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LACK OF EXPONENTIAL STABILITY FOR A
CLASS OF SECOND-ORDER SYSTEMS WITH MEMORY

VALERIA DANESE AND FILIPPO DELL’ORO

Abstract. We analyze the decay properties of the solution semigroup S(t) generated
by the linear integro-differential equation

ü(t) +Au(t) +

∫ ∞

0

µ(s)Aγ [u(t)− u(t− s)] ds = 0

where the operator A is strictly positive selfadjoint with inverse not necessarily compact.
The asymptotic stability is investigated in dependence of the parameter γ ∈ R. In
particular, we show that S(t) is not exponentially stable when γ ̸= 1.

1. Introduction

Let (H, ⟨·, ·⟩, ∥ · ∥) be an infinite-dimensional separable real Hilbert space, and let

A : dom(A) ⊂ H → H

be a strictly positive selfadjoint unbounded linear operator, with inverse A−1 not neces-
sarily compact. Given a nonincreasing absolutely continuous summable function µ : R+ =
(0,∞) → R+ of total mass ∫ ∞

0

µ(s) ds = κ,

we consider the linear integro-differential equation with memory in the unknown u = u(t)

(1.1) ü(t) + Au(t) +

∫ ∞

0

µ(s)Aγ[u(t)− u(t− s)] ds = 0,

where γ ∈ R is a fixed constant and the dot stands for derivative with respect to the time
variable t. Here u(0) and u̇(0), as well as the past history u(−s)|s>0 of the variable u, are
understood to be assigned data of the problem.

Remark 1.1. Equation (1.1) serves as a model for several physical phenomena, choosing
A = −∆ with the appropriate domain. For instance, it rules the evolution of the relative
displacement in a linearly viscoelastic solid (γ = 1) and the electromagnetic field in the
ionosphere (γ = 0). See e.g. [7, 9] for more details.

The asymptotic properties of the solution semigroup S(t) arising from equation (1.1)
in the case γ ∈ [0, 1] have been widely investigated, rewriting the problem in the so-
called history space framework of Dafermos [5]. Roughly speaking, we may summarize
the current results as follows: when γ = 1 the semigroup S(t) is exponentially stable
provided that the kernel µ is not completely flat (see [14] for the exact condition), while
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2 V. DANESE AND F. DELL’ORO

if γ ∈ [0, 1) and the embedding dom(A) b H is compact the semigroup S(t) is not
exponentially stable (see [9, 12]).

The purpose of this paper is twofold. First, we study the asymptotic behavior of S(t)
when the parameter γ ranges over the whole real line. Secondly, we analyze the decay
properties without assuming the compactness of the embedding dom(A) ⊂ H, which
translates into the fact that the spectrum of A is not simply made of an increasing
sequence of eigenvalues. In particular, the usual semigroup strategies employed to prove
the lack of exponential stability cannot be applied. In the present work, exploiting a
recent technique introduced in [6], we prove that S(t) is not exponentially stable when
γ ̸= 1. Therefore, roughly speaking, in order to have uniform stability of solutions the
operator Aγ acting on the memory has to be “as strong as” the one acting on the variable
u(t) outside the integral, but not “stronger”. As a complement, in the last part of the
paper, we deal with weaker notions of stability, showing that S(t) is stable (i.e. every
single trajectory goes to zero) for every γ ∈ R and semiuniformly stable for γ ∈ [0, 1].

Plan of the paper. In §2 we introduce the functional setting and the notation. In §3
we establish the existence of the solution semigroup, and in §4 we discuss the invertibility
of its infinitesimal generator. The remaining §5 and §6 are devoted to the main results
about the lack of exponential decay and the stability.

2. Functional Setting and Notation

For r ∈ R, we consider the nested family of Hilbert spaces

Hr = dom(A
r
2 ), ⟨u, v⟩r = ⟨A

r
2u,A

r
2v⟩, ∥u∥r = ∥A

r
2u∥.

The index r will be always omitted whenever zero. Moreover, when r > 0, it is understood
that H−r denotes the completion of the domain, so that H−r is the dual space of Hr.
Accordingly, the symbol ⟨·, ·⟩ also stands for duality product between Hr and H−r. Along
the paper, we will also encounter the complexifications Hr

C of the spaces Hr, that is, the
complex Hilbert spaces

Hr
C = Hr ⊕ iHr = {z = x+ iy with x, y ∈ Hr}

endowed with the inner product

⟨x1 + iy1, x2 + iy2⟩r = ⟨x1, x2⟩r + ⟨y1, y2⟩r + i⟨y1, x2⟩r − i⟨x1, y2⟩r.
Analogously, the complexification A of A is the linear operator on HC with domain

dom(A) = {u+ iv : u, v ∈ dom(A)}
acting as

A(u+ iv) = Au+ iAv.

