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Abstract

We use an infinite dimensional version of the Fenchel duality tech-
nique to prove that, whenever a truncated problem of powers moments
on a multidimensional dimensional Euclidian space has representing
densities, it will have also a distinguished representing density of a
concrete form, namely the unique density maximizing the entropy
functional subject to the equations of moments.
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1 Introduction

We consider the following truncated problem of moments in several variables.
Fix n, m ≥ 1 and let R

n be endowed with the Lebesgue measure. Let
A = {α ∈ Z

n
+ : |α| ≤ 2m}, where |α| = α1 + · · · + αn for any multiindex

α. Set uα(t) = tα = tα1

1 · · · tαn
n for α ∈ A and t ∈ R

n. Given a finite set
γ = (γα)α of numbers γα (α ∈ A), the problem is to establish whether there
exist measures µ ≥ 0 on R

n such that∫
Rn

uα(t)dµ(t) = γα (α ∈ A). (1)
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In particular, we look for absolutely continuous measures µ = f dt with
f ≥ 0, where the symbol dt stands as usual for the Lebesgue measure. If (1)
holds, then µ (resp. f) is called a representing measure (resp. density) of
the sequence γ. The problem is then to characterize those sets γ which have
nonnegative representing measures, study the set of the solutions and find or
approximate such measures µ.

In the case of densities supported on a given compact subset in R
n we gave

such a characterization [] in terms of the existence of a certain distinguished
representing density f having a very particular form f = ep, namely the
exponential of a polynomial p of degree ≤ 2m,

∫
uα(t)ep(t)dt = γα

for all α ∈ A.
The aim of this work is to prove similar results in the case of un-

bounded support (= R
n for instance), that is well known to be more dif-

ficult than the compactly supported case, for various problems of this type.
Moreover, the method we use here, namely optimization of the entropy func-
tional H(f) = −

∫
f ln f dt by means of Fenchel duality, gives also a new,

simpler proof in the compact case.

2 Preliminaries

We consider absolutely continuous representing measures f dt, with nonnega-
tive density f from L1(Rn) – the space of all (classes of) measurable functions
that are Lebesgue integrable on T with respect to dt. Set a := card A. We
characterize the existence of such representing densities by the solvability of
the following system

∫
Rn

uα(t) e
P

β∈A xβ uβ(t) dt = γα (α ∈ A) (2)

of a equations with a unknowns xα (α ∈ A). Therefore if our problem (1)
has any absolutely continuous solution µ = f dt, then it will necessarily have
also a solution of the form from above.

When the system (2) (see (??) and (??), too) has a solution, this is
unique and provides the (also unique) representing density f∗ having maximal
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entropy, by the formula

f∗(t) = f∗,x(t) = exp (
∑
α∈A

xαuα(t)) (t ∈ T ).

Note that the solution in the above example is valid if and only if γ0 > 0
and γ0γ2 − γ2

1 > 0. This agrees with the theory of the truncated problem
of power moments existing for n = 1. Namely, a set (γα)2k

α=0 ( 6= 0) has
nonnegative representing measures (resp. densities) on R ⇔ the quadratic
form (γα+β)k

α,β=0 is nonnegative (resp. positive) definite [3].
Such characterizatins are based on the possibility to represent any non-

negative polynomial (resp. trigonometrical polynomial) on R. as a sum of
squares [?]. Namely the existence of µ can be characterized by the existence
of a functional Lγ on polynomials such that Lγ tα = γα and Lγp ≥ 0 for
any p ≥ 0 on T [11]. Then by the Hahn–Banach theorem it suffices to ask
Lγp ≥ 0 for those p =

∑
α∈A cαuα such that p(t) ≥ 0, t ∈ T [11], [15]. The

problem is to describe these polynomials p. If they are (or can be expressed
in terms of) sums of squares, then conditions like Lγ(|q|

2) ≥ 0 for all q lead to
characterizations as above. This method is not applicable for n > 1 when the
set of nonnegative polynomials is more difficult to handle [6] (for instance,
not all of them can be written as sums of squares). The same questions
appear for trigonometric moment problems [?], [?].

Thus the moment problems for n > 1 and A = finite have received rather
partial answers.

