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Abstract The paper deals with nets formed by two families of fibers (cords) which can grow

shorter but not longer, in a deformation. The nets are treated as two dimensional continua in the

three dimensional space. The inextensibility condition places unilateral constraint on the partial

derivatives yÙ 1 and yÙ 2 of the deformation y Ú Ω r R3 of the form

|yÙ 1�x�| ² 1Ù |yÙ 2�x�| ² 1Ù

x ¨ �x1Ù x2� X Ω ⊂ R2Ø There is no deformation energy, the total energy reduces to the potential

energy of the net under external forces. Equilibrium configurations are those of minimum energy.

The stresses in equilibrium configurations thus reduce to the reactions to the constraints. Nonzero

stresses occur only in tense regions where one or two constrains are satisfied with the equality

sign. The paper follows [12] in treating the stress problem via the dual variational problem in

the sense of convex analysis. Unlike [12], where stresses are modeled as finitely additive set

functions, here a (perhaps more economic) choice of spaces is made that leads to more accessible

stresses represented by (countably additive) measures. The present development is made possible

by an observation, of independent value, that the space of measures with divergence measure is the

dual of another Banach space, in the present context naturally interpreted as the space of strains.

Our measures generalize stressfields represented by ordinary functions to account for stress

concentrations along folded lines in tension, frequently occurring in equilibrium configurations

of the net.

Keywords Unilateral constraints; reaction stress, measures; equilibrium equation
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1 Introduction

The paper deals with nets formed by two families of fibers (cords) which can grow

shorter but not longer, in a deformation. The net is treated as a continuum; thus the

reference configuration is a two dimensional planar region Ω ⊂ R2 in which the

fibers of the first family are imagined as perpendicular to those of the second family

and parallel to the coordinate axes. In a deformation, the angles between the fibers

of the two families need not remain right. There is no deformation energy. Pipkin

[13–14] calls such objects inextensible nets with slack.

The partial derivatives yÙ 1�x�, yÙ 2�x� X R 3 of a deformation y Ú Ω r R 3 of

inextensible nets with slack thus must satisfy the unilateral constraints

|yÙ 1�x�| ² 1Ù |yÙ2�x�| ² 1Ù (1.1)

x X ΩÙ where | ċ | denotes the euclidean norm on R 3Ø The energy reduces to the

potential energy under the external forces

E�y� ¨ − �
Ω

y ċ b dL2 − �
S

y ċ s dH 1Ù

where the right hand side is the sum of the area and line integrals of the densities

of external force over Ω and the free part of the boundary S ⊂ ãΩØ In [14], Pipkin

posed the problem of proving the existence of solutions for the energy minimization

problem. The problem was solved by Paroni [12], who proved that there always exists

an equilibrium state in the class of lipschitzian displacements. Moreover, he analysed

the reaction stresses caused by the constraint (1.1) using the dual problem from the

convex duality theory [5; Chapter III]. Given the original primal problem, there is

always some freedom in the dual problem, related to the choice of the space Y in

Section 3, below. While Y is the space of (virtual) strains, the dual space Y   is the

space of stresses. The choice in [12] leads to Y   formed by finitely additive matrix

valued set functions (similar choice is made in a different mechanical problem in

[11; Section 5]). In contrast to countably additive set functions (measures), finitely

additive set functions have a number of unusual (‘paradoxical’) properties [25] and

their existence is based on nonconstructive methods using the axiom of choice via

the Hahn–Banach theorem. This makes them inaccessible.

In this note I start from the same the primal problem as in [12], but make a different

choice of the dual problem that leads to stresses represented by (countably additive)

matrix valued measures with divergence a measure, called divergence measure fields.

These were introduced in [3–4], studied in [21–23], and applied to masonry structures

in [7–10]. Stresses represented by measures generalize regular functions, allowing

concentrations (singularities) on sets of lower dimensions such as surfaces, lines and

even fractal dimensions.

We note that the system of forces in Tchebychev nets (those characterized by the

equalities in (1.1)) was analysed by Williams [24] using measures in a way different

from here.

The present treatment is based on the crucial observation that the Banach space

of divergence measure fields, denoted in the present context by S�ΩÙLin�Ù is a dual

of another Banach space; in other words, S�ΩÙLin� has a predual. This fact is of

independent interest, especially since the predual is the completion of a certain space
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X�ΩÙLin� of matrix valued functions on ΩÙ which is interpreted as the space of

virtual strains.

The convex duality theory needs extra conditions to ensure that the primal and

dual problems give the same results. Two conditions to this effect are of interest here:

the normality condition, which is necessary and sufficient to ensure this coincidence,

and Slater’s condition, which is a comfortable sufficient condition, and guarantees

the existence of the solution of the dual problem also. Slater’s condition cannot be

satisfied in the present topology on the space of strains (see the remark after Lemma

5.5, below), so normality must be invoked to show that the infima of the primal

and dual problems coincide. In the treatment in [12], the employed topology makes

Slater’s condition equivalent to the ‘slack condition’ stated below as (6.5). In [12],

(6.5) guarantees the coincidence of the infima and the existence of the solution of the

dual problem also. Here the coincidence of the infima is proved more generally, but

for the existence of the solution of the dual problem (6.5) is still needed.

Notation. IfmÙ n are two positive integers, we denote by Lin the set of all linear

maps from Rn to RmØ
If Ω ⊂ RnÙ we denote by Lip�ΩÙRm� the set of all lipschitzian maps y from the

closure cl Ω of Ω to RmÙ i.e., those satisfying

|y�x1� − y�x2�| ² k|x1 − x2|

for all x1Ù x2 X cl Ω and some constant kØ The smallest of all possible k is denoted

by Lip�y� and is called the Lipschitz constant of yØ By Lip0�ΩÙR
m� we denote the

set of all maps from Lip�ΩÙRm� which vanish on the boundary of ΩØ If Z is a finite

dimensional vectorspace then C ð
c �ΩÙZ� [respectively, C0�ΩÙZ�] is the set of all

maps � Ú Rn r Z which are indefinitely differentiable whose support is compact

and contained in Ω [respectively, which are continuous and vanish on the boundary

of Ω]. If m is a nonnegative integer then C m�cl ΩÙZ� is the set of all class m maps

� Ú Ω r Z such that the map and its derivatives up to order m have continuous

extensions to the closure cl Ω of Ω.

Let ÏR ¨ RT  ð(Ø

2 Deformations of inextensible nets with slack; the role of convexity

Let the reference configuration Ω ⊂ R2 be a bounded, open set with lips-

chitzian boundary. We shall consider deformations y from Lip�ΩÙR 3�. Recall that

Rademacher’s theorem [6; Theorem 3.1.6] says that the Fréchet derivative ∇y�x�
exists for almost every x X Ω with respect to the two dimensional Lebesgue measure

L
2Ø Also, by [5; Proposition 2.3, Section X.2.3], Lip�ΩÙR 3� coincides with the

Sobolev space W 1Ùð�ΩÙR 3� of maps with bounded generalized derivative.

Let | ċ | denote the euclidean norm on R 3 while | ċ |1 the l 1 norm on R2Ù given by

|a|1 ¨ |a1| + |a2| for every a X R2Ø Let Lin be the space of all linear transformations

from R2 to R 3Ø Let | ċ |K be a norm on Lin given by

|A|K ¨ sup !|Av| Ú v X R
2Ù |v|1 ² 1) ª max !|Ae1|Ù |Ae2|)Ù (2.1)

A X LinÙ and let K be a subset of Lin given by
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K ¨ !A X Lin Ú |A|K ² 1) (2.2)

where e1Ù e2 are the canonical basis vectors in R2Ø We observe that K is a compact

convex, equilibrated subset of Lin which contains some neighborhood of 0 in LinØ
We refer to Appendix A for the basic notions of the convexity theory. We can now

summarize the following alternative forms of the inextensibility condition. We shall

see that (ii) is most convenient.

