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Abstract— In this paper we present a new approach to de-
centralized supervisory control of large automata with commu-
nicating supervisors. We first generalize the recently developed
top-down architecture of multilevel coordination control with a
hierarchical structure of groups of subsystems, their respective
coordinators and supervisors. Namely, in the case where the
equivalent conditions for achieving a specification language
fail to be satisfied, we propose sufficient conditions for a dis-
tributed computation of the supremal achievable sublanguage.
We then apply the obtained constructive results of multilevel
coordination control to decentralized supervisory control with
communication, where local supervisors of subsystems within
a group communicate with each other via the coordinator of
the group. Our approach is illustrated by an example.

I. INTRODUCTION

Decentralized supervisory control has been introduced
in [12] aiming at decreasing the computational complexity
of supervisory control of large automata without a product
structure based on a single (centralized) supervisor. As it
turned out that coobservability of a specification language,
the necessary condition to achieve the specification in de-
centralized supervisory control, is too strong, two different
approaches have been proposed. The first one is based on
communication between supervisors to achieve coobservabil-
ity with respect to observable alphabets enriched by commu-
nicated event occurrences, cf. [1] and [10]. The second one
consists in proposing new and more general decentralized su-
pervisory control architectures that lead to weaker notions of
coobservability. The original notion of coobservability [12]
has been called conjunctive and permissive (C & P), while an
alternative architecture called disjunctive and antipermissive
(D & A) has been proposed in [14] together with their com-
bination. Among weaker concepts of coobservability, one
should cite a general architecture combining both architec-
tures [14] or even more general architectures with possible
several levels of inferencing leading to conditional versions
of coobservability [15].

Coordination control [8] can be seen as a trade-off between
a purely local (modular) control synthesis that often fails
in achieving sufficiently permissive supervisors and leads
to blocking, and a global control synthesis that is too
expensive from the computational complexity viewpoint. We
have extended coordination control to the multilevel setting
with a hierarchical structure of groups of subsystems, their
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respective coordinators, and supervisors in [7]. The top-
down approach proposed therein along with the correspond-
ing notions of conditional decomposability and conditional
controllability enables to compute the supervisors only at the
lowest level. Unlike centralized coordination, supervisors of
subsystems communicate only within the groups on the same
level of hierarchy via the group coordinators located on the
next upper level of hierarchy.

In [5], we have proposed a generic approach that consists
in applying the results of coordination control of automata
with a synchronous-product structure to decentralized control
of automata without an explicit product structure. It is
based on the over-approximation of the automaton without
a product structure by a product of its natural projections to
the alphabet of local supervisors. However, a communication
structure is not interesting, because all local supervisors
communicate with each other via a coordinator.

In this paper we benefit from recent results of multilevel
coordination control. First, earlier existential results [7] are
extended to a construction procedure that computes the least
restrictive solution for the top-down architecture of multi-
level coordination control. These results are then applied to
the original decentralized control problem, which is solved
using an underlying communication scheme, where local
supervisors of subsystems within a group communicate with
each other via a coordinator of the group. The optimal
solution obtained by coordination control leads to a (possibly
non-optimal) solution of the original decentralized control
problem.

II. EXISTENTIAL RESULTS OF MULTILEVEL
COORDINATION CONTROL

Basic notions and notational conventions are first recalled.
The free monoid of strings over an alphabet A is denoted by
A∗. A language is a subset of A∗. The prefix closure of a lan-
guage L⊆ A∗ is the set of all prefixes of all its strings and is
denoted by L = {w ∈ A∗ | there exists v ∈ A∗ such that wv ∈
L}; L is prefix-closed if L = L. All languages considered in
this paper are assumed to be prefix-closed.

A generator is a quadruple G=(Q,A, f ,q0) consisting of a
finite set of states Q, a finite alphabet A, a partial transition
function f : Q× A→ Q, and an initial state q0 ∈ Q. The
function f can be extended in the standard way to strings, i.e.
f : Q×A∗→Q. We recall that L(G) = {s∈ A∗ | f (q0,s)∈Q}
is called the generated language of G.

A controlled generator over an alphabet A is a triple
(G,Ac,Γ), where G is a generator over A, Ac ⊆ A is a set of
controllable events, Au = A\Ac is the set of uncontrollable



events, and Γ= {γ ⊆A |Au⊆ γ} is the set of control patterns.
A supervisor for a controlled generator (G,Ac,Γ) is a map
S : L(G)→ Γ. The closed-loop system associated with the
controlled generator (G,Ac,Γ) and the supervisor S is defined
as the minimal language L(S/G) such that ε ∈ L(S/G) and,
for any s ∈ L(S/G) with sa ∈ L(G) and a ∈ S(s), sa belongs
to L(S/G).

A language K ⊆ A∗ is controllable with respect to L and
Au if KAu∩L⊆ K.

