 by the formula

µ(s) = −
∫ ∞

H−1(s)

λ′(r) h(r) dr . (3.2.9)

The local Lipschitz continuity of F follows immediately from Proposition 3.1.1 and
Lemma 3.1.2, and we state the result explicitly as follows.

Proposition 3.2.2. Let h ∈ BV loc
R (R+) and K > 0 be given, and let F be the

operator (3.2.1). Then for all w1, w2 ∈ GR(R+) ,, λ1, λ2 ∈ ΛK , and t ≥ 0 we have

|F [λ1, w1](t)−F [λ2, w2](t)| ≤ |h(0)| |w1(t)− w2(t)| (3.2.10)

+

(
Var

[0,R(t)]
h

)
max{‖λ1 − λ2‖[0,K] , ‖w1 − w2‖[0,t]} ,

where R(t) = max{K, ‖w1‖[0,t] , ‖w2‖[0,t]} , and Var denotes the total variation.

We will not consider here the question of continuous dependence of F on the distribu-
tion function h , and an interested reader may find more information on this subject
in [6].

Let w ∈ GR(R+) and 0 ≤ t1 < t2 be arbitrarily chosen. Putting in (3.2.16) λ1 =
λ2 =: λ and w1 = w , w2(t) = w(t) for t ∈ [0, t1[ , w2(t) = w(t1) for t ∈ [t1, t2] ,
ζ = F [λ,w] , we obtain that

|ζ(t2)− ζ(t1)| ≤
(
|h(0)|+ Var

[0,R(t2)]
h

)
‖w − w(t1)‖[t1,t2] . (3.2.11)

In particular, if w ∈ W 1,1
loc (R+) , then ζ ∈ W 1,1

loc (R+) , and we have

|ζ̇(t)| ≤
(
|h(0)|+ Var

[0,R(t)]
h

)
|ẇ(t)| a. e. , with R(t) = max{K, ‖w‖[0,t]} .

(3.2.12)
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Moreover, if ẇ(t) = 0, then ζ̇(t) exists and equals 0 . Assume now that w increases
in an interval [t0, t1] . From Eq. (3.1.20) it follows for t ∈ [t0, t1] that

F [λ,w](t)−F [λ, w](t0) = h(0) (w(t)− w(t0)) (3.2.13)

+

∫ mλt0
(w(t))

0

(w(t)− r − λt0(r)) dh(r)

=

∫ mλt0
(w(t))

0

h(r) (1 + λ′t0(r)) dr =

∫ w(t)

w(t0)

h(mλt0
(u)) du .

Similarly, if w decreases in [t0, t1] , then

F [λ,w](t)−F [λ,w](t0) = −
∫ w(t0)

w(t)

h(mλt0
(u)) du for t ∈ [t0, t1] . (3.2.14)

From now on, we restrict ourselves to counterclockwise Prandtl-Ishlinskii operators
and assume that

The function h is positive and non-decreasing in [0,∞[ . (3.2.15)

Then Eq. (3.2.12) reads

|ζ̇(t)| ≤ h(R(t)) |ẇ(t)| a. e. (3.2.16)

If w is monotone in a neighborhood of t , ẇ(t) 6= 0, and ζ̇(t) exist at some point t ,
then and we may conclude using (3.2.13) that ζ̇(t) and ẇ(t) have the same sign, and

ζ̇(t) ẇ(t) ≥ h(0) ẇ2(t) . (3.2.17)

Inequality (3.2.17) therefore holds a. e. if w is continuously differentiable. By [14,
Proposition II.4.2], the Prandtl-Ishlinskii operator is locally Lipschitz continuous in
W 1,1(0, T ) for every T > 0 , hence (3.2.17) can be a. e. extended to any w ∈ W 1,1

loc (R+) .

Remark 3.2.3. The Prandtl-Ishlinskii operator (3.2.1) can be considered as a special
case of the Preisach operator

P [λ,w](t) = aw(t) +

∫ ∞

0

ψ(r, pr[λ, w](t)) dr , (3.2.18)

where a ∈ R is a constant and ψ is a given function of two variables. The original
construction based on the concept proposed in [22] and based on the concept of two-
parametric relays , used systematically in [20, 25], is shown in [12] to be equivalent to
(3.2.18). More about the relationship between the operators (3.2.1) and (3.2.18) can
be found in [13, 14].
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3.3 Monotonicity