Remark 2.1. Let y Ú cl Ω r R 3Ø Then the following three conditions are equivalent:

(i) y X Lip�ΩÙR 3� and (1.1) holds for L
2 almost every x X ΩÛ

(ii) y X Lip�ΩÙR 3� and

∇y�x� X K for L
2 almost every x X ΩÛ

(iii) we have [24, 12]

|y�x1� − y�x2�| ² |x1 − x2|1 (2.3)

for every x1Ù x2 X Ω that can be joined by a line segment lying in ΩØ

We note that the specialization of (2.3) to x1 − x2 parallel either to the first or second

axis in R2 expresses the inextensibility of the cords from the first or second family.

We say that y is an admissible deformation if it satisfies Conditions (i)–(iii).

We shall work with Dirichlet’s boundary condition, i.e., restrict ourselves to

deformations y X Lip�ΩÙR 3� such that

y ¨ f on ãΩ (2.4)

where f Ú Ω r R 3 is a fixed map. We take into account (2.4) by writing y ¨ u + f
where u X Lip0�ΩÙR

3�Ø If the net is subject to the external force represented by

an R 3 valued measure b on Ω then the total energy corresponding to a deformation

y ¨ u + f is

− �
Ω

y ċ db ¨ − �
Ω

u ċ db − c0Ù c0 Ú¨ − �
Ω

f ċ dbØ

The constraint imposed by the equivalent Conditions (i)–(iii) is taken into account in

the following standard way: We define the density of stored energy w Ú Linr ÏR as

the indicator function I�ċÙK� ofK (see Appendix A). Then we define the total energy

E Ú Lip0�ΩÙR
3� r ÏR by

E�u� ¨ �
Ω

w�∇u + ∇f � dL2 − �
Ω

u ċ db − c0Ù

y X Lip0�ΩÙR
3�Ø Then u X Lip0�ΩÙR

3� is an equilibrium state if and only if

E�u� ¨ inf!E�u� Ú u X Lip0�ΩÙR
3�)Ø

The stress is conventionally identified with the derivative of the density of the

stored energy w with respect to the deformation (strain) variable F Ø In our case we

identify the strain with elementsF ofLinÙ in particular with∇y�x� ¨ ∇u�x�+∇f �x� X
LinÙ and the stress with the subdifferential ãw�F�.
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Remark 2.2. For w ¨ I�ċÙK� with K given by (2.2) we have

ãw�F� ¨







































































 0( if F X intKÙ

 tFe1 � e1 Ú t ³ 0( if |Fe1| ¨ 1Ù |Fe2| ° 1Ù

 tFe2 � e2 Ú t ³ 0( if |Fe2| ¨ 1Ù |Fe1| ° 1Ù

 t1Fe1 � e1 + t2Fe2 � e2 Ú t1Ù t2 ³ 0( if |Fe2| ¨ |Fe2| ¨ 1

ó else,

(2.5)

for any F X Lin.

The three regimes (2.5)2−4 correspond to F on the boundary of KÙ in which case the

stress highly nonunique. We shall see in Theorem 6.6, below, that the pointwise value

of the density of the stress measure belongs to ãw�F�Ø It is worth mentioning that the

regimes in (2.5)2Ù3 show that the stress is parallel to the actual direction Fei ¨ yÙ i of

the fiber in tension, i.e., the one with |yÙ i| ¨ 1Ø The regime (2.5)4 shows the stress as a

mixture of the preceding two when both fibers are in tension.

Proof The subdifferential is related to the normal cone N�F ÙK� to K by (7.2),

below. We have

N�F ÙK� ¨























































 tFe1 � e1 Ú t ³ 0( if |Fe1| ¨ 1Ù |Fe2| ° 1Ù

 tFe2 � e2 Ú t ³ 0( if |Fe2| ¨ 1Ù |Fe1| ° 1Ù

 t1Fe1 � e1 + t2Fe2 � e2 Ú t1Ù t2 ³ 0( if |Fe2| ¨ |Fe2| ¨ 1Ù

 0( else.

(2.6)

To prove, e.g., the third regime, we note that if

S ¨ t1Fe1 � e1 + t2Fe2 � e2 (2.7)

where t1Ù t2 ³ 0 then for any F Þ X KÙ

�F Þ − F� ċ S ¨ t1F
Þ ċ �Fe1 � e1� + t2F

Þ ċ �Fe2 � e2� − t1 − t2
¨ t1F

Þe1 ċ Fe1 + t2F
Þe2 ċ Fe2 − t1 − t2 ² 0

since F Þ ċ �Fe1 � e1� ¨ F
Þe1 ċ Fe1 ² |F Þe1||Fe1| ² 1 and the same for the second index.

Thus any S of the form (2.7) with t1Ù t2 ³ 0 belongs to N�F ÙK�Ø Conversely, any

S X Lin can be written in the form (2.7) with t1Ù t2 X R. Assuming that S X N�F ÙK�Ù
we must have �F Þ−F�ċS ² 0 for any F Þ X KØThe choices F Þ ¨ −Fe1�e1+Fe2�e2 X K
and F Þ ¨ Fe1 � e1 − Fe2 � e2 X K then gives t1Ù t2 ³ 0Ù proving the third regime. The

remaining regimes are similar but simpler. è

The equilibrium equation

divS + b ¨ 0 on Ω

certainly reduces the ambiguity in the stress, but the nonuniqueness still remains very

large. The point is that the actual stress must satisfy the minimum complementary

energy principle to be formulated and employed below.

In Section 3, below, we treat this principle abstractly as the dual problem in

the sense of convexity theory. In Section 4 we introduce the spaces of strains and
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stresses in duality appropriate for the present approach to nets. Then in Section 5 we

generalize the net problem slightly by replacing the set K from (2.2) by a general

closed, equilibrated convex set K ⊂ Lin containing some neighborhood of 0 and

analyse the primal problem, including Paroni’s proof of the existence of the solution.

Section 6 treats the dual poblem, proves the existence of the solution and discusses

the relationship between the solutions of the primal and dual problems. Appendix A

outlines basic concepts of the convexity theory. Appendix B describes the relationship

between the present approach based on measures and that by Paroni using finitely

additive set functions.

3 Duality for convex variational problems

This section summarizes a particular case of the Fenchel duality theory as presented

in [5; Chapter III]. Our treatment of the dual problem differs by sign from that in

[5] and by the corresponding replacement of the supremum by infimum. This is, of

course, entirely equivalent, but more suitable for mechanical applications.

Let VÙ V   and YÙ Y   be two pairs consisting of a normed space and its dual, let

Λ Ú V r Y be a continuous linear operator and Λ   Ú V   r Y   be its adjoint. Let

C Ú Vr ÏR and D Ú Yr ÏR be two convex functions and define E Ú Vr ÏR by

E�u� ¨ C�u� + D�Λu�

for each u X VØ In this context, the primal problem is

�P� Find u X V which minimizes E on VØ

We denote

infP ¨ inf !E�u� Ú u X V)

and say that u X V is a solution of P if E�u� ¨ infPØ
Assume that both C and D are not identically ð and bounded from below by an

affine continuous function. Let G Ú Y   r ÏR be defined by

G�S� ¨ C  �−Λ  S� + D  �S�Ù

S X Y  Ù where C   Ú V   r ÏR and D Ú Y   r ÏR are conjugate functions, and recall

from Appendix A that C   and D   are not identically ðÙ lowersemicontinuous, and

bounded from below by an affine continuous function.

