
MS INSTRUMENTATION I

Vladimír Vrkoslav MS Group

Institute of Organic Chemistry and Biochemistry AS CR, v.v.i.

MASS SPECTROMETER

- Ion source devices which produce positive or negative electrically charged molecules in gas phase
- Mass analysers separate the ions according to their mass-tocharge ratio (m/z)
- Detectors record the charge induced or the current produced, when an ion passes by or hits a surface

ION SOURCE

Produce **positive** or negative electrically charged molecules in **gas phase**

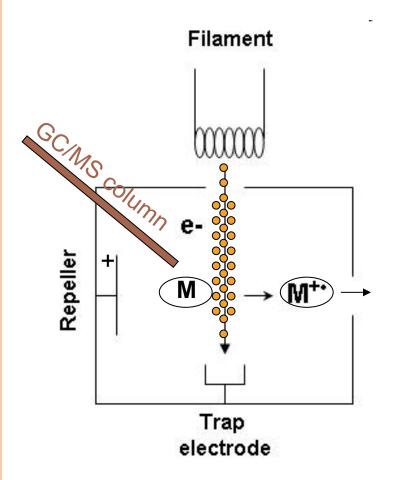
- Choice depends on compound
 - Universal ionization technique does not exist
- Differentiation
 - By energy
 - Hard (EI)
 - Cation radical with high energy fragmentation i ion source many fragments in the spectra
 - Soft (CI, ESI, APCI, MALDI,...)
 - molecular adduct with low energy no or a few fragments in the spectra
 - By pressure
 - Vacuum (EI, CI, MALDI,...)
 - Atmospheric pressure (ESI, APCI, APPI, AP MALDI,...)

• Ions

- M + e⁻ → M⁺⁺ + 2 e⁻ • M + HA → [M+H]⁺ + A⁻
- M + B \rightarrow [M-H] + HB

Cation radicals Molecular adducts Deprotonatet molecules

DIFFERENT IONIZATION TECHNIQUE

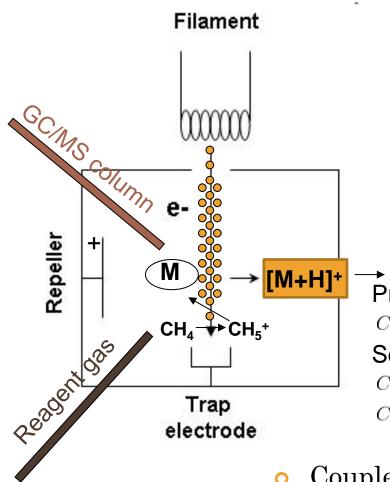

o Molecular Analysis

- Electron Ionization (EI)
- Chemical Ionization (CI)
- Electrospray (ESI)
 - Nanoelektrospray (nanoESI)
- Atmospheric Pressure Chemical Ionization (APCI)
- Atmospheric Pressure Photoionization (APPI)
- Matrix-Assisted Laser Desorption/Ionization (MALDI)
- Laser Desorption Ionization (LDI)
- Secondary Ion Mass Spectrometry (SIMS)
- Fast Atom Bombardment (FAB)
- Desorption Electrospray Ionization (DESI)
- Desorption Atmospheric Pressure Chemical ionization (DAPCI)
- Direct Analysis in Real Time (DART)
- Termospray (TSI)

```
• • • • •
```

•••••

ELECTRON IONIZATION (EI)

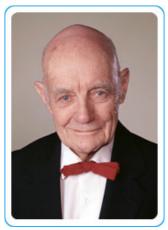


- An ionization method in which energetic electrons interact with gas phase molecules to produce ions.
 - Electron emission by heating a tungsten wire filament
 - Good reproducibility spectral library – easy interpretation
 - (energy of the electrons 70eV)

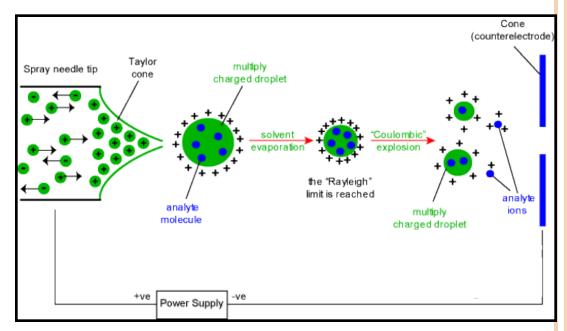
• $M + e^- \rightarrow M^{++} + 2 e^-$

- M is the analyte molecule being ionized
- e⁻ is the electron and
- M^+ is the resulting ion
- Widely used for volatile organic molecules
- Often coupled with GC = GC/EI-MS