The variational character of the Prandtl-Ishlinskii operator induces natural mono-
tonicity for absolutely continuous inputs. Assume that h satisfies (3.2.15), w1, w2 ∈
W 1,1

loc (R+) , and λ1, λ2 ∈ Λ are given, and set ξ
(i)
r = pr[λi, wi] , ζi = F [λi, wi] for

i = 1, 2 , where F is given by (3.2.1). From (3.1.9) it follows that (ξ̇
(1)
r − ξ̇

(2)
r )(w1 −

w2 − ξ
(1)
r + ξ

(2)
r ) ≥ 0 a. e., hence

1

2

d

dt
(ξ(1)

r − ξ(2)
r )2 ≤ (ξ̇(1)

r − ξ̇(2)
r )(w1 − w2) a. e., (3.3.1)

1

2

d

dt

(
h(0)(w1 − w2)

2 +

∫ ∞

0

(ξ(1)
r − ξ(2)

r )2 dh(r)

)
≤ (ζ̇1 − ζ̇2)(w1 − w2) a. e. (3.3.2)

Let W 1,1
T (R+) denote the space of T -periodic absolutely continuous functions defined

on R+ . In view of Corollary 3.1.3, we obtain for all w1, w2 ∈ W 1,1
T (R+) and ζi, λi as

above that ζ1, ζ2 are T -periodic for t ≥ T and

∫ 2T

T

(ζ̇1(t)− ζ̇2(t))(w1(t)− w2(t)) dt ≥ 0 . (3.3.3)

We obviously have equality in (3.3.3) provided w1 − w2 = const., but in this case we
actually can easily prove more, namely

Proposition 3.3.1. Let λ1, λ2 ∈ Λ , w1 ∈ W 1,1
T (R+) and c ∈ R be given, and put

w2(t) = w1(t) + c , ζi = F [λi, wi] for i = 1, 2 , with F given by (3.2.1). Then there
exists c̃ ∈ R such that ζ2(t) = ζ1(t) + c̃ for t ≥ T .

Proof. For r > 0 and i = 1, 2 set ξ
(i)
r = pr[λi, wi] . By (3.3.1) we have

d

dt

(
ξ(1)
r − ξ(2)

r + c
)2

(t) ≤ 0 a. e.

From Corollary 3.1.3 we obtain that ξ
(1)
r (t)− ξ

(2)
r (t) = cr = const. for t ≥ T , and the

assertion follows. ¥

The converse of Proposition 3.3.1 holds if h in (3.2.1) is strictly monotone, so that
inequalities (3.3.2) and (3.3.3) are in fact “almost” strict. This fact is less obvious and
we state it in the form given in [14, Theorem II.4.10, Corollary II.4.11, and Proposition
II.4.12].

Proposition 3.3.2. Let the function h in (3.2.15) be increasing and let w1, w2 ∈
W 1,1

loc (R+) , λ1, λ2 ∈ Λ be given, ζi = F [λi, wi] for i = 1, 2 , with F given by (3.2.1).
Assume that (3.3.2) holds with equality sign a. e. Then there exists a non-decreasing
function R : R+ → R+ such that

pr[λ1, w1](t)− pr[λ2, w2](t) =

{
λ0

1(r)− λ0
2(r) for r ≥ R(t) ,

λ0
1(R(t))− λ0

2(R(t)) for 0 ≤ r < R(t) ,
(3.3.4)
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where λ0
i (r) = pr[λi, wi](0) for i = 1, 2 . In particular, w1(t) − w2(t) = λ0

1(R(t)) −
λ0

2(R(t)) for all t ≥ 0 . If w1, w2 ∈ W 1,1
T (R+) and

∫ 2T

T

(ζ̇1(t)− ζ̇2(t))(w1(t)− w2(t)) dt ≤ 0 , (3.3.5)

then w1(t)− w2(t) ≡ const. If moreover λ1 = λ2 = λ ∈ ΛK , then

h(0)(w1(t)−w2(t))
2 ≤ (ζ1(t)− ζ2(t))(w1(t)−w2(t)) ≤ h(k(t))(w1(t)−w2(t))

2 (3.3.6)

with k(t) = max{K, ‖w1‖[0,t] , ‖w2‖[0,t]} .

We see that Prandtl-Ishlinskii operators possess some sort of “two-level monotonicity”
which may be used in a Minty-type argument, see [14, Section III.3].

