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Dagmar Medková

Abstract: We define Oseen single layer and double layer potentials and
study their properties. Using the integral equation method we prove the ex-
istence and uniqueness of an Lq-solution of the Robin problem for the Oseen
system.
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1 Introduction

The Oseen system is one of the basic system of equations in hydrodynamics.
The most studied problem for the Oseen system is the Dirichlet problem (see
[6], [1], [2], [3], [4]). We shall study another problem - the Robin problem for
the Oseen system. (For the formulation of the problem see for example [14].)
Let Ω ⊂ Rm be a domain with compact Lipschitz boundary, m = 2 or m = 3.
Denote by nΩ(x) (or shortly n) the outward unit normal of Ω at x ∈ ∂Ω. If
u = (u1, . . . , um) is a velocity, and p is a pressure, we define by

T (u, p) = 2∇̂u− pI (1)

the corresponding stress tensor, where I denotes the identity matrix and

∇̂u =
1
2
[∇u + (∇u)T ]

is the deformation tensor, with (∇u)T as the matrix transposed to ∇u. Let
λ ∈ R1 \ {0} be given, h ∈ L∞(∂Ω), h ≥ 0. We shall study the Robin problem
for the Oseen system

−∆u + 2λ∂1u +∇p = 0 in Ω, ∇ · u = 0 in Ω, (2)

T (u, p)n− λn1u + hu = g on ∂Ω. (3)

(If h ≡ 0 we say about the Neumann problem for the Oseen system.) We
shall study a so called Lq-solution of the problem (2), (3) for g ∈ Lq(∂Ω, Rm),
i.e. the non-tangential maximal functions of u, ∇u and p are in Lq(∂Ω) and
the condition (3) is fulfilled in the sense of the non-tangential limit. We use
the integral equation method. We define Oseen single layer and double layer
potentials and prove that they have similar properties like corresponding Stokes
potentials. It is a tradition to look for a solution of the Neumann and Robin
problems in the form of a single layer potential. It fails for domains with holes
(similarly like for the Stokes system). So, we shall look for a solution in the
form of a modified single layer potential.

The integral equation method was used for the Neumann problem for the
Stokes system - i.e. for λ = 0 and h ≡ 0 (see [22]). If Ω is bounded and q is
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close to 2 then the Neumann problem for the Stokes system is solvable if and
only if ∫

∂Ω

g ·w dH2 = 0

for all rigid body motions w (see [22]). For the Oseen system (i.e. λ ∈ R1 \{0})
we prove a totally different result:

Let Ω be bounded and 1 < q < ∞, h ∈ L∞(∂Ω), h ≥ 0. If q 6= 0 suppose
moreover that Ω has a boundary of class C1. If g ∈ Lq(∂Ω, Rm) then the Robin
problem (2), (3) has a unique Lq-solution.

For the exterior Robin problem for the Stokes system we prove the following
result:

Let Ω be an unbounded domain with compact Lipschitz boundary and 1 <
q < ∞, h ∈ L∞(∂Ω), h ≥ 0. If q 6= 0 suppose moreover that Ω has a boundary
of class C1. Let g ∈ Lq(∂Ω, Rm). If u, p is an Lq-solution of the Robin problem
(2), (3) then there exists a constant p∞ and a vector u∞ such that p(x) → p∞,
u(x) → u∞ as |x| → ∞. On the other hand if p∞ ∈ R1, u∞ ∈ Rm are given
then there exists a unique Lq-solution u, p of the Robin problem (2), (3) such
that p(x) → p∞, u(x) → u∞ as |x| → ∞.

2 Definition of the problem

Let Ω ⊂ Rm be a domain with compact Lipschitz boundary, m = 2 or m = 3.
Fix a > 0. If x ∈ ∂Ω denote the nontangential approach regions of opening a
at the point x by

Γ(x) = Γa(x) = {y ∈ Ω; |x− y| < (1 + a) dist(y, ∂Ω)}.

If now v is a vector function defined in Ω we denote the nontangential maximal
function of v on ∂Ω by

v∗(x) = sup{|v(y)|;y ∈ Γ(x)}.

It is well known that if v∗ ∈ Lq(∂Ω) for one choice of a, where 1 ≤ q < ∞, then
it holds for arbitrary choice of a. (See, e.g. [11] and [26], p. 62.) Next, define
the nontangential limit of v at x ∈ ∂Ω

v(x) = lim
y → x

y ∈ Γ(x)

v(y)

whenever the limit exists.
Fix λ ∈ R1, 1 < q < ∞, g ∈ Lq(∂Ω, Rm), h ∈ L∞(∂Ω). We say that

u ∈ C∞(Ω, Rm), p ∈ C∞(Ω) is an Lq-solution of the Robin problem for the
Oseen system (2), (3) if (2) holds true, |u|∗, |∇u|∗, p∗ ∈ Lq(∂Ω), there exist the
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nontangential limits of u, ∇u and p at almost all points of ∂Ω and (3) holds in
the sense of the nontangential limits at almost all points of ∂Ω.

Let u, p be defined on Ω. Denote ω = {λx;x ∈ Ω}, ũ(x) = (2λ)2u(x/(2λ)),
p̃(x) = 2λp(x/(2λ)). Easy calculation yields that u, p is an Lq-solution of the
Robin problem for the Oseen system (2), (3) if and only if ũ, p̃ is an Lq-solution
of the Robin problem for the Oseen system

−∆ũ + ∂1ũ +∇p̃ = 0, ∇ · ũ = 0 in ω, (4)

T (ũ, p̃)n− 1
2
n1ũ + h̃ũ = g̃ on ∂ω, (5)

where
h̃(x) = 2λh(x/(2λ)), g̃(x) = 2λg(x/(2λ)). (6)

So, we can restrict ourselves to the case 2λ = 1.

3 Stokes potentials

Let x = [x1, . . . , xm] ∈ Rm, where m = 2, 3. Denote the ball B(x; r) = {y ∈
Rm; |x − y| < r}. For 0 6= x ∈ Rm and j, k ∈ {1, . . . ,m} we define the Stokes
fundamental tensor by

Ejk(x) =
1
8π

{
δjk

1
|x|

+
xjxk

|x|3
}

, m = 3, (7)

Ejk(x) =
1
4π

[
δjk ln

1
|x|

+
xjxk

|x|2
]
, m = 2, (8)

Qk(x) =
xk

Hm−1(∂B(0; 1))|x|m
. (9)

Here δjk = 1 for j = k, δjk = 0 otherwise and Hk denotes the k-dimensional
Hausdorff measure normalized so that Hk is the Lebesgue measure in Rk.

Let Ω ⊂ Rm be an open set with compact Lipschitz boundary and Ψ ∈
Lq(∂Ω, Rm), 1 < q < ∞. Define the Stokes single layer potential with density
Ψ by

(EΩΨ)(x) =
∫

∂Ω

E(x− y)Ψ(y) dHm−1(y)

and the corresponding pressure by

(QΩΨ)(x) =
∫

∂Ω

Q(x− y)Ψ(y) dHm−1(y)

whenever it makes sense. Then the couple (EΩΨ, QΩΨ) ∈ C∞(Rm \∂Ω, Rm+1)
solves the Stokes system

∆u = ∇p, ∇ · u = 0 (10)
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in Rm \ ∂Ω. Moreover, EΩΨ(x) is the nontangential limit of EΩΨ with respect
to Ω and Rm \ Ω at almost all x ∈ Ω. We have (QΩΨ)∗ ∈ Lq(∂Ω), |∇EΩΨ|∗ ∈
Lq(∂Ω). If Ω is bounded or m = 2 or

∫
Ψ dHm−1 = 0 then |EΩΨ|∗ ∈ Lq(∂Ω).

