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1 Introduction

The Dirichlet, Neumann, and Robin boundary value problems for second order
partial differential equations are important model problems in mathematical
physics (see [2]). Traditionally, the Dirichlet and Neumann problems for the
Laplace equation in domains with smooth boundary have been studied by the
method of integral equations long time ago. Later, also the Robin problem for
the Laplace equation in smooth and Lipschitz domains has been investigated by
this method (see [13], [14], [11], [12], [9], [8])-
Recently, also the boundary value problems for the scalar Oseen equation

—Au+2X\0u=0 in QC R (1)

have been studied by the method of integral equations (see [15]). Here the
authors study the Dirichlet problem, i.e. they prescribe the boundary condition

u=g on 0,

and the Oseen Neumann problem, prescribing the boundary condition

% —Anju =g on 0.
on
Here n = n is the outward (with respect to {2) unit normal vector on 95 .
In the present paper we study the Robin problem for the scalar Oseen equa-
tion in Q@ C R3, i.e. the scalar Oseen problem 1 with prescribed boundary
condition

ou
%—l—hU—g on 09, (2)

where h denotes a positive function, and the Robin problem corresponding to
the Oseen Neumann condition studied in [15], i.e. we prescribe the boundary
condition

Ju

on
with A > 0. We prove unique solvability of these problems, a representation of
the solution in form of a scalar Oseen single layer potential, and the maximum
principle for the solution of the Robin problem for the scalar Oseen equation.

Anju+hu =g on 99 (3)



2 The maximum principle for the Robin prob-
lem

Let © C R® be an open set with boundary of class C'. Denote by Q the
closure of Q, and by n = n}(2) the outward (with respect to 2) unit normal
vector in z € Q. Let g,h € C°(00Q) and A € R be given. Then we call u a
classical solution of the Robin problem for the scalar Oseen equation (1), (2), if
u € C?(Q) N CO(Q), if there exists u(z)/On at each z € IQ, and if (1), (2) are
satisfied.

The following result holds true for general 2 < m € N.

Proposition 2.1 Let G C R™ be an open set with bounded boundary 0S). Let
g and a > 0 be functions defined on 0G, and let A € R. Suppose that 0 is a
unit vector defined on OG such that {z +t0;—§ <t <0} C Q, {z+1t0;0 <t <
5} NQ =0 for some § >0, and suppose that there erists

80 ol t

ou(z) . u(z +10) — u(z)

Moreover, let u € C?(G) N C°(GQ), —Au + 2X\01u = 0 in G. Suppose that
for z € 0G with a(z) # 0 the vector 0 = 0(z) is a unit vector and if a(z) =
0 and Ou(z)/00 makes sense or not, put a(z)(0u(z)/06) = 0. Suppose that
a(0u/d8) + u =g on OG. If G is unbounded suppose moreover that u(z) — 0
as |x| — oo. Then

inf < inf < < .
inf 0(x) < inf u(a) < supu(x) < sup o)
Proof. The maximum principle ([4], Chapter 3, Theorem 3.1) gives that

there exists z € OG such that u < u(z). If a(z) # 0 then du(z)/90 > 0 because
6 is an outward pointing vector and u < u(z). Thus

ou(z
sup u(z) = u(z) < a(z) 8(9 ) +u(z) = g(2) < sup g(z).
zeG z€0G
Now for v = —u we have
inf = — — < — = inf .
Jnf g(z) sup, (=g(2)) < sup v(z) = inf u(z)

3 Potentials
Let A € R, |z| := /2% + 23 + 23, and let

1 —(|Az|=Az
Eax(z) = Tl € (IAz]=Az1)




denote the fundamental solution of the scalar Oseen equation (1). Note that
Ey(x) = 1/(4m|x]) is the fundamental solution of the Laplace equation —Awu = 0.
If @ C R? is an open set with bounded boundary of class C*®, 0 < «, and
@ € C°(09), then the scalar Oseen single layer potential

EQ/\go /Eg,\ z —y)e(y) doy

is well defined. Easy calculations yield ES} ¢ € C®(R?\ 99) and —AES} ¢ +
2001u = 0 in R3\ 09 (see [15]). Moreover for A =0 we find

Ege(x) =0(1/|z]), |VEFe(x)|=0(/|z*)  as|z]|—oo.  (4)
If A # 0, then
|ES\p(@)| + [VES@(x)| = O(e” X720 Jiz)) - as o] — 00, (5)

Since E%\ is an integral operator with weakly singular kernel, it is a compact
linear operator on C%(9) (see for example [17]).