Our approach is based on a Shannon’s idea. Set Fα(f) =
∫

T
uα(t)f(t)dm−

γα (α ∈ A). Assume the existence of the representing densities f ≥ 0 of γ
with

∫
T

fdm = 1. Then among them there exists one probability density f∗
having the maximum degree of randomness allowed by the conditions (1).
Namely, this density maximizes the entropy functional

H(f) := −

∫
T

f ln f dm

with the restrictions Fα(f) = 0 (α ∈ A). Since f∗ > 0 on T , then it belongs
in a certain sense to the interior of the domain of H . Hence we may apply
the method of the Lagrange multipliers for the conditioned extremum. Then
there are xα ∈ R (α ∈ A) such that f∗ be a critical point of the function
L := H +

∑
α∈A xαFα, namely L′(f∗) = 0. Thus L′(f∗)g = 0 for all g.

Note that L(f) =
∫

T
G(f)dm where G(f) := −f ln f +

∑
α∈A(uαf − γα).
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By using the formula L′(f)g = lims→0 s−1(L(f + sg)− L(f)), it follows that∫
T

G′(f∗)gdm = 0 for all g. Hence G′(f∗) = 0. Now G′(f) = − ln f − 1 +∑
α∈A xαuα. We obtain that ef∗ is the exponential of a linear combination of

the functions uα = uα(t) (α ∈ A). Writing the conditions (1) for µ := f∗m,
we obtain the system (2) which must then have a solution x = (xα)α∈A. In
the 2nd section we will rigorously state and prove these considerations, by
means of elements of Fenchel duality [?], [].

The idea from above is a known natural approach to this type of prob-
lems, at least in the case T = finite. One way or another, it was also used
or suggested in several problems in which maximum entropy distributions
naturally arise [?], [?], [?], [12].
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2.1 Notation and definitions

We remind that a subset M of a real linear space is said to be affine if
λx + (1 − λ)y ∈ M for all λ ∈ R and x, y ∈ M . Let aff S denote the affine
hull of a subset S of an n-dimensional Euclidian space (n ∈ N), that is, the
smallest affine set M s.t. S ⊂ M . The relative interior of a convex set
C ⊂ R

n, denoted by riC, is the interior of C regarded as a subset of aff C,
namely [[?]]

ri C = {x ∈ affC : ∃ε > 0 s.t. B(x, ε) ∩ affC ⊂ C}

where B(x, ε) denotes the Euclidian ball of center x and radius ε. Note
that riC also is a convex set, riC 6= ∅ whenever C 6= ∅, and ri C = C, see
[Theorems II.6.2-3, [?]]. If C is convex and moreover λc ∈ C whenever c ∈ C
and λ > 0, we call C a convex cone.

We call a function φ : R → (−∞,∞] proper if f 6≡ ∞ and convex if
it is convex on its effective domain dom φ = {x : φ(x) < ∞}, namely if
φ(λx + (1 − λ)y) ≤ λφ(x) + (1 − λ)φ(y) for every λ ∈ (0, 1) and x, y ∈
dom φ. The convex conjugate φ∗ : R → [−∞,∞] of φ is defined by φ∗(y) =
sup{〈x, y〉 − φ(x) : x ∈ dom φ}, see [Section III.12, [?]].

Let φ be defined by: φ(x) = x lnx for x > 0, φ(0) = 0 and φ(x) = +∞
for x < 0. Then φ is proper, convex, lower semicontinuous, bounded from
below, with effective domain [0,∞) and its convex conjugate is φ∗(y) = ey−1

for all y ∈ R.

2.2 Fenchel duality

For the basic notions of Fenchel duality, we refer to Rockafeller’s book [14]
where the finite dimensional case studied. In the infinite dimensional case,
unlike in R

n, there is no unique theorem covering all situations, but there are
various results in the same spirit. The necessary result that best corresponds
to our context is the following Borwein and Lewis’s theorem from below.
Note that applying Theorem 1 to our framework will also require several
topics from the finite dimensional case [14]. This minimax - type result
turns here to be more suitable than the various versions of the Lagrange
multipliers method on infinite dimensional cones (that are usually involved
in optimization of entropy - like functionals subject to convex restrictions).
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Theorem 1 [Corollary 2.6,[7]] Let T be a space with finite measure µ ≥ 0,
1 ≤ p ≤ ∞, and ai ∈ Lq(µ), bi ∈ R for i = 1, n where 1

p
+ 1

q
= 1. Let

φ : R → (−∞,∞] be proper, convex and lower semicontinuous, with (0,∞) ⊂
dom φ. Suppose there exists x ∈ Lp(µ) with x(t) > 0 almost everywhere s.t.
φ ◦ x ∈ L1(µ) and

