INSTITUTE of MATHEMATICS

L^{q}-solution of the Robin problem for the Oseen system

Dagmar Medková

Preprint No. 34-2014
PRAHA 2014

L^{q}-solution of the Robin problem for the Oseen system Dagmar Medková

Abstract

We define Oseen single layer and double layer potentials and study their properties. Using the integral equation method we prove the existence and uniqueness of an L^{q}-solution of the Robin problem for the Oseen system.

Keywords: Oseen equations, Robin problem, single layer potential

1 Introduction

The Oseen system is one of the basic system of equations in hydrodynamics. The most studied problem for the Oseen system is the Dirichlet problem (see [6], [1], [2], [3], [4]). We shall study another problem - the Robin problem for the Oseen system. (For the formulation of the problem see for example [14].) Let $\Omega \subset R^{m}$ be a domain with compact Lipschitz boundary, $m=2$ or $m=3$. Denote by $\mathbf{n}^{\Omega}(\mathbf{x})$ (or shortly \mathbf{n}) the outward unit normal of Ω at $\mathbf{x} \in \partial \Omega$. If $\mathbf{u}=\left(u_{1}, \ldots, u_{m}\right)$ is a velocity, and p is a pressure, we define by

$$
\begin{equation*}
T(\mathbf{u}, p)=2 \hat{\nabla} \mathbf{u}-p I \tag{1}
\end{equation*}
$$

the corresponding stress tensor, where I denotes the identity matrix and

$$
\hat{\nabla} \mathbf{u}=\frac{1}{2}\left[\nabla \mathbf{u}+(\nabla \mathbf{u})^{T}\right]
$$

is the deformation tensor, with $(\nabla \mathbf{u})^{T}$ as the matrix transposed to $\nabla \mathbf{u}$. Let $\lambda \in R^{1} \backslash\{0\}$ be given, $h \in L^{\infty}(\partial \Omega), h \geq 0$. We shall study the Robin problem for the Oseen system

$$
\begin{gather*}
-\Delta \mathbf{u}+2 \lambda \partial_{1} \mathbf{u}+\nabla p=0 \quad \text { in } \Omega, \quad \nabla \cdot \mathbf{u}=0 \quad \text { in } \Omega, \tag{2}\\
T(\mathbf{u}, p) \mathbf{n}-\lambda n_{1} \mathbf{u}+h \mathbf{u}=\mathbf{g} \quad \text { on } \partial \Omega . \tag{3}
\end{gather*}
$$

(If $h \equiv 0$ we say about the Neumann problem for the Oseen system.) We shall study a so called L^{q}-solution of the problem (2), (3) for $\mathbf{g} \in L^{q}\left(\partial \Omega, R^{m}\right)$, i.e. the non-tangential maximal functions of $\mathbf{u}, \nabla \mathbf{u}$ and p are in $L^{q}(\partial \Omega)$ and the condition (3) is fulfilled in the sense of the non-tangential limit. We use the integral equation method. We define Oseen single layer and double layer potentials and prove that they have similar properties like corresponding Stokes potentials. It is a tradition to look for a solution of the Neumann and Robin problems in the form of a single layer potential. It fails for domains with holes (similarly like for the Stokes system). So, we shall look for a solution in the form of a modified single layer potential.

The integral equation method was used for the Neumann problem for the Stokes system - i.e. for $\lambda=0$ and $h \equiv 0$ (see [22]). If Ω is bounded and q is
close to 2 then the Neumann problem for the Stokes system is solvable if and only if

$$
\int_{\partial \Omega} \mathbf{g} \cdot \mathbf{w} \mathrm{d} \mathcal{H}_{2}=0
$$

for all rigid body motions w (see [22]). For the Oseen system (i.e. $\lambda \in R^{1} \backslash\{0\}$) we prove a totally different result:

Let Ω be bounded and $1<q<\infty, h \in L^{\infty}(\partial \Omega), h \geq 0$. If $q \neq 0$ suppose moreover that Ω has a boundary of class \mathcal{C}^{1}. If $\mathbf{g} \in L^{q}\left(\partial \Omega, R^{m}\right)$ then the Robin problem (2), (3) has a unique L^{q}-solution.

For the exterior Robin problem for the Stokes system we prove the following result:

Let Ω be an unbounded domain with compact Lipschitz boundary and $1<$ $q<\infty, h \in L^{\infty}(\partial \Omega), h \geq 0$. If $q \neq 0$ suppose moreover that Ω has a boundary of class \mathcal{C}^{1}. Let $\mathbf{g} \in L^{q}\left(\partial \Omega, R^{m}\right)$. If \mathbf{u}, p is an L^{q}-solution of the Robin problem (2), (3) then there exists a constant p_{∞} and a vector \mathbf{u}_{∞} such that $p(\mathbf{x}) \rightarrow p_{\infty}$, $\mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. On the other hand if $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$ are given then there exists a unique L^{q}-solution \mathbf{u}, p of the Robin problem (2), (3) such that $p(\mathbf{x}) \rightarrow p_{\infty}, \mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$.

2 Definition of the problem

Let $\Omega \subset R^{m}$ be a domain with compact Lipschitz boundary, $m=2$ or $m=3$. Fix $a>0$. If $\mathbf{x} \in \partial \Omega$ denote the nontangential approach regions of opening a at the point \mathbf{x} by

$$
\Gamma(\mathbf{x})=\Gamma_{a}(\mathbf{x})=\{\mathbf{y} \in \Omega ;|\mathbf{x}-\mathbf{y}|<(1+a) \operatorname{dist}(\mathbf{y}, \partial \Omega)\}
$$

If now \mathbf{v} is a vector function defined in Ω we denote the nontangential maximal function of \mathbf{v} on $\partial \Omega$ by

$$
\mathbf{v}^{*}(x)=\sup \{|\mathbf{v}(\mathbf{y})| ; \mathbf{y} \in \Gamma(\mathbf{x})\} .
$$

It is well known that if $\mathbf{v}^{*} \in L^{q}(\partial \Omega)$ for one choice of a, where $1 \leq q<\infty$, then it holds for arbitrary choice of a. (See, e.g. [11] and [26], p. 62.) Next, define the nontangential limit of \mathbf{v} at $\mathbf{x} \in \partial \Omega$

$$
\mathbf{v}(\mathbf{x})=\lim _{\substack{\mathbf{y} \rightarrow \mathbf{x} \\ \mathbf{y} \in \Gamma(\mathbf{x})}} \mathbf{v}(\mathbf{y})
$$

whenever the limit exists.
Fix $\lambda \in R^{1}, 1<q<\infty, \mathbf{g} \in L^{q}\left(\partial \Omega, R^{m}\right)$, $h \in L^{\infty}(\partial \Omega)$. We say that $\mathbf{u} \in \mathcal{C}^{\infty}\left(\Omega, R^{m}\right), p \in \mathcal{C}^{\infty}(\Omega)$ is an L^{q}-solution of the Robin problem for the Oseen system (2), (3) if (2) holds true, $|\mathbf{u}|^{*},|\nabla \mathbf{u}|^{*}, p^{*} \in L^{q}(\partial \Omega)$, there exist the
nontangential limits of $\mathbf{u}, \nabla \mathbf{u}$ and p at almost all points of $\partial \Omega$ and (3) holds in the sense of the nontangential limits at almost all points of $\partial \Omega$.

Let \mathbf{u}, p be defined on Ω. Denote $\omega=\{\lambda \mathbf{x} ; \mathbf{x} \in \Omega\}, \tilde{\mathbf{u}}(\mathbf{x})=(2 \lambda)^{2} \mathbf{u}(\mathbf{x} /(2 \lambda))$, $\tilde{p}(\mathbf{x})=2 \lambda p(\mathbf{x} /(2 \lambda))$. Easy calculation yields that \mathbf{u}, p is an L^{q}-solution of the Robin problem for the Oseen system (2), (3) if and only if $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{q}-solution of the Robin problem for the Oseen system

$$
\begin{gather*}
-\Delta \tilde{\mathbf{u}}+\partial_{1} \tilde{\mathbf{u}}+\nabla \tilde{p}=0, \quad \nabla \cdot \tilde{\mathbf{u}}=0 \quad \text { in } \omega, \tag{4}\\
T(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n}-\frac{1}{2} n_{1} \tilde{\mathbf{u}}+\tilde{h} \tilde{\mathbf{u}}=\tilde{\mathbf{g}} \quad \text { on } \partial \omega, \tag{5}
\end{gather*}
$$

where

$$
\begin{equation*}
\tilde{h}(\mathbf{x})=2 \lambda h(\mathbf{x} /(2 \lambda)), \quad \tilde{\mathbf{g}}(\mathbf{x})=2 \lambda \mathbf{g}(\mathbf{x} /(2 \lambda)) . \tag{6}
\end{equation*}
$$

So, we can restrict ourselves to the case $2 \lambda=1$.

3 Stokes potentials

Let $\mathbf{x}=\left[x_{1}, \ldots, x_{m}\right] \in R^{m}$, where $m=2,3$. Denote the ball $B(\mathbf{x} ; r)=\{\mathbf{y} \in$ $\left.R^{m} ;|\mathbf{x}-\mathbf{y}|<r\right\}$. For $0 \neq \mathbf{x} \in R^{m}$ and $j, k \in\{1, \ldots, m\}$ we define the Stokes fundamental tensor by

$$
\begin{gather*}
E_{j k}(\mathbf{x})=\frac{1}{8 \pi}\left\{\delta_{j k} \frac{1}{|\mathbf{x}|}+\frac{x_{j} x_{k}}{|\mathbf{x}|^{3}}\right\}, \quad m=3 \tag{7}\\
E_{j k}(\mathbf{x})=\frac{1}{4 \pi}\left[\delta_{j k} \ln \frac{1}{|\mathbf{x}|}+\frac{x_{j} x_{k}}{|\mathbf{x}|^{2}}\right], \quad m=2 \tag{8}\\
Q_{k}(\mathbf{x})=\frac{x_{k}}{\mathcal{H}_{m-1}(\partial B(0 ; 1))|\mathbf{x}|^{m}} \tag{9}
\end{gather*}
$$

Here $\delta_{j k}=1$ for $j=k, \delta_{j k}=0$ otherwise and \mathcal{H}_{k} denotes the k-dimensional Hausdorff measure normalized so that \mathcal{H}_{k} is the Lebesgue measure in R^{k}.

Let $\Omega \subset R^{m}$ be an open set with compact Lipschitz boundary and $\boldsymbol{\Psi} \in$ $L^{q}\left(\partial \Omega, R^{m}\right), 1<q<\infty$. Define the Stokes single layer potential with density Ψ by

$$
\left(E_{\Omega} \mathbf{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} E(\mathbf{x}-\mathbf{y}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y})
$$

and the corresponding pressure by

$$
\left(Q_{\Omega} \mathbf{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} Q(\mathbf{x}-\mathbf{y}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y})
$$

whenever it makes sense. Then the couple $\left(E_{\Omega} \boldsymbol{\Psi}, Q_{\Omega} \boldsymbol{\Psi}\right) \in C^{\infty}\left(R^{m} \backslash \partial \Omega, R^{m+1}\right)$ solves the Stokes system

$$
\begin{equation*}
\Delta \mathbf{u}=\nabla p, \quad \nabla \cdot \mathbf{u}=0 \tag{10}
\end{equation*}
$$

in $R^{m} \backslash \partial \Omega$. Moreover, $E_{\Omega} \boldsymbol{\Psi}(\mathbf{x})$ is the nontangential limit of $E_{\Omega} \boldsymbol{\Psi}$ with respect to Ω and $R^{m} \backslash \bar{\Omega}$ at almost all $\mathbf{x} \in \Omega$. We have $\left(Q_{\Omega} \boldsymbol{\Psi}\right)^{*} \in L^{q}(\partial \Omega),\left|\nabla E_{\Omega} \boldsymbol{\Psi}\right|^{*} \in$ $L^{q}(\partial \Omega)$. If Ω is bounded or $m=2$ or $\int \boldsymbol{\Psi} \mathrm{d} \mathcal{H}_{m-1}=0$ then $\left|E_{\Omega} \boldsymbol{\Psi}\right|^{*} \in L^{q}(\partial \Omega)$. (See [22].) (If $\Omega \subset R^{2}$ is unbounded and $\int \boldsymbol{\Psi} \mathrm{d} \mathcal{H}_{1} \neq 0$ then $\left|E_{\Omega} \boldsymbol{\Psi}\right|^{*} \equiv \infty$ on $\partial \Omega$.)

