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ABSTRACT. The drag torque, drag force and Magnus force acting on a spheroid 
rotating around its axis of symmetry and moving perpendicularly to this axis in calm 
water, were studied using experimental data and numerical simulation. The prolate 
plexiglas spheroid with ratio of the axes 3/4 was sped up in special device, which 
ensured the required rotational and translational velocity in the given plane. A video 
system was used to record the spheroid motion in water. Using the video records the 
spheroid translational and angular velocities and trajectory of its centre were determined 
and compared with the results of the numerical simulation. The dependences of the 
coefficients of the drag torque, drag force and Magnus force on the Reynolds number 
and dimensionless angular velocity were obtained. 
Key words: prolate spheroid, drag torque, drag force, Magnus force 
 
1. INTRODUCTION 

For calculations of the conveyance of solid particles, models of spherical particles 
moving in fluid are usually used (e.g., Kholpanov and Ibyatov, 2005; Lukerchenko et 
al., 2006, 2008). However, the influence of the particle shape on its motion in fluid flow 
sometimes is significant. For example, in the case of particle saltation in water flowing 
over a rough bed, the elongated shape of the particles leads to an increase of the angular 
velocity (Nino and Garcia, 1998) which must be taken into account in numerical 
models. The endless variety of the particle shapes does not allow this problem to be 
solved using common case; therefore the special cases play an important role. After all a 
spheroid is the simplest shape of all the particles but can give more information in 
comparison with a sphere; in particular, the influence of the particle elongation can be 
evaluated. 

Due to collisions with flow boundaries and other particles, the particle in a fluid 
flow not only moves translationally but also rotates. The following forces and torque act 
on the particle that moves and simultaneously rotates in a fluid flow: 

- submerged gravitational force – difference between the gravitational force and 
Archimedean force; 

- drag force Fd;  
- force due to added mass; 
- Magnus force FM; 
- history force; 
- torque due to added mass; 
- drag torque M. 
The calculation for the submerged gravitational force is simple. The formulas for the 

tensor of added mass for ellipsoid are known (e.g., Kochin et al., 1955).  
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The expressions for the history force were dirived for spherical particles only (e.g., 
Basset, 1888; Mei et al., 1991; Mei and Adrian, 1992; Kim et al., 1998), a formula of 
the history force for ellipsoid is yet to be researched.  

The formulas for the drag torque M, drag force Fd and Magnus force FM include the 
particle translational and angular velocity relatively fluid, therefore they can be studied 
for the particle moving in the calm fluid. In this case these velocities are absolute 
because the fluid velocity is zero. The present study deals with the drag torque, drag 
force and Magnus force acting on the ellipsoid of revolution - prolate spheroid with 
semi-axes a0 = 0.020 m (the axis of symmetry axis) and b0 = 0.015 m) that rotates about 
its axis of symmetry and moves perpendicularly to this axis in calm water. The spheroid 
motion is characterized by two dimensionless parameters: translational Reynolds 
number (or Reynolds number) Re = 2a0 |V| / ν and rotational Reynolds number       
Reω= |ω| b0

2 / ν,  where ν  is the fluid kinematical viscosity, V is the vector of the 
translational velocity of the particle centre of mass, which coincides with its geometrical 
centre in the case of homogeneous particles, and ω is the vector of angular velocity of 
the particle rotation about its axis of symmetry. Sometimes the dimensionless angular 
velocity Γ = b0 |ω| / |V| is used instead of the rotational Reynolds number Reω (Tanaka 
et al., 1990; Oesterle and Bui Dinh, 1998). Any pair of these three dimensionless 
parameters, Re, Reω, and Γ is equivalent to the others and Γ=2q-1Reω /Re, where            
q = b0 / a0 is the ratio of the spheroid semi-axes. 

Information about the drag torque is known only for the spherical particle rotating in 
fluid without translational motion (Sawatzki, 1970) and with translational motion 
(Lukerchenko et al., 2008). 

The drag force acting on a spheroid moving in fluid perpendicularly of its axis of 
symmetry without rotation is known (Clift et al., 1978).  

The theoretical evaluation of the Magnus force FM for a spheroid that rotates about 
its axis of symmetry and moves perpendicularly to this axis is given by Lukerchenko 
(2005): 

                                       FM=2Ω0 ρ|ω||V|,                             (1) 

where ρ is the fluid density, Ω0 = (4/3)πa0 b0
2 is the volume of the spheroid. 