A projection P : A∗→ B∗, for B⊆ A, is a homomorphism
defined as P(a) = ε , for a ∈ A\B, and P(a) = a, for a ∈ B.
The inverse image of P, denoted by P−1 : B∗→ 2A∗ , is defined
as P−1(w) = {s ∈ A∗ | P(s) = w}. These definitions can be
extended to languages. For alphabets Ai, A j, A` ⊆ A, we use
Pi+ j
` to denote the projection from (Ai∪A j)

∗ to A∗` . If Ai∪
A j = A, we simply write P̀ . Moreover, Ai,u = Ai∩Au denotes
the set of locally uncontrollable events. For a generator G
and a projection P, P(G) denotes the minimal generator such
that L(P(G)) = P(L(G)). The reader is referred to [2] for a
construction.

Let G be a generator over an alphabet A. Given a specifi-
cation K ⊆ L(G), the aim of supervisory control is to find a
supervisor S such that L(S/G) = K. Such a supervisor exists
if and only if K is controllable with respect to L(G) and Au,
see [2].

The synchronous product of languages Li ⊆ A∗i , for i =
1, . . . ,n, is defined as ‖n

i=1Li =∩n
i=1P−1

i (Li)⊆ A∗, where A =
∪n

i=1Ai, and Pi : A∗→ A∗i are projections to local alphabets.
The corresponding synchronous product of generators Gi
(see [2] for definition) satisfies L(‖n

i=1Gi) = ‖n
i=1L(Gi).

A projection Q : A∗→ B∗ is an L-observer for a language
L ⊆ A∗ if, for every t ∈ Q(L) and s ∈ L, Q(s) is a prefix
of t implies that there exists u ∈ A∗ such that su ∈ L and
Q(su) = t, cf. [13].

We need the following obvious lemma and results below.
Lemma 1: For any language L ⊆ A∗ and projections P1 :

A∗ → B∗1 and P2 : A∗ → B∗2 with B2 ⊆ B1 ⊆ A, it holds that
P1(L)‖P2(L) = P1(L).

Lemma 2 (Lemma 4.3 in [3]): Let K ⊆ L be controllable
with respect to L and Au. If the natural projection P : A∗→A∗o
is an L-observer and OCC for L, then P(K) is controllable
with respect to P(L) and Au∩Ao.

Lemma 3 (Proposition 4.6 in [3]): For i = 1, . . . ,n, let
Ki ⊆ Li be controllable with respect to Li ⊆ A∗i and Ai,u, then
‖n

i=1Ki is controllable with respect to ‖n
i=1Li and ∪n

i=1Ai,u.
Now we recall the basic notions of coordination con-

trol [8]. A language K over ∪n
i=1Ai is conditionally decom-

posable with respect to alphabets (Ai)
n
i=1 and Ak, where

∪i6= j
1≤i, j≤n(Ai∩A j)⊆ Ak ⊆ ∪n

i=1A j, if

K = ‖n
i=1 Pi+k(K) ,

for projections Pi+k from ∪n
j=1A j to Ai∪Ak, for i = 1, . . . ,n.

Alphabet Ak is referred to as a coordinator alphabet and
satisfies the conditional independence property, that is, Ak
includes all shared events: ∪i6= j

1≤i, j≤n(Ai∩A j) ⊆ Ak. This has
the following well known impact.

Lemma 4 ([3]): Let Pk : A∗→ A∗k be a projection, and let
Li be a language over Ai, for i = 1, . . . ,n, and ∪i 6= j

1≤i, j≤n(Ai∩
A j)⊆ Ak. Then Pk(‖n

i=1Li) = ‖n
i=1Pk(Li).

The idea of coordination control is to first construct a su-
pervisor Sk such that the closed-loop system L(Sk/Gk) satis-
fies the ”coordinator part” of the specification given by Pk(K)
and then local supervisors Si for plants Gi‖(Sk/Gk), for i =
1, . . . ,n, such that the closed-loop system L(Si/[Gi‖(Sk/Gk)])
satisfies the corresponding part of the specification given by
Pi+k(K). Conditional controllability along with conditional
decomposability form an equivalent condition for a language
to be achieved by the closed-loop system within our coordi-
nation control architecture, see below.

A language K ⊆ L(G1‖G2‖ . . .‖Gn‖Gk) is conditionally
controllable for generators G1,G2, . . . ,Gn and a coordinator
Gk and uncontrollable alphabets A1,u,A2,u, . . . ,An,u, and Ak,u
if (1) Pk(K) is controllable with respect to L(Gk) and Ak,u
and (2) Pi+k(K) is controllable with respect to L(Gi) ‖ Pk(K)
and Ai+k,u = Ai+k,u = (Ai∪Ak)∩Au, for i = 1,2, . . . ,n.

Recall that every conditionally controllable and condition-
ally decomposable language is controllable [8]. The main
existential result of [8] states that for a specification K ⊆ A∗

that is conditionally decomposable, there exist supervisors
S1,S2, . . . ,Sn, and Sk such that ‖n

i=1 L(Si/[Gi‖(Sk/Gk)]) = K
if and only if K is conditionally controllable.