∫
T

x(t)ai(t)dµ(t) = bi for i = 1, n. Then the values
P ∈ [−∞,∞) and D ∈ [−∞,∞] defined respectively by

P =inf{

∫
φ(x(t))dµ(t) :x ∈Lp(µ),x ≥ 0a.e., φ◦x ∈L1(µ),

∫
x(t)ai(t)dµ(t)=bi∀i}

and

D=max{
n∑

j=1

bjλj −

∫
φ∗(

n∑
i=1

λiai(t))dµ(t) :λ1, . . . , λn ∈ R,φ∗◦
n∑

i=1

λiai ∈ L1(µ)}

are equal, and the maximum in the definition of D is atteined.

Note for later use that whenever there exists a vector (λi)
n
i=1 s.t. φ∗ ◦∑n

i=1 λiai ∈ L1(µ), Theorem 1 gives −∞ < P = D < ∞ (otherwise the
conclusion holds in the form P = D = −∞ if we set as usual max∅ = −∞).
In particular, −∞ < D < ∞ whenever φ is bounded from below, since in
this case −∞ < φ∗(0) < ∞ and hence for (λi)i := 0 we have the constant
function φ∗◦

∑n
i=1 λiai ≡ φ∗(0) ∈ L1(µ) because µ(T ) < ∞.

For every finite measure µ ≥ 0 and f ∈ L∞
+ , the function f ln f belongs

to the space L1
µ, as follows by letting x := f(t) a.e. and y := ‖f‖∞ +1 in the

elementary inequalities −e−1 ≤ x ln x ≤ y ln y that hold for any 0 ≤ x ≤ y
with y ≥ 1, and then integrating with respect to µ.

For any multiindex i = (i1, . . . , in) ∈ Z
n
+ we write as usual i! = i1! · · · in!,

|i| = i1 + · · · + in and xi = xi1
1 · · ·xin

n for a variable x = (x1, . . . , xn). Also,
i ≤ j means i1 ≤ j1, . . . , in ≤ jn. Let deg p denote the degree of a polynomial
p. Let ph denote the homogeneous part of maximal degree of p.

Let GL(n), resp. O(n) denote as usual the group of all invertible, resp.
orthogonal linear maps on R

n.
Remind that a positive definite form in n variables is a polynomial p =∑n

i,j=1 aijXiXj s.t. the n × n matrix [aij ]
n
i.j=1 is positive definite, namely∑n

i,j=1 aijxixj > 0 for every vector (xi)
n
i=1 6= 0 in R

n or, equivalently, s.t.

p(x) ≥ c‖x‖2 for some constant c = cp > 0 (⇔ lim‖x‖→∞ p(x) = +∞, too).
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Definition We call an arbitrary polynomial p ∈ R[X] positive definite if
there exist constants c > 0 and R s.t.

p(x) ≥ c‖x‖2

for all x ∈ R
n with ‖x‖ ≥ R, or, equivalently, if there exist c > 0, c′ s.t.

p(x) + c′ ≥ c‖x‖2 ∀x ∈ R
n,

condition that easily proves also to be equivalent to

lim
‖x‖→∞

p(x) = +∞.

Let P = Pn = { p ∈ R[X1, . . . , Xn] : p is positive definite }.

Remark 2 (a) If p =
∑n

i,j=1 aijXiXj +
∑n

i=1 biXi + c, then p ∈ Pn ⇔ the
form

∑n
i,j=1 aijXiXj is positive definite.

(b) Pn is a convex cone, stable under multiplication.
(c) If p ∈ Pn, then for every T ∈ GL(n), x0 ∈ R

n and c ∈ R the
polynomial p(TX + x0) + c also is in Pn.