For $\mathbf{y} \in \partial \Omega$ we define $K^{\Omega}(\cdot, \mathbf{y})=T(E(\cdot-\mathbf{y}), Q(\cdot-\mathbf{y})) \mathbf{n}^{\Omega}(\mathbf{y})$ on $R^{m} \backslash\{\mathbf{y}\}$. We have

$$
K_{j, k}^{\Omega}(\mathbf{x}, \mathbf{y})=\frac{m}{\mathcal{H}_{m-1}(\partial B(0 ; 1))} \frac{\left(y_{j}-x_{j}\right)\left(y_{k}-x_{k}\right)(\mathbf{y}-\mathbf{x}) \cdot \mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{x}-\mathbf{y}|^{m+2}}
$$

Denote

$$
\Pi_{k}^{\Omega}(\mathbf{x}, \mathbf{y})=\frac{2}{\mathcal{H}_{m-1}(\partial B(0 ; 1))}\left\{-m \frac{\left(y_{k}-x_{k}\right)(\mathbf{y}-\mathbf{x}) \cdot \mathbf{n}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m+2}}+\frac{n_{k}^{\Omega}(\mathbf{y})}{|\mathbf{y}-\mathbf{x}|^{m}}\right\}
$$

For $\boldsymbol{\Psi} \in L^{q}\left(\partial \Omega, R^{m}\right)$ we define the Stokes double layer potential with density Ψ by

$$
\left(D_{\Omega} \mathbf{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} K^{\Omega}(\mathbf{x}, \mathbf{y}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}), \quad \mathbf{x} \in R^{m} \backslash \partial \Omega
$$

and the corresponding pressure by

$$
\left(\Pi_{\Omega} \boldsymbol{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} \Pi^{\Omega}(\mathbf{x}-\mathbf{y}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}), \quad \mathbf{x} \in R^{m} \backslash \partial \Omega
$$

Then the pair $\left(D_{\Omega} \boldsymbol{\Psi}, \Pi_{\Omega} \boldsymbol{\Psi}\right) \in C^{\infty}\left(R^{m} \backslash \partial \Omega\right)^{m+1}$ solves the Stokes system (10) in $R^{m} \backslash \partial \Omega$. For $\mathbf{x} \in \partial \Omega$ we denote

$$
\begin{aligned}
& \left(K_{\Omega} \mathbf{\Psi}\right)(\mathbf{x})=\lim _{\delta \downarrow 0} \int_{\partial \Omega \backslash B(\mathbf{x}, \delta)} K^{\Omega}(\mathbf{x}, \mathbf{y}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}), \\
& \left(K_{\Omega}^{\prime} \mathbf{\Psi}\right)(\mathbf{x})=\lim _{\delta \downarrow 0} \int_{\partial \Omega \backslash B(\mathbf{x}, \delta)} K^{\Omega}(\mathbf{y}, \mathbf{x}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) .
\end{aligned}
$$

Then $K_{\Omega}, K_{\Omega}^{\prime}$ are bounded linear operators on $L^{q}\left(\partial \Omega, R^{m}\right)$. Moreover, there exist the non-tangential limits of $\nabla E_{\Omega} \boldsymbol{\Psi}, Q_{\Omega} \boldsymbol{\Psi}$ and $D_{\Omega} \boldsymbol{\Psi}$ at almost all points of $\partial \Omega$. If we denote by $[f]_{+}$the non-tangential limit of f with respect to Ω and by $[f]_{-}$the non-tangential limit of f with respect to $R^{m} \backslash \bar{\Omega}$, then

$$
\begin{gather*}
{\left[D_{\Omega} \boldsymbol{\Psi}\right]_{ \pm}(\mathbf{x})= \pm \frac{1}{2} \boldsymbol{\Psi}(\mathbf{z})+K_{\Omega} \boldsymbol{\Psi}(\mathbf{z}),} \tag{11}\\
{\left[T\left(E_{\Omega} \boldsymbol{\Psi}, Q_{\Omega} \boldsymbol{\Psi}\right)\right]_{ \pm} \mathbf{n}^{\Omega}= \pm \frac{1}{2} \boldsymbol{\Psi}-K_{\Omega}^{\prime} \boldsymbol{\Psi} .} \tag{12}
\end{gather*}
$$

(See [22].)

4 Oseen fundamental tensor

If $O_{j k}(\mathbf{x}), Z_{j}(\mathbf{x})$ are tempered distributions then $O_{j k}, Z_{j}$ is called a fundamental tensor for the Oseen equation (4) in $R^{m}, m=2,3$, if

$$
\begin{gathered}
-\Delta O_{j k}+\partial_{1} O_{j k}+\partial_{j} Z_{k}(\cdot)=\delta_{j k} \\
\partial_{1} O_{1 k}+\ldots+\partial_{m} O_{m k}=0
\end{gathered}
$$

for $j, k=1, \ldots, m$. We are interested in fundamental tensors such that $O_{j k}(\mathbf{x}) \rightarrow$ $0, Z_{j}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$. The existence of such fundamental tensor was proved in [10], §VII.3. The explicit formula of the fundamental tensor of the Oseen system is very complicated. We only gather properties of the fundamental tensor (see [10] or [24]): We have $O_{j k}=O_{k j} \in \mathcal{C}^{\infty}\left(R^{m} \backslash\{0\}\right.$),

$$
\begin{equation*}
Z_{k}(\mathbf{x})=Q_{k}(\mathbf{x}) \tag{13}
\end{equation*}
$$

If β is a multi-index, then we have

$$
\begin{equation*}
\partial^{\beta} O_{j k}(\mathbf{x}) \mid=O\left(|\mathbf{x}|^{(1-m-|\beta|) / 2}\right) \quad \text { as }|\mathbf{x}| \rightarrow \infty \tag{14}
\end{equation*}
$$

If $|\mathbf{z}| \neq\left|z_{1}\right|$ then

$$
\begin{equation*}
\lim _{r \rightarrow \infty}|O(r \mathbf{z})| r^{(m-1) / 2}=0 \tag{15}
\end{equation*}
$$

If $r>0$ and $q>1+1 / m$ then we have

$$
\begin{equation*}
\left|\nabla O_{j k}\right| \in L^{q}\left(R^{m} \backslash B(0 ; r)\right) \tag{16}
\end{equation*}
$$

Denote

$$
\begin{equation*}
R_{j k}(\mathbf{x})=O_{j k}(\mathbf{x})-E_{j k}(\mathbf{x}) \tag{17}
\end{equation*}
$$

If $m=3$ then

$$
\begin{equation*}
\left|\partial^{\alpha} R(\mathbf{x})\right|=O\left(|x|^{-|\alpha|}\right) \quad \text { as }|\mathbf{x}| \rightarrow 0 . \tag{18}
\end{equation*}
$$

If $m=2$ then

$$
\begin{gather*}
|R(\mathbf{x})|=O(1) \quad \text { as }|\mathbf{x}| \rightarrow 0 \tag{19}\\
|\nabla R(\mathbf{x})|=O(\ln |\mathbf{x}|) \quad \text { as }|\mathbf{x}| \rightarrow 0 \tag{20}\\
\left|\partial^{\alpha} R(\mathbf{x})\right|=O\left(|x|^{-|\alpha|+1}\right) \quad \text { as }|\mathbf{x}| \rightarrow 0 \quad \text { for }|\alpha| \geq 2 \tag{21}
\end{gather*}
$$

Lemma 4.1. If $\lambda \neq 0$ and u_{1}, \ldots, u_{m}, p are tempered distributions in R^{m} satisfying (2) in R^{m} in the sense of distributions, then u_{1}, \ldots, u_{m}, p are polynomials.

Proof. For R^{3} [15], Proposition 6.1. The proof is literally the same for other dimensions.
Corollary 4.2. Let $m=2$ or $m=3$. Then there exists a unique fundamental tensor $O_{j k}(\mathbf{x}), Z_{j}(\mathbf{x})$ for the Oseen equation (4) in R^{m} such that $O_{j k}(\mathbf{x}) \rightarrow 0$, $Z_{j}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$.

Proof. If $\tilde{O}_{j k}(\mathbf{x}), \tilde{Z}_{j}(\mathbf{x})$ is another such fundamental tensor then $\tilde{O}_{j k}-O_{j k}$, $\tilde{Z}_{j}-Z_{j}$ is a solution of the equation (4) in R^{m}. Lemma 4.1 gives that $\tilde{O}_{j k}-O_{j k} \equiv$ $0, \tilde{Z}_{j}-Z_{j} \equiv 0$.

5 Oseen potentials

Let $\Omega \subset R^{m}$ be an open set with Lipschitz boundary, $m=2$ or $m=3$. For $\Psi \in L^{q}\left(\partial \Omega, R^{m}\right)$ with $1<q<\infty$ define the Oseen single layer potential with density $\boldsymbol{\Psi}$

$$
O_{\Omega} \boldsymbol{\Psi}(\mathbf{x})=\int_{\partial \Omega} O(\mathbf{x}-\mathbf{y}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y})
$$

Clearly $O_{\Omega} \boldsymbol{\Psi}, Q_{\Omega} \boldsymbol{\Psi}$ is a solution of the Oseen equation (4) in $R^{m} \backslash \partial \Omega$. Denote

$$
R_{\Omega} \boldsymbol{\Psi}(\mathbf{x})=\int_{\partial \Omega} R(\mathbf{x}-\mathbf{y}) \boldsymbol{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y})=O_{\Omega} \mathbf{\Psi}(\mathbf{x})-E_{\Omega} \mathbf{\Psi}(\mathbf{x})
$$

For $\mathbf{y} \in \partial \Omega$ and $\mathbf{x} \in R^{m} \backslash\{\mathbf{y}\}$ define $K^{\Omega, O s}(\cdot, \mathbf{y})=T\left(O\left(\cdot-\mathbf{y}, Q(\cdot-\mathbf{y}) \mathbf{n}^{\Omega}(\mathbf{y})-\right.\right.$ $n_{1}^{\Omega} O(\cdot-\mathbf{y}) / 2$, i.e.

$$
\begin{align*}
K_{j, k}^{\Omega, O s}(\mathbf{x}, \mathbf{y})= & \mathbf{n}^{\Omega}(\mathbf{y}) \cdot \nabla_{\mathbf{y}} O_{j k}(\mathbf{x}-\mathbf{y})+\sum_{i=1}^{m} n_{i}^{\Omega}(\mathbf{y}) \frac{\partial}{\partial y_{k}} O_{j i}(\mathbf{x}-\mathbf{y}) \tag{22}\\
& +n_{k}^{\Omega}(\mathbf{y}) Q_{j}(\mathbf{x}-\mathbf{y})+\frac{n_{1}^{\Omega}(\mathbf{y})}{2} O_{j k}(\mathbf{x}-\mathbf{y}) \tag{23}
\end{align*}
$$

Denote

$$
\begin{align*}
\Pi_{k}^{\Omega, O s}(\mathbf{x}, \mathbf{y})= & \mathbf{n}^{\Omega}(\mathbf{y}) \cdot \nabla_{\mathbf{y}} Q_{k}(\mathbf{x}-\mathbf{y})+\sum_{i=1}^{m} n_{i}^{\Omega}(\mathbf{y}) \frac{\partial}{\partial y_{k}} Q_{i}(\mathbf{x}-\mathbf{y}) \tag{24}\\
& -n_{k}^{\Omega}(\mathbf{y}) Q_{1}(\mathbf{x}-\mathbf{y})+\frac{n_{1}^{\Omega}(\mathbf{y})}{2} Q_{k}(\mathbf{x}-\mathbf{y}) \tag{25}
\end{align*}
$$

For $\boldsymbol{\Psi} \in L^{q}\left(\partial \Omega, R^{m}\right)$ we define the Oseen double layer potential with density Ψ by

$$
\left(D_{\Omega}^{O s} \mathbf{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} K^{\Omega, O s}(\mathbf{x}, \mathbf{y}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}), \quad \mathbf{x} \in R^{m} \backslash \partial \Omega
$$

and the corresponding pressure by

$$
\left(\Pi_{\Omega}^{O s} \mathbf{\Psi}\right)(\mathbf{x})=\int_{\partial \Omega} \Pi^{\Omega, O s}(\mathbf{x}-\mathbf{y}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}), \quad \mathbf{x} \in R^{m} \backslash \partial \Omega
$$