By definition, the dual problem reads

�P  � Find S X Y   which minimizes G on Y  Ø

We denote

infP
  ¨ inf !G�S� Ú S X Y  )

and say that S X Y   is a solution of P
  if G�S� ¨ infP

 Ø
Generally,

infP + infP
  ³ 0Ù

[5; Proposition III.1.1], and there are nonpathological situations where the strict

inequality holds. Nevertheless, one is interested in conditions under which
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infP + infP
  ¨ 0Ø (3.1)

To discuss these conditions, note that the main idea of the duality theory is to consider

a family of perturbations of P with E replaced by a slightly different function. In the

present case, one takes E X Y close to 0 and replaces E by Φ�uÙE� given by

Φ�uÙE� ¨ C�u� + D�Λu + E�Ù

u X VÙ E X YÙ and one examines the problem

h�E� ¨ inf!C�u� + D�Λu + E� Ú u X V)Ø (3.2)

The function h Ú Yr ÏR is convex [5; Lemma III.2.1] and infP ¨ h�0�Ø

Definition 3.1 ([5; Definition III.2.1 and Theorem III.4.1]).

(i) The problem P is said to be normal if h is finite and lowersemicontinuous at 0Ø
(ii) The problem P is said to satisfy Slater’s condition if there exists an u0 X V such

that C�y0� ° ðÙ D�Λu0� ° ð and D is continuous at Λu0Ø

Proposition 3.2 ([5; Proposition III.2.1 and Theorem III.4.1]). Assume that the func-

tions C and D are lowersemicontinuous and each of them minorized by an affine

continuous function. Then

(i) P is normal if and only if infP and infP
  are finite and (3.1) holds;

(ii) if P satisfies Slater’s condition then P is normal and P
  has a solution.

The normality is equivalent to (3.1) while Slater’s condition is only a sufficient

condition, often easier to verify, giving also the extra information about he solution

of P
 Ø Both the normality and Slater’s condition depend on the choice of the space

YØ The reader is referred to the introduction for the discussion of the role of these

conditions in the present treatment and in [12].

We conclude this section with the extremality conditions.

Theorem 3.3 ([5; Proposition III.4.1 and Remark III.4.2]). Let u X V and S X Y  Ø
Then the following conditions are equivalent:

(i) We have (3.1), u is a solution of P and S is a solution of P
 Û

(ii) E�u� + G�S� ¨ 0Û
(iii)Λ  S X ãC�u� and S X ãD�Λu�Û
(iv) u X ãC  �−Λ  S� and Λu X ãD  �S�Ø

4 Spaces of deformations and stresses in duality

We now introduce the space X�ΩÙLin� of virtual strains that is suitable for the

treatment below. We shall show that its dual can be identified with the space of

stresses represented by (countably additive) measures with values in Lin whose

weak divergence is a vector valued measure.

LetmÙ n be two positive integers, let Ω ⊂ Rn be open bounded and letC0�ΩÙLin�
the set of all continuous maps G Ú Rn r Lin vanishing outside ΩØ



8

Definition 4.1. We denote by X�ΩÙLin� the subset of Lð�ΩÙLin� consisting of all

E of the form

E ¨ ∇p + G (4.1)

where p X Lip0�ΩÙR
m�Ù G X C0�ΩÙLin�Ù (4.2)

and put

|E|
X
¨ inf!|p|ð + |G|ð Ú where �pÙG� satisfy (4.1) and (4.2))

with | ċ |ð the maximum norm. | ċ |
X

is a norm which makes the set X�ΩÙLin� an

incomplete normed linear space. (Its completion is the quotient space X/X0 defined

in the proof of Theorem 4.6, below.)

Clearly, Ek r E in X�ΩÙLin� if and only if

Ek ¨ ∇pk + GkÙ E ¨ ∇p + G

where pkÙ p X Lip0�ΩÙLin� and Gk Ù G X C0�ΩÙLin� satisfy

|pk − p|ð r 0Ù |Gk − G|ð r 0Ø



























(4.3)

As an example, let m ¨ n ¨ 1, Ω ¨ �0Ù 2π�Ù Ek ¨ p
Þ
kÙ where pk X Lip0�ΩÙR� is given

by pk ¨ k
−1 sin�k 2x�Ù x X �0Ù 2π�Ø Then Ek r 0 in X�ΩÙR�Û but note that Ek does

not converge to E pointwise L
1 almost everywhere in Ω; the sequence |Ek|Lð is not

even bounded.

From now on we make the standing assumption that Ω ⊂ Rn is a bounded open

set with lipschitzian boundary and derive some properties of X�ΩÙLin�Ø

Remarks 4.2.

(i) The set C0�ΩÙLin� is dense in X�ΩÙLin�Û in fact for every E X X�ΩÙLin�
there exists a sequence Ek X C0�ΩÙLin� such that

Ek r E in X�ΩÙLin�Ù

Ek r E for L
n almost every point of Ω,

|Ek|Lð ² |E|LðÛ































(4.4)

(ii) if E X X�ΩÙLin� and � X C 1�cl Ω� then �E X X�ΩÙLin�Û
(iii) if Ek r E in X�ΩÙLin� and the sequence |Ek|Lð is bounded, then

Ek u
  E in Lð�ΩÙLin�Ø

Proof (i): Represent E in the form (4.1), (4.2). Let � Ú Linr ÏR be given by

��E� ¨















0 if |E| ² |∇p|LðÙ

ð else,

E X LinØ The considerations similar to, but simpler than, those in [5; Proof of

Proposition 2.6, Section X.2.3] show that there exists a sequence pk X C
ð
c �ΩÙR

m�
such that

|p − pk|ð r 0Ù

∇pk r ∇p for L
n almost every point of Ω,

|∇pk|Lð ² |∇p|Lð Ø
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Setting Ek ¨ ∇pk + G we obtain the assertion.

(ii): Representing E in the form (4.1), (4.2), we find �E ¨ ∇q + G where q ¨
�p X Lip0�ΩÙR

m� and G ¨ −p�∇� + �E X C0�ΩÙLin�Ø
(iii): Since the sequence |Ek|Lð is bounded, it suffices to verify

�
Ω

Ek ċ T dL
n r �

Ω

E ċ T dLn

for testfunctions T from any dense subset of L 1�ΩÙLin�Û e.g., from C ð
c �ΩÙLin�Ø

Using the characterization (4.3), we have

�
Ω

Ek ċ T dL
n ¨ �

Ω

�∇pk + Gk� ċ T dL
n

¨ − �
Ω

pk ċ divT dL
n + �

Ω

Gk ċ T dL
n

r − �
Ω

p ċ divT dLn + �
Ω

G ċ T dLn

¨ �
Ω

E ċ T dLnØ è

Definitions and Propositions 4.3 ([2; Chapter 1]).

(i) If Z is a finite dimensional inner product space, we denote by M�ΩÙZ� the set

of all Z valued Borel measures on Rn which vanish outside Ω.