Lemma 3.1 Let Q C R™ be an open set with bounded Lipschitz boundary 0S2.
Let k(x,y) be defined for [x,y] € R™ x 0Q; 2 # y and k(z,y)| < Clz —y|' ™+

with positive constants C, 3. Suppose that k(zx,-) is measurable and k(-,y) is
continuous. Let f € L>°(0). Then

kf(x) = /k(z,y)f(y) do,

o0

s a continuous function in R™.
(See [6], Lemma 3.2.)
Lemma 3.2 Let A € R. Define Roy(x) = Fax(x) — Eo(xz). Then
Rox(x) = 0(1),  |[VRaa(2)] = O(|z|7")  |a| — 0.

If Q C R? is an open set with bounded boundary of class C1*, 0 < a < 1,
© € C%>0N0), then for

2>\‘P /RZA T — (y) doy

we find R\ p € C*(R™).



Proof. Put f(t) = (et — 1)/t for t # 0, f(0) = 1. Then f is continuous.
So, there is a constant C' such that |f(t)| < C for |[t] < 1. If 0 < |¢| < 1 then
F/(6)] = e/t — (e — 1)/2] < (C + e)/t. Clearly,

Rox(@)| = f(~(\al - Axl))w.
Thus |Rzx(z)| = O(1) as |z| — 0. Moreover,
[V Rox ()] < £ (—(|\a| = Az))| W

HA(=(A2] = Ae)|O(/[2]) = O /[z]), =] = 0.
Using Lemma 3.1 for RY, and 9;RY, we obtain RS, € C1(R™).

Proposition 3.3 Let Q C R? be an open set with bounded boundary of class
Ch, a>0, N\€ R. Forx,y € 0N, x#y set

L%\(:ﬂ,y) = nQ(x) - VaEox(xz —y).
For ¢ € C°(09) define
L) = [ L@ )ely) doy,
o0

Then LYy is a compact linear operator on C°(9).

Proof. It is well known that L{} is a compact linear operator on C°(92) (see
for example [17] or [10]). Since LSy — L§} is an integral operator with weakly
singular kernel (see Lemma 3.2), it is a compact linear operator on C°(9Q) (see
for example [17]).

Proposition 3.4 Let Q C R> be an open set with bounded boundary of class
Ch* a>0,\€R, p€C'N). Then Ep € C°(R?). Put u= EXp in Q.

Then
ou(x)
on

= 2o(e) + Ll

Proof. The proposition is well known for A = 0 (see for example [17] or [10].)
By virtue of Lemma 3.2 we obtain the result for arbitrary .

Corollary 3.5 Let Q C R? be an open set with bounded boundary of class C*¢,
a>0,\€R, peCN). If ESLo =0 on 0%, then p = 0.



Proof. Put u = E A in Q, v=ER ¢ in G = R*\ Q. Proposition 3.4 gives
that ES}p € C°(R?). Moreover, E$} ¢ is a solution of the scalar Oseen equation
in R\ 0Q and EAp(z) — 0 as ¥ — oo. Maximum principle ([4], Chapter
3, Theorem 3.1) gives that EA» = 0 in R3. Fix z € 9. Let n be the unit
outward normal of 2 at x. According to Proposition 3.4 we have

_ Ju(z)  Ov(z)

0= 5+ G = 30(0) + Lole) + 30(o) + Lhole) = olo).

Definition 3.6 Let Q) C R? be an open set with bounded boundary of class CH<,
a > 0. Forx € 09, 8 > 0 denote the non-tangential approach region of opening
0B at the point x by

Lp(z) =={y € & |z —y| < (1+ ) dist(y, 00)}.
If

c=lim  u(y)
Yy —x
y € Tp(z)

Jor each 3 > By, we call ¢ the non-tangential limit of u at x € 9. We fix § > 0
large enough such that x € T'g(x) for every x € 9Q. If now u is a function
defined in Q, we denote the non-tangential mazximal function of u on 02 by

u*(x) = sup{fu(y);y € Tp(2)}-

Lemma 3.7 Let Q C R be an open set with bounded boundary of class C1H?,
a >0, A\ €R, e CIN. Then |VESLp|* € L2(0Q). Moreover, the non-
tangential limit of VES\ ¢ exists at almost all points of O9).