Since A is strictly positive selfadjoint, so is A, and the two spectra σ(A) and σ(A) coincide.
Besides, setting

α0 = min{α : α ∈ σ(A)} > 0,

for every r > 0 we have the Poincaré type inequality

(2.1) ∥z∥ ≤ α
− r

2
0 ∥z∥r, ∀z ∈ Hr

C.
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Next, we introduce the so-called memory spaces

Mr = L2
µ(R+;Hr)

endowed with the weighted L2-inner products

⟨η, ξ⟩Mr =

∫ ∞

0

µ(s)⟨η(s), ξ(s)⟩r ds,

and we consider the infinitesimal generator of the right-translation semigroup on Mγ,
that is, the linear operator

Tη = −η′ with domain dom(T ) =
{
η ∈ Mγ : η′ ∈ Mγ, lim

s→0
η(s) = 0 in Hγ

}
,

the prime standing for weak derivative, along with its complexification T acting on the
space Mγ

C = L2
µ(R+;Hγ

C). The phase space of our problem will be

Hγ = H1 ×H ×Mγ.

3. The Contraction Semigroup

We translate the problem in the history space framework of Dafermos [5]. To this end,
defining the auxiliary variable

ηt(s) = u(t)− u(t− s),

system (1.1) can be given the form

(3.1)

ü+ Au+

∫ ∞

0

µ(s)Aγη(s) ds = 0,

η̇ = Tη + u̇.

Then, introducing the 3-component vector

Z(t) = (u(t), v(t), ηt),

we rewrite system (1.1) as the ODE in Hγ

d

dt
Z(t) = LZ(t),

where the linear operator L is given by

L

uv
η

 =


v

−A
(
u+

∫ ∞

0

µ(s)Aγ−1η(s) ds
)

Tη + v

 ,

with domain

dom(L) =

z ∈ Hγ

∣∣∣∣∣∣∣∣
v ∈ Hmax{1,γ}

u+

∫ ∞

0

µ(s)Aγ−1η(s) ds ∈ H2

η ∈ dom(T )

 .
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Theorem 3.1. For every fixed γ ∈ R, the operator L is the infinitesimal generator of a
contraction semigroup

S(t) = etL : Hγ → Hγ.

The proof is based on an application of the classical Lumer-Phillips Theorem (see [16]).

Theorem 3.2 (Lumer-Phillips). The operator L is the infinitesimal generator of a con-
traction semigroup S(t) = etL on Hγ if and only if

(i) L is dissipative; and

(ii) ran(1− L) = Hγ.

In the next proposition, we prove condition (i).

Proposition 3.3. The operator L is dissipative for every γ ∈ R.

Proof. This amounts to show that

⟨Lz, z⟩Hγ ≤ 0, ∀z ∈ dom(L).

Indeed, given z = (u, v, η) ∈ dom(L), direct computations yield

(3.2) ⟨Lz, z⟩Hγ = ⟨Tη, η⟩Mγ .

Moreover, integrating by parts,

⟨Tη, η⟩Mγ = lim
y→0

1

2

(
− µ(1/y)∥η(1/y)∥2γ + µ(y)∥η(y)∥2γ +

∫ 1/y

y

µ′(s)∥η(s)∥2γ ds
)
.

Exploiting the monotonicity of µ and the Hölder inequality, we now infer that

lim
y→0

µ(y)∥η(y)∥2γ ≤ lim sup
y→0

µ(y)

(∫ y

0

∥η′(r)∥γ dr
)2

≤ lim sup
y→0

y

∫ y

0

µ(r)∥η′(r)∥2γ dr = 0,

and thus

⟨Tη, η⟩Mγ = lim
y→0

1

2

(
− µ(1/y)∥η(1/y)∥2γ +

∫ 1/y

y

µ′(s)∥η(s)∥2γ ds
)
.

Since the left-hand side is bounded and the two terms in the right-hand side are negative,
we conclude that both the limit and the integral exist and are finite. In particular, this
forces the convergence

lim
y→0

µ(1/y)∥η(1/y)∥2γ = 0,

and therefore

(3.3) ⟨Tη, η⟩Mγ =
1

2

∫ ∞

0

µ′(s)∥η(s)∥2γ ds ≤ 0.