For $\mathbf{x} \in \partial \Omega$ we denote

$$
\left(K_{\Omega, O s} \mathbf{\Psi}\right)(\mathbf{x})=\lim _{\delta \downarrow 0} \int_{\partial \Omega \backslash B(\mathbf{x}, \delta)} K^{\Omega, O s}(\mathbf{x}, \mathbf{y}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) .
$$

$$
\left(K_{\Omega, O s}^{\prime} \Psi\right)(\mathbf{x})=\lim _{\delta \downarrow 0} \int_{\partial \Omega \backslash B(\mathbf{x}, \delta)} K^{\Omega, O s}(\mathbf{y}, \mathbf{x}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) .
$$

Lemma 5.1. Let $m \in N$. Then there exists a constant C such that for all Borel measurable function f, and $\mathbf{x} \in R^{m}, r>0,0<\alpha<m, \beta>0$

$$
\int_{B(\mathbf{x} ; r)} \frac{|f(\mathbf{y})|}{|\mathbf{x}-\mathbf{y}|^{m-\alpha}} \mathrm{d} \mathcal{H}_{m}(\mathbf{y}) \leq C r^{\alpha} M f(x)
$$

where

$$
M f(\mathbf{x})=\sup _{r>0} \int_{B(\mathbf{x} ; r)} \frac{|f(\mathbf{y})|}{\mathcal{H}_{m}(B(0 ; r))} \mathrm{d} \mathcal{H}_{m}(\mathbf{y})
$$

(See [28], Lemma 2.8.3.)
Proposition 5.2. Let $\Omega \subset R^{m}$ be an open set with compact Lipschitz boundary. Let \mathcal{K} be a function defined on $\bar{\Omega} \times \partial \Omega$. Suppose that $\mathcal{K}(\mathbf{x}, \cdot)$ is Borel measurable, $\mathcal{K}(\cdot, \mathbf{y})$ is continuous on $\bar{\Omega} \backslash\{\mathbf{y}\}$ for all $\mathbf{y} \in \partial \Omega$ and $|\mathcal{K}(\mathbf{x}, \mathbf{y})| \leq$ $C_{1}|\mathbf{x}-\mathbf{y}|^{\alpha+1-m}$ with $0<\alpha<m-1$. For $f \in L^{q}(\partial \Omega), 1<q<\infty$ define

$$
\begin{equation*}
\mathcal{K} f(\mathbf{x})=\int_{\partial \Omega} \mathcal{K}(\mathbf{x}, \mathbf{y}) f(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) \tag{26}
\end{equation*}
$$

Then there exists a constant C_{2} dependent on Ω, q and α such that

$$
\left\|(\mathcal{K} f)^{*}\right\|_{L^{q}(\partial \Omega)} \leq C_{2}\|f\|_{L^{q}(\partial \Omega)}
$$

$\mathcal{K} f$ is finite almost everywhere on $\partial \Omega, \mathcal{K} f(\mathbf{x})$ is the nontangential limit of $\mathcal{K} f$ for almost all $\mathbf{x} \in \partial \Omega$ and $\|\mathcal{K} f\|_{L^{q}(\partial \Omega)} \leq C_{2}\|f\|_{L^{q}(\partial \Omega)}$.

Proof. There are $\mathbf{z}^{1}, \ldots, \mathbf{z}^{k} \in \partial \Omega$ and $\delta>0$ such that $\partial \Omega \subset B\left(\mathbf{z}^{1} ; \delta\right) \cup \ldots \cup$ $B\left(\mathbf{z}^{k} ; \delta\right)$ and for each $j \in\{1, \ldots, k\}$ there is a coordinate system centered at \mathbf{z}^{j} and a Lipschitz continuous function φ^{j} such that $B(0 ; 2 \delta) \cap \Omega=\left\{\left[\mathbf{x}^{\prime}, x_{m}\right] \in\right.$ $\left.B(0 ; 2 \delta) ; x_{m}>\varphi^{j}\left(\mathbf{x}^{\prime}\right)\right\}$. Choose a constant L such that $\left|\nabla \varphi^{j}\right| \leq L$. Let $\mathbf{z} \in \partial \Omega$. Choose j such that $\mathbf{z} \in B\left(\mathbf{z}^{j} ; \delta\right)$. Let $\mathbf{x} \in \Gamma(\mathbf{z})$. If $|\mathbf{x}-\mathbf{z}| \geq \delta$ then $\operatorname{dist}(\mathbf{x}, \partial \Omega) \geq$ $\delta /(1+a)$ and

$$
|\mathcal{K} f(\mathbf{x})| \leq C_{1}\left(\frac{\delta}{1+a}\right)^{\alpha+1-m}\|f\|_{L^{1}(\partial \Omega)} \leq C_{3}\|f\|_{L^{q}(\partial \Omega)}
$$

where $C_{3}=C_{1}[\delta /(1+a)]^{\alpha+1-m} \mathcal{H}_{m-1}(\partial \Omega)^{(p-1) / p}$. Let now $|\mathbf{x}-\mathbf{z}|<\delta$. For $\tilde{\sim}^{0}<r \leq 1$ put $f_{r}=f$ on $\partial \Omega \cap B\left(\mathbf{z}^{j}, 2 r \delta\right), f_{r}=0$ elsewhere, $g_{r}=f-f_{r}$, $\tilde{f}_{1}\left(\mathbf{x}^{\prime}\right)=f_{1}\left(\mathbf{x}^{\prime}, \varphi^{j}\left(x^{\prime}\right)\right)$. Then

$$
\left|\mathcal{K} g_{1}(\mathbf{x})\right| \leq C_{1} \delta^{\alpha+1-m}\left\|g_{1}\right\|_{L^{1}(\partial \Omega)} \leq C_{3}\|f\|_{L^{q}(\partial \Omega)}
$$

If $\mathbf{y} \in \partial \Omega$ then $|\mathbf{z}-\mathbf{y}| \leq|\mathbf{z}-\mathbf{x}|+|\mathbf{y}-\mathbf{x}| \leq(1+a)|\mathbf{y}-\mathbf{x}|+|\mathbf{y}-\mathbf{x}|$. According to Lemma 5.1 there exists a constant C_{4} such that

$$
\begin{aligned}
& \max \left(\left|\mathcal{K} f_{r}(\mathbf{z})\right|,\left|\mathcal{K} f_{r}(\mathbf{x})\right|\right) \leq \int_{B\left(\mathbf{z}^{j} ; r 2 \delta\right)} C_{1}\left(\frac{|\mathbf{y}-\mathbf{z}|}{2+a}\right)^{\alpha+1-m}|f(\mathbf{y})| \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) \\
\leq & \int_{\left\{\mathbf{y}^{\prime} \in R^{m-1} ;\left|\mathbf{y}^{\prime}\right|<r 2 \delta\right\}} C_{1}\left(\frac{\left|\mathbf{y}^{\prime}\right|}{2+a}\right)^{\alpha+1-m}\left|\tilde{f}_{1}\left(\mathbf{y}^{\prime}\right)\right| \sqrt{1+L^{2}} \mathrm{~d} \mathcal{H}_{m-1} \leq C_{4} r^{\alpha} M \tilde{f}_{1}\left(\mathbf{z}^{\prime}\right) .
\end{aligned}
$$

Thus $(\mathcal{K} f)^{*}(\mathbf{z}) \mid \leq C_{3}\|f\|_{L^{q}(\partial \Omega)}+C_{4} M \tilde{f}_{1}(\mathbf{z})$. Since there exists a constant C_{5} such that $\|M g\|_{L^{q}} \leq C_{5}\|g\|_{L^{q}}$ (see [28], Theorem 2.8.2), we have $\left\|(\mathcal{K} f)^{*}\right\|_{L^{q}(\partial \Omega)} \leq$ $C_{3}\|f\|_{L^{q}(\partial \Omega)}+C_{4} C_{5}\left\|\tilde{f}_{1}\right\|_{L^{q}} \leq\left(C_{3}+C_{4} C_{5}\right)\|f\|_{L^{q}(\partial \Omega)}$.

Let $\mathbf{z}=\left[\mathbf{z}^{\prime}, z_{m}\right]$ be as above. We use the same notation. $M \tilde{f}_{1}$ is finite at almost all points of \mathbf{x}^{\prime} with $\left|\mathbf{x}^{\prime}\right|<\delta$. Suppose that $M \tilde{f}_{1}\left(\mathbf{z}^{\prime}\right)<\infty$. Fix $\epsilon>0$. We can choose $0<r \leq 1$ such that $C_{4} r^{\alpha} M \tilde{f}_{1}\left(\mathbf{z}^{\prime}\right)<\epsilon / 3$. Then $\left|\mathcal{K} f_{r}(\mathbf{z})\right|<\epsilon / 3$. If $\mathbf{x} \in \Gamma(\mathbf{z}),|\mathbf{x}-\mathbf{z}|<\delta$ then $\left|\mathcal{K} f_{r}(\mathbf{z})\right|<\epsilon / 3$. Since $\mathcal{K} g_{r}$ is continuous in \mathbf{z} by the Theorem on continuity of parametrized integrals there exist $\rho \in(0, \delta)$ such that $\left|\mathcal{K} g_{r}(\mathbf{x})-\mathcal{K} g_{r}(\mathbf{z})\right|<\epsilon / 3$ for $|\mathbf{x}-\mathbf{z}|<\rho$. If $\mathbf{x} \in \Gamma(\mathbf{z}),|\mathbf{x}-\mathbf{z}|<\rho$ then $|\mathcal{K} f(\mathbf{x})-\mathcal{K} f(\mathbf{z})| \leq\left|\mathcal{K} g_{r}(\mathbf{x})-\mathcal{K} g_{r}(\mathbf{z})\right|+\left|\mathcal{K} f_{r}(\mathbf{x})\right|+\left|\mathcal{K} f_{r}(\mathbf{z})\right|<\epsilon$.

By virtue of limit

$$
\|\mathcal{K} f\|_{L^{q}(\partial \Omega)} \leq\left\|(\mathcal{K} f)^{*}\right\|_{L^{q}(\partial \Omega)} \leq C_{2}\|f\|_{L^{q}(\partial \Omega)}
$$

Proposition 5.3. Let $\Omega \subset R^{m}$ be an open set with compact Lipschitz boundary, $m=2$ or $m=3$, and $1<q<\infty$. If $\mathbf{\Psi} \in L^{q}\left(\partial \Omega, R^{m}\right)$ then $O_{\Omega} \boldsymbol{\Psi}(\mathbf{z})$ it the non-tangential limit of $O_{\Omega} \mathbf{\Psi}$ at \mathbf{z} for almost all $\mathbf{z} \in \partial \Omega$. There exists a constant C such that $\left\|\left(O_{\Omega} \boldsymbol{\Psi}\right)^{*}\right\|_{L^{q}(\partial \Omega)} \leq C\|\boldsymbol{\Psi}\|_{L^{q}(\partial \Omega)}$. The operator O_{Ω} is a compact bounded linear operator in $L^{q}\left(\partial \Omega, R^{m}\right)$.