III. CONSTRUCTIVE RESULTS OF TWO-LEVEL
COORDINATION CONTROL

In this section we assume that G = G1‖G2‖ . . .‖Gn and
that the subsystems are organized into m groups I j, for j =
1,2, . . . ,m. The notation

AIr =
⋃

i∈Ir
Ai

is used in the paper. Here PIr denotes the projection PIr :
A∗ → A∗Ir . The notation for a projection to extended group
events PIr+k : A∗ → (Ak ∪ AIr)

∗ should be self-explanatory.
We have introduced the corresponding notion of conditional
decomposability in [7].

Definition 5 (Two-level conditional decomposability):
A language K ⊆ A∗ is called two-level conditionally decom-
posable with respect to alphabets A1,A2, . . . ,An, high-level
coordinator alphabet Ak, and low-level coordinator alphabets
Ak1 ,Ak2 , . . .Akm if

K =‖m
r=1 PIr+k(K) and PIr+k(K) =‖ j∈Ir Pj+kr+k(K)

for r = 1,2, . . . ,m.
Remark 6: Unlike the original approach in [7] we propose

the following simplification. Instead of using both low-level
coordinator alphabets Ak j , j = 1,2, . . . ,m, and high-level co-
ordinator alphabet Ak, we will only use low-level coordinator
alphabets Ak j , j = 1,2, . . . ,m. We recall that Ak contains only
events shared between different groups of subsystems, that
is, Ak ⊇

⋃k 6=`
k,`∈{1,2,...,m}(AIk ∩AI`), which is typically a much

smaller set than the set of shared events (between two or
more subsystems). Thus, for j = 1,2, . . . ,m, we define new
low-level coordinator alphabets Ak j := Ak ∪Ak j by putting



into the alphabets of group coordinators Ak j also events
from the global coordinator set (if this is nonempty). This
is possible, because only prefix-closed languages are used,
which means that no high-level coordinators for nonblocking
are needed. We recall that in the prefix-closed case the
coordinators are actually determined by the corresponding
alphabets from Definition 5 as a projection of the plant to
these alphabets. This simplification is used because this paper
is technically involved.

Problem 7 (Two-level coordination control problem):
Let generators G1, G2,. . . , Gn be over the alphabets A1,
A2,. . . , An, respectively, and consider the modular system
as their synchronous product G = G1‖G2‖ . . .‖Gn along
with the two-level hierarchical structure of subsystems
organized into groups I j, for j = 1,2, . . . ,m and m ≤ n,
on the low level. The synchronous products ‖i∈I j Gi, for
j = 1,2, . . . ,m, then represent the m high-level systems.
Coordinators Gk j are associated to groups of subsystems
{Gi | i ∈ I j}, for j = 1,2, . . . ,m. The two-level coordination
control problem consists in synthesizing supervisors Si for
any low-level systems Gi, for i = 1,2, . . . ,n, and higher-level
supervisors Sk j supervising the group coordinator Gk j , for
j = 1,2, . . . ,m, such that the specification is met by the
closed-loop system. Then the two-level coordinated and
supervised closed-loop system is

‖m
j=1‖i∈I j L(Si/[Gi ‖ (Sk j/Gk j)]) . /

For a specification K, the coordinator Gk j of the j-th group
of subsystems {Gi | i ∈ I j} is computed as follows.

1) Set Ak j =
⋃k 6=`

k,`∈I j
(Ak ∩A`) to be the set of all shared

events of systems from the group I j.
2) Extend Ak j so that PI j+k(K) is conditional decompos-

able with respect to (Ai)i∈I j and Ak j , for instance using
a method described in [6].

3) Let coordinator Gk j = ‖n
i=1Pk j(Gi).

With the definition that Ak ⊆ Ak j described in Remark 6,
we can simplify L(Gk)‖L(Gk j) of [7] to L(Gk j). Indeed, by
our choice of coordinators L(Gk)‖L(Gk j) = Pk(L)‖Pk j(L) =
Pk j(L) = L(Gk j), where L = ‖n

i=1.
Therefore, instead of both low-level coordinators Gk j , for

j = 1,2, . . . ,m, for subsystems belonging to individual groups
{Gi | i ∈ I j} and high-level coordinators Gk that coordinate
the different groups, we are using only low-level (group)
coordinators Gk j , but over larger alphabets compared to [7].

Since the only known condition ensuring that the projected
generator is smaller than the original one is the observer
property [13] we might need to further extend alphabets Ak j

so that projection Pk j is an L(Gi)-observer, for all i ∈ I j.
We assume that the specification is prefix-closed, hence the

blocking issue is not considered in this paper. Blocking can
be handled using coordinators for nonblockingness studied
in [8].

The key concept is the following.
Definition 8 ([7]): Consider the setting and notations of

Problem 7, and let Gk be a coordinator. A language K ⊆
L(‖n

i=1Gi) is two-level conditionally controllable with respect

to generators G1,G2, . . . ,Gn, local alphabets A1,A2, . . . ,An,
low-level coordinator alphabets Ak1 ,Ak2 , . . .Akm , and uncon-
trollable alphabet Au if

1) Pk j(K) is controllable with respect to L(Gk j) and Ak j ,u,
2) for j = 1,2, . . . ,m and i ∈ I j, Pi+k j(K) is controllable

with respect to L(Gi) ‖ Pk j(K) and Ai+k j ,u.
Note that we have simplified the original version of

two-level conditional controllability from [7] by replacing
the composition L(Gk)‖L(Gk j) by L(Gk j) as discussed in
Remark 6. For a future reference we will say that K is two-
level conditionally controllable with respect to Gi, for i ∈ Il ,
and Gkl , i.e., several items are omitted (but should be clear
from the problem formulation).