(ii) For any S X M�ΩÙZ� we denote by |S| the total variation measure of SÙ i.e.,

the smallest nonnegative measure in M�ΩÙR� such that |S�A�| ² |S|�A� for any

Borel subset A of RnÛ alternatively, for any Borel subset A of RnÙ

|S|�A� ¨ sup !
p

�
i¨1
|S�Bi�| Ú B1ÙÜ ÙBp is a Borel partition of A)Ø

The total variation |S|
M

is defined by

|S|
M
¨ |S|�Ω�Ø

(iii) If φ X M�ΩÙR� and α Ú Ω r Z a φ integrable map, then αφ is the measure in

M�ΩÙZ� given by �αφ��A� ¨ �A α dφ for any Borel subset A of RnØ
(iv) The polar decomposition of a measure S X M�ΩÙZ� asserts that there exists a

map S � Ú Ω r Z such that S ¨ S �|S|Û the map S � is |S| essentially unique and

S ��x� ¨ 1 for |S| almost every x X ΩØ We call S � the direction vector of SØ

Definitions 4.4.

(i) We denote by S�ΩÙLin� the set S X M�ΩÙLin� for which there exists a measure

divS X M�ΩÙRm� such that

�
Ω

∇p ċ dS + �
Ω

p ċ ddivS ¨ 0

for every continuously differentiable p Ú Rn r Rm with compact support con-

tained in ΩØ We define the norm on S�ΩÙLin� by

|S|
S
¨ max !|S|

M
Ù | divS|

M
)Ø

(ii) We define the dual pairing between S�ΩÙLin� and X�ΩÙLin� by
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〈SÙE 〉 ¨ �
Ω

G ċ dS − �
Ω

p ċ ddivS

for any S X S�ΩÙLin� and E X X�ΩÙLin�, where G and p is any pair satisfying

(4.1), (4.2). It is easily seen that the value of 〈SÙE 〉 is independent of the choice

of G and pØ

Clearly,

〈SÙE 〉 ² |S|
S
|E|

X
(4.5)

for every S X S�ΩÙLin� and E X X�ΩÙLin� and if E X C0�ΩÙLin� then 〈SÙE 〉
reduces to the usual integral, i.e.,

〈SÙE 〉 ¨ �
Ω

E ċ dSØ (4.6)

In view of this, we interpret 〈SÙE 〉 as an extension of the above integral to the case

when it does not exist classically:

Example 4.5. Let n ¨ 2Ù m ¨ 1, Ω ¨ �−πÙ π�2Ù p�x� ¨ | sin x1 sin x2|Ù x X cl ΩÙ and

let S ¨ e1H
1 I where e1 ¨ �1Ù 0�, I ¨  te1 Ú −π ° t ° π(Ù and H

1 I is the restriction

of the 1 dimensional Hausdorff measure to I Ø One easily sees that p X Lip0�ΩÙR
1�

and hence E Ú¨ ∇p X X�ΩÙLin�Ø Also, S X S�ΩÙLin� and divS ¨ 0Ø The function

p is not differentiable at any point of I , which is the support of SÙ and hence the

integral on the right hand side of (4.6) does not make sense. However, the duality

〈SÙE 〉 does exist and one finds from the definition that 〈SÙE 〉 ¨ 0Ø That this value

is natural is seen as follows. By Remark 4.2(i) and its proof the element E ¨ ∇p
can be approximated by a sequence Ek ¨ ∇pk, where pk X C

ð
c �ΩÙR

1�Ø For these

approximations, the integral is well defined and one finds that

〈SÙEk 〉 ¨ �
Ω

Ek ċ dS ¨ 0Ø

On the other hand, by (4.5),

|〈SÙE 〉 − 〈SÙEk 〉| ² |S|
S
|E − Ek|X r 0

and thus necessarily 〈SÙE 〉 ¨ 0Ø è

Theorem 4.6. The dual X�ΩÙLin�   is isometrically isomorphic to S�ΩÙLin�
under the identification of L X X�ΩÙLin�   with S X S�ΩÙLin� by 〈LÙE 〉 ¨ 〈SÙE 〉
for any E X X�ΩÙLin�Ø

Note that an incomplete normed space X0 and its completion X have essentially

identical duals since each continuous functional onX0 can be extended by continuity

to XØ Thus S�ΩÙLin� is also the dual of the completion of X�ΩÙLin� under the

norm | ċ |
X
Ø

Proof Consider the Banach space X ¨ C0�ΩÙLin� � C0�ΩÙR
m� with the norm

|�GÙ p�| ¨ |G|ð + |p|ð

for any �GÙ p� X XØ By the double application of the Riesz representation theorem

[18; Theorem 6.19], the dual X   is isometrically isomorphic to M ¨ M�ΩÙLin� �
M�ΩÙRm� with the norm
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|�SÙ δ�| ¨ max !|S|
M
Ù |δ|

M
)Ø

The identification with the dual is

〈�GÙ p�Ù �SÙ δ�〉 ¨ �
Ω

G ċ dS + �
Ω

p ċ dδ

for any �GÙ p� X X and �SÙ δ� X MØ LetX0 be the closed linear subspace ofX defined

by

X0 ¨ !�GÙ p� X X Ú p X C0�ΩÙR
m� is of class 1 and G ¨ ∇p)Ø

The quotient space X/X0 ¨  ξ ¨ �GÙ p� +X0 Ú �GÙ p� X X( has the norm

|ξ| ¨ inf!|�GÙ p�| Ú �GÙ p� X ξ)

for any ξ X X/X0Ø If E X X�ΩÙLin� then all pairs �GÙ p� as in (4.1) belong to the

same class ξ X X/X0 and we can therefore define the map T Ú X�ΩÙLin� r X/X0
by setting TE ¨ the class determined by �GÙ p�Ø Then T is an isometric map which

maps X�ΩÙLin� onto a dense set of X/X0Ø By the general theory [19; Subsections

4.8 & 4.9], the dual ofX/X0 is the set of all �SÙ δ� X X   such that 〈�GÙ p�Ù �SÙ δ�〉 ¨ 0
for all �GÙ p� X X0Ø One easily finds that the last condition is satisfied if and only if

S X S�ΩÙLin� and δ ¨ divSØ è

Proposition 4.7. Let S X S�ΩÙLin� and E X X�ΩÙLin�Ø Then

(i) we have

〈SÙE 〉 ² |S|
M
|E|LðÛ

(ii) there exists a signed measure 〈〈SÙE 〉〉 on Ω such that

〈SÙ�E 〉 ¨ �
Ω

� d〈〈SÙE 〉〉

for every � X C 1�cl Ω� P C0�Ω�Ø The total variation satisfies

| 〈〈SÙE 〉〉 |
M
² |S|

M
|E|Lð Ø

If E X C0�ΩÙLin� then 〈〈SÙE 〉〉 ¨ E ċ S is the scalar product of the measure S

with a continuous function EØ
(iii) The measure 〈〈SÙE 〉〉 is absolutely continuous with respect to the total variation

measure |S| with the density δ that satisfies |δ| ² |E|Lð at |S| almost every point

of ΩØ

Proof (i): If E X C0�ΩÙLin� then

〈SÙE 〉 ¨ �
Ω

E ċ dS ² |S|
M
|E|Lð Ø

If E X X�ΩÙLin�Ù we find the sequence Ek X C0�ΩÙLin� of approximations as in

(4.4). Then

〈SÙEk 〉 ² |S|
M
|Ek|Lð ² |S|

M
|E|Lð

and 〈SÙEk 〉 r 〈SÙE 〉Ø The limit gives the result.