Tanaka et al. (1990) investigated experimentally the drag and Magnus forces acting 
on sphere, prolate and oblate spheroids that rotate about an axis perpendicular to the 
free stream. They used the wind tunnel of an open-circuit type. The spheroids were 
made to rotate about the axis perpendicular to the axis of symmetry. The Reynolds 
number Re of the test bodies ranges from 60000 to 150000. They revealed for the 
sphere and oblate spheroid, the shape of which was near sphere, the negative Magnus 
effect, which was observed at the Reynolds number Re higher than 100000 and a certain 
range of the dimensionless angular velocity Γ. Thus, experimental and theoretical data 
on the drag torque, drag force and Magnus force in the case when the spheroid moves 
translationally and rotates simultaneously is not described sufficiently in the literature 
for use in numerical models. In this case the mutual influences of the translational and 
rotational particle movements should be taken into account. 

The basic relationships for these forces and torque can be expressed from 
dimensional analysis and the dimensionless coefficients should be determined 
experimentally in dependence on pair of dimensionless parameters Re and Reω or Reω 
and Γ. 
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For a sphere, the dependence of the drag torque and drag force coefficients on  
and Reω were found experimentally by Lukerchenko et al. (2008) and the dependence of 
the Magnus force coefficient on Reω and Γ was obtained by Oesterle and Bui Dinh 
(1998). 

Re

The aim of the present study is to obtain the dependence of the drag torque, drag 
force and Magnus force coefficients on the both Reynolds numbers Re and Reω (or 
Reynolds number Re and dimensionless angular velocity Γ) for the prolate spheroid 
( ) moving perpendicularly to its axis of symmetry and simultaneously rotating 
about this axis in initially quiescent fluid. 

3 / 4q =

 
2. DRAG TORQUE, DRAG FORCE, AND MAGNUS FORCE 

The drag torque acting on a spheroid rotating about its axis of symmetry in fluid is 
given by the formula: 

                                       M = - Cω 0.5ρb0
5|ω|ω,               (2) 

Where Cω = Cω (q, Re, Reω) is the dimensionless drag torque coefficient that depends 
on the ratio of the semi-axes  Reynolds number Re and rotational Reynolds number 
Reω or dimensionless angular velocity Γ. The reliable experimental and theoretical data 
for sphere in the case V = 0: Cω = Cω (q = 1, Re, Reω) = Cω10 (Reω) are described by 
Sawatzki (1970) ), where the data are obtained for a sphere rotating with constant 
angular velocity in viscous fluid, which is at rest at a large distance from the rotating 
sphere. For a rotating sphere in the case V≠0: Cω = Cω (q = 1, Re, Reω) = Cω1 (Re, Reω)  
the expression for the drag torque coefficient was obtained by Lukerchenko et al. 
(2008): 

,q

                               Cω = Cω1 (Re, Reω) = Cω10 (Re) (1+0.0044 Re 0.5).                          (3) 

The value of the drag force acting on a spheroid moving in fluid perpendicularly of 
its axis of symmetry can be described by the following formula: 

                                       Fd = - Cd 0.5ρ S0|V|V,                                                              (4) 

where S0 = π a0 b0 is the square of the spheroid midlength section and Cd = Cd (q, Re, 
Reω) is the dimensionless drag force coefficient that depends on the ratio of the semi-
axes  Reynolds number Re and rotational Reynolds number Reω or dimensionless 
angular velocity Γ. In the case q = 1 (sphere) and Reω = 0 (the motion without rotation) 
the drag force coefficient Cd = Cd (q = 1, Re, Reω = 0) = Cd10 (Re) is a well known 
function of the Reynolds number (e.g., Nino and Garcia, 1994): 

,q

                                  
1
2
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                     (

If q 

5) 

≠ 1 (spheroid) and Reω = 0 (the motion without rotation) the drag force coefficient 

          (6) 

ression: 

Cd = Cd (q, Re, Reω = 0) = Cd0 (q, Re) can be expressed as (Clift et al., 1978): 

                            Cd0=0.445[1+1.63(1- q)2]             if 980 < Re < 10 000,          

                            Cd0=0.445[1+1.63(1- q)]                  if  Re > 40 000.                          (7) 

For values of the Reynolds number 104 < Re < 4·104 the value of the drag force 
coefficient can be taken using the linear interpolation. 

The lateral Magnus force is defined by the next exp
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                                   (8) 

oeffi ient. 