Proof. For $\mathbf{x} \in \partial \Omega$ denote

$$
M_{1}(\mathbf{f})(\mathbf{x})=\sup \{|\mathbf{f}(\mathbf{y})| ; \mathbf{y} \in \Gamma(\mathbf{x}) \cap B(\mathbf{x} ; 1)\}
$$

According to [22] there exists a constant C_{1} such that $\left\|M_{1}\left(E_{\Omega} \boldsymbol{\Psi}\right)\right\|_{L^{q}(\partial \Omega)} \leq$ $C_{1}\|\boldsymbol{\Psi}\|_{L^{q}(\partial \Omega)}$ for $\boldsymbol{\Psi} \in L^{q}\left(\partial \Omega, R^{m}\right)$. Moreover, if $\boldsymbol{\Psi} \in L^{q}\left(\partial \Omega, R^{m}\right)$ then $E_{\Omega} \boldsymbol{\Psi}(\mathbf{z})$ it the non-tangential limit of $E_{\Omega} \boldsymbol{\Psi}$ at \mathbf{z} for almost all $\mathbf{z} \in \partial \Omega$. Since there exists a constant C_{2} such that $|R(\mathbf{y})| \leq C_{2}$ for $|\mathbf{y}| \leq 1+\operatorname{diam} \partial \Omega$, Proposition 5.2 gives that $O_{\Omega} \boldsymbol{\Psi}(\mathbf{z})$ it the non-tangential limit of $O_{\Omega} \mathbf{\Psi}$ at \mathbf{z} for almost all $\mathbf{z} \in \partial \Omega$, and there exists a constant C_{3} such that $\left\|M_{1}\left(O_{\Omega} \boldsymbol{\Psi}\right)\right\|_{L^{q}(\partial \Omega)} \leq C_{3}\|\boldsymbol{\Psi}\|_{L^{q}(\partial \Omega)}$ for $\boldsymbol{\Psi} \in L^{q}\left(\partial \Omega, R^{m}\right)$. Since $O_{j k}(\mathbf{y}) \rightarrow 0$ as $|\mathbf{y}| \rightarrow \infty$, there exists a constant C_{4} such that $\left\|\left(O_{\Omega} \boldsymbol{\Psi}\right)^{*}\right\|_{L^{q}(\partial \Omega)} \leq C_{4}\|\boldsymbol{\Psi}\|_{L^{q}(\partial \Omega)}$ for $\boldsymbol{\Psi} \in L^{q}\left(\partial \Omega, R^{m}\right)$.

The operator E_{Ω} is a compact linear operator on $L^{q}\left(\partial \Omega, R^{m}\right)$ by [22]. Since $R(\mathbf{x}-\mathbf{y})$ is bounded on $\partial \Omega \times \partial \Omega$, the operator R_{Ω} is a compact linear operator on $L^{q}\left(\partial \Omega, R^{m}\right)$ by [9], $\S 4.5 .2$, Satz 2.

Lemma 5.4. Let $\Omega \subset R^{m}$ be an open set with compact Lipschitz boundary, $m=2$ or $m=3$, and $1<q<\infty$. If $\Psi \in L^{q}\left(\partial \Omega, R^{m}\right)$ and $j \in\{1, \ldots, m\}$ then

$$
\begin{equation*}
\partial_{j} R \Psi(\mathbf{x})=\lim _{\epsilon \downarrow 0} \int_{\partial \Omega \backslash B(\mathbf{x} ; \epsilon)} \partial_{j} R(\mathbf{x}-\mathbf{y}) \mathbf{\Psi}(\mathbf{y}) \mathrm{d} \mathcal{H}_{m-1}(\mathbf{y}) \tag{27}
\end{equation*}
$$

for $\mathbf{x} \in R^{m} \backslash \partial \Omega$. Define $\partial_{j} R \mathbf{\Psi}(\mathbf{x})$ by the limit (27) whenever this limit makes sense. Then $\partial_{j} R$ is a compact linear operator on $L^{q}\left(\partial \Omega, R^{m}\right)$. There exists a constant C such that if $\Psi \in L^{q}\left(\partial \Omega, R^{m}\right)$ then

$$
\left\|\left(\partial_{j} R \Psi\right)^{*}\right\|_{L^{q}(\partial \Omega)} \leq\|\boldsymbol{\Psi}\|_{L^{q}(\partial \Omega)}
$$

and $\partial_{j} R \Psi(\mathbf{x})$ is the non-tangential limit of $\partial_{j} R \Psi$ at almost all $\mathbf{x} \in \partial \Omega$.
Proof. Since there exists a constant C_{1} such that $\left|\partial_{j} R(\mathbf{x}-\mathbf{y})\right| \leq C_{1} \mid \mathbf{x}-$ $\left.\mathbf{y}\right|^{1-m-1 / 2}$, the lemma is an easy consequence of Proposition 5.2.

Proposition 5.5. Let $\Omega \subset R^{m}$ be an open set with compact Lipschitz boundary, $m=2$ or $m=3$, and $1<q<\infty$. Then $K_{\Omega, O s}^{\prime}$ is a bounded linear operator on $L^{q}\left(\partial \Omega, R^{m}\right)$. If $\boldsymbol{\Psi} \in L^{q}(\partial \Omega)$ then $\left\|\left(\nabla O_{\Omega} \boldsymbol{\Psi}\right)^{*}\right\|_{L^{q}(\partial \Omega)} \leq C\|\boldsymbol{\Psi}\|_{L^{q}(\partial \Omega)}$ with C dependent only on Ω and $q, \nabla O_{\Omega} \Psi$ has a non-tangential limit at almost all points of $\partial \Omega$, and

$$
\left[T\left(O_{\Omega} \boldsymbol{\Psi}, Q_{\Omega} \boldsymbol{\Psi}\right)\right]_{ \pm} \mathbf{n}^{\Omega}-\frac{1}{2} n_{1}^{\Omega} O_{\Omega} \boldsymbol{\Psi}= \pm \frac{1}{2} \boldsymbol{\Psi}-K_{\Omega, O s}^{\prime} \boldsymbol{\Psi}
$$

Proof. The proposition is an easy consequence of (12), Lemma 5.4 and Lemma 5.3.
Lemma 5.6. $\nabla \cdot Q=0,-\Delta Q+\partial_{1} Q-\nabla Q_{1}=0$ in $R^{m} \backslash\{0\}$ in the sense of distributions.

Proof. Denote $h_{\text {Lap }}(\mathbf{x})=-(2 \pi)^{-1} \ln |\mathbf{x}|$ for $m=2, h_{\text {Lap }}(\mathbf{x})=(4 \Pi)^{-1}|\mathbf{x}|$ for $m=3$. Then $h_{\text {Lap }}$ is a fundamental solution for the Laplace equation. We have $Q=-\nabla h_{\text {Lap }}$. Thus

$$
\begin{gathered}
\nabla \cdot Q=-\Delta h_{L a p}=0 \\
-\Delta Q_{j}+\partial_{1} Q_{j}=\Delta \partial_{j} h_{L a p}-\partial_{1} \partial_{j} h_{L a p}=\partial_{j}\left(\Delta h_{L a p}-\partial_{1} h_{L a p}\right)=\partial_{j} Q_{1}
\end{gathered}
$$

Proposition 5.7. Let $\Omega \subset R^{m}$ be an open set with compact Lipschitz boundary, $m=2$ or $m=3$, and $1<q<\infty$. If $\boldsymbol{\Psi} \in L^{q}\left(\partial \Omega, R^{m}\right)$ then $D_{\Omega}^{O s} \boldsymbol{\Psi}, \Pi_{\Omega}^{O s} \boldsymbol{\Psi}$ is a solution of the Oseen system (4) in $R^{m} \backslash \partial \Omega$.

Proof. If $\mathbf{y} \in \partial \Omega, k \in\{1, \ldots, m\}$ then $\left[K_{1, k}^{\Omega, O s}(\mathbf{x}, \mathbf{y}), \ldots, K_{m, k}^{\Omega, O s}(\mathbf{x}, \mathbf{y}), \Pi_{k}(\mathbf{x}, \mathbf{y})\right]$ is a solution of the Oseen system (4) in $R^{m} \backslash\{\mathbf{y}\}$ by Lemma 5.6. So, $D_{\Omega}^{O s} \boldsymbol{\Psi}$, $\Pi_{\Omega}^{O s} \mathbf{\Psi}$ is a solution of the Oseen system (4) in $R^{m} \backslash \partial \Omega$.

Proposition 5.8. Let $\Omega \subset R^{m}$ be an open set with compact Lipschitz boundary, $m=2$ or $m=3$, and $1<q<\infty$. Then $K_{\Omega, O s}$ is a bounded linear operator on $L^{q}\left(\partial \Omega, R^{m}\right)$. If $\boldsymbol{\Psi} \in L^{q}(\partial \Omega)$ then $\left\|\left(D_{\Omega}^{O s} \boldsymbol{\Psi}\right)^{*}\right\|_{L^{q}(\partial \Omega)} \leq C\|\boldsymbol{\Psi}\|_{L^{q}(\partial \Omega)}$ with C dependent only on Ω and $q, D_{\Omega}^{O s} \boldsymbol{\Psi}$ has a non-tangential limit at almost all points of $\partial \Omega$, and

$$
\left.\left[D_{\Omega}^{O s} \mathbf{\Psi}\right)\right]_{ \pm} \mathbf{n}^{\Omega}= \pm \frac{1}{2} \boldsymbol{\Psi}+K_{\Omega, O s} \boldsymbol{\Psi}
$$

Proof. The proposition is an easy consequence of (11), Lemma 5.3 and Lemma 5.4.
Proposition 5.9. Let $\omega \subset R^{m}$ be a bounded domain with Lipschitz boundary, $\tilde{h} \equiv 0, \tilde{\mathbf{g}} \in L^{q}\left(\partial \Omega, R^{m}\right), 1<q<\infty, m=2$ or $m=3$. If $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{q}-solution of the Neumann problem (4), (5) then

$$
\begin{equation*}
\tilde{\mathbf{u}}=O_{\omega} \tilde{\mathbf{g}}+D_{\omega}^{O s} \tilde{\mathbf{u}}, \quad \tilde{p}=Q_{\omega} \tilde{\mathbf{g}}+\Pi_{\omega}^{O s} \tilde{\mathbf{u}} \tag{28}
\end{equation*}
$$

Proof. Let $\Omega(j)$ be domains from Lemma 6.1. Green's formula gives (28) for $\Omega(j)$ (see [10], §VII.6). By virtue of Lebesgue lemma be obtain (28) for ω.

6 Regular L^{2}-solution of the Dirichlet problem

Let $\omega \subset R^{m}$ be a domain with compact Lipschitz boundary, $m=2$ or $m=3$, $\mathbf{g} \in W^{1,2}(\partial \omega)$. We say that $\tilde{\mathbf{u}} \in \mathcal{C}^{2}\left(\Omega, R^{m}\right), \tilde{p} \in \mathcal{C}^{1}(\Omega)$ is a regular L^{2}-solution of the Dirichlet problem (4),

$$
\begin{equation*}
\tilde{\mathbf{u}}=\mathbf{g} \quad \text { on } \partial \omega \tag{29}
\end{equation*}
$$

if $\tilde{\mathbf{u}}, \tilde{p}$ is a solution of the Oseen system (4) in ω, the non-tangential maximal functions $(|\tilde{\mathbf{u}}|)^{*},(|\nabla \tilde{\mathbf{u}}|)^{*}, \tilde{p}^{*} \in L^{2}(\partial \omega)$, there exist the non-tangential limits of $\tilde{\mathbf{u}}, \nabla \tilde{\mathbf{u}}, \tilde{p}$ at almost all points of $\partial \omega$, and the Dirichlet condition (29) is fulfilled in the sense of the non-tangential limit at almost all points of $\partial \omega$.