(See [22].) (If Ω ⊂ R2 is unbounded and
∫

Ψ dH1 6= 0 then |EΩΨ|∗ ≡ ∞ on
∂Ω.)

For y ∈ ∂Ω we define KΩ(·,y) = T (E(· − y), Q(· − y))nΩ(y) on Rm \ {y}.
We have

KΩ
j,k(x,y) =

m

Hm−1(∂B(0; 1))
(yj − xj)(yk − xk)(y − x) · nΩ(y)

|x− y|m+2
.

Denote

ΠΩ
k (x,y) =

2
Hm−1(∂B(0; 1))

{
−m

(yk − xk)(y − x) · nΩ(y)
|y − x|m+2

+
nΩ

k (y)
|y − x|m

}
.

For Ψ ∈ Lq(∂Ω, Rm) we define the Stokes double layer potential with density
Ψ by

(DΩΨ)(x) =
∫

∂Ω

KΩ(x,y)Ψ(y) dHm−1(y), x ∈ Rm \ ∂Ω

and the corresponding pressure by

(ΠΩΨ)(x) =
∫

∂Ω

ΠΩ(x− y)Ψ(y) dHm−1(y), x ∈ Rm \ ∂Ω.

Then the pair (DΩΨ,ΠΩΨ) ∈ C∞(Rm \ ∂Ω)m+1 solves the Stokes system (10)
in Rm \ ∂Ω. For x ∈ ∂Ω we denote

(KΩΨ)(x) = lim
δ↓0

∫
∂Ω\B(x,δ)

KΩ(x,y)Ψ(y) dHm−1(y),

(K ′
ΩΨ)(x) = lim

δ↓0

∫
∂Ω\B(x,δ)

KΩ(y,x)Ψ(y) dHm−1(y).

Then KΩ, K ′
Ω are bounded linear operators on Lq(∂Ω, Rm). Moreover, there

exist the non-tangential limits of ∇EΩΨ, QΩΨ and DΩΨ at almost all points
of ∂Ω. If we denote by [f ]+ the non-tangential limit of f with respect to Ω and
by [f ]− the non-tangential limit of f with respect to Rm \ Ω, then

[DΩΨ]±(x) = ±1
2
Ψ(z) + KΩΨ(z), (11)

[T (EΩΨ, QΩΨ)]±nΩ = ±1
2
Ψ−K ′

ΩΨ. (12)

(See [22].)
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4 Oseen fundamental tensor

If Ojk(x), Zj(x) are tempered distributions then Ojk, Zj is called a fundamental
tensor for the Oseen equation (4) in Rm, m = 2, 3, if

−∆Ojk + ∂1Ojk + ∂jZk(·) = δjk,

∂1O1k + . . . + ∂mOmk = 0

for j, k = 1, . . . ,m. We are interested in fundamental tensors such that Ojk(x) →
0, Zj(x) → 0 as |x| → ∞. The existence of such fundamental tensor was proved
in [10], §VII.3. The explicit formula of the fundamental tensor of the Oseen sys-
tem is very complicated. We only gather properties of the fundamental tensor
(see [10] or [24]): We have Ojk = Okj ∈ C∞(Rm \ {0}),

Zk(x) = Qk(x), (13)

If β is a multi-index, then we have

∂βOjk(x)| = O(|x|(1−m−|β|)/2) as |x| → ∞. (14)

If |z| 6= |z1| then
lim

r→∞
|O(rz)|r(m−1)/2 = 0. (15)

If r > 0 and q > 1 + 1/m then we have

|∇Ojk| ∈ Lq(Rm \B(0; r)). (16)

Denote
Rjk(x) = Ojk(x)− Ejk(x). (17)

If m = 3 then
|∂αR(x)| = O(|x|−|α|) as |x| → 0. (18)

If m = 2 then
|R(x)| = O(1) as |x| → 0, (19)

|∇R(x)| = O(ln |x|) as |x| → 0, (20)

|∂αR(x)| = O(|x|−|α|+1) as |x| → 0 for |α| ≥ 2. (21)

Lemma 4.1. If λ 6= 0 and u1, . . . , um, p are tempered distributions in Rm satis-
fying (2) in Rm in the sense of distributions, then u1, . . . , um, p are polynomials.

Proof. For R3 [15], Proposition 6.1. The proof is literally the same for other
dimensions.

Corollary 4.2. Let m = 2 or m = 3. Then there exists a unique fundamental
tensor Ojk(x), Zj(x) for the Oseen equation (4) in Rm such that Ojk(x) → 0,
Zj(x) → 0 as |x| → ∞.

Proof. If Õjk(x), Z̃j(x) is another such fundamental tensor then Õjk −Ojk,
Z̃j−Zj is a solution of the equation (4) in Rm. Lemma 4.1 gives that Õjk−Ojk ≡
0, Z̃j − Zj ≡ 0.
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5 Oseen potentials

Let Ω ⊂ Rm be an open set with Lipschitz boundary, m = 2 or m = 3. For
Ψ ∈ Lq(∂Ω, Rm) with 1 < q < ∞ define the Oseen single layer potential with
density Ψ

OΩΨ(x) =
∫

∂Ω

O(x− y)Ψ(y) dHm−1(y).

Clearly OΩΨ, QΩΨ is a solution of the Oseen equation (4) in Rm \ ∂Ω. Denote

RΩΨ(x) =
∫

∂Ω

R(x− y)Ψ(y) dHm−1(y) = OΩΨ(x)− EΩΨ(x).

For y ∈ ∂Ω and x ∈ Rm\{y} define KΩ,Os(·,y) = T (O(·−y, Q(·−y)nΩ(y)−
nΩ

1 O(· − y)/2, i.e.

KΩ,Os
j,k (x,y) = nΩ(y) · ∇yOjk(x− y) +

m∑
i=1

nΩ
i (y)

∂

∂yk
Oji(x− y) (22)

+nΩ
k (y)Qj(x− y) +

nΩ
1 (y)
2

Ojk(x− y). (23)

Denote

ΠΩ,Os
k (x,y) = nΩ(y) · ∇yQk(x− y) +

m∑
i=1

nΩ
i (y)

∂

∂yk
Qi(x− y) (24)

−nΩ
k (y)Q1(x− y) +

nΩ
1 (y)
2

Qk(x− y). (25)

For Ψ ∈ Lq(∂Ω, Rm) we define the Oseen double layer potential with density
Ψ by

(DOs
Ω Ψ)(x) =

∫
∂Ω

KΩ,Os(x,y)Ψ(y) dHm−1(y), x ∈ Rm \ ∂Ω

and the corresponding pressure by

(ΠOs
Ω Ψ)(x) =

∫
∂Ω

ΠΩ,Os(x− y)Ψ(y) dHm−1(y), x ∈ Rm \ ∂Ω.

For x ∈ ∂Ω we denote

(KΩ,OsΨ)(x) = lim
δ↓0

∫
∂Ω\B(x,δ)

KΩ,Os(x,y)Ψ(y) dHm−1(y).
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(K ′
Ω,OsΨ)(x) = lim

δ↓0

∫
∂Ω\B(x,δ)

KΩ,Os(y,x)Ψ(y) dHm−1(y).

Lemma 5.1. Let m ∈ N . Then there exists a constant C such that for all
Borel measurable function f , and x ∈ Rm, r > 0, 0 < α < m, β > 0∫

B(x;r)

|f(y)|
|x− y|m−α

dHm(y) ≤ CrαMf(x),

where

Mf(x) = sup
r>0

∫
B(x;r)

|f(y)|
Hm(B(0; r))

dHm(y).

