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Dagmar Medková, Emma Skopin, Werner Varnhorn

November 15, 2012

1 Introduction

The Dirichlet, Neumann, and Robin boundary value problems for second order
partial differential equations are important model problems in mathematical
physics (see [2]). Traditionally, the Dirichlet and Neumann problems for the
Laplace equation in domains with smooth boundary have been studied by the
method of integral equations long time ago. Later, also the Robin problem for
the Laplace equation in smooth and Lipschitz domains has been investigated by
this method (see [13], [14], [11], [12], [9], [8]).

Recently, also the boundary value problems for the scalar Oseen equation

−∆u+ 2λ∂1u = 0 in Ω ⊂ R3, (1)

have been studied by the method of integral equations (see [15]). Here the
authors study the Dirichlet problem, i.e. they prescribe the boundary condition

u = g on ∂Ω,

and the Oseen Neumann problem, prescribing the boundary condition

∂u

∂n
− λn1u = g on ∂Ω.

Here n = nΩ is the outward (with respect to Ω) unit normal vector on ∂Ω .
In the present paper we study the Robin problem for the scalar Oseen equa-

tion in Ω ⊂ R3, i.e. the scalar Oseen problem 1 with prescribed boundary
condition

∂u

∂n
+ hu = g on ∂Ω, (2)

where h denotes a positive function, and the Robin problem corresponding to
the Oseen Neumann condition studied in [15], i.e. we prescribe the boundary
condition

∂u

∂n
− λn1u+ hu = g on ∂Ω (3)

with h ≥ 0. We prove unique solvability of these problems, a representation of
the solution in form of a scalar Oseen single layer potential, and the maximum
principle for the solution of the Robin problem for the scalar Oseen equation.
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2 The maximum principle for the Robin prob-
lem

Let Ω ⊂ R3 be an open set with boundary of class C1. Denote by Ω the
closure of Ω, and by n = nΩ(z) the outward (with respect to Ω) unit normal
vector in z ∈ ∂Ω. Let g, h ∈ C0(∂Ω) and λ ∈ R be given. Then we call u a
classical solution of the Robin problem for the scalar Oseen equation (1), (2), if
u ∈ C2(Ω) ∩ C0(Ω), if there exists ∂u(z)/∂n at each z ∈ ∂Ω, and if (1), (2) are
satisfied.

The following result holds true for general 2 ≤ m ∈ N .

Proposition 2.1 Let G ⊂ Rm be an open set with bounded boundary ∂Ω. Let
g and a ≥ 0 be functions defined on ∂G, and let λ ∈ R. Suppose that θ is a
unit vector defined on ∂G such that {z + tθ;−δ < t < 0} ⊂ Ω, {z + tθ; 0 < t <
δ} ∩ Ω = ∅ for some δ > 0, and suppose that there exists

∂u(z)
∂θ

= lim
t→0−

u(z + tθ)− u(z)
t

.

Moreover, let u ∈ C2(G) ∩ C0(G), −∆u + 2λ∂1u = 0 in G. Suppose that
for z ∈ ∂G with a(z) 6= 0 the vector θ = θ(z) is a unit vector and if a(z) =
0 and ∂u(z)/∂θ makes sense or not, put a(z)(∂u(z)/∂θ) = 0. Suppose that
a(∂u/∂θ) + u = g on ∂G. If G is unbounded suppose moreover that u(x) → 0
as |x| → ∞. Then

inf
x∈∂G

g(x) ≤ inf
x∈G

u(x) ≤ sup
x∈G

u(x) ≤ sup
x∈∂G

g(x).

Proof. The maximum principle ([4], Chapter 3, Theorem 3.1) gives that
there exists z ∈ ∂G such that u ≤ u(z). If a(z) 6= 0 then ∂u(z)/∂θ ≥ 0 because
θ is an outward pointing vector and u ≤ u(z). Thus

sup
x∈G

u(x) = u(z) ≤ a(z)
∂u(z)
∂θ

+ u(z) = g(z) ≤ sup
x∈∂G

g(x).

Now for v = −u we have

inf
x∈∂G

g(x) = − sup
x∈∂G

(−g(x)) ≤ − sup
x∈G

v(x) = inf
x∈G

u(x).

