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Abstract We propose a model for water freezing in an elastic container, taking
into account differences in the specific volume, specific heat and speed of sound in
the solid and liquid phases. In particular, we discuss the influence of gravity on the
equilibria of the system.

Introduction

Water is a substance with extremely peculiar physical properties. A nice survey of
the challenges in modeling water behavior can be found on the web page [22]. Be-
ing aware of the obstacles, we try to develop some mathematical models related to
freezing of water in a container. In [11] and [12], we have proposed an approach
to model the occurrence of high stresses due to the difference between the specific
volumes of the solid and of the liquid phase, assuming first that the speed of sound
and the specific heat are the same in solid and in liquid. We have proved there the
existence and uniqueness of global solutions, as well as the convergence of the so-
lutions to equilibria. In reality, the specific heat in water is about the double, while
the speed of sound in water is less than one half of the one in ice. The main goal
of this contribution is to include this dependence into the model. We discuss here
the modeling issues and investigate in detail the equilibria. For containers of reason-
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Czech Republic, e-mail: krejci@math.cas.cz

Elisabetta Rocca
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able shape and reasonable height (a few kilometers at most), filled with water in a
uniform gravity field, we obtain a unique equilibrium, which is either pure solid, or
pure liquid, or a solid layer above a liquid layer separated by a horizontal surface, in
dependence on the surrounding temperature. New mathematical and modeling chal-
lenges arise and it is not our aim here to solve the problem completely. In particular,
the proof of well-posedness of the resulting nonlinear evolution system will be the
subject of a subsequent paper.

There is an abundant classical literature on phase transition processes, see e.g.
the monographs [2], [4], [20] and the references therein. It seems, however, that
only few publications take into account different mass densities/specific volumes
of the phases. In [5], the authors proposed to interpret a phase transition process in
terms of a balance equation for macroscopic motions, and to include the possibility
of voids. Well-posedness of an initial-boundary value problem associated with the
resulting PDE system is proved there and the case of two different densitiesρ1 and
ρ2 for the two substances undergoing phase transitions has been pursued in [6].

Let us also mention the papers [16] and [17] dealing with macroscopic stresses in
phase transitions models, where the different properties of the viscous (liquid) and
elastic (solid) phases are taken into account and the coexisting viscous and elastic
properties of the system are given a distinguished role, [13] and [14], which pertains
to nonlinear thermoviscoplasticity, and [3] where another coupled system for tem-
perature, displacement, and phase parameter has been derived in order to model the
full thermomechanical behavior of shape memory alloys. First mathematical results
were published in [3], while a long list of references for further developments can
be found in the monographs [4] and [20].

The main advantage of our approach is that we deal exclusively with physically
measurable quantities. All parameters have a clear physical meaning. The derivation
is carried out under the assumption that the displacements are small. This enables
us to state the system in Lagrangian coordinates. The main difference with respect
to the Eulerian framework e.g. in [6] is that in Lagrangian coordinates, the mass
conservation law means that the mass density is constant and does not depend on
the phase, while the specific volumes of the liquid and solid phases are possibly
different. For simplicity, we still assume that viscosity and thermal expansion co-
efficient do not depend on the phase, the evolution is slow, and the shear viscosity,
shear stresses, and inertia effects are negligible.

In Section 1, we describe the model, and the balance equations (energy balance,
quasistatic momentum balance, and a phase dynamics equation) are derived in Sec-
tion 2. Questions of thermodynamic consistency are discussed in Section 3, and in
Section 4 we state and prove Theorem 1 on existence and uniqueness of equilibrium
configurations in the limit case of rigid boundary. The elastic case can be treated in
a similar way, just the computations are slightly more involved.
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1 The model

As reference state, we consider a liquid substance contained in a bounded connected
containerΩ ⊂ R3 with boundary of classC1,1. The state variables are the absolute
temperatureθ > 0, the displacementu ∈ R3, and the phase variableχ ∈ [0,1]. The
valueχ = 0 means solid,χ = 1 means liquid,χ ∈ (0,1) is a mixture of the two.

We make the following modeling hypotheses.

(A1) The displacements are small. Therefore, we state the problem inLagrangian
coordinates, in which mass conservation is equivalent to the condition of a con-
stant mass densityρ0 > 0.