The following lemma shows how to construct a two-level
conditional controllable language as the synchronous com-
position of conditionally controllable languages for groups.

Lemma 9: For all l = 1,2, . . . ,m, let the languages Ml ⊆
A∗Il be conditionally controllable with respect to Gi, for i ∈
Il , and Gkl , and conditionally decomposable with respect to
alphabets Ai, for i ∈ Il , and Akl , and Ak` ⊇ Ak ⊇

⋃
k 6=`(AIk ∩

AI`).
If for all l = 1,2, . . . ,m, Pkl

k is a Lkl -observer and OCC for
Pkl (Ml), then ‖m

l=1 Ml is two-level conditionally controllable
with respect Gi, for i ∈ Il , and Gkl , for l = 1,2, . . . ,m.

The main existential result of multilevel coordination
control is now recalled from [7].

Theorem 10: Consider the setting of Problem 7 (in par-
ticular K is two-level conditionally decomposable with
respect to local alphabets A1,A2, . . . ,An, high-level coor-
dinator alphabet Ak, and low-level coordinator alphabets
Ak1 ,Ak2 , . . .Akm ). There exist supervisors Si, for i ∈ I j, for
low-level systems within any group of low-level systems
{Gi | i ∈ I j}, for j = 1,2, . . . ,m, and supervisors Sk j , for
j = 1,2, . . . ,m, for low-level coordinators such that

‖m
j=1‖i∈I j L(Si/Gi ‖ (Sk j/Gk j)) = K (1)

if and only if K is two-level conditionally controllable as
defined in Definition 8.

In the last section we have recalled two-level coordination
control framework with the main existential result. A natural
question is what to do if the specification fails to satisfy the
necessary and sufficient conditions for being achievable. We
recall from [8] that in the case specification K fails to be
conditionally controllable, the supremal conditionally con-
trollable sublanguage always exists and can be computed in
a distributive way. First, we show that two-level conditional
controllability is closed under language unions as well.

Theorem 11: Two-level conditional controllability is
closed under language unions, that is, supremal two-level
conditional controllable languages always exist.

By Theorem 11, the supremal two-level conditional con-
trollable sublanguage of a specification K with respect to
Ak1 ,Ak2 , . . .Akm , and Au, denoted by sup2cC(K,L,Ai+k j),
always exists. Below we propose a procedure to compute
the supremal two-level conditional controllable sublanguage
sup2cC(K,L,Ai+k j).



Similarly as in the centralized coordination we introduce
the following notation. For all j = 1,2, . . . ,m and i ∈ I j,

supCk j
= supC(Pk j(K),L(Gk j),Ak j ,u)

supCi+k j
= supC(Pi+k j(K),L(Gi)‖supCk j

,Ai+k j ,u)
(2)

where supC(K,L,Au) denotes the supremal controllable sub-
language of K with respect to L and Au, see [2].

Similarly as in the centralized coordination, the following
inclusion always holds true.

Lemma 12: For all j = 1,2, . . . ,m and for all i ∈ I j, we
have that P

i+k j
k j

(supCi+k j
)⊆ supCk j

.
Transitivity of controllability is needed later.
Lemma 13 ([8]): Let K ⊆ L ⊆ M be languages over A

such that K is controllable with respect to L and Au, and L is
controllable with respect to M and Au. Then K is controllable
with respect to M and Au.
The main constructive result follows.

Theorem 14: Consider Problem 7 and languages defined
in (2). If ∩i∈I j P

i+k j
k j

(supCi+k j
) is controllable with respect

to L(Gk j) and Ak j ,u, and if for all j = 1,2, . . . ,m, P
k j
k is an

Lk j -observer and OCC for Lk j , then sup2cC(K,L,Ai+k j) =
‖m

j=1‖i∈I j supCi+k j
.

Note that controllability of ∩i∈I j P
i+k j
k j

(supCi+k j
) with re-

spect to L(Gk j) and Ak j ,u for all j = 1,2, . . . ,m, is not a
suitable condition for verification. Clearly, for our prefix-
closed languages, controllability of P

i+k j
k j

(supCi+k j
) with

respect to L(Gk j) and Ak j ,u, for j = 1,2, . . . ,m and i ∈ I j,
implies it. Moreover, two stronger checkable conditions are
provided below.