Proof. The proposition is well known for A = 0 (see [5]). Since RSy ¢ €
C1(R™) by Lemma 3.2, we obtain the proposition for arbitrary \.

Proposition 3.8 . Let Q C R? be an open set with bounded boundary of class
Ch* a>0, € R, pC’%0N). Then

1
/(E%w)(Qw + Ly — AmEr?w) doy, = / IVER@|? dy.
o0 Q

Proof. If A = 0 see [7]. Let now X\ # 0. Suppose first that Q is bounded.
According to [16], Theorem 1.12 there exists a sequence of open sets G(j) with
boundary of class C'*° with the following properties:

1. G(j) C Q.

2. There exist homeomorphisms A; : Q2 — 0G(j) and 8 > 0, such that
A;(y) € T's(y) for every j and every y € 09,

sup{ly — Aj(y);y € 09} — 0,  asj — oo.



3. There are positive functions f; on 9Q bounded away from zero and infinity
uniformly in j such that for any measurable set M C 052,

/ fj doy :/ doy,
M A (M)

and so that f; — 1 point-wise a.e..

4. The normal vectors n’ (A;(y)) to G(j) converge point-wise almost every-
where to n(y).

By virtue of Proposition 3.4, Lemma 3.7, the Green lemma and the Lebesque
lemma,

1 . OFSX
/(E%\SD) <290+L§2>\90)‘n1E§>\50) doy, = jlggo / {(E3}) 62/\
0 0G(j)

—Ani(E33)°} doy,
n

= lim {(E)(AES)) + [VE | — 2X\(E5})0E))} dy

j—o0
G()
— i [ {IVESP + (BRIAES — 200 ES)) dy = [ IVESf* dy.
j—o0
G(3) Q
Let now  be unbounded. Put G(R) = {z € Q;|z| < R}. Put ¢ = 0 outside
of 0€2. Then
[ VB P dy= Jim [ [VESGP ay
Q G(R)
: G(R 1 G(R G(R
= lim (E2,\( )<P)<90+L2,\( Yo — >\”1E2,\( )50) day

R—o0 2
OG(R)

1
= /(E%\SD)(QSDJFL%\SD - A”lE%SD) doy
a0

OESL o
BE (B0} doy,

R—oo

{lz|=R}
According to (5), (4) and the Lebesque lemma

OES

2
[ @0 % et an| < [ oot g,

{lz|=R} {|z|=R}

+ lim / (Egz)\ ©)

_ Ce—ZR(P\ﬂ—)\m]) de =0

{lz|=1}
as R — oo. This gives the proposition.



4 The boundary condition (2) with » >0

We shall look for a solution of the problem (1), (2) in the form of a single layer
potential E$}¢ with ¢ € C%(0Q). According to Proposition 3.4 the function
ES} ¢ is a classical solution of the problem (1), (2) if and only if

1
590+L%<P+hE§A<P =g (6)

Theorem 4.1 Let Q C R3 be an open set with bounded boundary of class CH2,
a>0, A€ R IfheC'N), h>0,then T = (1/2)] + L, + hES is a
continuously invertible operator in C°(0Q). Fiz g € C°(99).

o IfQ is bounded then there exists unique classical solution u of the problem
(1), (2).

e If Q is unbounded then there exists unique classical solution u of the prob-
lem (1), (2) such that u(z) — 0 as |z| — .

Moreover, u = EAT1g and

_eogl@) g(x)
A b S dpfu(@) < supule) < sup 3. (M)

Proof. If u is a solution of the problem then u is a solution of the scalar
Oseen equation (1) with the boundary condition h=1(du/0n) +u = g/h on 9.
Proposition 2.1 gives uniqueness and the estimate (7).