(d) If X = (X1, . . . , Xk) is a partition of the set X = (X1, . . . , Xn) of
variables and pj ∈ R[Xj] ⊂ R[X] is a positive definite form in R[Xj] for each
j = 1, k then p1 + · · ·+ pk ∈ Pn.

(e) Pn is the minimal set containing all polynomials p1 + · · · + pk with
1 ≤ k ≤ n from (e) and stable under the operations from (b) and (c).

(f) If p ∈ P , then deg p must be even ≥ 2.
(g) For p homegeneous, p ∈ P ⇔ inf‖x‖=1 p(x) > 0 ⇔ p(x) ≥ c‖x‖deg p ∀x

for some c > 0.
(h) If the homogeneous part ph of p is in P , then p ∈ P , but the converse

is not true: for example, the polynomial p = X4
1 + X2

2 ∈ R[X1, X2] is in P2

while ph = X4
1 6∈ P2.

We endow the space R
n with the usual inner product, that will be in-

herited by all its linear subspaces. For every linear subspace Y ⊂ R
n, let

PY : R
n → R

n be the orthogonal projection onto Y , and Y ⊥ denote the
space orthogonal to Y . For any linear map T : Y → Y , let T ∗ : Y → Y de-
note as usual the Hilbert space adjoint of T , and ‖T‖ be the uniform operator
norm of T .
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Lemma 3 Let Y, Z ⊂ R
n be linear subspaces. Let P, Q : Y +Z → Y +Z be

the linear projections onto Y, Z respectively defined by P (u + v + t) = u + t
and Q(u + v + t) = v + t for u ∈ Y ∩ (Y ∩ Z)⊥, v ∈ Z ∩ (Y ∩ Z)⊥ and
t ∈ Y ∩ Z. Then:

(a) There exists an invertible linear map T : Y +Z → Y +Z s.t. PY T = P
and PZT = Q.

(b) For any l, m ∈ N with l ≤ m there are constants A and B > 0 s.t.
‖u + v + t‖l ≤ A(‖u‖m + ‖t‖m + ‖v‖l) + B for all u, v, t as above.

Proof. (a) For every u, v, t as above and w ∈ Y ∩Z, we have the equalities

〈P ∗w, u + v + t〉 = 〈w, P (u + v + t)〉 = 〈w, u + t〉 = 〈w, t〉

and
〈Q∗w, u + v + t〉 = 〈w, Q(u + v + t)〉 = 〈w, v + t〉 = 〈w, t〉.

This proves the implication

w ∈ Y ∩ Z ⇒ P ∗w = Q∗w. (3)

Let y ∈ Y and z ∈ Z be arbitrary s.t. P ∗y = Q∗z. Then for u ∈ Y ∩(Y ∩Z)⊥,

〈y, u〉 = 〈y, Pu〉 = 〈P ∗y, u〉 = 〈Q∗z, u〉 = 〈z, Qu〉 = 0.

It follows that y ∈ Y ∩ Z. Symmetrically, we obtain also z ∈ Y ∩ Z. Now
for every t ∈ Y ∩ Z, we have

〈y, t〉 = 〈y, P t〉 = 〈P ∗y, t〉 = 〈Q∗z, t〉 = 〈z, Qt〉 = 〈z, t〉.

Hence y = z. Therefore, we have also the implication

y ∈ Y, z ∈ Z, P ∗y = Q∗z ⇒ y = z. (4)

We can define then a map σ : Y + Z → Y + Z by

σ(y + z) = P ∗y + Q∗z (y ∈ Y, z ∈ Z),

for if y +z = y′+z′ for other vectors y′ ∈ Y, z′ ∈ Z, then w := y−y′ = z′−z
is in Y ∩ Z and by (3) we obtain P ∗y + Q∗z = P ∗y′ + Q∗z′. Moreover σ is
injective (and so, invertible) since σ(y + z) = 0 ⇒ P ∗y = Q∗(−z), which by
(4) gives y + z = 0. Then the equalities

σPY = P ∗, σPZ = Q∗

8



hold on the space Y + Z, as follows: if x ∈ Y , σPY x = P ∗x from the
definition of σ, while if x ∈ Y + Z is in Y ⊥, x ∈ (range ofP )⊥ = ker P ∗ and
so both σPY x, P ∗x = 0; thus σPY = P ∗, and similarly one checks the second
equality. We let then T = σ∗.