It is easy to see that the equality in Lemma 12 implies
the sufficient condition of Theorem 14. Indeed, if for all
j = 1,2, . . . ,m and for all i ∈ I j, we have P

i+k j
k j

(supCi+k j
)⊆

supCk j
, then in particular P

i+k j
k j

(supCi+k j
) is controllable

with respect to L(Gk j) and Ak j ,u. Hence, for all j =

1,2, . . . ,m, ∩i∈I j P
i+k j
k j

(supCi+k j
) is controllable with respect

to L(Gk j) and Ak j ,u, which proves the following result.
Corollary 15: Consider the setting of Problem 7 and

the languages defined in (2). If for all j = 1,2, . . . ,m,
P

k j
k is an Lk j -observer and OCC for Lk j , and for all i ∈

I j, P
i+k j
k j

(supCi+k j
) = supCk j

, then sup2cC(K,L,Ai+k j) =

‖m
j=1 ‖i∈I j supCi+k j

.
There is yet another sufficient condition that guarantees

the controllability requirement in Theorem 14. Namely,
local control consistency and observer properties (that are
checkable by well-known methods).

Lemma 16: For all j = 1,2, . . . ,m and i ∈ I j, let P
i+k j
k j

be an (P
i+k j
i )−1L(Gi)-observer and OCC for (P

i+k j
i )−1L(Gi).

Then, for all j = 1,2, . . . ,m, ∩i∈I j P
i+k j
k j

(supCi+k j
) is control-

lable with respect to L(Gk j) and Ak j ,u.
We point out that even without the above conditions,

‖m
j=1‖i∈I j supCi+k j

is controllable with respect to L, but we
cannot guarantee maximal permissiveness with respect to the
two-level coordination control architecture.

IV. DECENTRALIZED SUPERVISORY CONTROL WITH
COMMUNICATION

In this section, constructive results of the top-down coordi-
nation are applied to decentralized supervisory control with
communicating supervisors. To avoid any confusion we use
systematically Σ to denote alphabets in decentralized control,
while notation A is reserved for alphabets in coordination
control. Decentralized supervisory control is now briefly
recalled.

A. Decentralized Supervisory Control Problem

Decentralized supervisory control differs from modular
or coordination control, because the global system is a
large automaton without a product structure. In decentralized
supervisory control sensing and actuating capabilities are
distributed among local supervisors (Si)

n
i=1 such that each

Si observes a subset Σo,i ⊆ Σ and based on its observation it
can disable its controllable events Σc,i. Projections to locally
observable events are denoted by Pi : Σ∗ → Σ∗o,i. We use
the notation Σc = ∪n

i=1Σc,i, Σo = ∪n
i=1Σo,i, Σu = Σ \Σc, and

Σuo = Σ\Σo.
Formally, a local supervisor Si for a generator G is defined

as a mapping Si : Pi(L(G))→ Γ, where Γi = {γ ⊆ Σ | γ ⊇ (Σ\
Σc,i)} is the set of local control patterns, and Si(s) represents
the set of locally enabled events when Si observes a string
s ∈ Σ∗o,i. Then the permissive local supervisor law is Si(s) =
(Σ\Σc,i)∪{a∈Σc,i | ∃s′ ∈K with Pi(s′)=Pi(s) and s′a∈K}.
The global control law S is given by conjunction of local
ones: for w ∈ Σ∗o,i, S(w) = ∩n

i=1Si(Pi(w)), This is why this
control architecture is nowadays referred to as conjunctive
and permissive.

Definition 17: K ⊆ L is C &P coobservable with respect
to L = L(G) and (Σo,i)

n
i=1 if for all s ∈ K, a ∈ Σc, and

sa ∈ L \K, there exists i ∈ {1,2, . . . ,n} such that a ∈ Σc,i
and (P−1

i (Pi(s)){a}∩K = /0.
C &P coobservability can be interpreted in the following

way: if we exit from the specification by an event a, then
there must exists at least one local supervisor that can control
this event (a∈ Σc,i) and can disable a unambiguously, i.e., all
lookalike (for Si) strings exit the specification as well. Recall
that C &P coobservability can be decided in polynomial
time [11] in the number of states of the specification and
system (but in exponential time in the number of local
supervisors).

Since the counterpart of C & P coobservability, called
D & A coobservability, is not studied in this paper, C & P
coobservability will be referred to as coobservability.

It has been proved in [12] that controllability and coob-
servability are the necessary and sufficient conditions to
achieve a specification as the resulting closed-loop language.
For languages that fail to satisfy these conditions it is impor-
tant to compute a controllable and coobservable sublanguage.

We first recall that decomposability is strongly related to
coobservability. A language K is decomposable with respect
to alphabets (Σi)

n
i=1 and L if K = ‖n

i=1Pi(K)∩L. In the special
case L = Σ∗ decomposability is called separability [4], i.e.,



K is separable with respect to alphabets (Σi)
n
i=1 if K =

‖n
i=1Pi(K).

Now we are ready to recall that (under the alphabet
condition that will be shown non-restrictive in the following
subsection) separability implies coobservability.

Theorem 18 ([5]): Assume that Σo,i ∩ Σc ⊆ Σc,i, for i =
1,2, . . . ,n. If K is separable with respect to (Σo,i)

n
i=1, then

K∩L is coobservable with respect to (Σo,i)
n
i=1 and L.

B. Construction of controllable and coobservable sublan-
guages based on two-level coordination control

Now we show how the new constructive results of the
top-down approach to multilevel coordination control from
Section III can be used to compute sublanguages that are by
construction controllable and coobservable.