MOTION IN FLUID 

vertical 

                                  FM=CM Ω0 ρ[ω ,V] ,   

where CM is the dimensionless Magnus force c c
 
. MATHEMATICAL MODEL OF THE SPHEROID 3

Let us consider the spheroid that moves and simultaneously rotates in fluid in a 
plane. Its axis of symmetry is the axis of rotation and is normal to the plane of motion 
during the period of the observation. The coordinate axis Ox is horizontal and the 
coordinate axis Oy is vertical. The system of equations describing the spheroid motion 
in initially quiescent fluid is: 

                                       Ω ρ = + + +0 p g d m M
d
dt
V F F F F ,                                               (9)  

                                       ,dJ M
dt

=
ω                                                                              (10) 

where Pρ  is the particle density and  is the particle momentum of inertia:  

                                       

J

48
0 015 pJ a b=

π ρ ,                                                                     (11) 

g tional force: F  is the submerged gravita

                                      ( ) ,ρ0Ω ρ= −g PF g                                                              (12) 

g tional acceleration is the vector of the gravita , Fm is the force due to added mass: 

                                       = −
dCΩ ρ VF ,                                                             m 0 m dt

  (13) 

fficient.  
ndicular to the axis of symmetry, the coefficient Cm 

Cm  is the added mass coe
If the spheroid velocity is perpe

can be written (Loitsianskii, 1973):  

                             
21/ (1eC − −

=
2 3

2 2 3

) / 2 ln((1 ) /(1 )) ,
2 1/ (1 ) / 2 ln((1 ) /(1 ))m

e e e e
e e e e e

⋅ + −
− + − ⋅ + −

                         (14) 

21= −e q  where  is the eccentricity. For q = ¾ : Cm = 0,587.   
cause the expression of 

this    

URE 

ig. 1. The experiments were carried out in a 
rectangular glass vessel 0.780 m long, 0.580 m wide, and 0.980 m high. The water 

The Basset history force is neglected in the present study be
 force for the spheroid is not known and because a relatively large body is used  

(a0 =20 mm and b0 =15 mm), for which the Basset history force is small in comparison 
with other forces (Bombardelli et al, 2008). 

The change in the modulus of the angular velocity ω allows us to evaluate the drag 
torque, that is, the drag torque coefficient Cω. The change in the modulus of the 
translational velocity V allows us to evaluate the drag force, that is, the drag force 
coefficient Cd. The trajectory curvature allows us to evaluate the Magnus force, that is, 
the Magnus force coefficient CM. 

 
4. EXPERIMENTAL PROCED

The experimental set up is depicted in F
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depth was about 0.800 m. The measured spheroid (plexiglas, a0 = 0.020 m and  
b0 =0.015 m) was sped up in a special device (developed in the Institute of 
Hydrodynamics AS CR, v. v. i.) situated above the water surface. The device ensured 
that the required spheroid rotation in the given plane.  

 

              

 
 

Fig. 1 Experimental setup 

and translational velocity of th  free fall. The device allowed 
e spheroid to spin up to 6500 revolutions per minute (rpm). The translational velocity 

 mm above water surface what determined the initial 
tran

. Only experiments in which the plane 
of t

xt experiments was decreased with step 500 rpm. The spheroid motion was 
stab

 
e spheroid were reached by

th
of the spheroid was given by the height h0 of the axis of rotation of the device above the 
water surface. The initial height h0 and angular spheroid velocity ω0 can be chosen 
independently from one other. 

In the experiments the device was situated as that the axis of the rotation was at 
height h0 of 17 mm and 30

slational velocity with which the spheroid enters to water. An unsteady entrance 
region can be observed when the particle enters water. Therefore, only the 
experimental data outside this region were used for the data analysis. The ball 
movement in water was recorded using the digital video camera NanoSenze MKIII+ 
with a frequency up to 1000 frames per second. 

Hairlines were drawn along two perimeters of the spheroid with the angle of 90° to 
make it possible to visualize the particle rotation

he particle trajectory was parallel to the plane of the video camera objective were 
chosen.  

The initial angular spheroid velocity ω0 was initially maximum 6500 rpm and then 
in the ne

le, i.e. the axis of the rotation (axis the symmetry) kept its direction during the 
motion, for large values of the ω0 whereas for ω0 < 1000 the axis of rotation changed 
usually its direction. Therefore, in the present study the value of the initial angular 
spheroid velocity ω0 was ranged from 1000 to 6500 rpm. The measured values of the 
dimensionless angular velocity were from 3 to 12, the measured values of the 
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Reynolds number were from 10000 to 20000. For each pair of h0 and ω0 at the least 
three experiments were carried out.   