If ω is a bounded open set with connected boundary we shall look for a solution in the form of an Oseen single layer potential $\tilde{\mathbf{u}}=O_{\omega} \boldsymbol{\Psi}, \tilde{p}=Q_{\omega} \boldsymbol{\Psi}$ with $\boldsymbol{\Psi} \in L^{2}\left(\partial \omega, R^{m}\right)$. Let now $G(1), \ldots, G(k)$ be all bounded components of $R^{m} \backslash \bar{\omega}$. If $k \in N$ we cannot look for a solution of this problem in this form because

$$
\begin{equation*}
\int_{\partial G(j)}\left(O_{\omega} \boldsymbol{\Psi}\right) \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}=0 \tag{30}
\end{equation*}
$$

by the Divergence theorem. But this is not a necessary condition for the solvability of the problem. Fix open balls $B(j)$ such that $\bar{B}(j) \subset G(j)$. We shall
look for a solution of the Dirichlet problem (4), (29) in the form of a modified Oseen single layer potential

$$
\begin{align*}
& \tilde{\mathbf{u}}=O_{\omega} \boldsymbol{\Psi}+\sum_{j=1}^{k}\left(D_{B(j)}^{O s} \mathbf{n}^{B(j)}\right) \int_{\partial G(j)} \boldsymbol{\Psi} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}, \tag{31}\\
& \tilde{p}=Q_{\omega} \boldsymbol{\Psi}+\sum_{j=1}^{k}\left(\Pi_{B(j)}^{O s} \mathbf{n}^{B(j)}\right) \int_{\partial G(j)} \boldsymbol{\Psi} \cdot \mathbf{n}^{\Omega} \mathrm{d} \mathcal{H}_{m-1} \tag{32}
\end{align*}
$$

with $\boldsymbol{\Psi} \in L^{2}\left(\partial \omega, R^{m}\right)$.
Lemma 6.1. If $\Omega \subset R^{m}$ is a bounded domain with Lipschitz boundary then there is a sequence of domains Ω_{j} with boundaries of class C^{∞} such that

- $\bar{\Omega}_{j} \subset \Omega$.
- There are $a>0$ and homeomorphisms $\Lambda_{j}: \partial \Omega \rightarrow \partial \Omega_{j}$, such that $\Lambda_{j}(\mathbf{y}) \in$ $\Gamma_{a}(\mathbf{y})$ for each j and each $\mathbf{y} \in \partial \Omega$ and $\sup \left\{\left|\mathbf{y}-\Lambda_{j}(\mathbf{y})\right| ; \mathbf{y} \in \partial \Omega\right\} \rightarrow 0$ as $j \rightarrow \infty$.
- There are positive functions ω_{j} on $\partial \Omega$ bounded away from zero and infinity uniformly in j such that for any measurable set $E \subset \partial \Omega, \int_{E} \omega_{j} d \mathcal{H}_{m-1}=$ $\mathcal{H}_{m-1}\left(\Lambda_{j}(E)\right)$, and so that $\omega_{j} \rightarrow 1$ point wise a.e. and in every $L^{s}(\partial \Omega)$, $1 \leq s<\infty$.
- The normal vectors to $\Omega_{j}, \mathbf{n}\left(\Lambda_{j}(\mathbf{y})\right)$, converge point wise a.e. and in every $L^{s}(\partial \Omega), 1 \leq s<\infty$, to $\mathbf{n}(\mathbf{y})$.
(See [27], Theorem 1.12)
Lemma 6.2. Let $\omega \subset \mathcal{N}^{m}$ be a domain with compact Lipschitz boundary, $1<$ $q<\infty, q^{\prime}=q /(q-1), \tilde{h} \in L^{\infty}(\partial \omega), \tilde{\mathbf{g}} \in L^{q}\left(\partial \Omega, R^{m}\right)$. Let $\tilde{\mathbf{u}}, \tilde{p}$ be an L^{q}-solution of the Robin problem (4), (5). If ω is unbounded suppose moreover $|\tilde{\mathbf{u}}(\mathbf{x})|=$ $O\left(|\mathbf{x}|^{(1-m) / 2}\right),|\nabla \tilde{\mathbf{u}}(\mathbf{x})|+|\tilde{p}(\mathbf{x})|=O\left(|\mathbf{x}|^{-m / 2}\right)$ as $|\mathbf{x}| \rightarrow \infty ; r^{(m-1) / 2} \tilde{\mathbf{u}}(r \mathbf{x}) \rightarrow 0$ as $r \rightarrow \infty$ for $|\mathbf{x}| \neq\left|x_{1}\right|$. If $\mathbf{u}^{*} \in L^{q^{\prime}}(\partial \omega)$, then

$$
\begin{equation*}
\int_{\partial \omega} \tilde{\mathbf{g}} \cdot \tilde{\mathbf{u}} \mathrm{d} \mathcal{H}_{m-1}=\int_{\partial \omega} \tilde{h}|\tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m-1}+2 \int_{\omega}|\hat{\nabla} \tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m} \tag{33}
\end{equation*}
$$

Proof. Suppose first that ω is bounded. Let $\omega(j)$ be domains from Lemma 6.1. By virtue of Green's formula and Lebesgue's lemma

$$
\int_{\partial \omega} \tilde{\mathbf{g}} \cdot \tilde{\mathbf{u}} \mathrm{d} \mathcal{H}_{m-1}=\int_{\partial \omega} \tilde{h}|\tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m-1}+\lim _{j \rightarrow \infty} \int_{\partial \omega(j)} \tilde{\mathbf{u}} \cdot\left[T(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n}-n_{1} \tilde{\mathbf{u}} / 2\right] \mathrm{d} \mathcal{H}_{m-1}
$$

$$
\begin{gathered}
=\int_{\partial \omega} \tilde{h}|\tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m-1}+\lim _{j \rightarrow \infty} \int_{\omega(j)}\left[2|\hat{\nabla} \tilde{\mathbf{u}}|^{2}+\tilde{\mathbf{u}} \cdot\left(\Delta \tilde{\mathbf{u}}-\nabla p-\partial_{1} \tilde{\mathbf{u}}\right)\right] \mathrm{d} \mathcal{H}_{m} \\
=\int_{\partial \omega} \tilde{h}|\tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m-1}+2 \int_{\omega}|\hat{\nabla} \tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m}
\end{gathered}
$$

Let now ω be unbounded. Define $\tilde{h}=0$ on $R^{m} \backslash \partial \omega$.

$$
\begin{gathered}
\int_{\partial \omega} \tilde{h}|\tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m-1}+2 \int_{\omega}|\hat{\nabla} \tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m}=\lim _{r \rightarrow \infty}\left[\int_{\partial(\omega \cap B(0 ; r)} \tilde{h}|\tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m-1}\right. \\
\left.+2 \int_{\omega \cap B(0 ; r)}|\hat{\nabla} \tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m}\right]=\int_{\partial \omega} \tilde{\mathbf{g}} \cdot \tilde{\mathbf{u}} \mathrm{d} \mathcal{H}_{m-1}+\lim _{r \rightarrow \infty} \int_{\partial B(0 ; r)} \tilde{\mathbf{u}} \cdot\left[T(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n}-n_{1} \tilde{\mathbf{u}} / 2\right] \\
=\int_{\partial \omega} \tilde{\mathbf{g}} \cdot \tilde{\mathbf{u}} \mathrm{d} \mathcal{H}_{m-1}+\lim _{r \rightarrow \infty} \int_{\partial B(0 ; 1)} r^{m-1} n_{1}|\tilde{\mathbf{u}}(r \mathbf{x})|^{2} / 2 \mathrm{~d} \mathcal{H}_{m-1}(\mathbf{x})
\end{gathered}
$$

There exists a constant C such that $\left.\left|r^{m-1} n_{1}\right| \tilde{\mathbf{u}}(r \mathbf{x})\right|^{2} / 2 \mid \leq C$ for $\mathbf{x} \in \partial B(0 ; 1)$. Since $r^{m-1} n_{1}|\tilde{\mathbf{u}}(r \mathbf{x})|^{2} / 2 \rightarrow 0$, Lebesgue's lemma yields (33).
Proposition 6.3. Let $\omega \subset R^{m}$ be a domain with compact Lipschitz boundary, $m=2$ or $m=3$. Let $\tilde{\mathbf{u}}, \tilde{p}$ be a regular L^{2}-solution of the Dirichlet problem (4), (29) with $\mathbf{g} \equiv 0$. If Ω is unbounded suppose moreover $|\tilde{\mathbf{u}}(\mathbf{x})|=O\left(|\mathbf{x}|^{(1-m) / 2}\right)$, $|\nabla \tilde{\mathbf{u}}(\mathbf{x})|+|\tilde{p}(\mathbf{x})|=O\left(|\mathbf{x}|^{-m / 2}\right)$ as $|\mathbf{x}| \rightarrow \infty ; r^{(m-1) / 2} \tilde{\mathbf{u}}(r \mathbf{x}) \rightarrow 0$ as $r \rightarrow \infty$ for $|\mathbf{x}| \neq\left|x_{1}\right|$. Then $\tilde{\mathbf{u}} \equiv 0$ and \tilde{p} is constant. If ω is unbounded then $\tilde{p} \equiv 0$.

Proof. Put $h \equiv 0$. By virtue of Lemma 6.2

$$
2 \int_{\omega}|\nabla \tilde{\mathbf{u}}|^{2}=0
$$

Since $\hat{\nabla} \tilde{\mathbf{u}} \equiv 0$ there exist an anti-symmetric matrix A and a vector \mathbf{b} such that $\tilde{\mathbf{u}}(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ (see [20], Lemma 3.1). Therefore \tilde{u}_{j} is a harmonic function on $\omega, \tilde{u}_{j}=0$ on $\partial \omega$. If ω is unbounded then $\tilde{u}_{j}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$. Thus $\tilde{u}_{j} \equiv 0$ by the maximum principle. Since $\nabla \tilde{p} \equiv 0$ by (4), the function \tilde{p} is constant. If ω is unbounded then $\tilde{p} \equiv 0$ because $\tilde{p}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$.

Lemma 6.4. Let $\omega \subset R^{m}$ be an open set with compact Lipschitz boundary, $m=2$ or $m=3$. Let G be a bounded component of $R^{m} \backslash \bar{\omega}$. Fix an open ball B such that $\bar{B} \subset G$. Set $\mathbf{u}=D_{B}^{O s} \mathbf{n}^{B}$ in $R^{m} \backslash \bar{B}$. Then

$$
\begin{equation*}
\int_{\partial G} \mathbf{u} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}=\mathcal{H}_{m-1}(\partial G) \neq 0 \tag{34}
\end{equation*}
$$

If \tilde{G} is another bounded component of $R^{m} \backslash \bar{\omega}$ then

$$
\begin{equation*}
\int_{\partial \tilde{G}} \mathbf{u} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}=0 . \tag{35}
\end{equation*}
$$

Proof. Denote $\tilde{\mathbf{u}}=D_{B}^{O s} \mathbf{n}^{B}, \tilde{p}=\Pi_{B}^{O s} \mathbf{n}^{B}$ in B. Then there are the nontangential limits of \mathbf{u} and $\tilde{\mathbf{u}}$ on ∂B and it hods $\tilde{\mathbf{u}}-\mathbf{u}=\mathbf{n}^{B}$ (see Proposition 5.8). Since $\nabla \cdot \tilde{\mathbf{u}}=0, \nabla \cdot \mathbf{u}=0$, the divergence theorem gives

$$
\begin{aligned}
0= & \int_{\partial(G \backslash B)} \mathbf{u} \cdot \mathbf{n}^{G \backslash B} \mathrm{~d} \mathcal{H}_{m-1}+\int_{\partial B} \tilde{\mathbf{u}} \cdot \mathbf{n}^{B} \mathrm{~d} \mathcal{H}_{m-1}=-\int_{\partial G} \mathbf{u} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1} \\
& +\int_{\partial B} \mathbf{n}^{B} \cdot \mathbf{n}^{B} \mathrm{~d} \mathcal{H}_{m-1}=-\int_{\partial G} \mathbf{u} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}+\mathcal{H}_{m-1}(\partial G)
\end{aligned}
$$

If \tilde{G} is another bounded component of $R^{m} \backslash \bar{\omega}$ then (35) is a consequence of the divergence theorem.
Lemma 6.5. Let $\Omega \subset R^{m}$ be an open set with compact Lipschitz boundary, $m=2$ or $m=3$. Suppose that $\boldsymbol{\Psi} \in L^{2}\left(\partial \Omega, R^{m}\right)$ and $O_{\Omega} \boldsymbol{\Psi}=0$ on $\partial \Omega$. If S is a component of $\partial \Omega$ then there exists a constant c_{S} such that $\mathbf{\Psi}=c_{S} \mathbf{n}^{\Omega}$ on $\partial \Omega$.