(ii): If � X C 1�cl ΩÙR�PC0�Ω� and E X X�ΩÙLin� then �E X X�ΩÙLin� and

|�E|Lð ² |�|ð|E|Lð Ø Hence by (i), 〈SÙ �E 〉 ² |S|
M
|E|Lð|�|ðÙ and thus fixing S and

EÙ the Riesz representation theorem provides the measure 〈〈SÙE 〉〉 and the estimate of

its total variation. In particular, if E X C0�ΩÙLin� then
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〈SÙ�E 〉 ¨ �
Ω

�E ċ dS

and thus 〈〈SÙE 〉〉 has the asserted form.

(iii): If E X C0�ΩÙLin� then 〈〈SÙE 〉〉 ¨ E ċS is absolutely continuous with respect

to S and therefore for every open subset Σ of Ω we have

�
Σ

�d〈〈SÙE 〉〉 ² |�|ð|E|Lð|S|�Σ� (4.7)

for every � X C0�Σ�Ø If E X X�ΩÙLin�, we find the sequence Ek X C0�ΩÙLin� of

approximations as in (4.4). One finds that

�
Ω

�d〈〈SÙEk〉〉 r �
Ω

�d〈〈SÙE 〉〉

for any � X C0�Ω�Ø Moreover, if Σ is an open subset of Ω we have

�
Σ

�d〈〈SÙEk〉〉 ² |�|ð|Ek|Lð |S|�Σ� ² |�|ð|E|Lð|S|�Σ�

for every � X C0�Σ�Ø The limit yields (4.7) for a general EØ This yields, in turn, that

the total variation measure satisfies

| 〈〈SÙE 〉〉 |�Σ� ² |E|Lð|S|�Σ� (4.8)

for any open subset Σ of ΩØ The well known regularity of Borel measures [18;

Theorem 2.17] allows to extend (4.8) to any Borel subset Σ of Ω and thus the

absolute continuity is proved. è

5 Generalized problem of inextensible nets

We now generalize the framework of Section 2 slightly to simplify the notation.

Let mÙ n be two positive integers, letK ⊂ Lin be a compact, convex, equilibrated

set containing some neighborhood of 0 in LinØ This is a generalization of the set K

given by (2.2) in the case of nets. Let Ω ⊂ Rn be a open bounded set with lipschitzian

boundary. We consider the Dirichlet boundary data given by a lipschitzian map

f Ú Ω r Rm. We thus consider all deformations y X Lip�ΩÙRm� that satisfy y ¨ f
on ãΩØ If we write

y ¨ f + u

where u is the displacement, then u X Lip0�ΩÙR
m�Ø We consider uÙ and not yÙ as the

basic variable. We require that the deformation satisfies ∇y�x� X K for L
2 almost

every x X Ω exactly as in the case of nets. In terms of u this reads

∇u + ∇f X K for L
2 almost every x X ΩØ

Accordingly, we consider the following set of ‘virtual gradients’ of displacement:

K ¨ !E X X�ΩÙLin� Ú E�x� + ∇f �x� X K for L
n almost every x X Ω)Ø

We assume that

∇f X K for L
2 almost every x X ΩÙ (5.1)

so that

0 X !u X Lip0�ΩÙR
m� Ú ∇u X K)Ø
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Lemma 5.1. K is a closed convex subset with empty interior of X�ΩÙLin�Ø

Proof The convexity is immediate. We prove that K is closed as follows. Let Ek be a

sequence of elements of K which converges to some E in X�ΩÙLin�. We thus have

Ek�x� + ∇f �x� X K for L
n almost every x X ΩØ Since K is bounded, the sequence

|Ek|Lð is bounded and thus Remark 4.2(iii) tells us that Ek u
  E in Lð�ΩÙLin�Ø

SinceK is closed convex, the inclusion ran�Ek +∇f � ⊂ K is stable under the weak  

convergence, i.e., ran�E + ∇f � ⊂ KØ Finally, to show that K has empty interior,

we prove that for every E X K there exists a sequence Ek which converges to E in

X�ΩÙLin� but which is outside of KØ Indeed, let x0 X Ω be any Lebesgue point of

E + ∇f and let u0 X C
ð
c �ΩÙR

m� be such that the set

 x X Ω Ú ∇u0�x� + E�x0� + ∇y�x0� Z K(

has positive L
n measure. Let pk X Lip0�ΩÙR

m� be defined by pk�x� ¨ k
−1∇u0�kx�Ù

x X ΩÙ and put Ek ¨ ∇pk + EØ Since |pk|ð r 0Ù we have Ek r E in X�ΩÙRm� and

the set

 x X Ω Ú ∇pk�x� + E�x� + ∇y�x� Z K(

has positive L
n measure. è

We define the stored energy w Ú Lin r ÏR as the indicator function I�ċÙK�. If

the body force is represented by an Rm valued measure b on Ω then the total energy

functional E Ú Lip�ΩÙRm� r ÏR is given by

E�u� ¨ �
Ω

w�∇u + ∇f � dLn − �
Ω

u ċ db − c0Ù

u X Lip0�ΩÙR
m�Ù where

c0 ¨ �
Ω

u ċ dbØ

The primal problem is

�P� Find u X Lip0�ΩÙR
m� which minimizes E on Lip0�ΩÙR

m�Ø

We can write

E�u� ¨ C�u� + D�∇u�Ù y X Lip0�ΩÙR
m�Ù (5.2)

where C Ú Lip0�ΩÙR
m� r ÏRÙ D Ú X�ΩÙRn�m� r ÏR are given by

C�u� ¨ − �
Ω

u ċ db − c0Ù D ¨ I�ċÙK�Ù

u X Lip0�ΩÙR
m�Ø

Remark 5.2. Let uk X Lip0�ΩÙR
m� be a sequence such that the sequence |∇uk|Lð is

bounded. Then there exists a subsequence, again denoted by ukÙ such that |u−uk|ð r 0
for some u X Lip0�ΩÙR

m�Ø

Proof Under our assumptions on Ω we have Lip0�ΩÙR
m� ¨ W 1Ùð

0 �ΩÙRm�Ø
The result then follows from the compactness of the embedding W 1Ùð

0 �ΩÙRm� ⊂
C0�cl ΩÙR

m� [1; Theorem 6.3, Part III]. Alternatively, one can use the Arzela–

Ascoli theorem [19; Subsection A5] as in [12]. è
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Lemma 5.3. If uk X Lip0�ΩÙR
m� and Ek X X�ΩÙLin� satisfy ∇uk + Ek X K for

every k and |Ek|X r 0 then there is a subsequence of ukÙ again denoted by uk, such

that |uk − u|ð r 0 for some u X Lip0�ΩÙR
m� with ∇u X KØ

Proof Since |Ek|X r 0, we have

Ek ¨ ∇pk + GkÙ

where pk X Lip0�ΩÙLin� and Gk X C0�ΩÙLin� satisfy |pk|ð r 0Ù |Gk|ð r 0Ø The

condition ∇uk + Ek X K is then rewritten as

∇�uk + pk� + Gk X K

and asK is bounded and Gk�x� uniformly bounded, also ∇�uk + pk��x� is uniformly

bounded. Remark 5.2 implies that there exists a subsequence of uk+pk , again denoted

by uk+pkÙ such that |uk+pk−u|ð r 0 for some u X Lip0�ΩÙR
m�Ø By the hypothesis,

∇uk + Ek X K for every k and the sequence ∇uk + Ek X X�ΩÙLin� converges in

X�ΩÙLin� to ∇uØ Thus applying Lemma 5.1 we obtain the conclusion. è

The function h of (3.2) is here h Ú X�ΩÙLin� r ÏR where

h�E� ¨ inf!C�u� + D�∇u + E� Ú u X Lip0�ΩÙR
m�)