(A2) The substance is isotropic and compressible; the speed of sound and the spe-
cific heat may depend on the phaseχ.

(A3) The evolution is slow, and we neglect shear viscosity and inertia effects.
(A4) We neglect shear stresses.

In agreement with(A1), we define the strainε as an element of the spaceT3×3
sym

of symmetric tensors by the formula

ε = ∇su :=
1
2
(∇u+(∇u)T). (1)

Let δ ∈ T3×3
sym denote the Kronecker tensor. By(A4), the elasticity matrixA has the

form
Aε = λ (χ)(ε : δ )δ , (2)

where “: ” is the canonical scalar product inT3×3
sym, andλ (χ) > 0 is the Laḿe con-

stant (orbulk elasticity modulus), which may depend ofχ by virtue of(A2).
We model the situation where the specific volumeVi of the solid phase is larger

than the specific volumeVw of the liquid phase. In a homogeneous substance, the
speed of soundv0 is related to the bulk elasticity modulusλ through the formula
v0 =

√
λ/ρ0. Here, in agreement with the Lagrange description, the speeds of sound

vw in water andvi in ice are related to the corresponding elasticity moduliλw,λi

through the formulasλw = v2
w/Vw, λi = v2

i /Vi . For the moment, we do not specify
any particular interpolationλ (χ) betweenλi andλw for χ ∈ (0,1). This will only
be done in Section 4 together with a motivation for the corresponding choice.

Considering the liquid phase as the reference state, we introduce the dimension-
less phase expansion coefficientα = (Vi −Vw)/Vw > 0, and we define the phase
expansion straiñε by

ε̃(χ) =
α

3
(1−χ)δ . (3)

The stress tensorσ is decomposed into the sumσv +σe of the viscous component
σv and elastic componentσe, which are assumed in the form

σ
v = ν(ε t : δ )δ (4)

σ
e = (λ (χ)(ε : δ −α(1−χ))−β (θ −θc))δ , (5)
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whereν > 0 is the volume viscosity coefficient andβ is the thermal expansion
coefficient, which are both assumed constant.

Our main concern is to define the free energy properly. We proceed formally,
assuming that the absolute temperature remains positive. This will have to be proved
in a subsequent analysis. The process is governed by the following three physical
principles:

−div σ = fvol (mechanical equilibrium) (6)

ρ0et +div q = σ : ε t (energy balance) (7)

ρ0st +div
q
θ
≥ 0 (entropy inequality) (8)

wherefvol is a given volume force density (the gravity force)

fvol =−ρ0gδ 3 , (9)

with standard gravityg and vectorδ 3 = (0,0,1), e is the specific internal energy,
s is the specific entropy, andq is the heat flux vector that we assume for simplicity
in the form

q =−κ(χ)∇θ (10)

with a heat conductivityκ(χ) > 0 depending possibly onχ.
We assume the specific heatcV(χ,θ) in the form

cV(χ,θ) = c0(χ)c1(θ) . (11)

This is still a rough simplification, and further generalizations are desirable. Ac-
cording to [9, Chapter VI] or [15, Section 5], the purely caloric partsecal and
scal of the specific internal energy and specific entropy are given by the formulas
ecal(χ,θ) = c0(χ)e1(θ), scal(χ,θ) = c0(χ)s1(θ), with

e1(θ) =
∫

θ

0
c1(τ)dτ , s1(θ) =

∫
θ

0

c1(τ)
τ

dτ . (12)

By virtue of (7)–(8), the specific free energyf = e− θs satisfies the conditions
σe = ρ0∂ε f , s=−∂θ f . With a prescribed constant latent heatL0 and freezing point
at standard atmospheric pressureθc > 0, the specific free energyf necessarily has
the form

f = c0(χ) f1(θ)+
λ (χ)
2ρ0

((ε− ε̃(χ)) : δ )2 (13)

− β

ρ0
(θ −θc)ε : δ +L0χ

(
1− θ

θc

)
+ f̃ (χ) ,

where
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f1(θ) = e1(θ)−θs1(θ) =
∫

θ

0
c1(τ)

(
1− θ

τ

)
dτ ,

and f̃ is a arbitrary function ofχ (integration “constant” with respect toθ andε).
We choosef̃ so as to ensure that the values ofχ remain in the interval[0,1], and
that the phase transition under standard pressure takes place at temperatureθc. More
specifically, we set

f̃ (χ) = L0I(χ)−c0(χ) f1(θc) .

whereI is the indicator function of the interval[0,1]. Below in (38)–(40), we come
back to the principles of thermodynamics.