3.4 Energy dissipation

We still assume that (3.2.15) holds. With the operator F , we associate the potential
energy operator U of the form

U [λ,w](t) =
1

2
h(0) |w(t)|2 +

1

2

∫ ∞

0

|pr[λ,w](t)|2 dh(r) . (3.4.1)

If we interpret w as stress, ζ = F [λ,w] as strain, and U = U [λ,w] as potential
energy, then, putting ξr(t) = pr[λ,w](t) and assuming that the input w is absolutely
continuous, we obtain for the dissipation rate d(t) the integral expression

d(t) := ζ̇(t) w(t)− U̇(t) =

∫ ∞

0

ξ̇r(t)(w(t)− ξr(t)) dh(r) a. e. (3.4.2)

Let us examine this formula in more detail. By (3.1.9), we can have ξ̇r(t) > 0 only if
w(t)− ξr(t) = r and ξ̇r(t) < 0 only if w(t)− ξr(t) = −r . Consequently, we have

d(t) =

∫ ∞

0

∣∣∣ξ̇r(t)
∣∣∣ r dh(r) ≥ 0 a. e. (3.4.3)

in agreement with the Second Principle of Thermodynamics. The integral of d(t) over
a closed cycle yields the area of the corresponding hysteresis loop, indeed.

For the sake of completeness, we derive a formula for the potential energy operator
associated with the inverse operator

w(t) = F̂ [µ, ζ](t) = ĥ(0) ζ(t) +

∫ ∞

0

pr[µ, ζ](t) dĥ(r) (3.4.4)

= ĥ(∞) ζ(t)−
∫ ∞

0

(ζ(t)− pr[µ, ζ](t)) dĥ(r) .
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generated by ĥ as in Proposition 3.2.1. The function ĥ is non-increasing and positive,
hence ĥ(∞) = limr→∞ ĥ(r) is well defined. Putting

e(t) = Û [µ, ζ](t) =
1

2
ĥ(∞) |ζ(t)|2 − 1

2

∫ ∞

0

|ζ(t)− pr[µ, ζ](t)|2 dĥ(r) , (3.4.5)

we easily check that the positive sign in (3.4.3) is preserved.

Besides the “physical energy inequality” (3.4.2), the Prandtl-Ishlinskii operator (3.2.1),
(3.2.15) (as well as other hysteresis operators with convex/concave branches, for a
detailed discussion on this subject see [14]) admits a “higher order energy inequality”

ζ̈(t) ẇ(t)− V̇ (t) ≥ 0 (3.4.6)

in the sense of distributions (see (3.4.9) below), where we set

V (t) =
1

2
ζ̇(t) ẇ(t) for a. e. t > 0 . (3.4.7)

This observation has been made for the first time in [11] in the context of periodic
functions, and later on several different proofs have been published. Since this result
plays a central role in our analysis, we state it precisely and give a sketch of the proof.
As time differentiation is involved, we restrict ourselves to regular inputs and outputs.

Theorem 3.4.1. Let hypothesis (3.2.15) hold, and for p > 0 set

κ(p) = inf

{
h(r)− h(s)

r − s
; 0 ≤ s < r ≤ p

}
. (3.4.8)

Then for every K > 0 , λ ∈ ΛK , and w ∈ W 1,∞
loc (R+) such that ζ = F [λ,w] with

F given by (3.2.1) belongs to W 2,1
loc (R+) , the function V (t) given by (3.4.7) equals

almost everywhere to a function of bounded variation. Moreover, for every T > 0 ,
p ≥ max{K, ‖w‖[0,T ]} , and every 0 ≤ t0 < t1 < T we have

∫ t1

t0

ζ̈(t) ẇ(t) dt− V (t1−) + V (t0+) ≥ 1

4
κ(p)

∫ t1

t0

|ẇ(t)|3 dt . (3.4.9)

In particular, if w is T -periodic, then

∫ 2T

T

ζ̈(t) ẇ(t) dt ≥ 1

4
κ(p)

∫ 2T

T

|ẇ(t)|3 dt . (3.4.10)

Remark 3.4.2. As noticed in Remark 1.2.4, the function κ is a measure for the
curvature of the initial loading curve H given by (3.2.3); in particular, H is strictly
convex if κ is positive. The “dissipation term” on the right-hand side of (3.4.9) is
thus proportional to the minimal curvature of H . Inequality (3.4.9) would be in
fact a trivial application of the integration by parts formula if the hysteresis branches
η(t) = g(w(t)) were smooth enough. Indeed, in this case we would have

ζ̈(t) ẇ(t)− V̇ (t) =
1

2
g′′(w(t)) ẇ3(t) . (3.4.11)
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The right-hand side of (3.4.11) is formally positive because g is convex if w increases
and concave if w decreases, cf. the counterclockwise case on Figure 5. However, the
“second order potential energy” V (t) (which is indeed positive by virtue of (3.2.17))
is typically discontinuous in time even if h is smooth, e. g. on the transition from a
minor loop to the major loop, and this fact makes the rigorous argument technically
complicated.