E X X�ΩÙLin�Ø

Theorem 5.4. Assume that f satisfies (5.1). Then the problem P has a solution. More

generally, for anyE X X�ΩÙLin� such that h�E� ° ð there exists a u X Lip0�ΩÙR
m�

such that

h�E� ¨ C�u� + D�∇u + E�Ø (5.3)

Proof Clearly, the first part of the assertion is a spacial case of the second, noting that

(5.1) guarantees h�0� ° ðØ Thus we prove only the second part. Let E X X�ΩÙLin�
and h�E� ° ð. Let uk X Lip0�ΩÙR

m� be the minimizing sequence, i.e., a sequence

satisfying

C�uk� + D�∇uk + E� r h�E�Ø

The finiteness of C�uk�+D�∇uk +E� implies∇uk+E X K for all k sufficiently large.

The boundedness of K gives that the sequence |∇uk|Lð is uniformly bounded. By

Remark 5.2 there exists a subsequence, again denoted by ukÙ such that |uk − u|ð r 0
for some u X Lip0�ΩÙR

m�Ø Hence ∇uk + E r ∇u + E in X�ΩÙLin�Ø Lemma 5.1

then gives ∇u + E X KØ Thus D�∇uk + E� ¨ D�∇u + E� ¨ 0 for all k sufficiently

large. As also C�uk� r C�u�Ù we see that (5.3) holds. è

Lemma 5.5.

(i) The functions C and D are lowersemicontinuous.

(ii) The problem P is normal.

Slater’s condition cannot be satisfied since the existence of u0 such that D�∇u0� ° ð
and D continuous at ∇u0 would require that ∇u0 be an interior point of KÙ but the

interior of K is empty by Lemma 5.1

Proof (i): The lowersemicontinuity of C is immediate. Since D is the indicator func-

tion of the closed set K (see Lemma 5.1), it is automatically lowersemicontinuous.
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(ii): Suppose, on the contrary, that there exists a sequence Ek converging to 0 in

X�ΩÙLin� such that

lim
krð
h�Ek� ° h�0�Ø (5.4)

Thus h�Ek� ° ð for all k sufficiently large and hence by Theorem 5.4 there exists an

uk X Lip0�ΩÙR
m� such that

h�Ek� ¨ C�uk� + D�∇uk + Ek�Ø

Thus ∇uk + Ek X K for every k. By Lemma 5.3 there is a subsequence of ukÙ again

denoted by uk, and u X Lip0�ΩÙR
m� such that |uk − u|ð r 0 and ∇u X K. Then

C�uk� r C�u� and D�∇uk + Ek� ¨ D�∇u� ¨ 0Û hence

C�uk� + D�∇uk + Ek� r C�u� + D�∇u� ³ C�u
�� + D�∇u �� ¨ h�0�Û

where u � is the minimizer of P. This violation of (5.4) proves that P is normal. è

6 The dual of the generalized problem P

For the primal problem of Section 5 we determine the dual problem, prove the equality

infP + infP
  ¨ 0Ù (6.1)

show that under additional hypothesis it has a solution, and determine the relationships

between the solutions of the primal and dual problems.

To evaluate the dual energy, we note [15; Proposition I.6] that corresponding to

each compact, convex, equilibrated set K ⊂ Lin containing some neighborhood of 0

in Lin there exists a unique norm | ċ |K on Lin such that

K ¨  A X Lin Ú |A|K ² 1(Ø

The norm | ċ |K is given by

|A|K ¨ inf t ³ 0 Ú A X tK(Ù A X LinØ

We also introduce the dual norm | ċ |  K on Lin by

|B|  K ¨ sup !A ċ B Ú A X LinÙ |A|K ² 1)Ù

B X LinØ In view of finite dimensionality ofLinÙ the norms |ċ|K, |ċ|  K and the euclidean

norm | ċ | are mutually equivalent.

Example 6.1. The dual norm of the norm (2.1) is |B|  K ¨ |Be1| + |Be2|Ù B X LinØ

Proof Any A X Lin with |A|K ² 1 is of the form A ¨ f1 � e1 + f2 � e2 where fi X R
3

satisfy |fi | ² 1Ù i ¨ 1Ù 2Ø Then B ċ A ¨ f1 ċ Be1 + f2 ċ Be2 ² |Be1| + |Be2|Ø On the other

hand, the right hand side is achieved when fi ¨ Bei/|Bei|Ø è

We identify S�ΩÙLin� with the dual of X�ΩÙRm�Ø
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Proposition 6.2. The functions C   Ú Lip0�ΩÙR
m�   r ÏR and D   Ú S�ΩÙRn�m� r

ÏR are given by

C  �z� ¨



















c0 if 〈zÙ p〉 + �
Ω

p ċ db ¨ 0 for all p X Lip0�ΩÙR
m�Ù

ð else
(6.2)

for all z X Lip0�ΩÙR
m�   and

D  �S� ¨ sup !〈SÙE 〉 Ú E X K)Ù (6.3)

S X M�ΩÙLin�Ø If ∇f X C�cl Ω�Ù if S has the form S ¨ σφ where φ is a finite

nonnegative measure on Ω and σ X L 1�φÙLin� then

D  �S� ¨ �
Ω

|σ|  K dφ − 〈SÙ ∇f 〉Ø (6.4)

Proof We have

C  �z� ¨ sup !〈zÙ p〉 + �
Ω

p ċ db + c0 Ú p X Lip0�ΩÙR
m�)

which gives (6.2). Equation (6.3) is immediate.

To prove the second part, note that by (6.3) and by the density of C Ú¨ C0�ΩÙLin�
in X�ΩÙLin� we have

D  �S� ¨ sup !〈SÙE 〉 Ú E X CÙ E + ∇f X K for L
n almost every point of Ω)

¨ sup !〈SÙ F − ∇f 〉 Ú E X CÙ F X K on Ω)

¨ sup !〈SÙ F 〉 Ú F X CÙ F X K on Ω) − 〈SÙ ∇f 〉

and

sup! �
Ω

F ċ σ dφ Ú F X CÙ |F |K ² 1 on Ω)

² sup !�
Ω

|F |K|σ|
 
K dφ Ú F X CÙ |F |K ² 1 on Ω)

which proves the inequality “² ” in (6.4). The converse inequality is proved by

showing that for every ε ± 0 there exists F X C such that |F |K|σ|
 
K − ε ° F ċ σØ è

Corollary 6.3. For E of the form (5.2) the dual energy is given by

G�S� ¨











D  �S� + c0 if divS + b ¨ 0Ù

ð else,

S X X�ΩÙLin�Ø The dual problem reads

�P  �















Find S X S�ΩÙLin� which minimizes D  �S� + c0
over the set of all solutions of divS + b ¨ 0Ø

Theorem 6.4.

(i) We have (6.1).

(ii) If

sup ess !|∇f �x�|K Ú x X Ω) ° 1 (6.5)
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then the problem P
  has a solution.

Proof (i): By Lemma 5.5(ii) the problem P is normal and by Proposition 3.2(i) the

normality is equivalent to (6.1).