(b) Use twice the inequality (a+b
2

)p ≤ ap+bp

2
(a , b ≥ 0, p ≥ 1) for p = l, m

as follows:

‖u + v + t‖l ≤ (‖u + t‖ + ‖v‖)l ≤ 2l−1(‖u + t‖l + ‖v‖l);

if ‖u + t‖ ≥ 1, we estimate the right hand side term from above using

‖u + t‖l + ‖v‖l ≤ ‖u + t‖m + ‖v‖l ≤ 2m−1(‖u‖m + ‖t‖m) + ‖v‖l,

while if ‖u + t‖ < 1 we can estimate it as

2l−1(‖u + t‖l + ‖v‖l) ≤ 2l−1(1 + ‖v‖l) ≤ 2l−1(‖u‖m + ‖t‖m + ‖v‖l) + 2l−1;

hence the desired inequality holds with A = 2l+m−2 and B = 2l−1.

Lemma 4 Let p, q ∈ R[X] with q homogeneous s.t. 1 ≤ deg q < deg p. Let
Y, Z ⊂ R

n be linear subspaces s.t. p = p ◦ PY and q = q ◦ PZ . Moreover,
we assume that the spaces Y ∩ (Y ∩ Z)⊥ and Z ∩ (Y ∩ Z)⊥ are orthogonal.
Suppose there are constants a and c > 0 s.t. p(y) ≤ −c‖y‖m + a for all
y ∈ Y . If δ := sup{d(z, Y ) : z ∈ Z, ‖z‖ = 1, q(x) ≥ 0} < 1, then there are
constants a′ and c′ > 0 s.t. (p + q)(x) ≤ −c′‖x‖l + a′ for all x ∈ Y + Z.

Proof. Let l = deg q and m = deg p. Thus 1 ≤ l < m. Fix a constant
C > 0 s.t. for all s ∈ R

n, q(s) ≤ C‖s‖l. Since the spaces Y ∩ (Y ∩ Z)⊥ and
Z∩(Y ∩Z)⊥ are orthogonal, we have d(v, Y ) = ‖v‖ for every v ∈ Z∩(Y ∩Z)⊥.
Let K = K(δ, C, l, m, ...) >> C (s.t. sa obtin ulterior o contradictie cu
δ < 1). Use the notation in Lemma 3, namely let P, Q : Y + Z → Y + Z
be the linear projections onto Y, Z defined by P (u + v + t) = u + t and
Q(u + v + t) = v + t for u ∈ Y ∩ (Y ∩Z)⊥, v ∈ Z ∩ (Y ∩Z)⊥ and t ∈ Y ∩Z.
We claim that there exists a constant c1 > 0 s.t.

q(t + v) ≤ −c1‖v‖
l + K‖t‖l (t ∈ Y ∩ Z, v ∈ Z ∩ (Y ∩ Z)⊥). (5)

Indeed, supposing the opposite, we could find sequences tk ∈ Y ∩ Z and
vk ∈ Z ∩ (Y ∩ Z)⊥ (k ≥ 1) s.t. q(tk + vk) > − 1

k
‖vk‖

l + K‖tk‖
l for all k ≥ 1.

Note that d(vk, Y ) > 0 for all k ≥ 1, for otherwise some vk = 0, which by
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the strict inequalities K‖tk‖
l < q(tk) ≤ C‖tk‖

l and K > C would lead to
tk = 0, that is impossible since ‖tk + vk‖

2 = ‖tk‖
2 + ‖vk‖

2 6= 0 (note also
that l ≥ 1 ⇒ q(0) = 0). Then for each k we can divide the last estimate
by d(vk, Y ), use that q is homogeneous of degree l, note t′k = tk/d(vk, Y ) and
v′

k = vk/d(vk, Y ) and use the compactness of the unit sphere to obtain some
accumulation points t0 ∈ Y ∩Z and v0 ∈ Z ∩ (Y ∩Z)⊥ of the sequences (t′k)k

and (v′
k)k respectively; to this aim, we note that (v′

k)k is bounded due to
‖v′

k‖ = d(v′
k, Y ) = 1 and so (t′k)k also is bounded by means of the estimates

K‖t′k‖
l ≤ q(t′k + v′

k) + 1 ≤ C‖t′k + v′
k‖

l + 1

and

‖t′k + v′
k‖

l ≤ (‖t′k‖ + ‖v′
k‖)

l ≤ 2l−1(‖t′k‖
l + ‖v′

k‖
l) = 2l−1‖t′k‖ + 2l−1.