The proof is finished. �
In order to prove condition (ii) of Theorem 3.2, we need the following well known

measure-theoretical result (see e.g. [11]).
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Lemma 3.4. Given δ > 0 and h ∈ L2(R+), consider the function Eδ[h] defined as

Eδ[h; s] =

∫ s

0

e−
δ
2
(s−r)h(r) dr.

Then, Eδ[h] ∈ L2(R+) and

∥Eδ[h]∥L2(R+) ≤ 2
δ
∥h∥L2(R+).

Proposition 3.5. The operator 1− L : dom(L) ⊂ Hγ → Hγ is onto for every γ ∈ R.

Proof. Let z̄ = (ū, v̄, η̄) ∈ Hγ be arbitrarily chosen. We look for a solution z = (u, v, η) ∈
dom(L) to the equation

z − Lz = z̄,

which, written componentwise, reads

u− v = ū,

v + A
(
u+

∫ ∞

0

µ(s)Aγ−1η(s) ds
)
= v̄,

η − Tη − v = η̄.

Integrating the third equation with η(0) = 0 we find

η(s) = (1− e−s)v + (E ∗ η̄)(s),
where E(s) = e−s and ∗ denotes the convolution product on (0, s). Then, substituting
this expression and the first equation of the system above into the second equation, we
obtain

(3.4) v = (1 + A+ κAγ)−1w,

having set

κ =

∫ ∞

0

µ(s)(1− e−s) ds > 0

and

w = v̄ − A
(
ū+

∫ ∞

0

µ(s)Aγ−1(E ∗ η̄)(s) ds
)
.

Our next step is to prove that v ∈ Hmax{1,γ}. To this aim, we consider two cases
separately.

Case 1: γ ≤ 1. Owing to (3.4) it is sufficient to show that w ∈ H−1. Appealing to (2.1),
we begin by estimating

∥w∥−1 ≤ ∥v̄∥−1 + ∥ū∥1 +
∥∥∥∥∫ ∞

0

µ(s)Aγ(E ∗ η̄)(s) ds
∥∥∥∥
−1

≤ c∥v̄∥+ ∥ū∥1 +
∫ ∞

0

µ(s)∥(E ∗ η̄)(s)∥2γ−1 ds,

for some c > 0. Since γ ≤ 1, we have∫ ∞

0

µ(s)∥(E ∗ η̄)(s)∥2γ−1 ds ≤ c

∫ ∞

0

µ(s)∥(E ∗ η̄)(s)∥γ ds ≤ c
√
κ∥E2[h]∥L2(R+)
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where we set

h(r) =
√
µ(r)∥η̄(r)∥γ and E2[h; s] =

∫ s

0

e−(s−r)h(r) dr.

At this point an exploitation of Lemma 3.4 yields

c
√
κ∥E2[h]∥L2(R+) ≤ c

√
κ∥h∥L2(R+) = c

√
κ∥η̄∥Mγ ,

and the conclusion follows.

Case 2: γ > 1. In light of (3.4) we need to prove that w ∈ H−γ. With the aid of (2.1),
it is sufficient to estimate

∥w∥−γ ≤ ∥v̄∥−γ + ∥ū∥2−γ +

∥∥∥∥∫ ∞

0

µ(s)Aγ(E ∗ η̄)(s) ds
∥∥∥∥
−γ

≤ c∥v̄∥+ c∥ū∥1 +
∫ ∞

0

µ(s)∥(E ∗ η̄)(s)∥γ ds,

for some c > 0, and then the argument is analogous to the previous case.

In order to finish the proof, we are left to show that

u+

∫ ∞

0

µ(s)Aγ−1η(s) ds ∈ H2 and η ∈ dom(T ).