Proof. Let ω be a component of $R^{m} \backslash \partial \Omega$. Then $O_{\Omega} \boldsymbol{\Psi}, Q_{\Omega} \boldsymbol{\Psi}$ is a regular L^{2} solution of the Dirichlet problem for the Oseen equation with the zero boundary condition (see Proposition 5.3 and Proposition 5.4). Taking in mind behavior of $O_{\Omega} \boldsymbol{\Psi}$ and $Q_{\Omega} \boldsymbol{\Psi}$ at infinity, Proposition 6.3 gives that there exists a constant b_{ω} such that $O_{\Omega} \boldsymbol{\Psi}=0, Q_{\Omega} \boldsymbol{\Psi}=b_{\omega}$ in ω. If S is a component of $\partial \Omega$ we choose two components ω and G of $R^{m} \backslash \partial \Omega$ such that $S \subset \partial \omega \cap \partial G$. According to Proposition 5.5 we have on S

$$
\begin{gathered}
\boldsymbol{\Psi}=\left[\boldsymbol{\Psi} / 2-K_{\Omega, O s}^{\prime} \boldsymbol{\Psi}\right]-\left[-\boldsymbol{\Psi} / 2-K_{\Omega, O s}^{\prime} \boldsymbol{\Psi}\right]=\left[T\left(O_{\Omega} \boldsymbol{\Psi}, Q_{\Omega} \boldsymbol{\Psi}\right) \mathbf{n}^{\Omega}\right]_{+} \\
-\left[T\left(O_{\Omega} \boldsymbol{\Psi}, Q_{\Omega} \boldsymbol{\Psi}\right) \mathbf{n}^{\Omega}\right]_{-}=\left(-b_{\omega} \mathbf{n}^{\Omega}\right)-\left(-b_{G} \mathbf{n}^{\Omega}\right) .
\end{gathered}
$$

Proposition 6.6. Let $\omega \subset R^{m}$ be a domain with compact Lipschitz boundary, $m=2$ or $m=3$. Fix $\boldsymbol{\Psi} \in L^{2}\left(\partial \omega, R^{m}\right)$. If ω is a bounded domain with connected boundary define $U \mathbf{\Psi}=O_{\omega} \mathbf{\Psi}$. In other cases $U \mathbf{\Psi}=\tilde{\mathbf{u}}$, where $\tilde{\mathbf{u}}$ is given by (31). Then $U: L^{2}\left(\partial \omega, R^{3}\right) \rightarrow W^{1,2}\left(\partial \omega, R^{3}\right)$ is a Fredholm operator with index 0 .

- If ω is unbounded then U is an isomorphism.
- If ω is bounded then $U\left(L^{2}\left(\partial \omega, R^{m}\right)\right)=\left\{\mathbf{u} \in W^{1,2}(\partial \omega) ; \int_{\partial \omega} \mathbf{u} \cdot \mathbf{n}^{\omega}=0\right\}$. If G is the unbounded component of $R^{m} \backslash \bar{\omega}$ then the kernel of U is $\left\{c \mathbf{n}^{\omega} \chi_{\partial G} ; c \in R^{1}\right\}$. (Here $\chi_{\partial G}$ denotes the characteristic function of ∂G.)

Proof. $E_{\Omega}: L^{2}\left(\partial \omega, R^{3}\right) \rightarrow W^{1,2}\left(\partial \omega, R^{3}\right)$ is a Fredholm operator with index 0 by [22], Theorem 5.4.1. Since $U-E_{\Omega}$ is a compact operator by Proposition 5.3 and Lemma 5.4, the operator $U: L^{2}\left(\partial \omega, R^{3}\right) \rightarrow W^{1,2}\left(\partial \omega, R^{3}\right)$ is a Fredholm operator with index 0 .

Let now $U \boldsymbol{\Psi}=0$. Let $G(j)$ be a bounded component of $R^{m} \backslash \bar{\omega}$. According to (30) and Lemma 6.4 we have

$$
0=\int_{\partial G(j)} \mathbf{n}^{\omega} \cdot U \boldsymbol{\Psi} \mathrm{~d} \mathcal{H}_{m-1}=\mathcal{H}_{m-1}(\partial G(j)) \int_{\partial G(j)} \boldsymbol{\Psi} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}
$$

Therefore

$$
\begin{equation*}
\int_{\partial G(j)} \boldsymbol{\Psi} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}=0 \tag{36}
\end{equation*}
$$

It means that $0=U \boldsymbol{\Psi}=O_{\omega} \boldsymbol{\Psi}$. If V is a component of $R^{m} \backslash \bar{\omega}$ then there exists a constant c_{V} such that $\boldsymbol{\Psi}=c_{V} \mathbf{n}^{\omega}$ on ∂V (see Lemma 6.5). If V is bounded then $c_{V}=0$ by (36).

If ω is unbounded then the kernel of U is trivial. Since U is of index 0 , it must be surjective. Thus U is an isomorphism.

Let now ω be bounded. We have proved that the kernel of U is a subset of $\left\{c \mathbf{n}^{\omega} \chi_{\partial G} ; c \in R^{1}\right\}$. So, the dimension of the kernel of U is at most 1. If $\tilde{\mathbf{u}}$ is given by (31) then the divergence theorem gives $\int_{\partial \omega} \mathbf{n}^{\omega} \cdot \tilde{\mathbf{u}} \mathrm{d} \mathcal{H}_{m-1}=0$. So, the range of U is a subset of $\left\{\mathbf{u} \in W^{1,2}(\partial \omega) ; \int_{\partial \omega} \mathbf{u} \cdot \mathbf{n}^{\omega}=0\right\}$. Hence the co dimension of the range of U is at least 1 . Since U is a Fredholm operator of index 0 , the dimension of the kernel of U and the co dimension of the range of U are equal to 1 .

Theorem 6.7. Let $\omega \subset R^{m}$ be a bounded domain with Lipschitz boundary, $m=2$ or $m=3$. Fix $\mathbf{g} \in W^{1,2}\left(\partial \omega, R^{m}\right)$. Then there exists a regular L^{2}-solution of the Dirichlet problem (4), (29) if and only if

$$
\begin{equation*}
\int_{\partial \omega} \mathbf{g} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}=0 . \tag{37}
\end{equation*}
$$

If \mathbf{u}, p and $\tilde{\mathbf{u}}, \tilde{p}$ are two solutions of the problem, then $\mathbf{u}=\tilde{\mathbf{u}}$ and $p-\tilde{p}$ is constant.

Proof. If there exists a regular L^{2}-solution of the problem (4), (29), then the divergence theorem gives (37).

Let now (37) holds true. According to Proposition 6.6 there exists $\boldsymbol{\Psi} \in$ $L^{2}\left(\partial \omega, R^{m}\right)$ such that $\tilde{\mathbf{u}}, \tilde{p}$ given by (31), (32) is a regular L^{2}-solution of the problem (4), (29). Let now \mathbf{u}, p be another solution of the problem. Then $\mathbf{u}-\tilde{\mathbf{u}} \equiv 0, p-\tilde{p}$ is constant by Proposition 6.3.

Theorem 6.8. Let $\Omega \subset R^{m}$ be an open set, $R^{m} \backslash \Omega$ be compact, $m=2$ or $m=3$. Let \mathbf{u}, p be a bounded solution of the Oseen system (4) in Ω. Then
there exist a number p_{∞} and a vector \mathbf{u}_{∞} such that $\mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}, p(\mathbf{x}) \rightarrow p_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. If α is a multi index then $\left|\partial^{\alpha}\left[\mathbf{u}(\mathbf{x})-\mathbf{u}_{\infty}\right]\right|=O\left(|\mathbf{x}|^{(1-m-|\alpha|) / 2}\right)$, $\left|\partial^{\alpha}\left[p(\mathbf{x})-p_{\infty}\right]\right|=O\left(|\mathbf{x}|^{1-m-|\alpha|}\right)$ as $|\mathbf{x}| \rightarrow \infty$. Moreover, $r^{(m-1) / 2} \mathbf{u}(r \mathbf{x}) \rightarrow 0$ as $r \rightarrow \infty$ for $|\mathbf{x}| \neq\left|x_{1}\right|$.

Proof. Fix $r>0$ such that $R^{m} \backslash \Omega \subset B(0 ; r)$ and denote $\omega=R^{m} \backslash \overline{B(0 ; r)}$, $\mathbf{g}=\mathbf{u}$ on $\partial \omega$. According to Proposition 6.6 there exists $\mathbf{\Psi} \in L^{2}\left(\partial \Omega, R^{m}\right)$ such that $\tilde{\mathbf{u}}, \tilde{p}$ given by (31), (32) is a regular L^{2}-solution of the problem (4), (29). Remark that $\tilde{p} \in L^{2}(\omega \cap B(0 ; 2 r)), \tilde{\mathbf{u}} \in W^{1,2}(\omega \cap B(0 ; 2 r))$ (see [19], Lemma 2). If α is a multi index then $\left|\partial^{\alpha} \tilde{\mathbf{u}}(\mathbf{x})\right|=O\left(|\mathbf{x}|^{(1-m-|\alpha|) / 2}\right),\left|\partial^{\alpha} \tilde{p}(\mathbf{x})\right|=O\left(|\mathbf{x}|^{1-m-|\alpha|}\right)$ as $|\mathbf{x}| \rightarrow \infty$. Moreover, $r^{(m-1) / 2} \tilde{\mathbf{u}}(r \mathbf{x}) \rightarrow 0$ as $r \rightarrow \infty$ for $|\mathbf{x}| \neq\left|x_{1}\right|$. Denote $\mathbf{v}=$ $\mathbf{u}-\tilde{\mathbf{u}}, q=p-\tilde{p}$ in $\omega, \mathbf{v}=0, q=0$ elsewhere. Then $\mathbf{v} \in W_{l o c}^{1,2}\left(R^{m}\right), q \in L_{l o c}^{2}\left(R^{m}\right)$, $\nabla \cdot \mathbf{v}=0$. Moreover, \mathbf{v}, q is a solution of the Oseen equation (4) in $R^{m} \backslash \partial \omega$. Denote $\mathbf{f}=-\Delta \mathbf{v}+\partial_{1} \mathbf{v}+\nabla q$. Then \mathbf{f} is a compactly supported distribution. Denote $\mathbf{w}=O * \mathbf{f}, \eta=Q * \mathbf{f}$. Then $\mathbf{v}-\mathbf{w}, q-\eta$ is a solution of the Oseen equation (4) in the whole R^{m}. If α is a multi index then $\left|\partial^{\alpha} \mathbf{w}(\mathbf{x})\right|=O\left(|\mathbf{x}|^{(1-m-|\alpha|) / 2}\right)$, $\left|\partial^{\alpha} \eta(\mathbf{x})\right|=O\left(|\mathbf{x}|^{1-m-|\alpha|}\right)$ as $|\mathbf{x}| \rightarrow \infty$. Moreover, $r^{(m-1) / 2} \mathbf{w}(r \mathbf{x}) \rightarrow 0$ as $r \rightarrow \infty$ for $|\mathbf{x}| \neq\left|x_{1}\right|$. Since $\mathbf{v}-\mathbf{w}, q-\eta$ are bounded solutions of the Oseen equation (2) in R^{m}, they are constant by Lemma 4.1.

Theorem 6.9. Let $\omega \subset R^{m}$ be an unbounded domain with compact Lipschitz boundary, $m=2$ or $m=3$. Let $\mathbf{g} \in W^{1,2}\left(\partial \omega, R^{m}\right)$ be fixed. If \mathbf{u}, p is a regular L^{2}-solution of the Dirichlet problem (4), (29) then there exist a constant p_{∞} and a vector \mathbf{u}_{∞} such that $p(\mathbf{x}) \rightarrow p_{\infty}, \mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. On the other hand, if $p_{\infty}, \mathbf{u}_{\infty}$ are given then there exists a unique regular L^{2}-solution \mathbf{u}, p of the Dirichlet problem (4), (29) such that $p(\mathbf{x}) \rightarrow p_{\infty}, \mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. Moreover,

$$
\begin{equation*}
\left\|(\mathbf{u})^{*}+(\nabla \mathbf{u})^{*}+(p)^{*}\right\|_{L^{2}(\partial \Omega)} \leq C\left[\left|\mathbf{u}_{\infty}\right|+\left|p_{\infty}\right|+\|\mathbf{g}\|_{W^{1,2}\left(\partial \omega, R^{m}\right)}\right] \tag{38}
\end{equation*}
$$

where C depends only on Ω.
Proof. If \mathbf{u}, p is a regular L^{2}-solution of the Dirichlet problem (4), (29) then there exist a constant p_{∞} and a vector \mathbf{u}_{∞} such that $p(\mathbf{x}) \rightarrow p_{\infty}, \mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. (See Theorem 6.8.)