(See [28], Lemma 2.8.3.)

Proposition 5.2. Let Ω ⊂ Rm be an open set with compact Lipschitz bound-
ary. Let K be a function defined on Ω × ∂Ω. Suppose that K(x, ·) is Borel
measurable, K(·,y) is continuous on Ω \ {y} for all y ∈ ∂Ω and |K(x,y)| ≤
C1|x− y|α+1−m with 0 < α < m− 1. For f ∈ Lq(∂Ω), 1 < q < ∞ define

Kf(x) =
∫

∂Ω

K(x,y)f(y) dHm−1(y). (26)

Then there exists a constant C2 dependent on Ω, q and α such that

‖(Kf)∗‖Lq(∂Ω) ≤ C2‖f‖Lq(∂Ω),

Kf is finite almost everywhere on ∂Ω, Kf(x) is the nontangential limit of Kf
for almost all x ∈ ∂Ω and ‖Kf‖Lq(∂Ω) ≤ C2‖f‖Lq(∂Ω).

Proof. There are z1, . . . , zk ∈ ∂Ω and δ > 0 such that ∂Ω ⊂ B(z1; δ) ∪ . . . ∪
B(zk; δ) and for each j ∈ {1, . . . , k} there is a coordinate system centered at
zj and a Lipschitz continuous function ϕj such that B(0; 2δ) ∩ Ω = {[x′, xm] ∈
B(0; 2δ);xm > ϕj(x′)}. Choose a constant L such that |∇ϕj | ≤ L. Let z ∈ ∂Ω.
Choose j such that z ∈ B(zj ; δ). Let x ∈ Γ(z). If |x−z| ≥ δ then dist(x, ∂Ω) ≥
δ/(1 + a) and

|Kf(x)| ≤ C1

(
δ

1 + a

)α+1−m

‖f‖L1(∂Ω) ≤ C3‖f‖Lq(∂Ω),

where C3 = C1[δ/(1 + a)]α+1−mHm−1(∂Ω)(p−1)/p. Let now |x − z| < δ. For
0 < r ≤ 1 put fr = f on ∂Ω ∩ B(zj , 2rδ), fr = 0 elsewhere, gr = f − fr,
f̃1(x′) = f1(x′, ϕj(x′)). Then

|Kg1(x)| ≤ C1δ
α+1−m‖g1‖L1(∂Ω) ≤ C3‖f‖Lq(∂Ω).
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If y ∈ ∂Ω then |z− y| ≤ |z− x|+ |y− x| ≤ (1 + a)|y− x|+ |y− x|. According
to Lemma 5.1 there exists a constant C4 such that

max(|Kfr(z)|, |Kfr(x)|) ≤
∫

B(zj ;r2δ)

C1

(
|y − z|
2 + a

)α+1−m

|f(y)| dHm−1(y)

≤
∫

{y′∈Rm−1;|y′|<r2δ}

C1

(
|y′|

2 + a

)α+1−m

|f̃1(y′)|
√

1 + L2 dHm−1 ≤ C4r
αMf̃1(z′).

Thus (Kf)∗(z)| ≤ C3‖f‖Lq(∂Ω) + C4Mf̃1(z). Since there exists a constant C5

such that ‖Mg‖Lq ≤ C5‖g‖Lq (see [28], Theorem 2.8.2), we have ‖(Kf)∗‖Lq(∂Ω) ≤
C3‖f‖Lq(∂Ω) + C4C5‖f̃1‖Lq ≤ (C3 + C4C5)‖f‖Lq(∂Ω).

Let z = [z′, zm] be as above. We use the same notation. Mf̃1 is finite at
almost all points of x′ with |x′| < δ. Suppose that Mf̃1(z′) < ∞. Fix ε > 0.
We can choose 0 < r ≤ 1 such that C4r

αMf̃1(z′) < ε/3. Then |Kfr(z)| < ε/3.
If x ∈ Γ(z), |x − z| < δ then |Kfr(z)| < ε/3. Since Kgr is continuous in z by
the Theorem on continuity of parametrized integrals there exist ρ ∈ (0, δ) such
that |Kgr(x) − Kgr(z)| < ε/3 for |x − z| < ρ. If x ∈ Γ(z), |x − z| < ρ then
|Kf(x)−Kf(z)| ≤ |Kgr(x)−Kgr(z)|+ |Kfr(x)|+ |Kfr(z)| < ε.

By virtue of limit

‖Kf‖Lq(∂Ω) ≤ ‖(Kf)∗‖Lq(∂Ω) ≤ C2‖f‖Lq(∂Ω).

Proposition 5.3. Let Ω ⊂ Rm be an open set with compact Lipschitz bound-
ary, m = 2 or m = 3, and 1 < q < ∞. If Ψ ∈ Lq(∂Ω, Rm) then OΩΨ(z) it the
non-tangential limit of OΩΨ at z for almost all z ∈ ∂Ω. There exists a constant
C such that ‖(OΩΨ)∗‖Lq(∂Ω) ≤ C‖Ψ‖Lq(∂Ω). The operator OΩ is a compact
bounded linear operator in Lq(∂Ω, Rm).

Proof. For x ∈ ∂Ω denote

M1(f)(x) = sup{|f(y)|;y ∈ Γ(x) ∩B(x; 1)}.

According to [22] there exists a constant C1 such that ‖M1(EΩΨ)‖Lq(∂Ω) ≤
C1‖Ψ‖Lq(∂Ω) for Ψ ∈ Lq(∂Ω, Rm). Moreover, if Ψ ∈ Lq(∂Ω, Rm) then EΩΨ(z)
it the non-tangential limit of EΩΨ at z for almost all z ∈ ∂Ω. Since there exists a
constant C2 such that |R(y)| ≤ C2 for |y| ≤ 1 + diam ∂Ω, Proposition 5.2 gives
that OΩΨ(z) it the non-tangential limit of OΩΨ at z for almost all z ∈ ∂Ω,
and there exists a constant C3 such that ‖M1(OΩΨ)‖Lq(∂Ω) ≤ C3‖Ψ‖Lq(∂Ω) for
Ψ ∈ Lq(∂Ω, Rm). Since Ojk(y) → 0 as |y| → ∞, there exists a constant C4

such that ‖(OΩΨ)∗‖Lq(∂Ω) ≤ C4‖Ψ‖Lq(∂Ω) for Ψ ∈ Lq(∂Ω, Rm).
The operator EΩ is a compact linear operator on Lq(∂Ω, Rm) by [22]. Since

R(x−y) is bounded on ∂Ω× ∂Ω, the operator RΩ is a compact linear operator
on Lq(∂Ω, Rm) by [9], §4.5.2, Satz 2.
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Lemma 5.4. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary,
m = 2 or m = 3, and 1 < q < ∞. If Ψ ∈ Lq(∂Ω, Rm) and j ∈ {1, . . . ,m} then

∂jRΨ(x) = lim
ε↓0

∫
∂Ω\B(x;ε)

∂jR(x− y)Ψ(y) dHm−1(y) (27)

for x ∈ Rm \ ∂Ω. Define ∂jRΨ(x) by the limit (27) whenever this limit makes
sense. Then ∂jR is a compact linear operator on Lq(∂Ω, Rm). There exists a
constant C such that if Ψ ∈ Lq(∂Ω, Rm) then

‖(∂jRΨ)∗‖Lq(∂Ω) ≤ ‖Ψ‖Lq(∂Ω),

and ∂jRΨ(x) is the non-tangential limit of ∂jRΨ at almost all x ∈ ∂Ω.