Let now ¢ € C°(99) be such that Tp = 0. Then u = E$} ¢ is a classical
solution of the problem (1), (2) with g = 0. We have proved that ES} ¢ = u = 0
on Q. Corollary 3.5 gives that ¢ = 0.

L% is a compact linear operator on C°(92) by Proposition 3.3. Since E%\
is an integral operator with weakly singular kernel, it is a compact operator
on CY(99Q) (see for example [17]). Thus the operator T — (1/2) is compact.
Since T is one to one, the Riesz-Schauder theory gives that T is a continuously
invertible operator in C°(9Q). Clearly, u = E?/\T’1 g is a classical solutin of
the Robin problem (1), (2).

Corollary 4.2 Let Q C R? be an open set with bounded boundary of class C*<,
a>0,\€R. Letue C?*(Q)NCYQ), there exists du(z)/On at each z € 9,
Ou/on € CYOQ) and (1) hold true. If Q is unbounded suppose moreover that
u(z) — 0 as |z| — oo. Then there exists ¢ € C°(0) such that u = EX .

Moreover,
/ 9w d —/|V|2d< (8)
ul 5, nu | doy, = ul® dy < 0.
Q

[219]

Proof. Put h = 1, g = 0u/On + u. Then u is a classical solution of the
Robin problem (1), (2). Theorem 4.1 gives that there exists ¢ € C°(9Q) such
that u = ES} ¢. Proposition 3.4 and Proposition 3.8 give (8).



5 The boundary condition (3) with 2~ >0

We shall look for a solution of the problem (1), (3) in the form of a single layer
potential E$}¢ with ¢ € C%(0Q). According to Proposition 3.4 the function
ES} ¢ is a classical solution of the problem (1), (3) if and only if

1

5% T Ly — Am By + hEs o = g. (9)
Theorem 5.1 Let Q C R3 be an open set with bounded boundary of class CH<,
a>0, e R\{0}. If he C°(0Q), h >0, then T = (1/2)I + L}, — An1 ES, o +
hES} is continuously invertible operator in C°(99). Fiz g € C°(99).

o IfQ is bounded then there exists unique classical solution u of the problem
(1), (3).

o If Q is unbounded then there exists unique classical solution u of the prob-
lem (1), (3) such that u(z) — 0 as |z| — oco.

Moreover, u = E%\Tflg and

sup |u(z)| < C sup |g(x)],
TEQ €N

where a constant C' depends only on  and .

Proof. Suppose first that « is a classical solution of the problem (1), (3)
with g = 0. According to Corollary 4.2

0= /u(gu —/\nlu—l—hu) do, :/|Vu|2 dy—l—/hu2 doy.
n
19) Q

o0

Thus Vu = 0 in Q and hu = 0 on 0. Since Vu = 0 in 2, the function u is
constant on each component of Q and 0 = du/On — Anju+ hu = —Anqu on 0.
Since u is constant on each component of 92, we infer that « = 0 on 02. Since
u is constant on each component of 2, we deduce that u = 0.

If ¢ € C°(09Q), T = 0, then E} ¢ is a classical solution of the problem (1),
(3) with g = 0. We have proved that E,» = 0 on 9. Corollary 3.5 gives that
@ =0.

L% is a compact linear operator on C°(9Q2) by 3.3. Since Eg/\ is an integral
operator with weakly singular kernel, it is a compact operator on C°(99) (see
for example [17]). Thus the operator T'— (1/2)I is compact. Since T is one to
one, the Riesz-Schauder theory gives that T is a continuously invertible operator
in C°(09Q). If g € C°(0N) then u = ES4T~'g is a classical solutin of the Robin
problem (1), (3).

The operator ESAT~! is a linear operator from C°(92) to C°(Q). Suppose
that ¢, — ¢ in C°(0Q), EAT Yo, — 1 in C°(Q). If z € , easy calculation



gives that ES\ T 1, (z) — EAT Lo(x). Hence ES, T~y = 1 and the operator
ESLT1 is closed. The closed graph theorem ([3], Theorem I1.1.9) gives that
the operator E%T ~! is bounded. So, there exists a constant C' such that

sup |[ES\T'g(x)| < C sup |g(z)]
€N x€EON

for each g € C°(99).
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