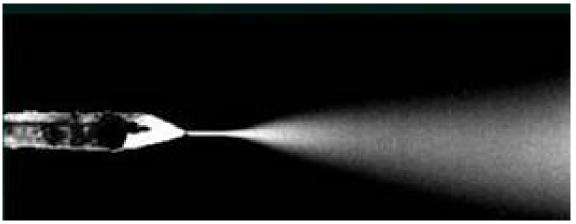
CHEMICAL IONIZATION (CI)


- Analyzed ions are produced through the collision of the analyte with ions of a reagent gas, that are present in the ion source
 - Methane, ammonia, isobutane, acetonitrile,.....
- Soft ionization technique
 - [M+H] ⁺, [M+ reagent gas]⁺, fragments (depend on condition)
- Example
 - CH_4 as a reagent gas

Primary ion formation $CH_4 + e^- \to CH_4^+ + 2e^- \qquad M + CH_5^+ \to CH_4 + [M + H]^+$ Secondary reagent ions $AH + CH_3^+ \rightarrow CH_4 + A^+$ $CH_4 + CH_4^+ \rightarrow CH_5^+ + CH_3 \qquad M + CH_5^+ \rightarrow [M + CH_5]^+$ $CH_4 + CH_3^+ \rightarrow C_2H_5^+ + H_2 \qquad A + CH_4^+ \rightarrow CH_4 + A^+$

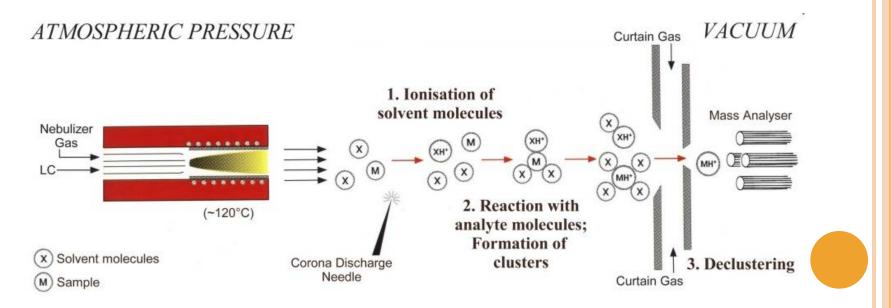

- Product ion formation
- Coupled with GC = GC/CI-MS
- Used for volatile organic molecules

ELECTROSPRAY (ESI)


- The liquid containing the analyte(s) is dispersed by electrospray into an aerosol
 - Charged droplets
 - Solvent evaporation
 - Coulombic explosion
- Soft ionization technique
 - [M+H] +, [M+ Na]+, [M+ K]+, molecular adducts

John B. Fenn Nobel prize in Chemistry 2002

NANOELECTROSPRAY (NANOESI)


- Flow of mobile phase usually hundreds nl/min
 - [M+H]+, [M+Na]+, [M+K]+,
 - Easer interpretation of the spectra

Electrospray technique

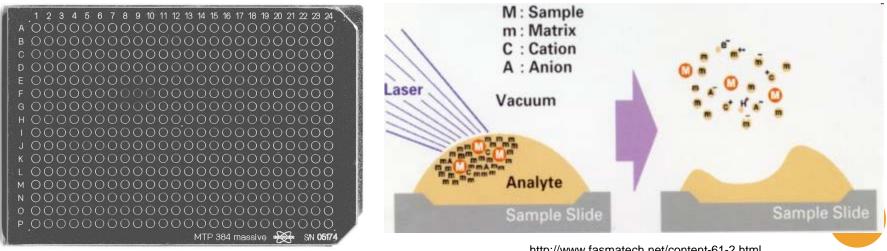
- Polar analytes in broad mass range
- Obtaining more charged ions
 - Analyzis of molecules with Mr behind the range of analyser
- Coupled with HPLC or UHPLC
 - Polar solvent (mobile phase) as a donor of H⁺

ATMOSPHERIC PRESSURE CHEMICAL IONIZATION (APCI)

- The mobile phase containing eluting analyte is heated to high temperature (above 400°C), sprayed with high flow rates of nitrogen
- Molecules of solvent and gas are ionized by corona discharge
- Analyte are ionized by ionized solvent and gas molecules

ATMOSPHERIC PRESSURE CHEMICAL IONIZATION (APCI)

• APCI can be performed in a modified ESI source


- Device similar to ESI source
- However, mechanism of ionization similar to CI
- The ionization occurs in the gas phase
- APCI is a less "soft" ionization technique than ESI
 - Generates more fragment ions
- Coupled with HPLC or UHPLC
 - Advantage of APCI it is possible to use a nonpolar solvent (mobile phase)