Proof. Since there exists a constant C1 such that |∂jR(x − y)| ≤ C1|x −
y|1−m−1/2, the lemma is an easy consequence of Proposition 5.2.

Proposition 5.5. Let Ω ⊂ Rm be an open set with compact Lipschitz bound-
ary, m = 2 or m = 3, and 1 < q < ∞. Then K ′

Ω,Os is a bounded linear operator
on Lq(∂Ω, Rm). If Ψ ∈ Lq(∂Ω) then ‖(∇OΩΨ)∗‖Lq(∂Ω) ≤ C‖Ψ‖Lq(∂Ω) with
C dependent only on Ω and q, ∇OΩΨ has a non-tangential limit at almost all
points of ∂Ω, and

[T (OΩΨ, QΩΨ)]±nΩ − 1
2
nΩ

1 OΩΨ = ±1
2
Ψ−K ′

Ω,OsΨ.

Proof. The proposition is an easy consequence of (12), Lemma 5.4 and
Lemma 5.3.

Lemma 5.6. ∇ · Q = 0, −∆Q + ∂1Q − ∇Q1 = 0 in Rm \ {0} in the sense of
distributions.

Proof. Denote hLap(x) = −(2π)−1 ln |x| for m = 2, hLap(x) = (4Π)−1|x| for
m = 3. Then hLap is a fundamental solution for the Laplace equation. We have
Q = −∇hLap. Thus

∇ ·Q = −∆hLap = 0,

−∆Qj + ∂1Qj = ∆∂jhLap − ∂1∂jhLap = ∂j(∆hLap − ∂1hLap) = ∂jQ1.

Proposition 5.7. Let Ω ⊂ Rm be an open set with compact Lipschitz bound-
ary, m = 2 or m = 3, and 1 < q < ∞. If Ψ ∈ Lq(∂Ω, Rm) then DOs

Ω Ψ, ΠOs
Ω Ψ

is a solution of the Oseen system (4) in Rm \ ∂Ω.

Proof. If y ∈ ∂Ω, k ∈ {1, . . . ,m} then [KΩ,Os
1,k (x,y), . . . ,KΩ,Os

m,k (x,y),Πk(x,y)]
is a solution of the Oseen system (4) in Rm \ {y} by Lemma 5.6. So, DOs

Ω Ψ,
ΠOs

Ω Ψ is a solution of the Oseen system (4) in Rm \ ∂Ω.
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Proposition 5.8. Let Ω ⊂ Rm be an open set with compact Lipschitz bound-
ary, m = 2 or m = 3, and 1 < q < ∞. Then KΩ,Os is a bounded linear operator
on Lq(∂Ω, Rm). If Ψ ∈ Lq(∂Ω) then ‖(DOs

Ω Ψ)∗‖Lq(∂Ω) ≤ C‖Ψ‖Lq(∂Ω) with
C dependent only on Ω and q, DOs

Ω Ψ has a non-tangential limit at almost all
points of ∂Ω, and

[DOs
Ω Ψ)]±nΩ = ±1

2
Ψ + KΩ,OsΨ.

Proof. The proposition is an easy consequence of (11), Lemma 5.3 and
Lemma 5.4.

Proposition 5.9. Let ω ⊂ Rm be a bounded domain with Lipschitz boundary,
h̃ ≡ 0, g̃ ∈ Lq(∂Ω, Rm), 1 < q < ∞, m = 2 or m = 3. If ũ, p̃ is an Lq-solution
of the Neumann problem (4), (5) then

ũ = Oωg̃ + DOs
ω ũ, p̃ = Qωg̃ + ΠOs

ω ũ. (28)

Proof. Let Ω(j) be domains from Lemma 6.1. Green’s formula gives (28)
for Ω(j) (see [10], §VII.6). By virtue of Lebesgue lemma be obtain (28) for ω.

6 Regular L2-solution of the Dirichlet problem

Let ω ⊂ Rm be a domain with compact Lipschitz boundary, m = 2 or m = 3,
g ∈ W 1,2(∂ω). We say that ũ ∈ C2(Ω, Rm), p̃ ∈ C1(Ω) is a regular L2-solution
of the Dirichlet problem (4),

ũ = g on ∂ω (29)

if ũ, p̃ is a solution of the Oseen system (4) in ω, the non-tangential maximal
functions (|ũ|)∗, (|∇ũ|)∗, p̃∗ ∈ L2(∂ω), there exist the non-tangential limits of
ũ, ∇ũ, p̃ at almost all points of ∂ω, and the Dirichlet condition (29) is fulfilled
in the sense of the non-tangential limit at almost all points of ∂ω.

If ω is a bounded open set with connected boundary we shall look for a
solution in the form of an Oseen single layer potential ũ = OωΨ, p̃ = QωΨ
with Ψ ∈ L2(∂ω,Rm). Let now G(1), . . . , G(k) be all bounded components of
Rm \ ω. If k ∈ N we cannot look for a solution of this problem in this form
because ∫

∂G(j)

(OωΨ) · nω dHm−1 = 0 (30)

by the Divergence theorem. But this is not a necessary condition for the solv-
ability of the problem. Fix open balls B(j) such that B(j) ⊂ G(j). We shall
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look for a solution of the Dirichlet problem (4), (29) in the form of a modified
Oseen single layer potential

ũ = OωΨ +
k∑

j=1

(DOs
B(j)n

B(j))
∫

∂G(j)

Ψ · nω dHm−1, (31)

p̃ = QωΨ +
k∑

j=1

(ΠOs
B(j)n

B(j))
∫

∂G(j)

Ψ · nΩ dHm−1 (32)

with Ψ ∈ L2(∂ω,Rm).

Lemma 6.1. If Ω ⊂ Rm is a bounded domain with Lipschitz boundary then
there is a sequence of domains Ωj with boundaries of class C∞ such that

• Ωj ⊂ Ω.

• There are a > 0 and homeomorphisms Λj : ∂Ω → ∂Ωj , such that Λj(y) ∈
Γa(y) for each j and each y ∈ ∂Ω and sup{|y − Λj(y)|;y ∈ ∂Ω} → 0 as
j →∞.

• There are positive functions ωj on ∂Ω bounded away from zero and infinity
uniformly in j such that for any measurable set E ⊂ ∂Ω,

∫
E

ωj dHm−1 =
Hm−1(Λj(E)), and so that ωj → 1 point wise a.e. and in every Ls(∂Ω),
1 ≤ s < ∞.

• The normal vectors to Ωj , n(Λj(y)), converge point wise a.e. and in every
Ls(∂Ω), 1 ≤ s < ∞, to n(y).