The idea is that owing to our results of coordination
control, the supremal conditionally controllable sublanguage
(that is in particular controllable) can be computed as a
synchronous product of languages over alphabets enriched
by communicated events from group coordinators. Hence the
resulting language is by construction not only controllable,
but in view of Theorem 18 also coobservable. Moreover,
due to the multilevel coordination, coordinator events are
not communicated among all subsystems, which was our
first approach presented in [5] based on the centralized
coordination. Roughly speaking, coordinator events from the
centralized coordination are distributed to group coordinator
events, and only these are to be communicated among the
subsystems belonging to the group.

Recall at this point that alphabets in decentralized control
are denoted by Σ, while alphabets in coordination control are
denoted by A.

It follows from Theorem 14 and its consequences that the
supremal two-level conditionally-controllable sublanguage is
decomposable with respect to alphabets (Ai+k j) j=1,2,...,m, i∈I j .

Note that conditional decomposability with respect to
alphabets (Σo,i)

n
i=1 and Σk such that ∪i6= j(Σi∩Σ j)⊆ Σk, i.e.,

K = ‖n
i=1Pi+k(K),

is nothing else but separability of K with respect to (Σo,i∪
Σk)

n
i=1. An important feature of separability with respect to

the alphabets of this form with intersection between all pairs
of alphabets being equal to Σk is that it can be checked in
polynomial time in the number of local agents [6].

We recall that there always exists Σk that makes language
K conditionally decomposable with respect to (Σi)

n
i=1 and

Σk, cf. [6]. Moreover, K is conditionally decomposable if
and only if there exist Mi ⊆ Σ∗i+k such that K = ‖n

i=1Mi.
Consider now the setting of decentralized control with sub-

sets of events observable (Σo,i)
n
i=1 and controllable (Σc,i)

n
i=1

by agent (supervisor) i and a specification K ⊆ L = L(G).
We plunge the decentralized control problem into the

coordination control problem by setting

Ai = Σo,i and Ac,i = Σo,i∩Σc,i .

For simplicity, the same notation for projection is kept,
that is, Pi : A∗ → A∗i . The plant language G will be over-
approximated by a two-level modular plant ‖n

i=1Pi(G), that

is, by the parallel composition of projections to events
observable by local control agents. We will organize the local
supervisors into a two-level hierarchy. Similarly as in mul-
tilevel coordination control we will group the agents based
on their interactions given by intersection of their alphabets,
here observations Ai = Σo,i. The idea is to place agents with
maximal shared observations to the same groups at the lowest
level of the multilevel structure. Then, in an ideal situation,
there will be no shared observations between different groups
of agents, because all shared observations are realized within
the low-level groups. This can be formalized by associating a
square matrix with the number of shared events observed by
both and try to find after permutation a block matrix structure
such that the maximum of shared events is situated in the
diagonal blocks, while off-diagonal blocks contain very small
numbers (ideally zero matrices). Again, we denote m low-
level groups of agents by I j, where j = 1,2, . . .m, for m≤ n.

According to the two-level top-down architecture, we
have to find an extension Ak (a high-level coordina-
tor alphabet) of these ”high-level shared observations”
Ash =

⋃k 6=`
k,`∈{1,...,m}(AIk ∩ AI`) such that Ak ⊇ Ash and K =

‖m
r=1PIr+k(K). Similarly, we have to extend the shared low-

level observations in groups, i.e., Ash,r =
⋃k 6=`

k,`∈Ir(Ak ∩ A`),
for r = 1,2, . . . ,m, to low-level coordinator alphabets Ak, j ⊇
Ash,r such that PIr+k(K) = ‖ j∈Ir Pj+kr+k(K), i.e., two-level
conditional decomposability holds true.

It is a common assumption in both modular and co-
ordination supervisory control that shared events have the
same controllability status in all components, i.e., Ai∩Ac, j ⊆
Ac,i, for i, j = 1,2, . . . ,n. Since Ai = Σo,i, it is clear that
this assumption is equivalent to Σo,i ∩Σc, j ⊆ Σc,i, for i, j =
1,2, . . . ,n. Hence, by Theorem 18, separability implies coob-
servability and the condition stated therein is not restrictive.
More precisely we have the following.

Lemma 19: If Σo,i ∩Σc, j ⊆ Σc,i, for i, j = 1,2, . . . ,n, then
(Ai)

n
i=1 and (Ac,i)

n
i=1 defined above satisfy Ai ∩Ac, j ⊆ Ac,i,

for all i, j = 1,2, . . . ,n.
Once Ak and Ak j , for j = 1,2, . . . ,m, are found such that

two-level conditional decomposability holds, we compute
languages Lk j = L(Gk j), supCk j

, and supCi+k j
as in the

previous section, cf. formula (2), where L(Gi) are replaced
by Pi(‖n

i=1L(Gi)). Namely, for all j = 1,2, . . . ,m, Lk j =
‖n

i=1Pk j(Pi(L)), supCk j
= supC(Pk j(K),Lk j ,Ak j ,u), and for all

i ∈ I j, supCi+k j
= supC(Pi+k j(K),Pi(L)‖supCk j

,Ai+k j ,u).
Theorem 20: Let K ⊆ L be languages, and let K be two-

level conditionally decomposable with respect to (Ai)
n
i=1,

Ak, j, and Ak. Then ‖m
j=1‖i∈I j supCi+k j

is a sublanguage of
K controllable with respect to L and Au, and coobservable
with respect to L and (Ai+k j) j=1,...,m, i∈I j .