Let now $\mathbf{u}_{\infty}, p_{\infty}$ be given. According to Proposition 6.6 the operator U is an isomorphism from $L^{2}\left(\partial \omega, R^{m}\right)$ onto $W^{1,2}\left(\partial \omega, R^{m}\right)$. Put $\boldsymbol{\Psi}=U^{-1} \mathbf{g}-\mathbf{u}_{\infty}$. Then $\tilde{\mathbf{u}}, \tilde{p}$ given by (31), (32) satisfy $\tilde{\mathbf{u}}=\mathbf{g}-\mathbf{u}_{\infty}$ on $\partial \omega$. Put $\mathbf{u}=\tilde{\mathbf{u}}+\mathbf{u}_{\infty}$, $p=\tilde{p}+p_{\infty}$. Then \mathbf{u}, p is a regular L^{2}-solution of the Dirichlet problem (4), (29) such that $p(\mathbf{x}) \rightarrow p_{\infty}, \mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. According to properties of Oseen potentials (38) holds true with C depending only on Ω.

If \mathbf{v}, q is another solution of that problem then $|\mathbf{u}(\mathbf{x})-\mathbf{v}(\mathbf{x})|=O\left(|\mathbf{x}|^{(1-m) / 2}\right)$, $|\nabla \mathbf{u}(\mathbf{x})-\nabla \mathbf{v}(\mathbf{x})|+|p(\mathbf{x})-q(\mathbf{x})|=O\left(|\mathbf{x}|^{-m / 2}\right), r^{(m-1) / 2}|\mathbf{u}(r \mathbf{x})-\mathbf{v}(r \mathbf{x})| \rightarrow 0$ as $r \rightarrow \infty$ for $|\mathbf{x}| \neq\left|x_{1}\right|$ (see Theorem 6.8). Proposition 6.3 gives that $\mathbf{u}-\mathbf{v} \equiv 0$, $p-q \equiv 0$.

$7 \quad L^{2}$-solutions of the Robin problem

Let $\omega \subset R^{m}$ be a domain with compact Lipschitz boundary, $m=2$ or $m=3$. Let now $G(1), \ldots, G(k)$ be all bounded components of $R^{m} \backslash \bar{\omega}$. If $\tilde{\mathbf{g}} \in L^{q}\left(\partial \omega, R^{m}\right)$ we shall look for an L^{q}-solution of the Robin problem (4), (5) in the form of a modified Oseen single layer potential (31), (32) with $\Psi \in L^{q}\left(\partial \omega, R^{m}\right)$. According to Proposition 5.3 and Proposition 5.5 the vector functions $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{q}-solution of the Robin problem (4), (5) if and only if

$$
\tau_{\tilde{h}} \boldsymbol{\Psi}=\tilde{g}
$$

where

$$
\tau_{\tilde{h}} \boldsymbol{\Psi}=\frac{1}{2} \mathbf{\Psi}-K_{\omega, O s}^{\prime} \mathbf{\Psi}+\tilde{h} O_{\omega} \mathbf{\Psi}+L_{\tilde{h}} \mathbf{\Psi}
$$

$L_{\tilde{h}} \boldsymbol{\Psi}=\sum_{j=1}^{m}\left(\int_{\partial G(j)} \boldsymbol{\Psi} \cdot \mathbf{n}\right)\left[T\left(D_{B(j)}^{O s} \mathbf{n}^{B(j)}, \Pi_{B(j)}^{O s} \mathbf{n}^{B(j)}\right) \mathbf{n}+\left(\tilde{h}-n_{1} / 2\right) D_{B(j)}^{O s} \mathbf{n}^{B(j)}\right]$.
Proposition 7.1. Let $\omega \subset R^{m}$ be an open set with compact Lipschitz boundary, $1<q<\infty, m=2$ or $m=3$. Suppose that $q=2$ or $\partial \Omega$ is of class \mathcal{C}^{1}. If $\tilde{h} \in L^{\infty}(\partial \omega)$ then $\tau_{\tilde{h}}$ is a Fredholm operator with index 0 in $L^{q}\left(\partial \omega, R^{m}\right)$.

Proof. $\frac{1}{2} I-K_{\omega}^{\prime}$ is a Fredholm operator with index 0 in $L^{2}\left(\partial \omega, R^{m}\right)$ by [22], Theorem 5.3.6. If $\partial \omega$ is of class \mathcal{C}^{1}, then K_{ω} is a compact operator on $L^{q^{\prime}}\left(\partial \omega, R^{m}\right)$ where $q^{\prime}=q /(q-1)$ (see [17], p. 232). Therefore K_{ω}^{\prime} is a compact operator in $L^{q}\left(\partial \omega, R^{m}\right)$ and $\frac{1}{2} I-K_{\omega}^{\prime}$ is a Fredholm operator with index 0 in $L^{q}\left(\partial \omega, R^{m}\right)$. Since $\tau_{\tilde{h}}-\left[\frac{1}{2} I-K_{\omega}^{\prime}\right]$ is a compact operator by Proposition 5.3 and Lemma 5.4, we deduce that $\tau_{\tilde{h}}$ is a Fredholm operator with index 0 in $L^{q}\left(\partial \omega, R^{m}\right)$.
Proposition 7.2. Let $\omega \subset R^{m}$ be a bounded domain with Lipschitz boundary, $1<q<\infty, q^{\prime}=q /(q-1), \tilde{h} \in L^{\infty}(\partial \omega), \tilde{h} \geq 0$. Let $\tilde{\mathbf{u}}, \tilde{p}$ be an L^{q}-solution of the Robin problem (4), (5) with $\tilde{\mathbf{g}} \equiv 0$. If $(\tilde{\mathbf{u}})^{*} \in L^{q^{\prime}}(\partial \omega)$ then $\tilde{\mathbf{u}} \equiv 0, \tilde{p} \equiv 0$.

Proof. Lemma 6.2 gives that $|\hat{\nabla} \tilde{\mathbf{u}}|=0$ in $\omega, \tilde{h} \tilde{\mathbf{u}}=0$ on $\partial \omega$. Since $\hat{\nabla} \tilde{\mathbf{u}} \equiv 0$ there exist an anti-symmetric matrix A and a vector \mathbf{b} such that $\tilde{\mathbf{u}}(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ (see [20], Lemma 3.1). If $\int_{\partial \omega} \tilde{h} \mathrm{~d} \mathcal{H}_{m-1}>0$ then $\tilde{h} \tilde{\mathbf{u}}=0$ gives $\tilde{\mathbf{u}} \equiv 0$ (see [21], Lemma 5.1. Since $\nabla \tilde{p}=\Delta \tilde{\mathbf{u}}-\partial_{1} \tilde{\mathbf{u}}=0$ we infer that \tilde{p} is constant. Since $0=T(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n}_{\tilde{h}}^{\omega}-n_{1} \tilde{\mathbf{u}} / 2+\tilde{h} \tilde{\mathbf{u}}=-\tilde{p} \mathbf{n}^{\omega}$ we deduce that $\tilde{p} \equiv 0$.

Let now $\tilde{h} \equiv 0$. If $j \neq 1$ then

$$
\begin{gathered}
\partial_{j} \tilde{p}(\mathbf{x})=\Delta \tilde{u}_{j}(\mathbf{x})-\partial_{1} \tilde{u}_{j}(\mathbf{x})=-a_{j 1} \\
\partial_{1} \tilde{p}(\mathbf{x})=\Delta \tilde{u}_{1}(\mathbf{x})-\partial_{1} \tilde{u}_{1}(\mathbf{x})=0
\end{gathered}
$$

Thus there exists a constant c such that

$$
\tilde{p}(\mathbf{x})=-\sum_{j=2}^{m} a_{j 1} x_{j}+c .
$$

We have

$$
\begin{equation*}
0=T(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n}^{\omega}-n_{1} \tilde{\mathbf{u}} / 2=-\tilde{p} \mathbf{n}^{\omega}-n_{1} \tilde{\mathbf{u}} / 2 . \tag{39}
\end{equation*}
$$

Thus $n_{1}^{\omega}\left(\tilde{p}+\tilde{u}_{1} / 2\right)=0$. The function $\tilde{p}+\tilde{u}_{1} / 2$ is a polynomial of the first order. If $\tilde{p}+\tilde{u}_{1} / 2 \not \equiv 0$ then $M=\left\{\mathbf{x} ; \tilde{p}(\mathbf{x})+\tilde{u}_{1}(\mathbf{x}) / 2=0\right\}$ is a subset of a hyperplane. So, $n_{1}=0$ outside this hyperplane. It is not possible. Hence $\tilde{p}+\tilde{u}_{1} / 2 \equiv 0$ and

$$
\sum_{j=2}^{m} a_{j 1} x_{j}-c=-\tilde{p}(\mathbf{x})=\frac{\tilde{u}_{1}(\mathbf{x})}{2}=\sum_{j=2}^{m} \frac{a_{1 j}}{2} x_{j}+\frac{b_{1}}{2}=\sum_{j=2}^{m} \frac{-a_{j 1}}{2} x_{j}+\frac{b_{1}}{2}
$$

This forces that $a_{1 j}=a_{j 1}=0$ and $\tilde{p}=c=-b_{1} / 2, \tilde{u}_{1}=b_{1}=-2 c$.
Suppose first that $c=0$. Then $\tilde{p}=\tilde{u}_{1}=0$. If $j \neq 1$ then (39) gives $n_{1} \tilde{u}_{j}=0$. The function \tilde{u}_{j} is a polynomial of the first order. If $\tilde{u}_{j} \not \equiv 0$ then $M_{j}=\left\{\mathbf{x} ; \tilde{u}_{j}(\mathbf{x})=0\right\}$ is a subset of a hyperplane. So, $n_{1}=0$ outside this hyperplane. It is not possible. Hence $\tilde{u}_{j} \equiv 0$.

Let now $c \neq 0$. Fix $\mathbf{z} \in \partial \omega$. We can choose a coordinate system in a such way that $\mathbf{z}=0$. Denote $p_{j}=\tilde{u}_{j}-b_{j}$. Then $p_{j}(\mathbf{x}) \rightarrow 0$ as $\mathbf{x} \rightarrow 0=\mathbf{z}$. From (39) we get $n_{j}^{\omega}=n_{1}^{\omega}\left(p_{j}+b_{j}\right) / b_{1}$. Since $p_{j}(\mathbf{x}) \rightarrow 0$ as $\mathbf{x} \rightarrow \mathbf{z}$ we deduce that $\mathbf{n}^{\omega}(\mathbf{x}) \rightarrow \mathbf{b} /|\mathbf{b}|$ or $\mathbf{n}^{\omega}(\mathbf{x}) \rightarrow-\mathbf{b} /|\mathbf{b}|$ as $\mathbf{x} \rightarrow \mathbf{z}$. (Since $\partial \omega$ is Lipschitz, it is not possible $\mathbf{n}^{\omega}\left(\mathbf{x}^{\mathbf{k}}\right) \rightarrow \mathbf{b} /|\mathbf{b}|$ and $\mathbf{n}^{\omega}\left(\mathbf{y}^{\mathbf{k}}\right) \rightarrow \mathbf{b} /|\mathbf{b}|$ for some sequences $\mathbf{y}^{k} \rightarrow \mathbf{z}, \mathbf{x}^{k} \rightarrow \mathbf{z}$.) This gives that $\partial \omega$ is of class \mathcal{C}^{1}. Now fix $\mathbf{z} \in \partial \omega$ such that $z_{2}=\max \left\{x_{2} ; \mathbf{x} \in \partial \omega\right\}$. Then $\mathbf{n}^{\omega}(\mathbf{z})=[0,1,0, \ldots, 0]$. But (39) forces $1=n_{2}^{\Omega}(\mathbf{z})=n_{1}^{\omega} \tilde{u}_{j}(\mathbf{z}) / b_{1}=0$, what is a contradiction.
Theorem 7.3. Let $\omega \subset R^{m}$ be a bounded domain with Lipschitz boundary, $m=2$ or $m=3, \tilde{h} \in L^{\infty}(\partial \omega), \tilde{h} \geq 0$. Then $\tau_{\tilde{h}}$ is an isomorphism on $L^{2}\left(\partial \omega, R^{m}\right)$. Fix $\tilde{\mathbf{g}} \in L^{2}\left(\partial \omega, R^{m}\right)$. Denote $\boldsymbol{\Psi}=\tau_{\tilde{h}}^{-1} \mathbf{g}$. Let $\tilde{\mathbf{u}}, \tilde{p}$ be given by (31), (32). Then $\tilde{\mathbf{u}}, \tilde{p}$ is a unique L^{2}-solution of the Robin problem (4), (5). Moreover,

$$
\begin{equation*}
\left\|(|\tilde{\mathbf{u}}|+|\nabla \tilde{\mathbf{u}}|+|\tilde{p}|)^{*}\right\|_{L^{2}(\partial \omega)} \leq C\|\tilde{\mathbf{g}}\|_{L^{2}(\partial \omega)} \tag{40}
\end{equation*}
$$

where C depends only on ω and \tilde{h}.
Proof. Let $\boldsymbol{\Psi} \in L^{2}\left(\partial \omega, R^{m}\right)$ and $\tau_{\tilde{h}} \boldsymbol{\Psi}=0$. Let $\tilde{\mathbf{u}}, \tilde{p}$ be given by (31), (32). Then $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{2}-solution of the Robin problem (4), (5) with $\tilde{\mathbf{g}} \equiv 0$. Proposition 7.2 gives that $\tilde{\mathbf{u}} \equiv 0, \tilde{p} \equiv 0$. According to (30) and Lemma 6.4

$$
0=\int_{\partial G(j)} \tilde{\mathbf{u}} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}=\mathcal{H}_{m-1}(\partial G(j)) \int_{\partial G(j)} \boldsymbol{\Psi} \cdot \mathbf{n}^{\omega} \mathrm{d} \mathcal{H}_{m-1}
$$