(See [27], Theorem 1.12)

Lemma 6.2. Let ω ⊂ Rm be a domain with compact Lipschitz boundary, 1 <
q < ∞, q′ = q/(q−1), h̃ ∈ L∞(∂ω), g̃ ∈ Lq(∂Ω, Rm). Let ũ, p̃ be an Lq-solution
of the Robin problem (4), (5). If ω is unbounded suppose moreover |ũ(x)| =
O(|x|(1−m)/2), |∇ũ(x)| + |p̃(x)| = O(|x|−m/2) as |x| → ∞; r(m−1)/2ũ(rx) → 0
as r →∞ for |x| 6= |x1|. If u∗ ∈ Lq′(∂ω), then∫

∂ω

g̃ · ũ dHm−1 =
∫
∂ω

h̃|ũ|2 dHm−1 + 2
∫
ω

|∇̂ũ|2 dHm. (33)

Proof. Suppose first that ω is bounded. Let ω(j) be domains from Lemma 6.1.
By virtue of Green’s formula and Lebesgue’s lemma∫
∂ω

g̃ · ũ dHm−1 =
∫
∂ω

h̃|ũ|2 dHm−1 + lim
j→∞

∫
∂ω(j)

ũ · [T (ũ, p̃)n− n1ũ/2] dHm−1
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=
∫
∂ω

h̃|ũ|2 dHm−1 + lim
j→∞

∫
ω(j)

[2|∇̂ũ|2 + ũ · (∆ũ−∇p− ∂1ũ)] dHm

=
∫
∂ω

h̃|ũ|2 dHm−1 + 2
∫
ω

|∇̂ũ|2 dHm.

Let now ω be unbounded. Define h̃ = 0 on Rm \ ∂ω.∫
∂ω

h̃|ũ|2 dHm−1 + 2
∫
ω

|∇̂ũ|2 dHm = lim
r→∞

[ ∫
∂(ω∩B(0;r)

h̃|ũ|2 dHm−1

+2
∫

ω∩B(0;r)

|∇̂ũ|2 dHm

]
=

∫
∂ω

g̃ · ũ dHm−1 + lim
r→∞

∫
∂B(0;r)

ũ · [T (ũ, p̃)n− n1ũ/2]

=
∫
∂ω

g̃ · ũ dHm−1 + lim
r→∞

∫
∂B(0;1)

rm−1n1|ũ(rx)|2/2 dHm−1(x).

There exists a constant C such that |rm−1n1|ũ(rx)|2/2| ≤ C for x ∈ ∂B(0; 1).
Since rm−1n1|ũ(rx)|2/2 → 0, Lebesgue’s lemma yields (33).

Proposition 6.3. Let ω ⊂ Rm be a domain with compact Lipschitz boundary,
m = 2 or m = 3. Let ũ, p̃ be a regular L2-solution of the Dirichlet problem (4),
(29) with g ≡ 0. If Ω is unbounded suppose moreover |ũ(x)| = O(|x|(1−m)/2),
|∇ũ(x)| + |p̃(x)| = O(|x|−m/2) as |x| → ∞; r(m−1)/2ũ(rx) → 0 as r → ∞ for
|x| 6= |x1|. Then ũ ≡ 0 and p̃ is constant. If ω is unbounded then p̃ ≡ 0.

Proof. Put h ≡ 0. By virtue of Lemma 6.2

2
∫
ω

|∇ũ|2 = 0.

Since ∇̂ũ ≡ 0 there exist an anti-symmetric matrix A and a vector b such that
ũ(x) = Ax + b (see [20], Lemma 3.1). Therefore ũj is a harmonic function on
ω, ũj = 0 on ∂ω. If ω is unbounded then ũj(x) → 0 as |x| → ∞. Thus ũj ≡ 0
by the maximum principle. Since ∇p̃ ≡ 0 by (4), the function p̃ is constant. If
ω is unbounded then p̃ ≡ 0 because p̃(x) → 0 as |x| → ∞.

Lemma 6.4. Let ω ⊂ Rm be an open set with compact Lipschitz boundary,
m = 2 or m = 3. Let G be a bounded component of Rm \ ω. Fix an open ball
B such that B ⊂ G. Set u = DOs

B nB in Rm \B. Then∫
∂G

u · nω dHm−1 = Hm−1(∂G) 6= 0. (34)
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If G̃ is another bounded component of Rm \ ω then∫
∂G̃

u · nω dHm−1 = 0. (35)

Proof. Denote ũ = DOs
B nB , p̃ = ΠOs

B nB in B. Then there are the non-
tangential limits of u and ũ on ∂B and it hods ũ−u = nB (see Proposition 5.8).
Since ∇ · ũ = 0, ∇ · u = 0, the divergence theorem gives

0 =
∫

∂(G\B)

u · nG\B dHm−1 +
∫

∂B

ũ · nB dHm−1 = −
∫

∂G

u · nω dHm−1

+
∫

∂B

nB · nB dHm−1 = −
∫

∂G

u · nω dHm−1 +Hm−1(∂G).

If G̃ is another bounded component of Rm \ω then (35) is a consequence of the
divergence theorem.

Lemma 6.5. Let Ω ⊂ Rm be an open set with compact Lipschitz boundary,
m = 2 or m = 3. Suppose that Ψ ∈ L2(∂Ω, Rm) and OΩΨ = 0 on ∂Ω. If S is
a component of ∂Ω then there exists a constant cS such that Ψ = cSnΩ on ∂Ω.

Proof. Let ω be a component of Rm \∂Ω. Then OΩΨ, QΩΨ is a regular L2-
solution of the Dirichlet problem for the Oseen equation with the zero boundary
condition (see Proposition 5.3 and Proposition 5.4). Taking in mind behavior
of OΩΨ and QΩΨ at infinity, Proposition 6.3 gives that there exists a constant
bω such that OΩΨ = 0, QΩΨ = bω in ω. If S is a component of ∂Ω we choose
two components ω and G of Rm \ ∂Ω such that S ⊂ ∂ω ∩ ∂G. According to
Proposition 5.5 we have on S

Ψ = [Ψ/2−K ′
Ω,OsΨ]− [−Ψ/2−K ′

Ω,OsΨ] = [T (OΩΨ, QΩΨ)nΩ]+

−[T (OΩΨ, QΩΨ)nΩ]− = (−bωnΩ)− (−bGnΩ).

Proposition 6.6. Let ω ⊂ Rm be a domain with compact Lipschitz boundary,
m = 2 or m = 3. Fix Ψ ∈ L2(∂ω,Rm). If ω is a bounded domain with connected
boundary define UΨ = OωΨ. In other cases UΨ = ũ, where ũ is given by (31).
Then U : L2(∂ω,R3) → W 1,2(∂ω,R3) is a Fredholm operator with index 0.

• If ω is unbounded then U is an isomorphism.

• If ω is bounded then U(L2(∂ω,Rm)) = {u ∈ W 1,2(∂ω);
∫

∂ω
u · nω = 0}.

If G is the unbounded component of Rm \ ω then the kernel of U is
{cnωχ∂G; c ∈ R1}. (Here χ∂G denotes the characteristic function of ∂G.)
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Proof. EΩ : L2(∂ω,R3) → W 1,2(∂ω,R3) is a Fredholm operator with index
0 by [22], Theorem 5.4.1. Since U−EΩ is a compact operator by Proposition 5.3
and Lemma 5.4, the operator U : L2(∂ω,R3) → W 1,2(∂ω,R3) is a Fredholm
operator with index 0.

Let now UΨ = 0. Let G(j) be a bounded component of Rm \ ω. According
to (30) and Lemma 6.4 we have

0 =
∫

∂G(j)

nω · UΨ dHm−1 = Hm−1(∂G(j))
∫

∂G(j)

Ψ · nω dHm−1.

Therefore ∫
∂G(j)

Ψ · nω dHm−1 = 0. (36)

It means that 0 = UΨ = OωΨ. If V is a component of Rm \ω then there exists
a constant cV such that Ψ = cV nω on ∂V (see Lemma 6.5). If V is bounded
then cV = 0 by (36).

If ω is unbounded then the kernel of U is trivial. Since U is of index 0, it
must be surjective. Thus U is an isomorphism.