For specific entropys and specific internal energyewe obtain

s = −∂θ f = c0(χ)s1(θ)+
β

ρ0
ε : δ +

L0

θc
χ , (14)

e = c0(χ)(e1(θ)− f1(θc))+
λ (χ)
2ρ0

(ε : δ −α(1−χ))2

+
β

ρ0
θcε : δ +L0(χ + I(χ)). (15)

2 Balance equations

As another formal consequence of the entropy balance (8), we have the inequality
χt∂χ f ≤ 0 for every process. This will certainly be satisfied if we assume that−χt is
proportional to∂χ f with proportionality constant (relaxation time)γ0 > 0. It deter-
mines how fast the system reaches an equilibrium. We thus consider the evolution
system

−div σ = fvol , (16)

ρ0et +div q = σ : ε t , (17)

−γ0χt ∈ ∂χ f , (18)

where∂χ is the partial Clarke subdifferential with respect toχ. The scalar quantity

p :=−νε t : δ −λ (χ)(ε : δ −α(1−χ))+β (θ −θc) (19)

is thepressureand the stress has the formσ =−pδ . The equilibrium equation (16)
can be rewritten in the form∇p = fvol, hence

p(x, t) = P(t)−ρ0gx3 , (20)
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whereP is a function of time only, which is to be determined. Recall that in the
reference stateε : δ = ε t : δ = 0, χ = 1, and at standard pressurePstand, the freezing
temperature isθc. We thus see from (19) thatP(t) is in fact the deviation from the
standard pressure. We assume also the external pressure in the formPext = Pstand+
p0 with a constant deviationp0. The normal force acting on the boundary is(P(t)−
ρ0gx3−p0)n, wheren denotes the unit outward normal vector. We assume an elastic
response of the boundary, and a heat transfer proportional to the inner and outer
temperature difference. On∂Ω , we thus prescribe boundary conditions foru andθ

in the form

(P(t)−ρ0gx3− p0)n = k(x)u , (21)

q ·n = h(x)(θ −θΓ ) (22)

with a given symmetric positive definite matrixk (elasticity of the boundary), a
positive functionh (heat transfer coefficient), and a constantθΓ > 0 (external tem-
perature). This enables us to find an explicit relation between divu andP. Indeed,
on∂Ω we have by (21) thatu ·n = (P(t)−ρ0gx3− p0)k−1(x)n(x) ·n(x). Assuming
thatk−1n ·n belongs toL1(∂Ω), we set

1
KΓ

=
∫

∂Ω

k−1(x)n(x) ·n(x)dσ(x) , mΓ = KΓ

∫
∂Ω

k−1(x)n(x) ·n(x)x3dσ(x) ,

(23)
and obtain by Gauss’ Theorem that

UΩ (t) :=
∫

Ω

div u(x, t)dx =
1

KΓ

(P(t)−ρ0gmΓ − p0) . (24)

Under the small strain hypothesis, the function divu describes the local relative
volume increment. Hence, Eq. (24) establishes a linear relation between the total
relative volume incrementUΩ (t) and the relative pressureP(t)−p0. We haveε : δ =
div u, and thus the mechanical equilibrium equation (20), due to (19) and (24), reads

νdiv ut +λ (χ)(div u−α(1−χ))−β (θ −θc)+ρ0g(mΓ −x3) =−p0−KΓ UΩ (t) .
(25)

As a consequence of (10), (13), and (15), the energy balance and the phase relaxation
equation in (17)–(18) have the form

ρ0c0(χ)e1(θ)t −div (κ(χ)∇θ)+ρ0c′0(χ)χt(e1(θ)− f1(θ))

= ν(div ut)2−βθdiv ut +ρ0γ0χ
2
t −ρ0L0

θ

θc
χt , (26)

−ρ0γ0χt −
λ ′(χ)

2
(div u−α(1−χ))2−αλ (χ)(div u−α(1−χ))

∈ ρ0c′1(χ)( f1(θ)− f1(θc))+ρ0L0

(
1− θ

θc

)
+∂ I(χ) . (27)
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Note that mathematically, the subdifferential∂ I(χ) is the same asρ0L0∂ I(χ). For
simplicity, we now set

c(χ) := ρ0c0(χ) , γ := ρ0γ0 , L := ρ0L0 . (28)