Moreover, from the two estimates from above it follows also, due to K >> C,
that ‖t′k‖ (and hence, ‖t0‖) is negligible... (comparat cu diferenta 1 − δ) a.i.
‖t0+v0‖ ≈ ‖v0‖ = 1 and d(v0+t0, Y ) = d(v0, Y ) = 1 which is impossible (due
to the hypothesys, we should have d(t0 + v0, Y ) < 1 because q(t0 + v0) ≥ 0).

Therefore, the existence of a constant c1 > 0 satisfying (5) is proved.
Moreover we may diminish c1 so that c′1(:= c1ǫ

l? sau c1?) < c/2.
Also, since l < m, there exists a constant a1 s.t.

−c‖t‖m + K‖t‖l ≤ −
c

2
‖t‖m + a1 (t ∈ Y ∩ Z). (6)

Indeed, the estimate −c‖t‖m + K‖t‖l ≤ − c
2
‖t‖m holds for large t, with

‖t‖ > R := (2K
c

)
1

m−l , and since the inequality fails only on a (compact)
closed unit ball, the difference of the two terms in (6) can be compensated
on ‖t‖ ≤ R by the addition of a large, suitable constant a1 > 0.

Let T : Y +Z → Y +Z and A, B be the mapping and constants provided
by Lemma 3. Set c′ = c1A

−1‖T‖−l and a′ = a + a1 + c1A
−1B.

Let x ∈ Y + Z be arbitrary. Set w = T−1x. Then ‖x‖ = ‖Tw‖ ≤
‖T‖ ‖w‖. Write w = u + v + t as in Lemma 3. Since u + t ∈ Y , our
hypotheses implies that

p(P (w)) = p(P (u + v + t)) = p(u + t) ≤ −c‖u + t‖m + a.

Also, by (5), we have

q(Q(w)) = q(Q(u + v + t)) = q(v + t) ≤ −c1‖v‖
l + K‖t‖l.

10



The last two estimates from above, together with the equalities

p ◦ T = (p ◦ PY ) ◦ T = p ◦ P, q ◦ T = (q ◦ PZ) ◦ T = q ◦ Q,

and the inequality ‖u + t‖m = (‖u‖2 + ‖t‖2)m/2 ≥ ‖u‖m + ‖t‖m (due to
m ≥ 2), imply that

(p ◦ T + q ◦ T )(w) = p(P (w)) + q(Q(w)) ≤ −c‖u + t‖m + a + K‖t‖l − c1‖v‖
l

≤ −c‖u‖m − c‖t‖m + K‖t‖l − c1‖v‖
l + a,

that together with (6), using also c1 < c/2, the estimate (b), and the equality
u + v + t = w, gives

(p + q)(x) = (p ◦ T + q ◦ T )(w) ≤ −c‖u‖m −
c

2
‖t‖m + a1 − c1‖v‖

l + a ≤

−c1(‖u‖
m + ‖t‖m + ‖v‖l) + a1 + a ≤ −c1A

−1‖u + v + t‖l + c1A
−1B + a1 + a

≤ −c1A
−1‖T‖−l‖x‖l + a′ = −c′‖x‖l + a′.

We note X ′ = (X1, . . . , Xn−1) so that X = (X ′, Xn).

Lemma 5 For any p ∈ R[X] there exists a unique minimal linear subspace
Y ⊂ R

n s.t. p = p ◦ PY .