To this aim, using the notation above and appealing once more to Lemma 3.4, we estimate

∥η∥2Mγ ≤ 2

∫ ∞

0

µ(s)∥v∥2γ ds+ 2

∫ ∞

0

µ(s)∥(E ∗ η̄)(s)∥2γds

≤ 2κ∥v∥2γ + 2∥E2[h]∥2L2(R+)

≤ 2κ∥v∥2γ + 2∥η̄∥2Mγ ,

and thus η ∈ Mγ. As a consequence, Tη = η − v − η̄ ∈ Mγ. It is also apparent to see
that

lim
s→0

η(s) = 0 in Hγ,

yielding η ∈ dom(T ). Finally,

u+

∫ ∞

0

µ(s)Aγ−1η(s) ds = A−1(v̄ − v) ∈ H2,

and the conclusion follows. �

Remark 3.6. For every initial datum z0 = (u0, v0, η0) ∈ Hγ, the third component of the
solution S(t)z0 = (u(t), u̇(t), ηt) admits the explicit representation formula (see [10])

(3.5) ηt(s) =

{
u(t)− u(t− s), 0 ≤ s ≤ t,

η0(s− t) + u(t)− u0, s > t.
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4. Invertibility of the Operator L

In this section we discuss the invertibility of the infinitesimal generator L. To this end,
introducing the nonnegative function k(s, r) : R+ × R+ → [0, 1] defined as

k(s, r) =

{√
µ(s)
µ(r)

if r ≤ s,

0 otherwise,

we consider the integral operator K with kernel k

Kf(s) =

∫ ∞

0

k(s, r)f(r) dr, f ∈ L2(R+).

The result reads as follows.

Theorem 4.1. The infinitesimal generator L is invertible if and only if

γ ≤ 1 and K ∈ L(L2(R+)).1

Proof. The operator L is invertible if and only if, for any z̄ = (ū, v̄, η̄) ∈ Hγ, the equation

Lz = z̄

admits a unique solution z = (u, v, η) ∈ dom(L). Componentwise, this translates into

v = ū,(4.1)

A
(
u+

∫ ∞

0

µ(s)Aγ−1η(s) ds
)
= −v̄,(4.2)

Tη + v = η̄.(4.3)

If γ > 1 we see from (4.1) that, choosing ū ∈ H1 but not more regular, v ̸∈ Hγ and
therefore L is not invertible. Let us now prove that, when γ ≤ 1,

L invertible ⇔ K ∈ L(L2(R+)).

First we show sufficiency. Assuming K ∈ L(L2(R+)), we claim that the (unique) solution
of system (4.1)-(4.3) is given by

u = −A−1v̄ − Aγ−1ū

∫ ∞

0

sµ(s) ds+

∫ ∞

0

µ(s)
(∫ s

0

Aγ−1η̄(r) dr
)
ds,

v = ū,

η(s) = sū−
∫ s

0

η̄(r) dr.

Indeed, setting

f1(r) =
√
µ(r)∥η̄(r)∥γ ∈ L2(R+),

we infer that ∫ ∞

0

µ(s)

∥∥∥∥∫ s

0

η̄(r) dr

∥∥∥∥2

γ

ds ≤
∫ ∞

0

µ(s)

(∫ s

0

∥η̄(r)∥γ dr
)2

ds

= ∥Kf1∥2L2(R+) <∞.

1With standard notation, L(L2(R+)) denotes the space of bounded linear operators on L2(R+).
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Moreover, calling

f2(r) =
√
µ(r) ∈ L2(R+),

and exploiting the condition γ ≤ 1, we obtain∫ ∞

0

µ(s)∥sū∥2γ ds = ∥ū∥2γ
∫ ∞

0

s2µ(s) ds = ∥ū∥2γ∥Kf2∥2L2(R+) <∞.

Collecting the two inequalities above and observing that

lim
s→0

η(s) = 0 in Hγ and η′ ∈ Mγ

we conclude that η ∈ dom(T ). At this point, it is easy to see that the whole vector
(u, v, η) ∈ dom(L). In order to prove necessity we begin to show that, when L is invertible,
the operator K maps L2(R+) into L2(R+). Indeed, taking ū = v = 0 and integrating
equation (4.3) on (0, s), we learn that∫ s

0

η̄(r) dr ∈ Mγ, ∀η̄ ∈ Mγ.

Hence, for every f ∈ L2(R+), choosing

η̄(r) =
f(r)√
µ(r)

w

for some unit w ∈ Hγ, we have

∥Kf∥2L2(R+) =

∫ ∞

0

µ(s)

(∫ s

0

f(r)√
µ(r)

dr

)2

ds =

∫ ∞

0

µ(s)

∥∥∥∥ ∫ s

0

η̄(r) dr

∥∥∥∥2

γ

ds <∞.