If ‖m
j=1 ∩i∈I j P

i+k j
k j

(supCi+k j
) is controllable with respect

to L(Gk j) and Ak j ,u, and for all j = 1,2, . . . ,m, P
k j
k is an

Lk j -observer and OCC for Lk j , then ‖m
j=1‖i∈I j supCi+k j

=

sup2cC(K,L,Ai+k j) is the largest controllable and coobserv-
able language we can obtain using the two-level coordina-
tion.



Note that according to the above results there are stronger
sufficient conditions that are more suitable for verifica-
tion, namely that for j = 1,2, . . . ,m and i ∈ I j, either
P

i+k j
k j

(supCi+k j
) = supCk j

, or P
i+k j
k j

are (P
i+k j
i )−1Pi(L)-

observers and OCC for (P
i+k j
i )−1Pi(L). The first condition

has the advantage that if it holds, our results can be extended
to the non-prefix-closed case. The second condition has the
advantage that there are known algorithms to extend the local
alphabets such that corresponding projections become OCC
and satisfy the observer property. Finally, let us point out
that without any assumption (except two-level conditional
decomposability) M might be a too small language, because
without the above additional conditions we cannot guaran-
tee the optimality with respect to the coordination control
(sup2cC(K,L,Ai+k j)) and the optimality is lost twice (it is
potentially lost due to over-approximation of L by ‖n

i=1Pi(L)
unless L is decomposable).

C. Example

Let the languages K and L be given by generators on
Figs. 1 and 2, respectively. The alphabets of local agents are
Σo,1 = {a,b,u1,u}, Σo,2 = {a,b,u2,u}, Σo,3 = {v,b,v1,b1},
Σo,4 = {v,b,v2,b2}, Σc,1 = Σc,2 = {a,b}, Σc,3 = {v,v1,b1},
Σc,4 = {v,v2,b2}, Σu = {b,u,u1,u2}, and Σc = Σ\Σu.

Note that K is not controllable with respect to L, because
e.g. v2v1b ∈ KΣu ∩L, but v2v1b 6∈ K. On the other hand, K
is coobservable with respect to L and Σo,i, for i = 1,2,3,4.
However, N = supC(K,L,Σu) is not coobservable with re-
spect to L and Σo,i, for i= 1,2,3,4, anymore. This is because
both v1v2 ∈ L and v2v1 ∈ L, v1v2 ∈N, v2 ∈N, while v2v1 6∈N.

It is clear that at least one of the agents 3 and 4 has to
observe both v1 and v2 in order to issue a correct control
decision. This means that it is not clear how to compute
a sublanguage that is at the same time controllable and
coobservable. Also notice that if b were controllable, K
would be controllable, but still not coobservable. We now
use our two-level coordination control approach.

First, we project the plant to the alphabets of observable
events, cf. Fig. 3. The inclusion L⊆‖n

i=1Pi(L) is strict. We set
Ai =Σo,i for i= 1,2,3,4. Now we have to extend Ash =(AI1∩
AI2) = (A1∪A2)∩(A3∪A4) = {b} such that for Ak ⊇Ash, and
K = P1+2+k(K)‖P3+4+k(K). It turns out that no extension of
Ash is needed, i.e., Ak = {b}.

We now need to find low-level coordination alphabets Ak1
and Ak2 such that conditions on the low-level for two-level
conditionally decomposability hold true. Since P1+2+k(K) =
P1(K)‖P2(K), there is no need to extend Ash,1 = A1 ∩A2 =
{a,u,b} and we take Ak1 = Ash,1. Therefore, P1+2+k(K) =
P1+k1(K)‖P2+k1(K), with Ak1 = {a,u,b}. In particular, co-
ordinator Lk1 is not needed. Secondly, P3+4+k(K) is not
decomposable with respect to A3+k and A4+k. Hence, we
have to extend Ak by Ak2 to make the equation P3+4+k(K) =
P3+k2(K)‖P4+k2(K) hold true. We choose Ak2 = {v1,b2,v,b}
and it can be checked that P3+4+k(K) is conditionally de-
composable with respect to alphabets A3, A4, and Ak2 . The

Fig. 1. Specification K

Fig. 2. Plant L

corresponding coordinator for the second group is Lk2 =
‖n

i=1Pi(L) = {ε,v,vb2,v1,v1b}.
Now starts the actual computation of a sublanguage

of K that is both controllable with respect to L and Au
and coobservable with respect to L and observable al-
phabets A1+k1,o, A2+k1,o, A3+k2,o, A4+k2,o. Note that K is
not two-level conditionally controllable, hence the con-
structive procedure is needed. In fact, P4+k2(K) given in
Fig. 4 is not controllable with respect to P4(L)‖Pk2(K)
given in Fig. 5. Therefore, corresponding supervisor S4
for P4(L) is not simply given by P4+k2(K), but has
to be computed. Its language is given by supC4+k2