The system now reduces to the following three scalar equations – one PDE and two
“ODEs”, for three unknown functionsθ ,χ, andU = div u.

c(χ)e1(θ)t −div (κ(χ)∇θ) = c′(χ)χt( f1(θ)−e1(θ))

+νU2
t −βθUt + γχ

2
t −L

θ

θc
χt , (29)

νUt +λ (χ)(U−α(1−χ))−β (θ −θc) = ρ0g(x3−mΓ )− p0−KΓ UΩ (t) , (30)

−γχt −
λ ′(χ)

2
(U−α(1−χ))2−αλ (χ)(U−α(1−χ))

∈ c′(χ)( f1(θ)− f1(θc))+L

(
1− θ

θc

)
+∂ I(χ) (31)

with UΩ (t) =
∫

Ω
U(x, t)dx, and with boundary condition (22), (10). To find the vec-

tor functionu, we first defineΦ as a solution to the Poisson equation∆Φ = U with
the Neumann boundary condition∇Φ ·n = (KΓ UΩ (t)+ρ0g(mΓ −x3))k−1(x)n(x) ·
n(x). With thisΦ , we findũ as a solution to the problem

div ũ = 0 in Ω ×∞ , (32)

ũ ·n = 0
(ũ+∇Φ− (KΓ UΩ +ρ0g(mΓ −x3))k−1n)×n = 0

}
on ∂Ω × (0,∞) , (33)

and setu = ũ+∇Φ . Thenu satisfies a.e. inΩ the equation divu =U , together with
the boundary condition (21), that is,u = (KΓ UΩ +ρ0g(mΓ −x3))k−1n on ∂Ω .

For the solution to (32)–(33), we refer to [8, Lemma 2.2] which states that
for each g ∈ H1/2(∂Ω)3 satisfying

∫
∂Ω

g · ndσ(x) = 0 there exists a function
ũ ∈ H1(Ω)3, unique up to an additive functionv from the setV of divergence-
free H1(Ω) functions vanishing on∂Ω , such that diṽu = 0 in Ω , ũ = g on ∂Ω .
In terms of the system (32)–(33), it suffices to setg = ((∇Φ− (KΓ UΩ +ρ0g(mΓ −
x3))k−1n)×n)×n and use the identity(b×n)×n = (b ·n)n−b for every vector
b. Moreover, the estimate

inf
v∈V

‖ũ+v‖H1(Ω) ≤C‖g‖H1/2(∂Ω) ≤ C̃‖Φ‖H2(Ω) (34)

holds with some constantsC,C̃. The required regularity is available here by virtue
of the assumption thatΩ is of classC1,1, providedk−1 belongs toH1/2(∂Ω). Note
that a weaker formulation of problem (32)–(33) can be found in [1, Section 4].

Due to our hypotheses(A3), (A4), we thus lose any control on possible volume
preserving turbulencesv ∈V. This, however, has no influence on the system (29)–
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(31), which is the subject of our interest here. Inequality (34) shows that ifU is
small in agreement with hypothesis(A1), then alsov can be chosen in such a way
that hypothesis(A1), interpreted in terms ofH1, is not violated.

3 Energy and entropy

In terms of the new variablesθ ,U,χ, the energyeand entropys can be written as

e = c0(χ)(e1(θ)− f1(θc))+
λ (χ)
2ρ0

(U−α(1−χ))2

+
β

ρ0
θcU +L0(χ + I(χ)) , (35)

s = c0(χ)s1(θ)+
L0

θc
χ +

β

ρ0
U . (36)

The energy functional has to be supplemented with the boundary energy term

EΓ (t) =
KΓ

2

(
UΩ (t)+

p0 +ρ0gmΓ

KΓ

)2

, (37)

as well as with the gravity potential−ρ0gx3U . The energy and entropy balance
equations now read

d
dt

(∫
Ω

ρ0(e(x, t)−gx3U)dx+EΓ (t)
)

=
∫

∂Ω

h(x)(θΓ −θ)dσ(x) , (38)

ρ0st +div
q
θ

=
κ(χ)|∇θ |2

θ 2 +
γ

θ
χ

2
t +

ν

θ
U2

t ≥ 0, (39)

d
dt

∫
Ω

ρ0s(x, t)dx =
∫

∂Ω

h(x)
θ

(θΓ −θ)dσ(x) (40)

+
∫

Ω

(
κ(χ)|∇θ |2

θ 2 +
γ

θ
χ

2
t +

ν

θ
U2

t

)
dx.