To complete the argument it is sufficient to prove that K : L2(R+) → L2(R+) is closed;
then the conclusion will follow applying the Closed Graph theorem. To this end, intro-
ducing the further integral operator

K⋆f(s) =

∫ ∞

0

k(r, s)f(r) dr, f ∈ L2(R+),

and exploiting the Fubini-Tonelli theorem, for every ξ1, ξ2 ∈ L2(R+) we draw the inequal-
ity∫ ∞

0

|ξ1(s)K⋆ξ2(s)| ds ≤
∫ ∞

0

|ξ1(s)|
∫ ∞

0

k(r, s)|ξ2(r)| dr ds = ⟨K|ξ1|, |ξ2|⟩L2(R+) <∞,

which in turn implies K⋆ξ2 ∈ L2(R+) (see e.g. [11, p. 232]). Next, taking a sequence
φn ∈ L2(R+) such that

φn → φ and Kφn → ψ in L2(R+)

for some φ, ψ ∈ L2(R+), we have

⟨ψ, ζ⟩ = lim
n→∞

⟨Kφn, ζ⟩ = lim
n→∞

⟨φn, K
⋆ζ⟩ = ⟨Kφ, ζ⟩

for every smooth compactly supported ζ ∈ C∞
c (R+).2 By density, we reach the desired

equality Kφ = ψ. �
2Again, the order of integration in the iterated integral can be changed due to the Fubini-Tonelli

theorem.
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We now discuss two consequences of Theorem 4.1.

Corollary 4.2. Assume that γ ≤ 1 and

(4.4) lim inf
t→∞

[
sup
s∈R+

µ(t+ s)

µ(s)

]
< 1.

Then the operator L is invertible.

Proof. We begin by showing that (4.4) is equivalent to

(4.5) µ(t+ s) ≤ Ce−δtµ(s),

for every t ≥ 0 and s > 0, and some C ≥ 1 and δ > 0. Indeed, let ϱ < 1 and r > 0 such
that

µ(r + s) ≤ ϱµ(s), ∀s > 0.

Then, for every t ≥ 0, writing

t = nr + τ, n ∈ N, τ ∈ [0, r),

and exploiting the monotonicity of µ, we get

µ(s+ t) ≤ µ(s+ nr) ≤ ϱnµ(s) = en log ϱµ(s) ≤ Ce−δtµ(s),

with C = 1
ϱ
and δ = −1

r
log ϱ. Let now f ∈ L2(R+) be arbitrarily fixed. In light of (4.5)

we have

∥Kf∥2L2(R+) ≤ C∥Eδ[f ]∥2L2(R+)

where

Eδ[f ; s] =

∫ s

0

e−
δ
2
(s−r)|f(r)| dr.

Appealing to Lemma 3.4, the right-hand side is controlled by

C∥Eδ[f ]∥2L2(R+) ≤
4C

δ2
∥f∥2L2(R+),

and thus

∥K∥L(L2(R+)) ≤
2
√
C

δ
.

The proof is finished. �

From the proof above we learn that if (4.4) holds (and thus L is invertible for γ ≤ 1),
then µ has an exponential decay at infinity. The situation is completely different when
the kernel decays polynomially.

Corollary 4.3. Let p > 1 be fixed, and let

µ(s) =
1

(1 + s)p
.

Then, the operator L is not invertible.
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Proof. Considering the function

f(s) = s(p−2)/2
√
µ(s) ∈ L2(R+),

it is immediate to see that

∥Kf∥2L2(R+) =

∫ ∞

0

µ(s)

(∫ s

0

r(p−2)/2 dr

)2

ds =
4

p2

∫ ∞

0

( s

1 + s

)p

ds = ∞,

and hence K ̸∈ L(L2(R+)). �

5. Lack of Exponential Stability

We now analyze the exponential stability of S(t). Recall that S(t) is said to be exponen-
tially stable if there exist M ≥ 1 and β > 0 such that

∥S(t)∥L(Hγ) ≤Me−βt, ∀t ≥ 0.

The main result of the paper reads as follows.

Theorem 5.1. The semigroup S(t) is not exponentially stable if

(i) γ > 1; or

(ii) γ < 0; or

(iii) γ ∈ [0, 1) and the kernel µ satisfies the condition3

lim
s→0

s1−γµ(s) = 0.

The proof is based on the next abstract criterion from [17] (see also [4, 8] for the
statement used here).

Lemma 5.2. The contraction semigroup S(t) = etL on Hγ is exponentially stable if and
only if there exists ε > 0 such that

(5.1) inf
λ∈R

∥iλz − Lz∥Hγ
C
≥ ε∥z∥Hγ

C
, ∀z ∈ dom(L).4

We also need two technical lemmas. The first can be found in [15]. For the second one,
we address the reader to [6].