=
supC(P4+k2(K),P4(L)‖supCk2

,Au,4+k2). First, we compute
the supervisor supCk2

for coordinator Lk2 . We have supCk2
=

supC(Pk2(K),Lk2 ,Au,k2) = Pk2(K) = Lk2 computed above.
Thus, supC4+k2

= {v1,v2,b,v2,vb2} is given by Fig. 5.
This supervisor simply disables v1 after v2 has occurred.
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Fig. 4. P3+k2 (K) and P4+k+k2 (K)

Similarly, we have to derive the supervisor supC3+k2
for

P3(L). We note that P3+k2(K), given in Fig. 4, is controllable
with respect to P3(L)‖Pk2(K). Thus, supC3+k2

= P3+k2(K).
Concerning the first group of agents, no control action is
required for supervisors supC1+k1

and supC2+k1
, because

P1+2(K) = P1(L)‖P2(L). Moreover, supC1+k1
= P1+k1(K) =

P1(K) = P1(L) and supC2+k1
= P2+k1(K) = P2(K) = P2(L).

Since all conditions in Theorem 14 are satisfied, it
holds true that supC1+k1

‖supC2+k1
‖supC3+k2

‖supC4+k2
=

sup2cC(K,L,Ai+k j). In particular, it is controllable with
respect to L and Au and coobservable with respect to L and
A1+k1,o, A2+k1,o, A3+k2,o, A4+k2,o. /

V. CONCLUDING REMARKS

We have extended existential results of multilevel coor-
dination control to constructive results with a procedure to
compute the supremal sublanguage achievable in the two-
level architecture. The constructive results have been applied
to decentralized supervisory control with communicating
supervisors, where local supervisors communicate with each
other via a coordinator of the group.
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(MUSIC), by RVO: 67985840, and partially by the DFG in
grant KR 4381/1-1.

v1

v2

v2

v1

b

v

b2

v1

v2

v2

b

v

b2

Fig. 5. L4‖Pk2 (K) and supC4+k2

REFERENCES

[1] G. Barrett and S. Lafortune, “Decentralized supervisory control with
communicating controllers,” IEEE Trans. Automat. Control, vol. 45,
pp. 1620–1638, 2000.

[2] C. G. Cassandras and S. Lafortune, Introduction to discrete event
systems, Second edition. Springer, 2008.

[3] L. Feng, “Computationally efficient supervisor design for discrete-
event systems,” Ph.D. dissertation, University of Toronto, 2007.
[Online]. Available: http://www.kth.se/polopoly fs/1.24026!thesis.zip

[4] B. Gaudin and H. Marchand, “Supervisory control of product and
hierarchical discrete event systems,” Eur. J. Control, vol. 10, no. 2,
pp. 131–145, 2004.

[5] J. Komenda and T. Masopust, “A bridge between decentralized and
coordination control,” in Proc. of Allerton Conference on Computing
and Control 2013, Alerton Park, Monticello, USA, 2013, pp. 966–972.

[6] J. Komenda, T. Masopust, and J. H. van Schuppen, “On conditional
decomposability,” Systems Control Lett., vol. 61, no. 12, pp. 1260–
1268, 2012.

[7] ——, “Multilevel coordination control of modular DES,” in Proc. 52nd
IEEE Conference on Decision and Control (CDC.2013). New York:
IEEE Press, 2013, pp. 6323–6328.

[8] ——, “Coordination control of discrete-event systems revisited,” Dis-
crete Event Dyn. Syst., 2014, to appear.

[9] ——, “Maximally permissive coordination supervisory control – to-
wards necessary and sufficient conditions,” 2014, available on-line at
http://arxiv.org/abs/1403.4762.

[10] S. L. Ricker and K. Rudie, “Know means no: Incorporating knowledge
into discrete-event control systems,” IEEE Trans. Automat. Control,
vol. 45, no. 9, pp. 1656–1668, 2000.

[11] K. Rudie and J. C. Willems, “The computational complexity of
decentralized discrete-event control problems,” IEEE Trans. Automat.
Control, vol. 40, no. 7, pp. 1313–1319, 1995.

[12] K. Rudie and W. M. Wonham, “Think globally, act locally: Decen-
tralized supervisory control,” IEEE Trans. Automat. Control, vol. 37,
no. 11, pp. 1692–1708, 1992.

[13] K. C. Wong and W. M. Wonham, “Hierarchical control of discrete-
event systems,” Discrete Event Dyn. Syst., vol. 6, no. 3, pp. 241–273,
1996.

[14] T. S. Yoo and S. Lafortune, “A general architecture for decentralized
supervisory control of discrete-event systems,” Discrete Event Dyn.
Syst., vol. 12, no. 3, pp. 335–377, 2002.

[15] ——, “Decentralized supervisory control with conditional decisions:
Supervisor existence,” IEEE Trans. Automat. Control, vol. 49, no. 11,
pp. 1886–1904, 2004.