The entropy balance (39) says that the entropy production on the right hand side is
nonnegative in agreement with the second principle of thermodynamics. The system
is not closed, and the energy supply or the energy loss through the boundary is given
by the right hand side of (38).

We prescribe the initial conditions

θ(x,0) = θ
0(x) (41)

U(x,0) = U0(x) (42)
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χ(x,0) = χ
0(x) (43)

for x ∈ Ω , and compute from (35)–(36) the corresponding initial valuese0, E0
Γ

,
and s0 for specific energy, boundary energy, and entropy, respectively. LetE0 =∫

Ω
ρ0e0dx, S0 =

∫
Ω

ρ0s0dx denote the total initial energy and entropy, respectively.
From the energy end entropy balance equations (38), (40), we derive the following
crucial (formal for the moment) balance equation for the “extended” energyρ0(e−
θΓ s):∫

Ω

(
c(χ)(e1(θ)− f1(θc))+

λ (χ)
2

(U−α(1−χ))2
)

(x, t)dx

+
∫

Ω

(βθcU +Lχ−ρ0gx3U)(x, t)dx

+
KΓ

2

(
UΩ (t)+

p0 +ρ0gmΓ

KΓ

)2

+θΓ

∫ t

0

∫
Ω

(
κ(χ)|∇θ |2

θ 2 +
γ

θ
χ

2
t +

ν

θ
U2

t

)
(x,τ)dxdτ

+
∫ t

0

∫
∂Ω

h(x)
θ

(θΓ −θ)2(x,τ)dσ(x)dτ

= E0 +E0
Γ −θΓ S0 +θΓ

∫
Ω

(
c(χ)s1(θ)+

L
θc

χ +βU

)
(x, t)dx. (44)

We assume that bothc(χ) andλ (χ) are bounded from above and from below by
positive constants. The growth ofs1(θ) is dominated bye1(θ) as a consequence of
the inequality

s1(θ)−s1(θ ∗)
e1(θ)−e1(θ ∗)

≤ 1
θ ∗

∀θ > θ
∗ > 0.

Hence, there exists a constantC > 0 independent oft such that for allt > 0 we have∫
Ω

(
e1(θ)+U2)(x, t)dx+

∫ t

0

∫
Ω

(
|∇θ |2

θ 2 +
χ2

t

θ
+

U2
t

θ

)
(x,τ)dxdτ (45)

+
∫ t

0

∫
∂Ω

h(x)
θ

(θΓ −θ)2(x,τ)dσ(x)dτ ≤ C.

4 Equilibria

It follows from (22) and (29) that the only possible equilibrium temperature is
θ = θΓ , and the equilibrium configurationsU∞,χ∞ for U,χ satisfy for a.e.x ∈ Ω

the equations

λ (χ∞(x))(U∞(x)−α(1−χ∞(x))) = β (θΓ −θc)
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+ρ0g(x3−mΓ )− p0−KΓ

∫
Ω

U∞(x′)dx′ , (46)

L

(
θΓ

θc
−1

)
+c′(χ∞(x))( f1(θc)− f1(θΓ ))

−1
2

λ
′(χ∞(x))(U∞(x)−α(1−χ∞(x)))2

−αλ (χ∞(x))(U∞(x)−α(1−χ∞(x))) ∈ ∂ I(χ∞(x)) , (47)

as a consequence of (30), (31). We now eliminateU∞ from the above equations. To
simplify the formulas, we introduce the notation

S :=
∫

Ω
(1−χ∞(x′))dx′ , UΩ :=

∫
Ω

U∞(x′)dx′ ,

Λ :=
∫

Ω
dx′

λ (χ∞(x′)) , mλ := 1
Λ

∫
Ω

x′3
λ (χ∞(x′)) dx′ .

 (48)

We see thatS is the total solid content, andUΩ is the total volume increment. We
now divide (46) byλ (χ∞(x)) and integrate overΩ . This yields

(1+KΓ Λ)UΩ = αS+Λ(β (θΓ −θc)− p0 +ρ0g(mλ −mΓ )) .