MATRIX-ASSISTED LASER **DESORPTION/IONIZATION (MALDI)**

• Laser-based soft ionization method

- Matrix and analyt are mixed on the target plate
- The laser (UV, IR) shoots the mixture
- The energy is transferred to the matrix, which is vaporized, carrying analyte into the vapour phase and charging it

The mechanism of MALDI is still debated

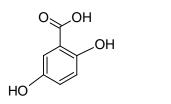
http://www.fasmatech.net/content-61-2.html

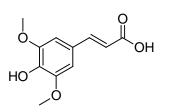
www.ms-texthonk.com

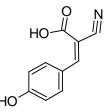
MATRIX-ASSISTED LASER DESORPTION/IONIZATION (MALDI)

- Analysis of
 - Biomolecules (DNA, proteins, peptides and sugars)
 - Large organic molecules (polymers, dendrimeres,...)
 - Which tend to fragment, when are ionized by more conventional ionization methods.
 - Singly charged molecular adduct
 - Molecular adducts (**[M+H]**⁺, [2M+H]⁺, [M+2H]²⁺) or loss of proton [M-H]⁻
 - Other molecular adducts [M+metal]⁺ with salts in sample (Na, K,,)

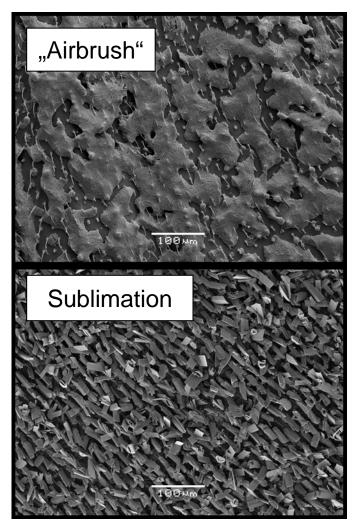
Franz Hillenkamp

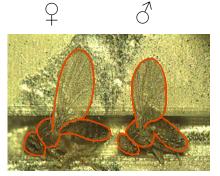

Koichi Tanaka



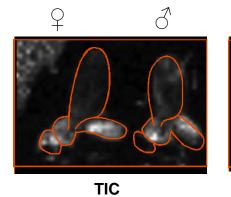

Nobel prize in Chemistry 2002

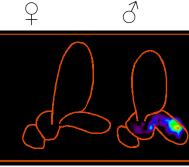
MALDI MATRICES: PROPERTIES AND REQUIREMENTS


- Small molecules, usually small organic acids
 - 2,5-dihydroxybenzoic acid, sinapic acid, α-cyano-4-hydroxycinnamic acid,.....
- The MALDI matrix of requirements
 - Be able to embed analytes (by co-crystallization)
 - Be soluble in solvents compatible with analyte
 - Be vacuum stable
 - Absorb the laser wavelength
 - Cause co-desorption of the analyte upon laser irradiation
 - Promote analyte ionization