3 Potentials

Let λ ∈ R, |x| :=
√
x2

1 + x2
2 + x2

3, and let

E2λ(x) =
1

4π|x|
e−(|λx|−λx1)
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denote the fundamental solution of the scalar Oseen equation (1). Note that
E0(x) = 1/(4π|x|) is the fundamental solution of the Laplace equation−∆u = 0.
If Ω ⊂ R3 is an open set with bounded boundary of class C1,α, 0 < α, and
ϕ ∈ C0(∂Ω), then the scalar Oseen single layer potential

EΩ
2λϕ(x) =

∫
∂Ω

E2λ(x− y)ϕ(y) dσy

is well defined. Easy calculations yield EΩ
2λϕ ∈ C∞(R3 \ ∂Ω) and −∆EΩ

2λϕ +
2λ∂1u = 0 in R3 \ ∂Ω (see [15]). Moreover, for λ = 0 we find

EΩ
0 ϕ(x) = O(1/|x|), |∇EΩ

0 ϕ(x)| = O(1/|x|2) as |x| → ∞. (4)

If λ 6= 0, then

|EΩ
2λϕ(x)|+ |∇EΩ

2λϕ(x)| = O(e−(|λx|−λx1)/|x|) as |x| → ∞. (5)

Since EΩ
2λ is an integral operator with weakly singular kernel, it is a compact

linear operator on C0(∂Ω) (see for example [17]).

Lemma 3.1 Let Ω ⊂ Rm be an open set with bounded Lipschitz boundary ∂Ω.
Let k(x, y) be defined for [x, y] ∈ Rm × ∂Ω;x 6= y and k(x, y)| ≤ C|x− y|1−m+β

with positive constants C, β. Suppose that k(x, ·) is measurable and k(·, y) is
continuous. Let f ∈ L∞(∂Ω). Then

kf(x) =
∫

∂Ω

k(x, y)f(y) dσy

is a continuous function in Rm.

(See [6], Lemma 3.2.)

Lemma 3.2 Let λ ∈ R. Define R2λ(x) = E2λ(x)− E0(x). Then

R2λ(x) = O(1), |∇R2λ(x)| = O(|x|−1) |x| → 0.

If Ω ⊂ R3 is an open set with bounded boundary of class C1,α, 0 < α < 1,
ϕ ∈ C0(∂Ω), then for

RΩ
2λϕ(x) =

∫
∂Ω

R2λ(x− y)ϕ(y) dσy

we find RΩ
2λϕ ∈ C1(Rm).
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Proof. Put f(t) = (et − 1)/t for t 6= 0, f(0) = 1. Then f is continuous.
So, there is a constant C such that |f(t)| ≤ C for |t| ≤ 1. If 0 < |t| ≤ 1 then
|f ′(t)| = |et/t− (et − 1)/t2| ≤ (C + e)/t. Clearly,

R2λ(x)| = f(−(|λx| − λx1))
−(|λx| − λx1)

|x|
.

Thus |R2λ(x)| = O(1) as |x| → 0. Moreover,

|∇R2λ(x)| ≤ |f ′(−(|λx| − λx1))|
|8λ(|λx| − λx1)|

|x|

+|f(−(|λx| − λx1))|O(1/|x|) = O(1/|x|), |x| → 0.

Using Lemma 3.1 for RΩ
2λ and ∂jR

Ω
2λ we obtain RΩ

2λϕ ∈ C1(Rm).

Proposition 3.3 Let Ω ⊂ R3 be an open set with bounded boundary of class
C1,α, α > 0, λ ∈ R. For x, y ∈ ∂Ω, x 6= y set

LΩ
2λ(x, y) = nΩ(x) · ∇xE2λ(x− y).

For ϕ ∈ C0(∂Ω) define

LΩ
2λϕ(x) =

∫
∂Ω

LΩ
2λ(x, y)ϕ(y) dσy.

Then LΩ
2λ is a compact linear operator on C0(∂Ω).

Proof. It is well known that LΩ
0 is a compact linear operator on C0(∂Ω) (see

for example [17] or [10]). Since LΩ
2λ − LΩ

0 is an integral operator with weakly
singular kernel (see Lemma 3.2), it is a compact linear operator on C0(∂Ω) (see
for example [17]).

Proposition 3.4 Let Ω ⊂ R3 be an open set with bounded boundary of class
C1,α, α > 0, λ ∈ R, ϕ ∈ C0(∂Ω). Then EΩ

2λϕ ∈ C0(R3). Put u = EΩ
2λϕ in Ω.