This enables us to replaceUΩ on the right hand side of (46) and to obtain

λ (χ∞(x))(U∞(x)−α(1−χ∞(x)))

=
β (θΓ −θc)− p0−αKΓ S

1+KΓ Λ
+ρ0g(x3−m∗) , (49)

wherem∗ is a convex combination ofmΓ andmλ , given by

m∗ =
1

1+KΓ Λ
mΓ +

KΓ Λ

1+KΓ Λ
mλ . (50)

Eq. (47) can thus be rewritten as

L

(
θΓ

θc
−1

)
+c′(χ∞(x))( f1(θc)− f1(θΓ ))

− λ ′(χ∞(x))
2λ 2(χ∞(x))

(
β (θΓ −θc)− p0−αKΓ S

1+KΓ Λ
+ρ0g(x3−m∗)

)2

−α

(
β (θΓ −θc)− p0−αKΓ S

1+KΓ Λ
+ρ0g(x3−m∗)

)
∈ ∂ I(χ∞(x)) . (51)

Approximate values of the physical constants are listed in Table 1, see [7, 18, 19,
22].
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Specific volume of water Vw = 1/ρ0 10−3 m3/kg
Specific volume of ice Vi 1.09·10−3 m3/kg
Speed of sound in water vw 1.5·103 m/s
Speed of sound in ice vi 3.12·103 m/s
Elasticity modulus of water λw = v2

w/Vw 2.25·109 Pa= J/m3 = kg/ms2

Elasticity modulus of ice λi = v2
i /Vi 9·109 Pa= J/m3 = kg/ms2

Specific heat of water cw 4.2·103 J/kgK = m2/s2K
Specific heat of ice ci 2.1·103 J/kgK = m2/s2K
Latent heat L0 3.34·105 J/kg= m2/s2

Thermal expansion coefficient β 4.5·105 J/m3K = kg/ms2K
Melting temperature at standard pressure θc 273 K
Standard atmospheric pressure p0 105 Pa= J/m3 = kg/ms2

Phase expansion coefficient α = (Vi −Vw)/Vw 0.09
Gravity constant g 9.8 m/s2

Table 1 Physical constants for water

In order to draw some conclusions about the solutions to (51), we eliminate theχ-
dependence and non-monotonicities inθΓ on the left hand side of (51) by choosing
the following nonlinearities:

λ (χ) =
(

1
λi

+
(

1
λw
− 1

λi

)
χ

)−1

, (52)

c(χ) =
ci

Vi
+
(

cw

Vw
− ci

Vi

)
χ , (53)

c1(θ) =
(

θ

θc

)ξ

, (54)

with a constantξ > 0. The functionf1 is, consequently,

f1(θ) =− 1
ξ (1+ξ )

θ 1+ξ

θ
ξ
c

. (55)

This is again a very rough approximation. In reality, for temperatures near zero
Kelvin, the exponentξ should be 3 according to the Einstein-Debye law, while for
large temperatures, it should vanish. Our choice is motivated by the effort to keep
the number of parameters as low as possible.

Assuming (52)–(54), we write (51) in explicit form

L

(
θΓ

θc
−1

)
+

θc

ξ (1+ξ )

(
cw

Vw
− ci

Vi

)((
θΓ

θc

)1+ξ

−1

)

+
1
2

(
1

λw
− 1

λi

)(
β (θΓ −θc)− p0−αKΓ S

1+KΓ Λ
+ρ0g(x3−m∗)

)2
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−α

(
β (θΓ −θc)− p0−αKΓ S

1+KΓ Λ
+ρ0g(x3−m∗)

)
∈ ∂ I(χ∞(x)) , (56)

with

Λ =
1

λw
|Ω |−

(
1

λw
− 1

λi

)
S. (57)

To estimate an appropriate value ofξ , let us neglect the gravity forces (which are
indeed very small as we shall see) and assume the rigid limitKΓ → ∞. We have

R :=
S

λiΛ
=

1
λi

S
|Ω |

1
λw
−
(

1
λw
− 1

λi

)
S
|Ω |

∈ [0,1]. (58)

Eq. (56) then reads in dimensionless form

L
α2λi

(
θΓ

θc
−1

)
+

1
ξ (1+ξ )