MALDI IMAGING

V. Vrkoslav, A. Muck, J. Cvačka, A. Svatoš, J. Am. Soc. Mass Spectrom. 21 (2010) 220-231

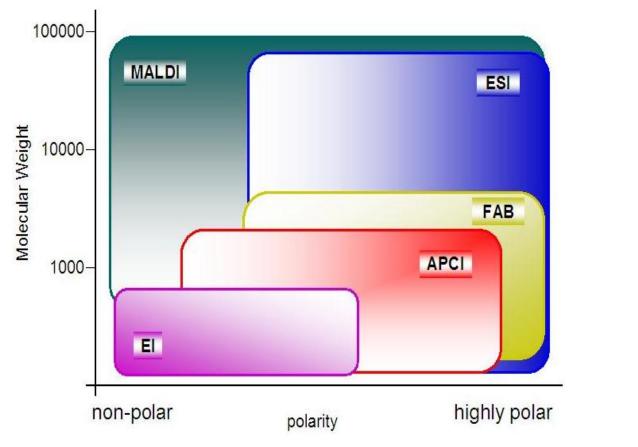

D. melanogaster



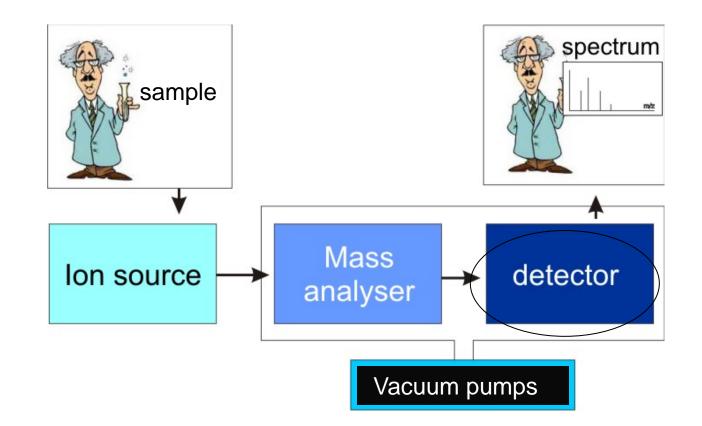
Foto

3

cis-vacenyl acetate


LASER DESORPTOIN/IONIZATION (LDI)

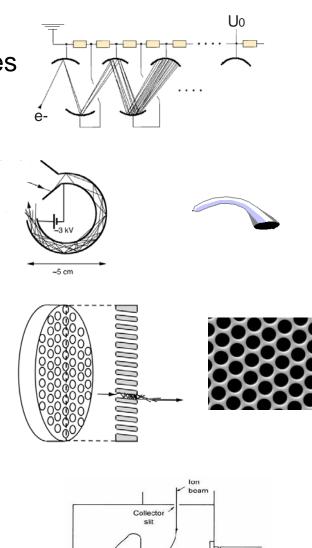
• LDI (laser desorption/ionization)


- Energy of laser is directly absorbed by analyte
- Without matrix
- For small molecules only
 - Spectra without matrix ions
 - Better reproducibility then MALDI
 - Harder ionization technique then MALDI fragments in spectra
 - Sensitivity depends on analyte
- Useful for imaging
- Instrumentation is same as for MALDI

CHOICE OF IONIZATION TECHNIQUE

- Almost all compounds can by ionized by more then one technique
 - Depends on molecular mass, polarity, ionization energy, solubility, ...

DETECTOR


• Detectors - record the charge induced or the current produced, when an ion passes by or hits a surface

DETECTORS

- Records the current produced, when an ion hits a surface.
- In commercial instrument detectors with conversion dynode
 - Ions strike a conversion dynode to produce electrons electron multiplied by
 - Electron multiplier
 - Ion-to-photon detector
- Record the charge induced, when an ion passes by
 - FT-ICR-MS and Orbitrap
 - The detector is part of analyser
 - Ions only pass near the electrodes

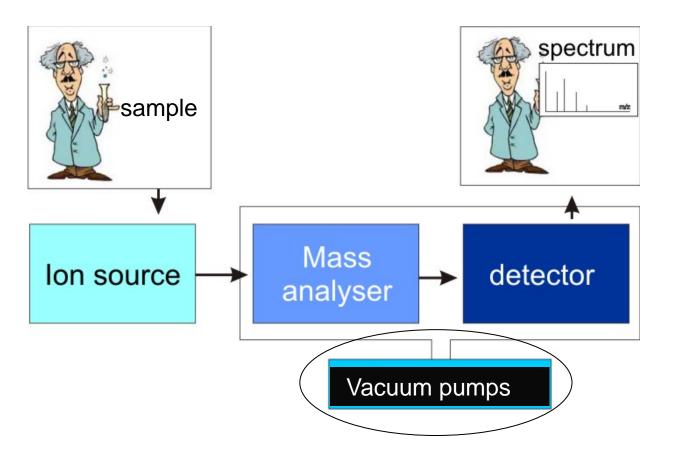
DETECTORS

- Elektromultiplier with discrete dynodes
 - Amplification 10⁶
- Chaneltron
 - PbO sensitive surface
 - Amplification 10⁶
- Microchannel Plate Detectors (MCP)
 - PbO sensitive service
 - Amplification 10³
 - Two detectors 10⁶
 - For TOF analyser
- Ion-to-photon detector
 - Electron strike a phosphor and the resulting photons are detected by a photomultiplier

Electron

Vacuum system

ca. 20kV -ve


Photo-

multiplie

Window

Phosphor

VACUUM SYSTEM

VACUUM SYSTEMS

• Usually two steps

- <u>Rough</u> vacuum (roughing pump membrane pump, oil-sealed roughing pump, scroll pump)
 - 100 − 0.1 Pa
 - all type of instruments
- <u>High vacuum (turbomolecular</u> **pump**, diffusion pump)
 - 0.1-10⁻⁶ Pa,
 - TOF, Q, IT
- Ultra-high vacuum (turbomolecular pump)
 - (10⁻¹⁰-10⁻¹² Pa)
 - Orbitrap, ICR

THANK YOU FOR YOUR ATTENTION