Then
∂u(x)
∂n

=
1
2
ϕ(x) + LΩ

2λϕ(x).

Proof. The proposition is well known for λ = 0 (see for example [17] or [10].)
By virtue of Lemma 3.2 we obtain the result for arbitrary λ.

Corollary 3.5 Let Ω ⊂ R3 be an open set with bounded boundary of class C1,α,
α > 0, λ ∈ R, ϕ ∈ C0(∂Ω). If EΩ

2λϕ = 0 on ∂Ω, then ϕ = 0.
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Proof. Put u = EΩ
2λϕ in Ω, v = EΩ

2λϕ in G = R3 \ Ω. Proposition 3.4 gives
that EΩ

2λϕ ∈ C0(R3). Moreover, EΩ
2λϕ is a solution of the scalar Oseen equation

in R3 \ ∂Ω and EΩ
2λϕ(x) → 0 as x → ∞. Maximum principle ([4], Chapter

3, Theorem 3.1) gives that EΩ
2λϕ = 0 in R3. Fix x ∈ ∂Ω. Let n be the unit

outward normal of Ω at x. According to Proposition 3.4 we have

0 =
∂u(x)
∂n

+
∂v(x)
∂(−n)

=
1
2
ϕ(x) + LΩ

2λϕ(x) +
1
2
ϕ(x) + LG

2λϕ(x) = ϕ(x).

Definition 3.6 Let Ω ⊂ R3 be an open set with bounded boundary of class C1,α,
α > 0. For x ∈ ∂Ω, β > 0 denote the non-tangential approach region of opening
β at the point x by

Γβ(x) := {y ∈ Ω; |x− y| < (1 + β) dist(y, ∂Ω)}.

If
c = lim

y → x
y ∈ Γβ(x)

u(y)

for each β > β0, we call c the non-tangential limit of u at x ∈ ∂Ω. We fix β > 0
large enough such that x ∈ Γβ(x) for every x ∈ ∂Ω. If now u is a function
defined in Ω, we denote the non-tangential maximal function of u on ∂Ω by

u∗(x) = sup{|u(y)|; y ∈ Γβ(x)}.

Lemma 3.7 Let Ω ⊂ R3 be an open set with bounded boundary of class C1,α,
α > 0, λ ∈ R, ϕ ∈ C0(∂Ω). Then |∇EΩ

2λϕ|∗ ∈ L2(∂Ω). Moreover, the non-
tangential limit of ∇EΩ

2λϕ exists at almost all points of ∂Ω.

Proof. The proposition is well known for λ = 0 (see [5]). Since RΩ
2λϕ ∈

C1(Rm) by Lemma 3.2, we obtain the proposition for arbitrary λ.

Proposition 3.8 . Let Ω ⊂ R3 be an open set with bounded boundary of class
C1,α, α > 0, λ ∈ R, ϕ ∈ C0(∂Ω). Then∫

∂Ω

(EΩ
2λϕ)

(
1
2
ϕ+ LΩ

2λϕ− λn1E
Ω
2λϕ

)
dσy =

∫
Ω

|∇EΩ
2λϕ|2 dy.

Proof. If λ = 0 see [7]. Let now λ 6= 0. Suppose first that Ω is bounded.
According to [16], Theorem 1.12 there exists a sequence of open sets G(j) with
boundary of class C∞ with the following properties:

1. G(j) ⊂ Ω.

2. There exist homeomorphisms Λj : ∂Ω → ∂G(j) and β > 0, such that
Λj(y) ∈ Γβ(y) for every j and every y ∈ ∂Ω,

sup{|y − Λj(y)|; y ∈ ∂Ω} → 0, as j →∞.
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3. There are positive functions fj on ∂Ω bounded away from zero and infinity
uniformly in j such that for any measurable set M ⊂ ∂Ω,∫

M

fj dσy =
∫

Λj(M)

dσy,

and so that fj → 1 point-wise a.e..