θc

α2λi

(
cw

Vw
− ci

Vi

)((
θΓ

θc

)1+ξ

−1

)

+
1
2

(
λi

λw
−1

)
R2 +R ∈ ∂ I(χ∞(x)) . (59)

For θΓ ≥ θc, the left hand side of (59) is nonnegative, hence necessarily
χ∞(x) = 1 for (almost) allx∈ Ω andS= R= 0. Because of the pressure increase
due to solidification, the liquid phase persists also for temperatures belowθc. We
only obtain pure iceχ∞ = 0 if the left hand side of (59) withR= 1 is nonpositive,
that is, ifθΓ ≤ yθc, wherey∈ (0,1) is the solution (if it exists) to the equation

C1(y−1)+
C2

ξ (1+ξ )
(y1+ξ −1)+C3 = 0, (60)

with dimensionless constants

C1 =
L

α2λi
, C2 =

θc

α2λi

(
cw

Vw
− ci

Vi

)
, C3 =

1
2

(
λi

λw
−1

)
+1.

For the values of the constants in Table 1, we obtain

C1 ≈ 4.58, C2 ≈ 8.5, C3 ≈ 2.5, (61)

hence the solutiony = y(ξ ) to (60) exists for allξ > 0, and we easily compute the
limits limξ→0+ y(ξ ) = 1, limξ→+∞ y(ξ ) = 1−C3/C1. Assume that we know the full
solidification temperatureθs, and that

(1−C3/C1)θc < θs < θc . (62)

Then we identify the value ofξ from the equationy(ξ ) = θs/θc, that is,
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ϕ(ξ ) := C2

(
θs

θc

)1+ξ

+
(

C3 +C1

(
θs

θc
−1

))
ξ (1+ξ ) = 1. (63)

The functionϕ is convex in(0,∞), ϕ(0) < 1, ϕ(+∞) = +∞. Eq. (63) thus deter-
mines the desired value ofξ uniquely.

Still in the rigid limit KΓ →∞, consider now the gravity effects in Eq. (56). Then,
by (48) and (50), we havem∗ = mλ ∈ (a,b), and the counterpart of Eq. (59) reads

(C3−1)(R−η(x3−mλ ))2+(R−η(x3−mλ ))−C4(θΓ ) ∈ ∂ I(χ∞(x)) , (64)

where

C4(θΓ ) := C1

(
1− θΓ

θc

)
+

C2

ξ (1+ξ )

(
1−
(

θΓ

θc

)1+ξ
)

,

C1,C2,C3 are as above, and

η =
ρ0g
αλi

≈ 1.2·10−5 [m−1] . (65)

The left hand side of (64) is a function ofx3 only. Let the interval(a,b) be the
projection ofΩ onto thex3-axis, that is,

x3 ∈ (a,b) ⇔ ∃(x1,x2) ∈ R2 : (x1,x2,x3) ∈Ω .

We prove the following result.

Theorem 1.Let the height b−a of the container satisfy the inequality

2η(b−a)(C3−1) < 1. (66)

Then Eq. (64) admits a solutionχ∞ ∈ L∞(Ω). Moreover, there exist temperatures
θw > θc > θi > 0such thatχ∞ ≡1 if θΓ ≥ θw, χ∞ ≡0 if θΓ ≤ θi , and forθΓ ∈ (θi ,θw)
there exists z∈ (a,b) such thatχ∞(x) = 1 for x3 < z, χ∞(x) = 0 for x3 > z.

Condition (66) is not too restrictive. With the values in (61) and (65), the maximal
admissible height is almost 30 km. The solution may not be unique if the shape ofΩ

is very irregular. IfΩ is a straight vertical cylinderΩ = Ω2D× (a,b), for example,
whereΩ2D ⊂ R2 is fixed, the proof below shows that the solution is unique.

The interval(θc,θw) of “overheated ice temperatures” is very narrow, of the size
of η(b−a), and corresponds to the low pressure ice layer on the top of the container.

Proof. The left hand side of (64) is always nonnegative if 4C4(θΓ )(C3−1)+1≤ 0,
that is, if θΓ is above a certain temperature slightly bigger thanθc. In this case,
χ∞(x) = 1 for all x∈Ω independently of the heightb−a. Assume now

4C4(θΓ )(C3−1)+1 > 0.