The geometric and kinematical properties of the particle motion were found from 
the 

 
. RESULTS 

uations (9)–(10) describing the spheroid motion in fluid was solved 

image sequences. 

5

The system of eq
numerically. The experimental and calculated trajectories and the particle kinematical 
parameters were plotted as functions of time. The values of the drag torque coefficient 
Cω , drag force coefficient Cd and Magnus force coefficient CM were found using the 
method of best fit of the experimental data. 

t, s
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| ω
 |,
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experiment 
simulation

 
Fig. 2. Absolute value of the angular velocity      Fig. 3. Dimensionless angular velocity

The initial part of the spheroid trajectory immediately after its entry into the water 
was n

 and dimensionless 
ang

 0.5),                                                          (15) 

wh

ated and experimental values of the modulus of the translational velocity 
ver

as sought as: 

                                                            (16) 

                             
                 (h0 = 0.017 m; ω0 = 2000 rpm)                          (h0 = 0.017 m; ω0 = 2000 rpm) 
 

eglected because its motion was unsteady in this part. The added forces act on the 
spheroid in the initial part due to the different disturbances (particle transition from air 
to water, effect of air bubbles on particle surface, etc.) in the water. 

Fig. 2 and Fig. 3 show the absolute value of the angular velocity
ular velocity of the spheroid versus time, respectively. The good agreement the 

calculated and experimental data is reached if the following formula for the drag torque 
coefficient is used in the numerical model: 

                                   Cω=Cω10 (1 + kω Γ

ere Cω10 is calculated using the data of Sawatski (1970), kω is constant, its average 
value and standard deviation obtained using 15 experiments is 0.226 and 0.010, 
respectively. 

The calcul
sus time are depicted in Fig. 4. 
The drag force coefficient Cd w

                                      Cd = λd Cd0 ,                
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where Cd0 was calculated using the expression (6) and (7). The value of the factor λd 
was chosen in each time interval 0.05 s as that the calculated values of the translational 
velocity are near to the experimental ones. The acceptable formula for the factor λd is 
not yet found. The values of the factor λd for some values of Re and Γ are represented in 
Table 1. 

t, s
0.0 0.1 0.2 0.3 0.4 0.5 0.6

|V
|, 

m
 s-1

0.24

0.28

0.32

0.36

0.40

0.44
experiment 
simulation

     x, m
-0.08 -0.06 -0.04 -0.02 0.00

y,
 m

-0.16

-0.12

-0.08

-0.04

0.00
experiment
simulation 

 
Fig. 4. Modulus of the translational velocity       Fig. 5. Trajectory of the spheroid centre     
              (h0 = 0.017 m; ω0 = 2000 rpm)                             (h0 = 0.017 m; ω0 = 2000 rpm) 
 

In a qualitative sense the dependence of the drag force coefficient on the parameter 
Γ for a spheroid is like of that for a sphere. The accurate dependence for Cd in the form 
of a formula need added experimental data but the following tendencies can be noted. 
For the values of Γ < ~ 5 the drag force coefficient increases with increasing of Γ, for Γ 
> ~ 5 the drag force coefficient decreases with increasing of Γ. For Γ ~ 10 the drag 
force coefficient is approximately equal to that for Γ = 0 (motion without rotation) and 
for Γ > 10 it is even less than that for the case of the motion without rotation. 

Table 1. 

λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ 

1.00 
1.05 
1.15 
1.15 
1.20 
1.20 
1.25 
1.25 
1.30 
1.30 
1.35 

19.8 
17.7 
16.1 
14.8 
13.8 
13.0 
12.4 
11.9 
11.5 
11.2 
11.0 

9.96 
9.51 
9.12 
8.71 
8.28 
7.89 
7.49 
7.11 
6.75 
6.41 
6.05 

1.05 
1.10 
1.15 
1.20 
1.27 
1.33 
1.37 
1.45 
1.50 
1.55 
1.65 

18.7 
16.7 
15.4 
14.3 
13.3 
12.6 
11.9 
11.4 
11.0 
10.6 
10.2 

9.52 
9.12 
8.72 
8.31 
7.95 
7.62 
7.28 
6.97 
6.68 
6.37 
5.97 

1.25 
1.30 
1.35 
1.40 
1.45 
1.50 
1.55 
1.55 
1.60 
1.65 
1.70 

17.5 
15.6 
14.2 
13.2 
12.3 
11.7 
11.1 
10.7 
10.4 
10.2 
  9.9 

8.89 
8.70 
8.41 
8.11 
7.80 
7.48 
7.17 
6.85 
6.51 
6.19 
5.80

1.40 
1.50 
1.60 
1.60 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 
1.65 