4. The normal vectors nj(Λj(y)) to G(j) converge point-wise almost every-
where to nΩ(y).

By virtue of Proposition 3.4, Lemma 3.7, the Green lemma and the Lebesque
lemma∫
∂Ω

(EΩ
2λϕ)

(
1
2
ϕ+LΩ

2λϕ−λn1E
Ω
2λϕ

)
dσy = lim

j→∞

∫
∂G(j)

{(EΩ
2λ)

∂EΩ
2λ

∂n
−λn1(EΩ

2λ)2} dσy

= lim
j→∞

∫
G(j)

{(EΩ
2λ)(∆EΩ

2λ) + |∇EΩ
2λ|2 − 2λ(EΩ

2λ)∂1E
Ω
2λ)} dy

= lim
j→∞

∫
G(j)

{|∇EΩ
2λ|2 + (EΩ

2λ)(∆EΩ
2λ − 2λ∂1E

Ω
2λ)} dy =

∫
Ω

|∇EΩ
2λϕ|2 dy.

Let now Ω be unbounded. Put G(R) = {x ∈ Ω; |x| < R}. Put ϕ = 0 outside
of ∂Ω. Then ∫

Ω

|∇EΩ
2λϕ|2 dy = lim

R→∞

∫
G(R)

|∇EΩ
2λϕ|2 dy

= lim
R→∞

∫
∂G(R)

(EG(R)
2λ ϕ)

(
1
2
ϕ+ L

G(R)
2λ ϕ− λn1E

G(R)
2λ ϕ

)
dσy

=
∫

∂Ω

(EΩ
2λϕ)

(
1
2
ϕ+ LΩ

2λϕ− λn1E
Ω
2λϕ

)
dσy

+ lim
R→∞

∫
{|x|=R}

{
(EΩ

2λϕ)
∂EΩ

2λϕ

∂n
− λn1(EΩ

2λϕ)2
}

dσy.

According to (5), (4) and the Lebesque lemma∣∣∣∣ ∫
{|x|=R}

{
(EΩ

2λϕ)
∂EΩ

2λϕ

∂n
− λn1(EΩ

2λϕ)2
}

dσy

∣∣∣∣ ≤ ∫
{|x|=R}

Ce−2(|λx|−λx1)|x|−2 dσy

=
∫

{|x|=1}

Ce−2R(|λx|−λx1) dσy → 0

as R→∞. This gives the proposition.
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4 The boundary condition (2) with h > 0

We shall look for a solution of the problem (1), (2) in the form of a single layer
potential EΩ

2λϕ with ϕ ∈ C0(∂Ω). According to Proposition 3.4 the function
EΩ

2λϕ is a classical solution of the problem (1), (2) if and only if

1
2
ϕ+ LΩ

2λϕ+ hEΩ
2λϕ = g. (6)

Theorem 4.1 Let Ω ⊂ R3 be an open set with bounded boundary of class C1,α,
α > 0, λ ∈ R. If h ∈ C0(∂Ω), h > 0, then T = (1/2)I + LΩ

2λ + hEΩ
2λ is a

continuously invertible operator in C0(∂Ω). Fix g ∈ C0(∂Ω).

• If Ω is bounded then there exists unique classical solution u of the problem
(1), (2).

• If Ω is unbounded then there exists unique classical solution u of the prob-
lem (1), (2) such that u(x) → 0 as |x| → ∞.

Moreover, u = EΩ
2λT

−1g and

inf
x∈∂Ω

g(x)
h(x)

≤ inf
x∈Ω

u(x) ≤ sup
x∈Ω

u(x) ≤ sup
x∈∂Ω

g(x)
h(x)

. (7)

Proof. If u is a solution of the problem then u is a solution of the scalar
Oseen equation (1) with the boundary condition h−1(∂u/∂n) +u = g/h on ∂Ω.
Proposition 2.1 gives uniqueness and the estimate (7).

Let now ϕ ∈ C0(∂Ω) be such that Tϕ = 0. Then u = EΩ
2λϕ is a classical

solution of the problem (1), (2) with g = 0. We have proved that EΩ
2λϕ = u = 0

on Ω. Corollary 3.5 gives that ϕ = 0.
LΩ

2λ is a compact linear operator on C0(∂Ω) by Proposition 3.3. Since EΩ
2λ

is an integral operator with weakly singular kernel, it is a compact operator
on C0(∂Ω) (see for example [17]). Thus the operator T − (1/2)I is compact.
Since T is one to one, the Riesz-Schauder theory gives that T is a continuously
invertible operator in C0(∂Ω). Clearly, u = EΩ

2λT
−1g is a classical solutin of

the Robin problem (1), (2).