The proof of Theorem 3.4.1 is based on a series of lemmas below.

Lemma 3.4.3. Let ϕ : ]a, b[→ R and c ≥ 0 be such that ϕ(a+) > 0 and the function
v 7→ ϕ(v)− cv is non-decreasing in ]a, b[ . Then the function

ψ(v) :=
1

ϕ(v)
+ c

∫ v

a

ds

ϕ2(s)

is non-increasing in ]a, b[ .

Proof. The assertion is obvious if ϕ is absolutely continuous; otherwise we approxi-
mate ϕ by piecewise linear interpolates and pass to the limit in continuity points of
ϕ . Discontinuity points can be handled directly. ¥

Lemma 3.4.4. Let w ∈ W 1,∞(T0, T1) be an increasing function, and let c ≥ 0
and g : [w(T0), w(T1)] → R be such that the function v 7→ g(v) − c

2
v2 is convex

in [w(T0), w(T1)] , g′(w(T0)+) > 0 . Assume that ζ = g(w) ∈ W 2,1(T0, T1) , and for
t ∈ ]T0, T1[ put V (t) = 1

2
ζ̇(t) ẇ(t) . Then V coincides a. e. with a function of bounded

variation in [T0, T1] , and for every T0 ≤ t0 < t1 ≤ T1 we have

∫ t1

t0

ζ̈(t) ẇ(t) dt− V (t1−) + V (t0+) ≥ c

2

∫ t1

t0

|ẇ(t)|3 dt . (3.4.12)

Proof. We first choose t0 < t1 such that w(t0), w(t1) are continuity points of g′ . By
Lemma 3.4.3, the function

η(t) =
1

g′(w(t))
+ c

∫ t

t0

ẇ(τ)

(g′(w(τ)))2
dτ (3.4.13)

is non-increasing in [t0, t1] . Integrating by parts we obtain

∫ t1

t0

ζ̈(t) ẇ(t) dt =

∫ t1

t0

1

g′(w(t))

1

2

d

dt

(
ζ̇2(t)

)
dt (3.4.14)

= V (t1)− V (t0)−
∫ t1

t0

1

2
ζ̇2(t) d

(
1

g′(w)

)
(t)

= V (t1)− V (t0)−
∫ t1

t0

1

2
ζ̇2(t) dη(t) +

c

2

∫ t1

t0

ζ̇2(t) ẇ(t)

(g′(w(t)))2
dt

≥ V (t1)− V (t0) +
c

2

∫ t1

t0

|ẇ(t)|3 dt .
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Consequently, the function

t 7→
∫ t

t0

ζ̈(τ) ẇ(τ) dτ − c

2

∫ t

t0

|ẇ(τ)|3 dτ − V (t)

is a. e. non-decreasing, hence V has (up to a set of measure zero) bounded variation,
and (3.4.12) is obtained by passing to the limit. ¥

We do not repeat the same proof for the following “decreasing” counterpart to Lemma
3.4.4.

Lemma 3.4.5. Let w ∈ W 1,∞(T0, T1) be a decreasing function, and let c ≥ 0 and
g : [w(T1), w(T0)] → R be such that the function v 7→ g(v) + c

2
v2 is concave in

[w(T1), w(T0)] , g′(w(T0)−) > 0 . Let ζ(t) and V (t) be as in Lemma 3.4.4. Then
(3.4.12) holds for all T0 ≤ t0 < t1 ≤ T1 .

We are now ready to pass to the proof of Theorem 3.4.1.

Proof of Theorem 3.4.1. Let t0 < t1 be fixed, and set

N = {t ∈ [t0, t1] ; ζ̇(t) = 0} .

The function ζ is continuously differentiable, hence N is closed, and there exist
pairwise disjoint intervals ]τj, τ

j[ , j belonging to an at most countable index set
J , such that

]t0, t1[ \N =
⋃
j∈J

]τj, τ
j[ . (3.4.15)

Let us now fix some j ∈ J . The function ζ (and also w by virtue of (3.2.16)) are
strictly monotone in ]τj, τ

j[ , hence we are in the situation of either Lemma 3.4.4 or
Lemma 3.4.5 with g defined by (3.2.13) or (3.2.14). To be more precise, we distinguish
between the two cases in order to determine the constant c .