Proof. Let L = {Y ⊂ R
n : Y linear subspace, p = p ◦ PY }. Then L 6= ∅

since R
n ∈ L. Any totally ordered chain L in L decreasing with respect to

the order induced by inclusion must be finite and become stationary at some
element YL s.t. YL ⊂ Y for all Y ∈ L, since we have the dimension function
with valus in N. By Zorn’s lemma, there exist minimal elements Y in L.
Now any two such minimal elements must coincide, since whenever Y, Z ∈ L
one can easily derive from the equalities p = p ◦ PY and p = p ◦ PZ that
we have p = p ◦ Q for every linear map Q : R

n → R
n from the sequence

P, QP, PQP, QPQP, . . ., whose limit is easily shown to be the orthogonal
projection PY ∩Z onto the intersection Y ∩ Z; whence p = p ◦ PY ∩Z and due
to the minimality me obtain Y, Z ⊂ Y ∩ Z, that is, Y = Z.

Let supp p denote the unique minimal linear subspace provided by Lemma
5. We call supp p the support of the polynomial p.

Lemma 6 Let π̃, q̃, r̃ be polynomials with deg r̃ < deg q̃(< deg π̃?) and q̃
homogeneous of degree k. Write q̃ =

∑k
j=0 PjX

j
n with Pj ∈ R[X ′] homoge-

neogous of degree k − j. Suppose there is an index j ∈ {1, . . . , k − 1} s.t.
Pj 6≡ 0. Suppose also that π̃ ∈ R[X ′]. Then eπ̃+q̃+r̃ 6∈ L1.
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Proof. Vezi foi 1,2. Let J ≥ 1 be the maximal index j ≥ 1 s.t. Pj 6≡ 0.

Thus q̃ =
∑J

j=1 PjX
j
n and PJ 6≡ 0. Then

∫
... + ∞.

Lemma 7 Let π, q, r ∈ R[X] s.t. deg r < deg q(< degπ?) and q is homo-
geneous. Let Y ⊂ R

n be a linear subspace s.t. π = π ◦ PY . Suppose that
sup{d(z, Y ) : z ∈ supp q ‖z‖ = 1, q(z) ≥ 0} = 1. Then eπ+q+r 6∈ L1.

Proof. We denote supp q by Z. Thus Z is the minimal linear subspace of
R

n s.t. q = q ◦ PZ . Set also k = deg q. Thus 1 ≤ k < deg π.
Since {z ∈ Z : q(z) ≥ 0} 6⊂ Y , the set {z ∈ Z : q(z) ≥ 0, z 6∈ Y } is

nonempty and 6= {0}. Then it contains at least one vector v of norm 1,
because q is homogeneous of degree ≥ 1. Since v 6∈ Y , there is a subspace
X ⊂ R

n of codimension 1 s.t. Y ⊂ X and v 6 X. Therefore, v ∈ Z \ X
( 6= ∅) and q(v) ≥ 0. By composing the equality π = π ◦ PY with PX we
derive, using PY ◦ PX = PY and π = π ◦ PY , that π ◦ PX = π. There
exists a change of coordinates T ∈ GL(n) (de fapt e ortogonala)s.t. T (X) =
R

n−1 × {0} ⊂ R
n and Tv = en := (0, . . . , 0, 1). Then P := TPXT−1 is a

projection (nonorthogonal, generally) onto the linear subspace R
n−1 ×{0} of

R
n. Set π̃ = π ◦ T−1. From the equality π ◦ PX = π we obtain π̃ = π̃ ◦ P.

Let also q̃ = q ◦ T−1 and r̃ = r ◦ T−1. Then (π + q + r) ◦ T−1 = π̃ + q̃ + r̃,
deg r̃ < deg q̃ < deg π̃ and q̃ is homogeneous. We write q̃ =

∑k
j=0 PjX

j
n where

Pj ∈ R[X ′] is homogeneogous of degree k − j. Since deg q̃ ≥ 1, q̃ 6≡ 0 and so
there is an index j ∈ {0, . . . , k} s.t. Pj 6≡ 0. Let J be the maximal j with this

property. Thus q̃ =
∑J

j=0 PjX
j
n and Pj ≡ 0 for all j = J + 1, k. We claim

that J ≥ 1. Indeed, supposing J = 0 would imply that q̃ = P0 ∈ R[X ′],
namely that q̃ depends only on the first n − 1 variables X1, . . . , Xn. Then
for every vector x ∈ X and real number λ, writing Tx = (x′

1, . . . , x
′
n−1, 0) for

the appropriate linear functionals x′
i = x′

i(x) with i = 1, n − 1, we obtain

q(x + λv) = q̃(Tx + λTv) = q̃(x′
1, . . . , x

′
n−1, λ) = q̃(x′

1, . . . , x
′
n−1, 0) = q(x).