17.6 
15.4 
13.7 
12.6 
11.8 
11.2 
10.7 
10.4 
10.2 
10.1 
  9.9 

6.92 
7.09 
7.14 
7.07 
6.91 
6.71 
6.44 
6.13 
5.83 
5.53 
5.12

1.50 
1.60 
1.70 
1.80 
1.80 
1.70 
1.70 
1.60 
1.60 
1.60 
1.60 

17.5 
15.2 
13.5 
12.4 
11.5 
11.0 
10.7 
10.5 
10.4 
10.4 
10.3 

5.23 
5.51 
5.66 
5.72 
5.67 
5.51 
5.29 
5.04 
4.76 
4.49 
4.25
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λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ 

1.70 
1.75 
1.80 
1.85 
1.80 
1.75 
1.70 
1.65 
1.60 
1.55 
1.50 

17.7 
14.9 
13.2 
12.0 
11.3 
10.8 
10.5 
10.3 
10.2 
10.2 
10.2 

4.03 
4.42 
4.65 
4.76 
4.76 
4.67 
4.51 
4.31 
4.10 
3.88 
3.64 

1.70 
1.80 
1.90 
2.00 
1.95 
1.85 
1.75 
1.65 
1.65 
1.65 
1.65 

19.7 
15.9 
13.6 
12.1 
11.1 
10.6 
10.3 
10.1 
10.1 
10.0 
10.0 

2.60 
3.03 
3.33 
3.54 
3.63 
3.63 
3.55 
3.42 
3.28 
3.14 
3.00 

0.85 
0.90 
1.00 
1.00 
1.10 
1.15 
1.25 
1.25 
1.35 
1.35 

18.0 
16.9 
15.8 
14.9 
14.0 
13.3 
12.6 
12.1 
11.6 
11.4 

11.7 
10.6 
9.79 
9.14 
8.57 
8.11 
7.73 
7.35 
7.01 
6.81

1.00 
0.95 
1.05 
1.08 
1.20 
1.22 
1.35 
1.37 
1.45 
1.50 
1.50 

18.3 
16.9 
15.7 
14.7 
13.8 
13.0 
12.3 
11.7 
11.3 
10.9 
10.6 

10.3 
9.63 
9.02 
8.49 
8.07 
7.71 
7.38 
7.09 
6.80 
6.51 
6.22

1.00 
1.10 
1.15 
1.15 
1.20 
1.20 
1.25 
1.30 
1.30 
1.40 
1.37 

17.0 
15.8 
14.7 
13.9 
13.3 
12.7 
12.3 
11.9 
11.6 
11.3 
11.0 

9.46 
8.85 
8.34 
7.87 
7.45 
7.04 
6.67 
6.34 
6.02 
5.72 
5.24

 

λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ λ d
 

Re
*1

0-3
 

Γ 

1.10 
1.15 
1.25 
1.30 
1.40 
1.45 
1.50 
1.50 
1.50 
1.45 
1.37 

16.2 
15.2 
14.3 
13.6 
12.9 
12.3 
11.8 
11.4 
11.1 
10.9 
10.8 

8.44 
7.90 
7.48 
7.13 
6.82 
6.55 
6.29 
6.01 
5.71 
5.42 
5.01 

1.22 
1.34 
1.45 
1.50 
1.65 
1.65 
1.70 
1.70 
1.55 
1.50 
1.45 

15.8 
14.7 
13.7 
12.9 
12.2 
11.6 
11.2 
10.8 
10.7 
10.6 
10.7 

6.73 
6.55 
6.38 
6.22 
6.08 
5.90 
5.69 
5.47 
5.21 
4.91 
4.55 

1.35 
1.45 
1.50 
1.55 
1.60 
1.60 
1.60 
1.65 
1.65 
1.65 
1.65 

15.7 
14.4 
13.4 
12.6 
12.0 
11.5 
11.2 
10.9 
10.7 
10.5 
10.4 

5.70 
5.68 
5.63 
5.53 
5.40 
5.24 
5.06 
4.87 
4.68 
4.47 
4.20

1.70 
1.70 
1.80 
1.80 
1.70 
1.70 
1.70 
1.70 
1.60 
1.60 
1.60 

15.9 
14.0 
12.8 
11.9 
11.4 
11.0 
10.7 
10.6 
10.5 
10.4 
10.4 

4.46 
6.68 
4.78 
4.80 
4.72 
4.58 
4.41 
4.23 
4.03 
3.83 
3.57

1.80 
1.85 
1.90 
1.90 
1.80 
1.80 
1.75 
1.75 
1.70 
1.70 
1.70 

16.2 
14.0 
12.6 
11.7 
11.1 
10.8 
10.5 
10.4 
10.3 
10.2 
10.2 

3.16 
3.44 
3.60 
3.67 
3.66 
3.59 
3.49 
3.37 
3.24 
3.11 
3.94

 
Good agreement of the calculated and experimental data is obtained for the 

trajectory of the spheroid centre (Figure 5) if the coefficient of Magnus force was 
calculated according to the formula: 

                                           CM = kM / Γ,                                                                  (17) 

where the factor Mk  is constant, its average value and standard deviation obtained using 
15 experiments is 0.177 and 0.010, respectively. 
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6. CONCLUSIONS 

The mutual influence of the translational and rotational movements in fluid of the 
prolate spheroid was studied using the experimental data and numerical simulation. The 
spheroid moves perpendicularly of its axis of symmetry and rotates about this axis. The 
drag torque, drag force and Magnus force coefficients of a spheroid were evaluated for 
the Reynolds numbers range 104 < Re < 2·104 and dimensionless angular velocity range 
3 < Γ < 12. 

For the drag torque coefficient the following formula was obtained: 

                                       Cω=Cω10 (1 + kω Γ 0.5) 

where Cω10 is calculated using the data of Sawatski (1970), kω = 0.226 ± 0.010.  
For the Magnus force coefficient the following formula is valid: 

                                       CM = kM / Γ, 

where kM = 0.177 ± 0.010.  
The dependence of the drag force coefficient Cd on the Reynolds number Re and 

dimensionless angular velocity Γ  is obtained in the tabular form. The accurate 
dependence for Cd in the form of a formula need added experimental data but the 
following tendencies can be noted.  For the values of Γ < ~ 5 the drag force coefficient 
increases with increasing of Γ, for Γ > ~ 5 the drag force coefficient decreases with 
increasing of Γ, for Γ ~ 10 the drag force is less than for motion without rotation.   

The results are useful for numerical simulation of the particle motion in fluid and 
modelling of the particle-laden flow and sediment transport of sand in rivers. 
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8. NOMENCLATURE 

0a   semi-axis of the spheroid, corresponding to its axis of symmetry, m 

0b c= 0  semi-axes of the spheroid normal to its axis of symmetry, m 

dC  drag force coefficient, - 

0dC  drag force coefficient of the spheroid moving in fluid without rotation (ω=0), - 

10dC  drag force coefficient of the sphere ( 1q = ) moving in fluid without rotation  
            ( ), - 0ω =

mC   added mass coefficient, - 

MC  Magnus force coefficient, - 
Cω  drag torque coefficient, - 

1Cω  drag torque coefficient for the sphere ( 1q = ) rotating in fluid with the 
translational motion (V ≠0),- 
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10Cω  drag torque coefficient for the sphere ( 1q = ) rotating in fluid without the 
translational motion(V =0),- 

e   eccentricity of the spheroid, m 
Fd drag force, N 
Fg submerged gravitational force, N 
Fm force due to added mass, N 
FM Magnus force, N 
g  vector of the gravitational acceleration, m/s2 

0h  height of the axis of rotation of the device above the water surface, m 
J   particle momentum of inertia, kg m2 
M  drag torque, N m 
q  ratio of the semi-axes of the spheroid, - 
Re   translational Reynolds number, -  
Reω   rotational Reynolds number, - 

0S  square of the spheroid midlength section, m2 

V vector of the spheroid translational velocity, m s–1 
Γ  dimensionless particle angular velocity, - 
ν   kinematical fluid viscosity, m2 s–1 
ρ   fluid density, kg m–3 

Pρ   particle density, kg m–3 
ω  vector of the spheroid angular velocity, s–1 

0ω  initial spheroid angular velocity in the spinning device, revolutions per minute  
         (rpm) 
Ω0 volume of the spheroid, m3 
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