(ii): If (6.5) holds then there is an ε ± 0 such that

!E X C0�ΩÙLin� Ú |E|ð ² ε) ⊂ KØ

It follows that

D  �S� ³ ε|S|
M
Ø (6.6)

By [20; Example 3.3(i)], we have E Ú¨ !S X S�ΩÙLin� Ú divS + b ¨ 0) © ó. Let

now Sk X E be a minimizing sequence, i.e., a sequence such that

D  �Sk� + c0 r infP
 Ø

In particular, the sequence D  �Sk� ³ 0 is bounded. By (6.6) also the sequence |Sk|M
is bounded; from divSk + b ¨ 0 we see that also the sequence | divSk|M is bounded.

consequently, also the sequence |Sk|S ¨ |Sk|M+ | div Sk|M. By the Bourbaki–Alaoglu

theorem [19; Theorem 4.3(c)] then there exists a subsequence, again denoted SkÙ such

that

Sk u
  S in S�ΩÙLin�;

for some S X S�ΩÙLin� and hence

〈SkÙE 〉 r 〈SÙE 〉 for each E X X�ΩÙLin�.

By taking E ¨ ∇pÙ p X Lin0�ΩÙR
m�Ù one finds that divS + b ¨ 0 and hence S X EØ

We now claim that S is a solution of P
 Ø for this, it suffices to show that

lim inf
krð

D  �Sk� ³ D
 �S�Ø

But this follows from the fact that by (6.3) the function D   is weak   lowersemi-

continuous, since it is the supremum of a family of weak   continuous function [5;

Subsection I.2.2]. è

Remark 6.5. Let u X Lip0�ΩÙR
m� and let yρÙ ρ ± 0Ù be the sequence of mollifications

of y ¨ u + f Ù defined on the set Ω ρ Ú¨  x X Ω Ú B�xÙ ρ� ⊂ Ω(Ù where B�xÙ ρ� is the

open ball of center x and radius ρØ Put

ω�x� ¨ lim sup
ρr0

|∇yρ�x�|K (6.7)

for any x X ΩØ If ∇u X K then

0 ² ω�x� ² 1 for every x X Ω and

ω�x� ¨ |∇y�x�|K for L
n almost every x X Ω and

under (6.8)2 the equality ω�x� ¨ 1 holds only if ∇y�x� X ãK.



























(6.8)

Proof We have

yρ�x� ¨ �
R n

y�x + h�ψρ�h� dL
n�h�

for every x X Ωρ Ù where ψ ρ�h� ¨ ρ −nψ�h/ρ� where ψ is a mollifier and as a

consequence,
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∇yρ�x� ¨ �
R n
∇y�x + h�ψρ�h� dL

n�h�Ø

If y X KÙ i.e., if |∇y�x�|K ² 1 for L
n almost every x X Ω then Jensen’s inequality

provides

|∇yρ�x�|K ¨
∣

∣ �
R n

∇y�x + h�ψ ρ�h� dL
n�h�

∣

∣

K
² �
R n

|∇y�x + h�|Kψ ρ�h� dL
n�h� ² 1Ø

The definition (6.7) then gives (6.8)1Ø Assertion (6.8)2 follows from the well known

fact that ∇yρ�x� r ∇y�x� for L
n almost every x X Ω and (6.8)3 is a consequence of

ãK ¨  F X Lin Ú |F |K ¨ 1(Ø è

Theorem 6.6. Let u X Lip0�ΩÙR
m� and S X S�ΩÙLin� be any solutions of the

primal and dual problems, respectively. Let ω be defined by (6.7) where y ¨ u + f Ø
Then we have the following statements:

(i) the measure S is supported by the set

M ¨ !x X Ω Ú ω�x� ¨ 1)Ù

i.e., S�A� ¨ 0 for any Borel subset A of Ω ∼MÛ
(ii) the measure S is normal to K at the map ∇u, i.e.,

〈E − ∇uÙ S 〉 ² 0 (6.9)

for all E X KÛ
(iii) for any E X K the scalar measure 〈〈SÙE − ∇u〉〉 on Ω is nonpositive.

In particular, if u, f X C 1�cl ΩÙRm� then

spt S ⊂ !x X Ω Ú ∇y�x� X ãK)Ù

S ��x� X N�∇y�x�ÙK� for φ almost every x X spt S.

Recall the formula (2.6) for the normal cone to K for the case of nets and its

interpretation.

Proof (ii): By Theorem 3.3(iv) we have S X ãD�∇u� and since D is the indicator

function of KÛ by (7.2) we have S X N�∇uÙ K�Ù which is (6.9).

(iii): If E X K then since ∇u X KÙ we have λE + �1 − λ�∇u for any λ X C 10�cl Ω�
satisfying 0 ² λ�x� ² 1 for any x X ΩØ (Here we require λ to be continuously

differentiable and not merely continuous to ensure that λE +�1− λ�∇y X X�ΩÙLin�Ù
see Remark 4.2(ii).) Replacing E by λE + �1 − λ�∇u in (6.9), we obtain

〈SÙ λ�E − ∇u�〉 ¨ �
Ω

λ d 〈〈E − ∇uÙ S〉〉 ² 0Ø (6.10)

As this must be satisfied for each λ with the indicated properties, the conclusion

follows.

(i): If λ is as in the proof of (iii), we have

�
Ω

λ∇yρ ċ dS r �
Ω

λ d 〈〈∇yÙ S〉〉 Ø (6.11)

On the other hand,

�
Ω

λ∇yρ ċ dS ¨ �
Ω

λ∇yρ ċ S
�d|S| ² �

Ω

λ|∇yρ|K|S
�|  Kd|S|Ø (6.12)
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Putting ω ρ�x� ¨ sup  |∇yσ�x�|K Ú 0 ° σ ² ρ( and noting that ω ρ�x� r ω�x� ² 1
for any x X ΩÙ we invoke Lebesgue’s dominated convergence theorem to obtain

�
Ω

λ|∇yρ|K|S
�|  Kd|S| ² �

Ω

λωρ|S
�|  Kd|S|r �

Ω

λω|S �|  Kd|S|Ø (6.13)

Taking the limits in (6.12) using (6.11) and (6.13) we obtain

�
Ω

λ d 〈〈∇yÙ S〉〉 ² �
Ω

λω|S �|  Kd|S|Ø

Inequality (6.10) can be rewritten as

�
Ω

λ d 〈〈F Ù S〉〉 ² �
Ω

λ d 〈〈∇yÙ S〉〉

for any F X C0�ΩÙLin� with F�x� X K for every x X Ω and hence

�
Ω

λ d 〈〈EÙ S〉〉 ² �
Ω

λω|S �|  Kd|S|Ø

The arbitrariness of λ provides

F ċ S ��x� ² ω�x�|S ��x�|  K (6.14)

for every F X K and |S| almost every x X ΩØ On the other hand, by the definition of

dual norms | ċ |K and | ċ |  K there exists an F with |F |K ¨ 1 such that F ċS ��x� ¨ |S ��x�|  K.

As this F is in K, we see that (6.14) can hold only if ω�x� ¨ 1Ø Thus Assertion (i)

holds. è

7 Appendix A: Convexity

This section outlines some basic concepts of the convexity theory. The reader is

referred to [5; Chapter I], [16], and [17] for details.