Lemma 5.3. Given θ ∈ [0, 1), let us denote with F (λ) the Fourier transform of µ

F (λ) =

∫ ∞

0

µ(s)e−iλs ds.

Then, the following implication holds

lim
s→0

s1−θµ(s) = 0 ⇒ lim
λ→∞

λθF (λ) = 0.

Lemma 5.4. Let α ∈ σ(A) be fixed, and let Q ⊂ R be a given bounded set. Then, for
every ε > 0 small enough, there exists a unit vector wε ∈ HC such that the vector

ξq,ε = Aqwε − αqwε

satisfies the relation
∥ξq,ε∥ ≤ ε, ∀q ∈ Q.

3When γ = 0 the condition is automatically satisfied.
4Here and in the sequel, L denotes the complexification of the infinitesimal generator L.
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We are now in a position to prove Theorem 5.1. Along the proof, C ≥ 0 will denote a
generic constant depending only on the structural parameters of the problem. Case (i)
follows directly from the fact that, as we saw in the previous section, when γ > 1 the
infinitesimal generator L is not invertible (and thus S(t) cannot be exponentially stable).
In order to prove cases (ii) and (iii), choose αn ∈ σ(A) with αn → ∞ (this is possible since
A is unbounded). By Lemma 5.4, given a positive sequence νn → 0, there exist unitary
wn ∈ HC such that the vectors

ξq,n = Aqwn − αq
nwn

fulfill the inequality

(5.2) ∥ξq,n∥ ≤ νn, for q = γ
2
, γ, 1.

Next, setting

ζn = cnwn

where

cn =

{
1 if γ < 0,

α
− γ

2
n if γ ∈ [0, 1),

we consider the sequence

ẑn = (0, 0, ζn) ∈ Hγ
C.

Exploiting (2.1) and (5.2), it is apparent to see that

∥ẑn∥Hγ
C
≤ C,

that is, ẑn is bounded. Suppose now by contradiction that the semigroup S(t) is expo-
nentially stable. Then, for any given λn ∈ R to be chosen later, the resolvent equation

iλnzn − Lzn = ẑn

admits a unique solution

zn = (un, vn, ηn) ∈ dom(L).
Moreover, in light of Lemma 5.2, there exists ε > 0 such that

(5.3) ∥zn∥Hγ
C
≤ 1

ε
∥ẑn∥Hγ

C
≤ C

ε
,

namely, the sequence zn is bounded as well. We will reach a contradiction by showing it
is not so. To this aim, we first write the resolvent equation above componentwise

iλnun − vn = 0,

iλnvn + A
(
un +

∫ ∞

0

µ(s)Aγ−1ηn(s) ds
)
= 0,

iλnηn − Tηn − vn = ζn.

An integration of the third equation with ηn(0) = 0 entails

ηn(s) =
1

iλn
(vn + ζn)(1− e−iλns).
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Therefore, substituting this expression and the first equation of the system above into the
second one, we obtain

(5.4) λ2nvn − Avn − (κ− F (λn))Aγ(ζn + vn) = 0.

At this point, for every n, the solution vn can be written as

vn = pnwn + rn,

for some pn ∈ C and some vector rn ⊥ wn. It is apparent from (5.3) that

(5.5) ∥rn∥ ≤ C and |pn| ≤ C.

Taking the inner product in HC of (5.4) with wn, we obtain the identity

(5.6) (λ2n − αn − καγ
n + F (λn)α

γ
n)pn = (κ− F (λn))cnα

γ
n + fn,

having set

fn = pn⟨wn, ξ1,n⟩+ ⟨rn, ξ1,n⟩+ (κ− F (λn))[(cn + pn)⟨wn, ξγ,n⟩+ ⟨rn, ξγ,n⟩].

Next, choosing

λn =
√
αn + καγ

n ∼
√
αn,

equation (5.6) yields5

(5.7) pn =
(κ− F (λn))cn

F (λn)
+

fn
F (λn)α

γ
n
.

Owing to (5.2), (5.5) and the Riemann-Lebesgue lemma, it is clear that

|fn| ≤ Cνn.

Hence, if γ < 0, selecting νn = o(αγ
n) we infer from (5.7) that

|pn| ≥
∣∣∣∣κ− F (λn)

F (λn)

∣∣∣∣− ∣∣∣∣ fn
F (λn)α

γ
n

∣∣∣∣ ∼ ∣∣∣∣ κ

F (λn)

∣∣∣∣ → ∞.