Let now ω be bounded. We have proved that the kernel of U is a subset
of {cnωχ∂G; c ∈ R1}. So, the dimension of the kernel of U is at most 1. If ũ
is given by (31) then the divergence theorem gives

∫
∂ω

nω · ũ dHm−1 = 0. So,
the range of U is a subset of {u ∈ W 1,2(∂ω);

∫
∂ω

u · nω = 0}. Hence the co
dimension of the range of U is at least 1. Since U is a Fredholm operator of
index 0, the dimension of the kernel of U and the co dimension of the range of
U are equal to 1.

Theorem 6.7. Let ω ⊂ Rm be a bounded domain with Lipschitz boundary,
m = 2 or m = 3. Fix g ∈ W 1,2(∂ω,Rm). Then there exists a regular L2-solution
of the Dirichlet problem (4), (29) if and only if∫

∂ω

g · nω dHm−1 = 0. (37)

If u, p and ũ, p̃ are two solutions of the problem, then u = ũ and p − p̃ is
constant.

Proof. If there exists a regular L2-solution of the problem (4), (29), then
the divergence theorem gives (37).

Let now (37) holds true. According to Proposition 6.6 there exists Ψ ∈
L2(∂ω,Rm) such that ũ, p̃ given by (31), (32) is a regular L2-solution of the
problem (4), (29). Let now u, p be another solution of the problem. Then
u− ũ ≡ 0, p− p̃ is constant by Proposition 6.3.

Theorem 6.8. Let Ω ⊂ Rm be an open set, Rm \ Ω be compact, m = 2 or
m = 3. Let u, p be a bounded solution of the Oseen system (4) in Ω. Then
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there exist a number p∞ and a vector u∞ such that u(x) → u∞, p(x) → p∞
as |x| → ∞. If α is a multi index then |∂α[u(x) − u∞]| = O(|x|(1−m−|α|)/2),
|∂α[p(x)− p∞]| = O(|x|1−m−|α|) as |x| → ∞. Moreover, r(m−1)/2u(rx) → 0 as
r →∞ for |x| 6= |x1|.

Proof. Fix r > 0 such that Rm \ Ω ⊂ B(0; r) and denote ω = Rm \ B(0; r),
g = u on ∂ω. According to Proposition 6.6 there exists Ψ ∈ L2(∂Ω, Rm) such
that ũ, p̃ given by (31), (32) is a regular L2-solution of the problem (4), (29).
Remark that p̃ ∈ L2(ω∩B(0; 2r)), ũ ∈ W 1,2(ω∩B(0; 2r)) (see [19], Lemma 2). If
α is a multi index then |∂αũ(x)| = O(|x|(1−m−|α|)/2), |∂αp̃(x)| = O(|x|1−m−|α|)
as |x| → ∞. Moreover, r(m−1)/2ũ(rx) → 0 as r →∞ for |x| 6= |x1|. Denote v =
u−ũ, q = p−p̃ in ω, v = 0, q = 0 elsewhere. Then v ∈ W 1,2

loc (Rm), q ∈ L2
loc(R

m),
∇ · v = 0. Moreover, v, q is a solution of the Oseen equation (4) in Rm \ ∂ω.
Denote f = −∆v + ∂1v + ∇q. Then f is a compactly supported distribution.
Denote w = O∗f , η = Q∗f . Then v−w, q−η is a solution of the Oseen equation
(4) in the whole Rm. If α is a multi index then |∂αw(x)| = O(|x|(1−m−|α|)/2),
|∂αη(x)| = O(|x|1−m−|α|) as |x| → ∞. Moreover, r(m−1)/2w(rx) → 0 as r →∞
for |x| 6= |x1|. Since v −w, q − η are bounded solutions of the Oseen equation
(2) in Rm, they are constant by Lemma 4.1.

Theorem 6.9. Let ω ⊂ Rm be an unbounded domain with compact Lipschitz
boundary, m = 2 or m = 3. Let g ∈ W 1,2(∂ω,Rm) be fixed. If u, p is a regular
L2-solution of the Dirichlet problem (4), (29) then there exist a constant p∞
and a vector u∞ such that p(x) → p∞, u(x) → u∞ as |x| → ∞. On the other
hand, if p∞, u∞ are given then there exists a unique regular L2-solution u, p of
the Dirichlet problem (4), (29) such that p(x) → p∞, u(x) → u∞ as |x| → ∞.
Moreover,

‖(u)∗ + (∇u)∗ + (p)∗‖L2(∂Ω) ≤ C[|u∞|+ |p∞|+ ‖g‖W 1,2(∂ω,Rm)] (38)

where C depends only on Ω.

Proof. If u, p is a regular L2-solution of the Dirichlet problem (4), (29) then
there exist a constant p∞ and a vector u∞ such that p(x) → p∞, u(x) → u∞
as |x| → ∞. (See Theorem 6.8.)

Let now u∞, p∞ be given. According to Proposition 6.6 the operator U is
an isomorphism from L2(∂ω,Rm) onto W 1,2(∂ω,Rm). Put Ψ = U−1g − u∞.
Then ũ, p̃ given by (31), (32) satisfy ũ = g − u∞ on ∂ω. Put u = ũ + u∞,
p = p̃ + p∞. Then u, p is a regular L2-solution of the Dirichlet problem (4),
(29) such that p(x) → p∞, u(x) → u∞ as |x| → ∞. According to properties of
Oseen potentials (38) holds true with C depending only on Ω.

If v, q is another solution of that problem then |u(x)−v(x)| = O(|x|(1−m)/2),
|∇u(x)−∇v(x)|+ |p(x)− q(x)| = O(|x|−m/2), r(m−1)/2|u(rx)− v(rx)| → 0 as
r → ∞ for |x| 6= |x1| (see Theorem 6.8). Proposition 6.3 gives that u− v ≡ 0,
p− q ≡ 0.
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7 L2-solutions of the Robin problem

Let ω ⊂ Rm be a domain with compact Lipschitz boundary, m = 2 or m = 3.
Let now G(1), . . . , G(k) be all bounded components of Rm\ω. If g̃ ∈ Lq(∂ω,Rm)
we shall look for an Lq-solution of the Robin problem (4), (5) in the form
of a modified Oseen single layer potential (31), (32) with Ψ ∈ Lq(∂ω,Rm).
According to Proposition 5.3 and Proposition 5.5 the vector functions ũ, p̃ is
an Lq-solution of the Robin problem (4), (5) if and only if

τh̃Ψ = g̃,

where
τh̃Ψ =

1
2
Ψ−K ′

ω,OsΨ + h̃OωΨ + Lh̃Ψ,

Lh̃Ψ =
m∑

j=1

 ∫
∂G(j)

Ψ · n

 [
T (DOs

B(j)n
B(j),ΠOs

B(j)n
B(j))n+(h̃−n1/2)DOs

B(j)n
B(j)

]
.

Proposition 7.1. Let ω ⊂ Rm be an open set with compact Lipschitz bound-
ary, 1 < q < ∞, m = 2 or m = 3. Suppose that q = 2 or ∂Ω is of class C1. If
h̃ ∈ L∞(∂ω) then τh̃ is a Fredholm operator with index 0 in Lq(∂ω,Rm).

Proof. 1
2I − K ′

ω is a Fredholm operator with index 0 in L2(∂ω,Rm) by
[22], Theorem 5.3.6. If ∂ω is of class C1, then Kω is a compact operator on
Lq′(∂ω,Rm) where q′ = q/(q− 1) (see [17], p. 232). Therefore K ′

ω is a compact
operator in Lq(∂ω,Rm) and 1

2I − K ′
ω is a Fredholm operator with index 0 in

Lq(∂ω,Rm). Since τh̃ − [ 12I − K ′
ω] is a compact operator by Proposition 5.3

and Lemma 5.4, we deduce that τh̃ is a Fredholm operator with index 0 in
Lq(∂ω,Rm).