Let X be a normed vectorspace and X   its normed dual; if ξ X X and η X X  Ù
we denote by 〈 ξÙ η 〉 ª 〈 ηÙ ξ 〉 the value of the linear function η on ξØ

A subset K of X is said to be convex if t1ξ1 + t2ξ2 X K for any ξ i X KÙ ti ³ 0Ù
i ¨ 1Ù 2Ù such that t1 + t2 ¨ 1Ø If ξ X XÙ then η X X   is said to be a normal to K at ξ if

〈ξ Þ − ξÙ η 〉 ² 0

for every ξ Þ X KØ For a fixed ξÙ the set N�ξÙK� ⊂ X   of all normals to K at ξ is a

closed convex cone with 0 X N�ξÙK�Ø One has N�ξÙK� ©  0( only if ξ belongs to

the boundary of KØ
A subset K of X is said to be equilibrated if ξ X K implies −ξ X KØ
If Φ Ú Xr RT −ðÙð( then the effective domain of Φ is defined by dom Φ ¨

 ξ X X Ú Φ�ξ� ° ð(Ø The function Φ is said to be convex if

Φ�t1ξ1 + t2ξ2� ² t1Φ�ξ 1� + t2Φ�ξ2� (7.1)

for any ξ i X dom ΦÙ ti ³ 0Ù i ¨ 1Ù 2Ù such that t1 + t2 ¨ 1Ø Similarly, Φ is said to be

affine if its values are finite and (7.1) holds with the equality sign.

A convex function Φ onX is said to be a norm if it is nonnegative, finite valued,

Φ�tξ� ¨ |t|Φ�ξ� for any ξ X X and t X RÙ and Φ�ξ� ¨ 0 only if ξ ¨ 0Ø Two norms
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Φ 1 and Φ2 are said to be equivalent if c1Φ1�ξ� ² Φ2�ξ� ² c2Φ 1�ξ� for all ξ X X and

some positive constants c1Ù c2Ø
A function Φ Ú X r R is affine and continuous if and only if it is of the form

Φ�ξ� ¨ 〈 ηÙ ξ 〉 + c for some η X X  Ù c X R and all ξ X XØ
Recall that Φ Ú X r R T  −ðÙð( is said to be lowersemicontinuous at ξ X X

if lim infkrð Φ�ξk� ³ Φ�ξ� for every sequence ξk converging to ξØ
If ξ X X then η X X   is said to be a subgradient of Φ at ξ if Φ�ξ� X R and

Φ�ξ Þ� −Φ�ξ� ³ 〈ξ Þ − ξÙ η 〉

for all ξ Þ X XØ The set ãΦ�ξ� of all subgradients of Φ at ξ is a (possibly empty)

closed convex subset of X  Ø Clearly, if ãΦ�ξ� © ó then Φ is lowersemicontinuous

at ξØ
The indicator function I�ċÙK� of a subset K of X is defined by

I�ξÙK� ¨











0 if ξ X KÙ

ð else,

ξ X XØ Then I�ċÙK� is convex if and only if K is convex and I�ċÙK� is lowersemi-

continuous if and only if K is closed. IfK is closed convex then

ãI�ξÙK� ¨















N�ξÙK� if ξ X KÙ

ó else,
(7.2)

for any ξ X XØ
If Φ Ú Xr RT −ðÙð( then the conjugate function Φ   Ú X   r RT −ðÙð(

is defined by

Φ
 �η� ¨ sup !〈ξÙ η 〉 − Φ�ξ� Ú ξ X X)Ù

η X X  Ø One has

Φ�ξ� +Φ  �η� ³ 〈ξÙ η 〉

for any ξ X X and η X X  Ø If Φ is not identically ð and bounded from below by an

affine continuous function then Φ   is not identically ð, lowersemicontinuous, and

bounded from below by an affine continuous function.

8 Appendix B: Countable additivity inside finite additivity

As mentioned in the introduction, in [12] the stresses in the inextensible nets with

slack are modeled by finitely additive set functions. This section briefly describes the

relationship between the present description and that of [12].

Both the two approaches use the convex duality theory of Section 3 to construct

the dual problem and to identify the stress with the solution of the dual problem. The

difference lies in different choices of the duality between strains (from the space Y)

and stresses (from the dual Y  ). Indeed, a single primal problem can have several

nonequivalent dual problems, as already mentioned.

While the details in [12] are slightly different, one can say that the strains,

interpreted as gradients F of Lipschitz Ian deformations y Ú Ω r RmÙ are inserted in

the space Lð�ΩÙLin�; i.e., the choice
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Y ¨ Lð�Ω ÙLin�

has been made. In accordance with the general theory, the stresses live in the dual

Y  Ø By the Yoshida–Hewitt representation theorem [25; Theorem 2.3], Y   can be

identified with the space ba0�ΩÙLin� of all finitely additive set functions of finite

total variation that are absolutely continuous with respect to L
n: the functionals

Ψ X Lð�ΩÙLin�   are identified with T X ba0�ΩÙLin� via

Ψ�F� ¨ �
Ω

F ċ dT Ù (8.1)

F X Lð�ΩÙLin�Ù where the integral with respect to a finitely additive function T is

defined in essentially the same way as in the countably additive case.

The solutions of the primal problem here and in [12] are identical; thus infP are

the same for both approaches. Under Condition (6.5), the dual problem is solvable

both here and in [12], with solutions in different spaces, here S X S�ΩÙLin� and in

[12] T X ba0�ΩÙLin�, but in both cases satisfying

divS + b ¨ 0Ù divT + b ¨ 0Ù

infP + infP
  ¨ 0Ù

so that also infP
  are the same for the two solutions.

What is the relationship between S and T?

The answer lies in the observation that each T X ba0�ΩÙLin� contains in itself

an S X M�ΩÙLin� and each S X M�ΩÙLin� can be extended, in a nonunique way,

but with the preservation of the variation, into T X ba0�ΩÙLin�. Indeed, the space

of continuous functions vanishing on the boundary C0�ΩÙLin� is a closed subspace

of Lð�ΩÙLin�Ø By the Riesz representation theorem, the continuous functionals on

C0�ΩÙLin� are represented by the integration with respect to countably additive

measures. Thus if T X ba0�ΩÙLin�, then the restriction of (8.1) to C0�ΩÙLin�
induces a measure S X M�ΩÙLin� such that

�
Ω

F ċ dS ¨ �
Ω

F ċ dT (8.2)

for each F X C0�ΩÙLin�. Conversely, given SÙ one can extend the functional on

C0�ΩÙLin� determined by S into a functional on Lð�ΩÙLin� with the same norm,

thus obtaining T X ba0�ΩÙLin� of the same total variation. However, generally,

there is no direct relationship between S and T Ù despite the relation (8.2) between the

induced functionals. Indeed, one can have S ¨ 0 and yet T © 0Ø For this it suffices the

extend the null functional onC0�ΩÙLin� into a nonzero functional on Lð�ΩÙLin� by

a simple application of the Hahn–Banach theorem. In this way one obtains a nonzero

finitely additive function T such that

�
Ω

F ċ dT ¨ 0

for each continuous function F X C0�ΩÙLin�Ø (See [25; Theorem 3.4] for a refined

version of this.)

The same restriction/extension relationship holds between the solution of the

dual problem in the present sense and that in the sense of [12].
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20 Šilhavý, M.: Divergence measure fields and Cauchy’s stress theorem Rend. Sem.

Mat. Padova 113 (2005) 15–45



23

21 Šilhavý, M.: The divergence theorem for divergence measure vectorfields on

sets with fractal boundaries Mathematics and Mechanics of Solids 14 (2009)

445–455
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