Then the left hand side of (64) is positive if and only if
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η(x3−mλ ) < R+
1

2(C3−1)

(
1−
√

4C4(θΓ )(C3−1)+1
)

(67)

or

η(x3−mλ ) > R+
1

2(C3−1)

(
1+
√

4C4(θΓ )(C3−1)+1
)

. (68)

Condition (68) is in contradiction with the assumption (66), hence the exists at most
one

z= mλ +
1
η

(
R+

1
2(C3−1)

(
1−
√

4C4(θΓ )(C3−1)+1
))

∈ (a,b)

such that the left hand side of (64) is positive forx3 < z and negative forx3 > z.
By definition of the subdifferential of the indicator function on the right hand side
of (64), we then haveχ∞(x) = 1 for x3 < z, χ∞(x) = 0 for x3 > z, as expected. It
remains to determinez. Assume first that such az exists. Then bothR= R(z) and
mλ = mλ (z) are functions ofz. We denote

Ω(z) = {x = (x1,x2) ∈ R2 : (x1,x2,z) ∈Ω} .

The setΩ(z) is empty forz≥ b and forz≤ a. Letω(z) be the 2D Lebesgue measure
of Ω(z). Then, by (58), we have

R(z) =
1
λi

∫ b
z ω(s)ds

1
λw

∫ z
a ω(s)ds+ 1

λi

∫ b
z ω(s)ds

,

and by (48),

mλ (z) =
1

λw

∫ z
a sω(s)ds+ 1

λi

∫ b
z sω(s)ds

1
λw

∫ z
a ω(s)ds+ 1

λi

∫ b
z ω(s)ds

.

The dependence ofz on θΓ is given by the equation

z−mλ (z)− 1
η

R(z) =
1
η

(
1

2(C3−1)
(1−

√
4C4(θΓ )(C3−1)+1)

)
. (69)

The left hand side of (69) is a continuous function ofz, which is negative forz= a
and positive forz= b, and the statement of Theorem 1 easily follows. For a straight
cylinderΩ = Ω2D× (a,b), whereΩ2D ⊂R2 is fixed, the left hand side of (69) is an
increasing function ofz, hence the solution is unique.ut

Remark 1.We can interpret Eqs. (46)–(47) in another way. On the interfacex3 be-
tween water and ice, the left hand side of (47) vanishes, and (46) has the form

λ (χ∞(x))(U∞(x)−α(1−χ∞(x))) = β (θΓ −θc)−P∞ , (70)

whereP∞ = p0 + KΓ UΩ + ρ0g(mΓ − x3) is the equilibrium pressure in agreement
with (19). Hence, (47) can be reformulated in terms ofP∞ as
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L

(
θΓ

θc
−1

)
+
(

cw

Vw
− ci

Vi

)
( f1(θc)− f1(θΓ ))

+
1
2

(
1

λw
− 1

λi

)
(β (θΓ −θc)−P∞)2−α(β (θΓ −θc)−P∞) = 0. (71)

This would be the Clausius-Clapeyron relation in the sense of [21, Equation (288)]
if cw/Vw = ci/Vi andλi = λw, namely

P∞

θΓ −θc
=

Lβ

θc(Vw−Vi)
,

whereLβ = L0− (αβθc)/ρ0 is the modified latent heat. In our case, the modified
latent heat contains additional terms related to the differences in elasticity moduli
and in specific heat capacities.

Remark 2.Note that in the fully solidified rigid limit case, the equilibrium pressure
is very high, namely (up to negligible contributions due to gravity and thermal ex-
pansion)P∞ ≈ αλi ≈ 0.81GPa.

Conclusion. A model is proposed for describing the dynamics of freezing/melt-
ing of water in an elastic container, taking into account the differences in specific
volume, specific heat, and speed of sound in water and in ice. The process is de-
scribed by one parabolic PDE, one integrodifferential ODE, and one differential
inclusion for three unknown functions – the absolute temperature, relative volume
increment, and liquid fraction. A study of the equilibria in the rigid limit is carried
out in detail.
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4. Frémond, M.: Non-smooth thermo-mechanics, Springer-Verlag Berlin (2002)
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11. Krejč́ı, P., Rocca, E., Sprekels, J.: A bottle in a freezer. To appear in SIAM J. Math. Anal.
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