Proposition 7.2. Let ω ⊂ Rm be a bounded domain with Lipschitz boundary,
1 < q < ∞, q′ = q/(q − 1), h̃ ∈ L∞(∂ω), h̃ ≥ 0. Let ũ, p̃ be an Lq-solution of
the Robin problem (4), (5) with g̃ ≡ 0. If (ũ)∗ ∈ Lq′(∂ω) then ũ ≡ 0, p̃ ≡ 0.

Proof. Lemma 6.2 gives that |∇̂ũ| = 0 in ω, h̃ũ = 0 on ∂ω. Since ∇̂ũ ≡ 0
there exist an anti-symmetric matrix A and a vector b such that ũ(x) = Ax+b
(see [20], Lemma 3.1). If

∫
∂ω

h̃ dHm−1 > 0 then h̃ũ = 0 gives ũ ≡ 0 (see
[21], Lemma 5.1. Since ∇p̃ = ∆ũ − ∂1ũ = 0 we infer that p̃ is constant. Since
0 = T (ũ, p̃)nω − n1ũ/2 + h̃ũ = −p̃nω we deduce that p̃ ≡ 0.

Let now h̃ ≡ 0. If j 6= 1 then

∂j p̃(x) = ∆ũj(x)− ∂1ũj(x) = −aj1,

∂1p̃(x) = ∆ũ1(x)− ∂1ũ1(x) = 0.

Thus there exists a constant c such that

p̃(x) = −
m∑

j=2

aj1xj + c.
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We have
0 = T (ũ, p̃)nω − n1ũ/2 = −p̃nω − n1ũ/2. (39)

Thus nω
1 (p̃+ ũ1/2) = 0. The function p̃+ ũ1/2 is a polynomial of the first order.

If p̃ + ũ1/2 6≡ 0 then M = {x; p̃(x) + ũ1(x)/2 = 0} is a subset of a hyperplane.
So, n1 = 0 outside this hyperplane. It is not possible. Hence p̃ + ũ1/2 ≡ 0 and

m∑
j=2

aj1xj − c = −p̃(x) =
ũ1(x)

2
=

m∑
j=2

a1j

2
xj +

b1

2
=

m∑
j=2

−aj1

2
xj +

b1

2
.

This forces that a1j = aj1 = 0 and p̃ = c = −b1/2, ũ1 = b1 = −2c.
Suppose first that c = 0. Then p̃ = ũ1 = 0. If j 6= 1 then (39) gives

n1ũj = 0. The function ũj is a polynomial of the first order. If ũj 6≡ 0 then
Mj = {x; ũj(x) = 0} is a subset of a hyperplane. So, n1 = 0 outside this
hyperplane. It is not possible. Hence ũj ≡ 0.

Let now c 6= 0. Fix z ∈ ∂ω. We can choose a coordinate system in a
such way that z = 0. Denote pj = ũj − bj . Then pj(x) → 0 as x → 0 = z.
From (39) we get nω

j = nω
1 (pj + bj)/b1. Since pj(x) → 0 as x → z we deduce

that nω(x) → b/|b| or nω(x) → −b/|b| as x → z. (Since ∂ω is Lipschitz,
it is not possible nω(xk) → b/|b| and nω(yk) → b/|b| for some sequences
yk → z, xk → z.) This gives that ∂ω is of class C1. Now fix z ∈ ∂ω such
that z2 = max{x2;x ∈ ∂ω}. Then nω(z) = [0, 1, 0, . . . , 0]. But (39) forces
1 = nΩ

2 (z) = nω
1 ũj(z)/b1 = 0, what is a contradiction.

Theorem 7.3. Let ω ⊂ Rm be a bounded domain with Lipschitz bound-
ary, m = 2 or m = 3, h̃ ∈ L∞(∂ω), h̃ ≥ 0. Then τh̃ is an isomorphism on
L2(∂ω,Rm). Fix g̃ ∈ L2(∂ω,Rm). Denote Ψ = τ−1

h̃
g. Let ũ, p̃ be given by

(31), (32). Then ũ, p̃ is a unique L2-solution of the Robin problem (4), (5).
Moreover,

‖(|ũ|+ |∇ũ|+ |p̃|)∗‖L2(∂ω) ≤ C‖g̃‖L2(∂ω) (40)

where C depends only on ω and h̃.

Proof. Let Ψ ∈ L2(∂ω,Rm) and τh̃Ψ = 0. Let ũ, p̃ be given by (31),
(32). Then ũ, p̃ is an L2-solution of the Robin problem (4), (5) with g̃ ≡ 0.
Proposition 7.2 gives that ũ ≡ 0, p̃ ≡ 0. According to (30) and Lemma 6.4

0 =
∫

∂G(j)

ũ · nω dHm−1 = Hm−1(∂G(j))
∫

∂G(j)

Ψ · nω dHm−1.

So, (36) holds and ũ = OωΨ, p̃ = QωΨ. Let G be an unbounded component of
Rm \ ω. By virtue of Lemma 6.5 and (36) there exists a constant c such that
Ψ = cχG. Therefore 0 = p̃ = −c (see [20]). This forces that Ψ = 0. Since τh̃ is
a Fredholm operator with index 0 by Proposition 7.1, it is an isomorphism.

Let now g̃ ∈ L2(∂ω,Rm). If Ψ = τ−1

h̃
g and ũ, p̃ are given by (31), (32) then

ũ, p̃ is an L2-solution of the Robin problem (4), (5). The uniqueness follows
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from Proposition 7.2. The estimate (40) is a consequence of Proposition 5.3 and
Proposition 5.5.

Proposition 7.4. Let ω ⊂ Rm be an unbounded domain with compact Lip-
schitz boundary, m = 2 or m = 3, h̃ ∈ L∞(∂ω), h̃ ≥ 0, g̃ ≡ 0. If ũ, p̃ is an
L2-solution of the Robin problem (4), (5) such that ũ(x) → 0, p̃(x) → 0 as
|x| → ∞, then ũ ≡ 0, p̃ ≡ 0.

Proof. If α is a multi index then |∂αũ(x)| = O(|x|(1−m−α|)/2), |∂αp(x)| =
O(|x|1−m−α|) as |x| → ∞, and r(m−1)/2u(rx) → 0 as r →∞ for |x| 6= |x1| (see
Theorem 6.8). By virtue of Lemma 6.2∫

∂ω

h̃|ũ|2 dHm−1 + 2
∫
ω

|∇̂ũ|2 dHm = 0.

Since ∇̂ũ ≡ 0 there exist an anti-symmetric matrix A and a vector b such that
ũ(x) = Ax+b (see [20], Lemma 3.1). The relation ũ(x) → 0 as |x| → ∞ forces
ũ ≡ 0. Since ∇p̃ ≡ 0 by (4), the function p̃ is constant. Hence p̃ ≡ 0 because
p̃(x) → 0 as |x| → ∞.

Proposition 7.5. Let ω ⊂ Rm be an unbounded domain with compact Lip-
schitz boundary, 1 < q < ∞, m = 2 or m = 3. Suppose that q = 2 or ∂ω is of
class C1. If h̃ ∈ L∞(∂ω), h̃ ≥ 0 then τh is an isomorphism on Lq(∂ω,Rm).