If otherwise γ ∈ [0, 1), exploiting Lemma 5.3 we still learn from (5.7) that

|pn| ≥
∣∣∣∣ κ− F (λn)

F (λn)
√
αγ
n

∣∣∣∣− ∣∣∣∣ fn
F (λn)α

γ
n

∣∣∣∣ ∼ ∣∣∣∣ κ

F (λn)λ
γ
n

∣∣∣∣ → ∞.

In both cases, we end up with

∥zn∥Hγ
C
≥ ∥vn∥ ≥ |pn| → ∞,

contradicting (5.3). �

5Since µ is nonincreasing, absolutely continuous and positive, F (λn) ̸= 0 for every n.
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6. Stability and Semiuniform Stability

6.1. Stability. We analyze the stability of S(t) within the assumption dom(A) b H.
Recall that, for a fixed γ ∈ R, the semigroup S(t) is said to be stable if

lim
t→∞

∥S(t)z∥Hγ = 0, ∀z ∈ Hγ.

Theorem 6.1. If A−1 is a compact, then the semigroup S(t) is stable for every γ ∈ R.

The proof is based on the following result, yielding a sufficient condition for the stability
of S(t).

Lemma 6.2. Let A−1 be a compact operator. Assume that, for every z0 = (u0, v0, η0) ∈
dom(L), the condition

(6.1)

∫ ∞

0

µ′(s)∥ηt(s)∥2γ ds = 0, ∀t ≥ 0,

implies

u(t) = u0, ∀t ≥ 0.

Then, S(t) is stable.

The above lemma can be proved in the very same way of [13, Lemma 4.7], where the
case γ = 1 is treated. Thus, we limit ourselves to sketch the argument.

Sketch of the proof of Lemma 6.2. Setting

β = β(γ) = max{1, γ},

we define the subspace of Hγ

Vγ = H1+β ×Hβ × [Mγ+β ∩ dom(T )] ⊂ dom(L).

Introducing the norm

∥(u, v, η)∥2Vγ = ∥u∥21+β + ∥v∥2β + ∥η∥2Mγ+β + ∥Tη∥2Mγ ,

Vγ turns out to be a reflexive Banach space (actually, a Hilbert space) continuously and
densely embedded into Hγ. Following the proofs of [13, Lemmas 4.5 and 4.6] one can
show that, for every z ∈ Vγ, the set

Kz =
∪
t≥1

S(t)z

is bounded in Vγ and precompact in Hγ. Thanks to the reflexivity of Vγ, the inclusion
Vγ ⊂ dom(L) and the precompactness of Kz, the argument devised in [13, Lemma 4.7]
can be now repeated word by word, simply changing the spaces accordingly. �
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Proof of Theorem 6.1. Let z0 = (u0, v0, η0) ∈ dom(L) satisfying (6.1). Due to Lemma 6.2,
in order to reach the desired conclusion it is sufficient to show that u is constant. To this
aim, introducing the set

Bz0 = {s ∈ R+ : ηt(s) = 0, ∀t ≥ 0}

and owing to (3.5), it is readily seen that, if σ ∈ Bz0 , then u is σ-periodic. Therefore, if
Bz0 contains two rationally independent numbers, then u must be constant. Since µ is
absolutely continuous, the set

D = {s ∈ R+ : µ′(s) < 0}

has positive Lebesgue measure. In light of (6.1) the same holds for Bz0 , and thus it
certainly contains two rationally independent numbers. �

6.2. Semiuniform stability. The semigroup S(t) is said to be semiuniformly stable if
there is a function h : [0,∞) → [0,∞) vanishing at infinity such that

∥S(t)z∥Hγ ≤ h(t)∥Lz∥Hγ , ∀z ∈ dom(L).

In order to analyze the semiuniform stability of S(t), we need the following well-known
criterion [1, 2, 3].

Lemma 6.3. The contraction semigroup S(t) = etL on Hγ is semiuniformly stable if and
only if the imaginary axis iR belongs to the resolvent set ρ(L).

Our result reads as follows.

Theorem 6.4. Assume that the kernel µ satisfies the additional condition

(6.2) µ′(s) + νµ(s) ≤ 0

for every s ∈ R+ and some ν > 0. If γ ∈ [0, 1], then the semigroup S(t) is semiuniformly
stable. Moreover, it is not semiuniformly stable when γ > 1.