This means q◦P = q where P is the linear projection defined by P (x+λv) = x
onto the hyperplane X. Note that Pv = 0. By Lemma ??, it follows that
q = q ◦ Pker (I−P ∗)

. Then X̃ := ker (I − P ∗) is another hyperplane and from

q = q ◦ PX̃ and q = q ◦ PZ we derive q = q ◦ PX̃∩Z . Moreover v 6∈ X̃
since v = P ∗v would imply 〈v, v〉 = 〈P ∗v, v〉 = 〈v, Pv〉 = 〈v, 0〉 = 0 that is
impossible since ‖v‖ = 1.

Now since v ∈ Z\X̃ and X̃ has codimension 1, it follows that X̃+Z = R
n.

Hence n = dim(X̃ + Z) = dim X̃ + dim Z − dim X̃ ∩ Z = n − 1 + dim Z −

12



dim X̃ ∩Z and so we have obtained a linear subspace X̃ ∩Z s.t. q = q◦PX̃∩Z

and dim X̃ ∩ Z < dim Z, that is impossible due to the minimality of the
support Z of q.

Therefore J ≥ 1, doua cazuri: J < K: which by Lemma 6 leads to
eπ̃+q̃+r̃ 6∈ L1 (=⇒ eπ+··· 6∈ L1); iar pentru cazul J = K, vezi foaia 4 .

Proposition 8 Let p ∈ R[X1, . . . , Xn] be arbitrary. Set f(t) = ep(t) for
t ∈ R

n. The following statements are equivalent:
(a) The function f = ep is Lebesgue integrable on R

n.
(b) The polynomial −p is positive definite in R[X1, . . . , Xn].

Proof. (a) ⇒ (b) Foaia 3 lateral, inductie etc. Suppose that ep ∈ L1.
Let k ∈ Z+ be the degree of p. Obviously k ≥ 1, since constant positive
functions ec 6∈ L1. Set ph :=

∑
|i|=k ciX

i ( 6≡ 0). We have to show that ph

is negative definite. Due to the compactness of the unit sphere in R
n, it is

sufficient to prove that ph(v) < 0 for every vector v with ‖v‖ = 1, and hence
the conclusion sup‖t‖=1 ph(t) < 0 will follow. Suppose there is some unit
vector v ∈ R

n s.t. p(v) ≥ 0. We can assume v = (0, . . . , 0, 1) by composition
with a rotation, since conditions (a) and (b) are invariant under orthogonal
transforms. Set X ′ = (X1, . . . , Xn−1). Write ph =

∑k
j=0 pjX

j
n where pj ∈

R[X ′] is homegeneous of degree k − j. Since ph 6≡ 0, there exists a minimal
k′ ≥ 0, k′ ≤ k s.t. pk′ 6≡ 0. Thus ph = p0(X

′)X0
n+p1(X

′)X1
n+· · ·+pk′(X ′)Xk′

n .
Since ph(0, 1) ≥ 0, the conclusion follows by induction.

Combining the partial results from above, we can finally obtain the fol-
lowing theorem.

Main result:

Theorem Let g = (gi)∈Z
n
+

,|i|≤2m be a set of powers moments of a measure

µ = fdt + ν ≥ 0, with f ∈ L1(Rn, dt) \ {0} and ν singular with respect to dt.
Namely, ∫

Rn

tidµ(t) = gi (|i| ≤ 2m).
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Then there exist xi ∈ R (|i| ≤ 2m), uniquely determined by g, such that the
polynomial

p(t) = px(t) :=
∑

|j|≤2m

xjt
j

satisfies p(t) ≤ −c‖t‖2 + c′ and∫
Rn

ti exp (
∑

|j|≤2m

xjt
j)dt = gi (|i| ≤ 2m)

(and conversely, any vector (xi)i as above provides a nonsingular representing
density f(t) = epx(t) for g).
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