Corollary 4.2 Let Ω ⊂ R3 be an open set with bounded boundary of class C1,α,
α > 0, λ ∈ R. Let u ∈ C2(Ω) ∩ C0(Ω), there exists ∂u(z)/∂n at each z ∈ ∂Ω,
∂u/∂n ∈ C0(∂Ω) and (1) hold true. If Ω is unbounded suppose moreover that
u(x) → 0 as |x| → ∞. Then there exists ϕ ∈ C0(∂Ω) such that u = EΩ

2λϕ.
Moreover, ∫

∂Ω

u

(
∂u

∂n
− λn1u

)
dσy =

∫
Ω

|∇u|2 dy <∞. (8)

Proof. Put h = 1, g = ∂u/∂n + u. Then u is a classical solution of the
Robin problem (1), (2). Theorem 4.1 gives that there exists ϕ ∈ C0(∂Ω) such
that u = EΩ

2λϕ. Proposition 3.4 and Proposition 3.8 give (8).

7



5 The boundary condition (3) with h ≥ 0

We shall look for a solution of the problem (1), (3) in the form of a single layer
potential EΩ

2λϕ with ϕ ∈ C0(∂Ω). According to Proposition 3.4 the function
EΩ

2λϕ is a classical solution of the problem (1), (3) if and only if

1
2
ϕ+ LΩ

2λϕ− λn1E
Ω
2λϕ+ hEΩ

2λϕ = g. (9)

Theorem 5.1 Let Ω ⊂ R3 be an open set with bounded boundary of class C1,α,
α > 0, λ ∈ R \ {0}. If h ∈ C0(∂Ω), h ≥ 0, then T = (1/2)I +LΩ

2λ − λn1E
Ω
2λϕ+

hEΩ
2λ is continuously invertible operator in C0(∂Ω). Fix g ∈ C0(∂Ω).

• If Ω is bounded then there exists unique classical solution u of the problem
(1), (3).

• If Ω is unbounded then there exists unique classical solution u of the prob-
lem (1), (3) such that u(x) → 0 as |x| → ∞.

Moreover, u = EΩ
2λT

−1g and

sup
x∈Ω

|u(x)| ≤ C sup
x∈∂Ω

|g(x)|,

where a constant C depends only on Ω and λ.

Proof. Suppose first that u is a classical solution of the problem (1), (3)
with g = 0. According to Corollary 4.2

0 =
∫

∂Ω

u

(
∂u

∂n
− λn1u+ hu

)
dσy =

∫
Ω

|∇u|2 dy +
∫

∂Ω

hu2 dσy.

Thus ∇u = 0 in Ω and hu = 0 on ∂Ω. Since ∇u = 0 in Ω, the function u is
constant on each component of Ω and 0 = ∂u/∂n−λn1u+hu = −λn1u on ∂Ω.
Since u is constant on each component of ∂Ω, we infer that u = 0 on ∂Ω. Since
u is constant on each component of Ω, we deduce that u ≡ 0.

If ϕ ∈ C0(∂Ω), Tϕ = 0, then EΩ
2λϕ is a classical solution of the problem (1),

(3) with g = 0. We have proved that EΩ
2λϕ = 0 on ∂Ω. Corollary 3.5 gives that

ϕ = 0.
LΩ

2λ is a compact linear operator on C0(∂Ω) by 3.3. Since EΩ
2λ is an integral

operator with weakly singular kernel, it is a compact operator on C0(∂Ω) (see
for example [17]). Thus the operator T − (1/2)I is compact. Since T is one to
one, the Riesz-Schauder theory gives that T is a continuously invertible operator
in C0(∂Ω). If g ∈ C0(∂Ω) then u = EΩ

2λT
−1g is a classical solutin of the Robin

problem (1), (3).
The operator EΩ

2λT
−1 is a linear operator from C0(∂Ω) to C0(Ω). Suppose

that ϕn → ϕ in C0(∂Ω), EΩ
2λT

−1ϕn → ψ in C0(Ω). If x ∈ Ω, easy calculation

8



gives that EΩ
2λT

−1ϕn(x) → EΩ
2λT

−1ϕ(x). Hence EΩ
2λT

−1ϕ = ψ and the operator
EΩ

2λT
−1 is closed. The closed graph theorem ([3], Theorem II.1.9) gives that

the operator EΩ
2λT

−1 is bounded. So, there exists a constant C such that

sup
x∈Ω

|EΩ
2λT

−1g(x)| ≤ C sup
x∈∂Ω

|g(x)|

for each g ∈ C0(∂Ω).
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