Remark 6.5. Observe that, analogously to the previous Section 5, we are not assuming
the compactness of the embedding dom(A) ⊂ H.

Proof. Along the proof, C ≥ 0 will denote a generic constant depending only on the
structural parameters of the problem. Moreover, the Poincaré inequality (2.1) will be
used several times without explicit mention.

When γ > 1, we already know from Theorem 4.1 that L is not invertible, and hence
S(t) cannot be semiuniformly stable. Thus, we restrict our attention to the case γ ∈ [0, 1].
We preliminarily observe that, since S(t) is a contraction semigroup,

σ(L) ∩ iR = σap(L) ∩ iR,

where σap(L) denotes the set of the approximate eigenvalues of the operator L (see [1,
Proposition 2.2]). Hence, due to Lemma 6.3, it is sufficient to show that no approximate
eigenvalues of L lie on the imaginary axis. By contradiction, suppose that there exists
λ ∈ R with iλ ∈ σap(L). Then, there is a sequence zn = (un, vn, ηn) ∈ dom(L) with

(6.3) ∥zn∥2Hγ
C
= ∥un∥21 + ∥vn∥2 + ∥ηn∥2Mγ

C
= 1,
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such that

(6.4) iλzn − Lzn → 0 in Hγ
C

which, written componentwise, reads

iλun − vn → 0 in H1
C,(6.5)

iλvn + A
(
un +

∫ ∞

0

µ(s)Aγ−1ηn(s)ds
)
→ 0 in HC,(6.6)

iληn − Tηn − vn → 0 in Mγ
C.(6.7)

In light of (6.2) and Corollary 4.2 the generator L is invertible, and thus λ ̸= 0. In
addition, exploiting (3.2) and (3.3), together with (6.2)-(6.4), we infer that

(6.8) ∥ηn∥2Mγ
C
≤ −1

ν

∫ ∞

0

µ′(s)∥ηn(s)∥2γ ds =
2

ν
Re⟨iλzn − Lzn, zn⟩Hγ

C
→ 0.

Moreover, due to (6.7),
iληn − Tηn − vn = εn

for some vanishing sequence εn ∈ Mγ
C. Hence, an integration over (0, s) yields

(1− e−iλs)vn = iλ
[
ηn(s)−

∫ s

0

e−iλ(s−y)εn(y)dy
]
.

Taking the inner product in MC with vn, we get

∥vn∥2
∫ ∞

0

µ(s)(1− e−iλs) ds = iλ
[
⟨ηn, vn⟩MC −

∫ ∞

0

µ(s)

∫ s

0

e−iλ(s−y)⟨εn(y), vn⟩ dy ds
]
.

Appealing to (6.3) and (6.8) it is apparent to see that

|iλ⟨ηn, vn⟩MC| ≤ C|λ|∥vn∥∥ηn∥Mγ
C
→ 0

while, setting h(y) =
√
µ(y)∥εn(y)∥γ and exploiting (6.2), (6.3) and Lemma 3.4,∣∣∣iλ∫ ∞

0

µ(s)

∫ s

0

e−iλ(s−y)⟨εn(y), vn⟩ dy ds
∣∣∣ ≤ C|λ|∥vn∥

∫ ∞

0

µ(s)

∫ s

0

∥εn(y)∥γ dy ds

≤ C|λ|∥vn∥
∫ ∞

0

√
µ(s)Eν [h; s] ds,

≤ C|λ|∥vn∥∥εn∥Mγ
C
→ 0.

In conclusion,

∥vn∥2
∣∣∣ ∫ ∞

0

µ(s)(1− e−iλs) ds
∣∣∣ → 0,

and since

Re

∫ ∞

0

µ(s)(1− e−iλs) ds =

∫ ∞

0

µ(s)(1− cosλs) ds > 0

it is easy to see that, in turn,
vn → 0 in HC.

At this point (6.6) reduces to

A
(
un +

∫ ∞

0

µ(s)Aγ−1ηn(s)ds
)
→ 0 in HC.
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Taking the inner product of the above relation with un in HC, and appealing again to
(6.3) and (6.8), we conclude that

un → 0 in H1
C.

Summarizing, we have proved that every single component of zn goes to zero in its norm,
contradicting (6.3). �
Remark 6.6. Following the argument devised in [14], one can see that the conclusion of
Theorem 6.4 still holds if (6.2) is replaced by the weaker condition (4.5).
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