Proof. Let Ψ ∈ Lq(∂ω,Rm), τh̃Ψ = 0. Since τh̃ is a Fredholm operator
with index 0 in Lq(∂ω,Rm) and in L2(∂ω,Rm) (see Proposition 7.1), we have
Ψ ∈ L2(∂ω,Rm) by [18], Lemma 9. If ũ, p̃ are given by (31), (32), then ũ, p̃
is an L2-solution of the Robin problem (4), (5) with g̃ ≡ 0. Proposition 7.4
gives that ũ ≡ 0, p̃ ≡ 0. So, Ψ = 0 by Proposition 6.6. Since τh̃ is a Fredholm
operator with index 0 by Proposition 7.1, it is an isomorphism.

Theorem 7.6. Let ω ⊂ Rm be an unbounded domain with compact Lipschitz
boundary, m = 2 or m = 3, h̃ ∈ L∞(∂ω), h̃ ≥ 0. Fix g̃ ∈ L2(∂ω,Rm). If ũ,
p̃ is an L2-solution of the Robin problem (4), (5) then there exists a constant
p∞ and a vector u∞ such that p(x) → p∞, ũ(x) → u∞ as |x| → ∞. Let now
p∞ ∈ R1, u∞ ∈ Rm be given. Denote Ψ = τ−1

h̃
[g+p∞nω +(nω

1 − h̃)u∞]. Let ũ,

p̃ be given by (31), (32). Then u = ũ + u∞, p = p̃ + p∞ is a unique L2-solution
of the Robin problem (4), (5) such that p(x) → p∞, ũ(x) → u∞ as |x| → ∞.
Moreover,

‖(|u|+ |∇u|+ |p|)∗‖L2(∂ω) ≤ C[‖g̃‖L2(∂ω) + |p∞|+ |u∞] (41)

where C depends only on ω and h̃.

Proof. If ũ, p̃ is an L2-solution of the Robin problem (4), (5) then there
exists a constant p∞ and a vector u∞ such that p(x) → p∞, ũ(x) → u∞ as
|x| → ∞. (See Theorem 6.8.)
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Let now p∞ ∈ R1, u∞ ∈ Rm be given. The operator τh̃ is invertible by
Proposition 7.5. Clearly, u, p is an L2-solution of the Robin problem such that
p(x) → p∞, u(x) → u∞. The uniqueness follows from Proposition 7.4. The
estimate (41) is a consequence of Proposition 5.3 and Proposition 5.5.

8 Lq-solution of the Robin problem

In this section we prove the existence of an Lq-solution of the Robin problem
for ω with boundary of class C1.

Theorem 8.1. Let ω ⊂ Rm be a bounded domain with boundary of class C1,
m = 2 or m = 3, 1 < q < ∞, h̃ ∈ L∞(∂ω), h̃ ≥ 0. Then τh̃ is an isomorphism
on Lq(∂ω,Rm). Fix g̃ ∈ Lq(∂ω,Rm). Denote Ψ = τ−1

h̃
g. Let ũ, p̃ be given

by (31), (32). Then ũ, p̃ is a unique Lq-solution of the Robin problem (4), (5).
Moreover,

‖(|ũ|+ |∇ũ|+ |p̃|)∗‖Lq(∂ω) ≤ C‖g̃‖Lq(∂ω) (42)

where C depends only on ω, h̃ and q.

Proof. τh̃ is a Fredholm operator with index 0 in L2(∂ω,Rm) and in Lq(∂ω,Rm)
by Proposition 7.1. Since τh̃ is injective in L2(∂ω,Rm) it is injective in Lq(∂ω,Rm)
(see [18], Lemma 9). Since τh̃ is a Fredholm operator with index 0 in Lq(∂ω,Rm)
it is an isomorphism.

Let Ψ = τ−1

h̃
g, ũ, p̃ be given by (31), (32). Clearly, ũ, p̃ is an Lq-solution

of the Robin problem (4), (5).
Now we show the uniqueness. Let g̃ ≡ 0, ũ, p̃ be an Lq-solution of the

Robin problem (4), (5). Then T (ũ, p̃)nω − n1ũ/2 = −h̃ũ. Proposition 5.9
gives ũ = DOs

ω ũ − Oωhũ in ω. By virtue of Proposition 5.3 Proposition 5.8
we have ũ = ũ/2 + Kω,Osũ − Oωhũ in ∂ω. Put q′ = q/(q − 1). The operator
ũ 7→ Kω,Osũ−Oωhũ is compact in Lq(∂ω,Rm) and in Lq′(∂ω,Rm) by Propo-
sition 5.3, Proposition 5.4 and [17], p. 232. Since ũ−Kω,Osũ+ Oωhũ = 0, [18],
Lemma 9 gives that ũ ∈ Lq′(∂ω,Rm). Since ũ = DOs

ω ũ−Oωhũ, Proposition 5.3
and Proposition 5.8 give (ũ)∗ ∈ Lq′(∂ω). So, ũ ≡ 0 by Proposition 7.2.

The estimate (42) is a consequence of Proposition 5.3 and Proposition 5.5.

Theorem 8.2. Let ω ⊂ Rm be an unbounded domain with compact Lipschitz
boundary, m = 2 or m = 3, h̃ ∈ L∞(∂ω), h̃ ≥ 0, 1 < q < ∞. Fix g̃ ∈
Lq(∂ω,Rm). If ũ, p̃ is an Lq-solution of the Robin problem (4), (5) then there
exists a constant p∞ and a vector u∞ such that p(x) → p∞, ũ(x) → u∞ as
|x| → ∞. Let now p∞ ∈ R1, u∞ ∈ Rm be given. Denote Ψ = τ−1

h̃
[g + p∞nω +

(nω
1 − h̃)u∞]. Let ũ, p̃ be given by (31), (32). Then u = ũ + u∞, p = p̃ + p∞

is a unique Lq-solution of the Robin problem (4), (5) such that p(x) → p∞,
ũ(x) → u∞ as |x| → ∞. Moreover,

‖(|u|+ |∇u|+ |p|)∗‖Lq(∂ω) ≤ C[‖g̃‖Lq(∂ω) + |p∞|+ |u∞] (43)
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where C depends only on ω, p and h̃.

Proof. If ũ, p̃ is an Lq-solution of the Robin problem (4), (5) then there
exists a constant p∞ and a vector u∞ such that p(x) → p∞, ũ(x) → u∞ as
|x| → ∞. (See Theorem 6.8.)

Let now p∞ ∈ R1, u∞ ∈ Rm be given. The operator τh̃ is invertible in
Lq(∂ω,Rm) by Proposition 7.5. Clearly, u, p is an Lq-solution of the Robin
problem such that p(x) → p∞, u(x) → u∞.

Let now g̃ ≡ 0 and ũ, p̃ be an Lq-solution of the Robin problem (4), (5) such
that p(x) → 0, ũ(x) → 0 as |x| → ∞. If p ≥ 2 then ũ, p̃ is an L2-solution of
the problem (4), (5). Let now p < 2. Fix r > 0 such that ∂ω ⊂ B(0; r) and set
Ω = ω∩B(0; r). Define h̃ = 0 on ∂B(0; r), g̃ = T (ũ, p̃)nΩ−nΩ

1 ũ/2 on ∂B(0; r).
Then ũ, p̃ is an Lq-solution of the Robin problem (4), (5) in Ω. Theorem 8.1
gives that ũ, p̃ is an L2-solution of this problem. Hence ũ, p̃ is an L2-solution
of the problem (4), (5) in ω. Proposition 7.4 gives that ũ ≡ 0, p̃ ≡ 0.

The estimate (43) is a consequence of Proposition 5.3 and Proposition 5.5.
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