(i) Let ζ̇ > 0 in ]τj, τ
j[ , and put

gj(v) = F [λ,w](τj) +

∫ v

w(τj)

h(mλτj
(u)) du . (3.4.16)

For a. e. w(τj) < v1 < v2 < w(τ j) we have

g′j(v2)− g′j(v1)

v2 − v1

=
h(mλτj

(v2))− h(mλτj
(v1))

mλτj
(v2)−mλτj

(v1)
·

mλτj
(v2)−mλτj

(v1)

v2 − v1

. (3.4.17)

Set ri = mλτj
(vi) for i = 1, 2 . Then

v1 − v2 = (r1 + λτj
(r1))− (r2 + λτj

(r2)) ≤ 2(r1 − r2) .

From (3.4.17), (3.4.8), and Lemma 3.1.2 it follows that

g′j(v2)− g′j(v1)

v2 − v1

≥ κ(p)

2
. (3.4.18)
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The function v 7→ g′j(v) − κ(p)
2

v is non-increasing, hence v 7→ gj(v) − κ(p)
4

v2 is
convex, and we may use Lemma 3.4.4 to obtain that

∫ τ j

τj

ζ̈(t) ẇ(t) dt− V (τ j−) + V (τj+) ≥ 1

4
κ(p)

∫ τj

τj

|ẇ(t)|3 dt . (3.4.19)

(ii) Let ζ̇ < 0 in ]τj, τ
j[ , and put

gj(v) = F [λ,w](τj)−
∫ w(τj)

v

h(mλτj
(u)) du . (3.4.20)

Repeating the above procedure we show that the function v 7→ gj(v) + κ(p)
4

v2 is
concave, and Lemma 3.4.4 yields again that (3.4.19) holds.

At all points τj, τ
j except possibly the cases τj = t0 or τ j = t1 , we have ζ̇(τj) =

ζ̇(τ j) = 0, hence V (τ j−) = V (τj+) = 0. Furthermore, almost everywhere in N we
have ẇ(t) = 0, hence we may sum all inequalities (3.4.19) over j ∈ J and obtain the
assertion. The periodic case follows from Corollary 3.1.3 which enables us to consider
in (3.4.9) any integration domain of length T in [T,∞[ .

¥

3.5 Parameter dependent hysteresis

We now extend the Prandtl-Ishlinskii construction to functions depending also on a
spatial variable x by assuming that each point x has its own memory. In our situation,
we only consider the one-dimensional case x ∈ [0, 1] and input functions continuous
in t .

Let an initial memory distribution λ ∈ L1(0, 1; ΛK) be given for some K > 0 . For
inputs w defined in [0, 1]×R+ and such that w ∈ L1(0, 1; C[0, T ])∩L∞(]0, 1[× ]0, T [)
we define similarly as in (3.1.13) and (3.2.1)

pr[λ,w](x, t) = p̂r[λ(x, r), w(x, ·)](t) , (3.5.1)

F [λ,w](x, t) = h(0)w(x, t) +

∫ ∞

0

pr[λ, w](x, t) dh(r) (3.5.2)

for (x, t) ∈ [0, 1]×R+ , where h is a function satisfying (3.2.15). In fact, we may have
considered h which depends also on x , and a detailed discussion on this subject can
be found in [6]. Here, for the sake of simplicity, we restrict ourselves to the spatially
homogeneous case.

Assume first that both λ and w are continuous in x . Then for all x, y ∈ [0, 1] and
t ∈ [0, T ] we have by virtue of (3.2.10) that

|F [λ,w](x, t)−F [λ,w](y, t)| (3.5.3)

≤ h(R(T )) max{‖λ(x, ·)− λ(y, ·)‖[0,K] , ‖w(x, ·)− w(y, ·)‖[0,t]} ,
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where R(T ) = max{K, sup{|w(z, t)| (z, t) ∈ [0, 1]× [0, T ]}} , hence F [λ, w] is continu-
ous on [0, 1]× [0, T ] . Using (3.2.10) again for sequences λ(n) and w(n) , we derive the
implications

λ(n) → λ uniformly
w(n) → w uniformly

}
=⇒ F [λ(n), w(n)] → F [λ,w] uniformly , (3.5.4)

λ(n) → λ strongly in L1(0, 1; ΛK) ,
w(n) → w strongly in L1(0, 1; C[0, T ]) ,
w(n) bounded in L∞(]0, 1[× ]0, T [)



 (3.5.5)

=⇒
{ F [λ(n), w(n)] → F [λ,w] strongly in L1(0, 1; C[0, T ]) ,
F [λ(n), w(n)] bounded in L∞(]0, 1[× ]0, T [) .
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[19] E. Madelung: Über Magnetisierung durch schnellverlaufende Ströme und die Wirkungs-
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