So, (36) holds and $\tilde{\mathbf{u}}=O_{\omega} \boldsymbol{\Psi}, \tilde{p}=Q_{\omega} \boldsymbol{\Psi}$. Let G be an unbounded component of $R^{m} \backslash \bar{\omega}$. By virtue of Lemma 6.5 and (36) there exists a constant c such that $\boldsymbol{\Psi}=c \chi_{G}$. Therefore $0=\tilde{p}=-c$ (see [20]). This forces that $\boldsymbol{\Psi}=0$. Since $\tau_{\tilde{h}}$ is a Fredholm operator with index 0 by Proposition 7.1, it is an isomorphism.

Let now $\tilde{\mathbf{g}} \in L^{2}\left(\partial \omega, R^{m}\right)$. If $\mathbf{\Psi}=\tau_{\tilde{h}}^{-1} \mathbf{g}$ and $\tilde{\mathbf{u}}, \tilde{p}$ are given by (31), (32) then $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{2}-solution of the Robin problem (4), (5). The uniqueness follows
from Proposition 7.2. The estimate (40) is a consequence of Proposition 5.3 and Proposition 5.5.
Proposition 7.4. Let $\omega \subset R^{m}$ be an unbounded domain with compact Lipschitz boundary, $m=2$ or $m=3, \tilde{h} \in L^{\infty}(\partial \omega), \tilde{h} \geq 0, \tilde{\mathbf{g}} \equiv 0$. If $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{2}-solution of the Robin problem (4), (5) such that $\tilde{\mathbf{u}}(\mathbf{x}) \rightarrow 0, \tilde{p}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$, then $\tilde{\mathbf{u}} \equiv 0, \tilde{p} \equiv 0$.

Proof. If α is a multi index then $\left|\partial^{\alpha} \tilde{\mathbf{u}}(\mathbf{x})\right|=O\left(|\mathbf{x}|^{(1-m-\alpha \mid) / 2}\right),\left|\partial^{\alpha} p(\mathbf{x})\right|=$ $O\left(|\mathbf{x}|^{1-m-\alpha \mid}\right)$ as $|\mathbf{x}| \rightarrow \infty$, and $r^{(m-1) / 2} \mathbf{u}(r \mathbf{x}) \rightarrow 0$ as $r \rightarrow \infty$ for $|\mathbf{x}| \neq\left|x_{1}\right|$ (see Theorem 6.8). By virtue of Lemma 6.2

$$
\int_{\partial \omega} \tilde{h}|\tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m-1}+2 \int_{\omega}|\hat{\nabla} \tilde{\mathbf{u}}|^{2} \mathrm{~d} \mathcal{H}_{m}=0
$$

Since $\hat{\nabla} \tilde{\mathbf{u}} \equiv 0$ there exist an anti-symmetric matrix A and a vector \mathbf{b} such that $\tilde{\mathbf{u}}(\mathbf{x})=A \mathbf{x}+\mathbf{b}$ (see [20], Lemma 3.1). The relation $\tilde{\mathbf{u}}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$ forces $\tilde{\mathbf{u}} \equiv 0$. Since $\nabla \tilde{p} \equiv 0$ by (4), the function \tilde{p} is constant. Hence $\tilde{p} \equiv 0$ because $\tilde{p}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$.

Proposition 7.5. Let $\omega \subset R^{m}$ be an unbounded domain with compact Lipschitz boundary, $1<q<\infty, m=2$ or $m=3$. Suppose that $q=2$ or $\partial \omega$ is of class \mathcal{C}^{1}. If $\tilde{h} \in L^{\infty}(\partial \omega), \tilde{h} \geq 0$ then τ_{h} is an isomorphism on $L^{q}\left(\partial \omega, R^{m}\right)$.

Proof. Let $\boldsymbol{\Psi} \in L^{q}\left(\partial \omega, R^{m}\right), \tau_{\tilde{h}} \boldsymbol{\Psi}=0$. Since $\tau_{\tilde{h}}$ is a Fredholm operator with index 0 in $L^{q}\left(\partial \omega, R^{m}\right)$ and in $L^{2}\left(\partial \omega, R^{m}\right)$ (see Proposition 7.1), we have $\boldsymbol{\Psi} \in L^{2}\left(\partial \omega, R^{m}\right)$ by [18], Lemma 9. If $\tilde{\mathbf{u}}, \tilde{p}$ are given by (31), (32), then $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{2}-solution of the Robin problem (4), (5) with $\tilde{\mathbf{g}} \equiv 0$. Proposition 7.4 gives that $\tilde{\mathbf{u}} \equiv 0, \tilde{p} \equiv 0$. So, $\boldsymbol{\Psi}=0$ by Proposition 6.6. Since $\tau_{\tilde{h}}$ is a Fredholm operator with index 0 by Proposition 7.1, it is an isomorphism.

Theorem 7.6. Let $\omega \subset R^{m} \underset{\tilde{h}}{\text { be }}$ an unbounded domain with compact Lipschitz boundary, $m=2$ or $m=3, \tilde{h} \in L^{\infty}(\partial \omega)$, $\tilde{h} \geq 0$. Fix $\tilde{\mathbf{g}} \in L^{2}\left(\partial \omega, R^{m}\right)$. If $\tilde{\mathbf{u}}$, \tilde{p} is an L^{2}-solution of the Robin problem (4), (5) then there exists a constant p_{∞} and a vector \mathbf{u}_{∞} such that $p(\mathbf{x}) \rightarrow p_{\infty}, \tilde{\mathbf{u}}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. Let now $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$ be given. Denote $\mathbf{\Psi}=\tau_{\tilde{h}}^{-1}\left[\mathbf{g}+p_{\infty} \mathbf{n}^{\omega}+\left(n_{1}^{\omega}-\tilde{h}\right) \mathbf{u}_{\infty}\right]$. Let $\tilde{\mathbf{u}}$, \tilde{p} be given by (31), (32). Then $\mathbf{u}=\tilde{\mathbf{u}}+\mathbf{u}_{\infty}, p=\tilde{p}+p_{\infty}$ is a unique L^{2}-solution of the Robin problem (4), (5) such that $p(\mathbf{x}) \rightarrow p_{\infty}, \tilde{\mathbf{u}}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. Moreover,

$$
\begin{equation*}
\left\|(|\mathbf{u}|+|\nabla \mathbf{u}|+|p|)^{*}\right\|_{L^{2}(\partial \omega)} \leq C\left[\|\tilde{\mathbf{g}}\|_{L^{2}(\partial \omega)}+\left|p_{\infty}\right|+\mid \mathbf{u}_{\infty}\right] \tag{41}
\end{equation*}
$$

where C depends only on ω and \tilde{h}.
Proof. If $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{2}-solution of the Robin problem (4), (5) then there exists a constant p_{∞} and a vector \mathbf{u}_{∞} such that $p(\mathbf{x}) \rightarrow p_{\infty}, \tilde{\mathbf{u}}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. (See Theorem 6.8.)

Let now $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$ be given. The operator $\tau_{\tilde{h}}$ is invertible by Proposition 7.5. Clearly, \mathbf{u}, p is an L^{2}-solution of the Robin problem such that $p(\mathbf{x}) \rightarrow p_{\infty}, \mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$. The uniqueness follows from Proposition 7.4. The estimate (41) is a consequence of Proposition 5.3 and Proposition 5.5.

$8 \quad L^{q}$-solution of the Robin problem

In this section we prove the existence of an L^{q}-solution of the Robin problem for ω with boundary of class \mathcal{C}^{1}.
Theorem 8.1. Let $\omega \subset R^{m}$ be a bounded domain with boundary of class \mathcal{C}^{1}, $m=2$ or $m=3,1<q<\infty, \tilde{h} \in L^{\infty}(\partial \omega), \tilde{h} \geq 0$. Then $\tau_{\tilde{h}}$ is an isomorphism on $L^{q}\left(\partial \omega, R^{m}\right)$. Fix $\tilde{\mathbf{g}} \in L^{q}\left(\partial \omega, R^{m}\right)$. Denote $\boldsymbol{\Psi}=\tau_{\tilde{h}}^{-1} \mathbf{g}$. Let $\tilde{\mathbf{u}}, \tilde{p}$ be given by (31), (32). Then $\tilde{\mathbf{u}}, \tilde{p}$ is a unique L^{q}-solution of the Robin problem (4), (5). Moreover,

$$
\begin{equation*}
\left\|(|\tilde{\mathbf{u}}|+|\nabla \tilde{\mathbf{u}}|+|\tilde{p}|)^{*}\right\|_{L^{q}(\partial \omega)} \leq C\|\tilde{\mathbf{g}}\|_{L^{q}(\partial \omega)} \tag{42}
\end{equation*}
$$

where C depends only on ω, \tilde{h} and q.
Proof. $\tau_{\tilde{h}}$ is a Fredholm operator with index 0 in $L^{2}\left(\partial \omega, R^{m}\right)$ and in $L^{q}\left(\partial \omega, R^{m}\right)$ by Proposition 7.1. Since $\tau_{\tilde{h}}$ is injective in $L^{2}\left(\partial \omega, R^{m}\right)$ it is injective in $L^{q}\left(\partial \omega, R^{m}\right)$ (see [18], Lemma 9). Since $\tau_{\tilde{h}}$ is a Fredholm operator with index 0 in $L^{q}\left(\partial \omega, R^{m}\right)$ it is an isomorphism.

Let $\boldsymbol{\Psi}=\tau_{\tilde{h}}^{-1} \mathbf{g}, \tilde{\mathbf{u}}, \tilde{p}$ be given by (31), (32). Clearly, $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{q}-solution of the Robin problem (4), (5).

Now we show the uniqueness. Let $\tilde{\mathbf{g}} \equiv 0, \tilde{\mathbf{u}}, \tilde{p}$ be an L^{q}-solution of the Robin problem (4), (5). Then $T(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n}^{\omega}-n_{1} \tilde{\mathbf{u}} / 2=-\tilde{h} \tilde{\mathbf{u}}$. Proposition 5.9 gives $\tilde{\mathbf{u}}=D_{\omega}^{O s} \tilde{\mathbf{u}}-O_{\omega} h \tilde{\mathbf{u}}$ in ω. By virtue of Proposition 5.3 Proposition 5.8 we have $\tilde{\mathbf{u}}=\tilde{\mathbf{u}} / 2+K_{\omega, O s} \tilde{\mathbf{u}}-O_{\omega} h \tilde{\mathbf{u}}$ in $\partial \omega$. Put $q^{\prime}=q /(q-1)$. The operator $\tilde{\mathbf{u}} \mapsto K_{\omega, O s} \tilde{\mathbf{u}}-O_{\omega} h \tilde{\mathbf{u}}$ is compact in $L^{q}\left(\partial \omega, R^{m}\right)$ and in $L^{q^{\prime}}\left(\partial \omega, R^{m}\right)$ by Proposition 5.3, Proposition 5.4 and [17], p. 232. Since $\tilde{\mathbf{u}}-K_{\omega, O s} \tilde{\mathbf{u}}+O_{\omega} h \tilde{\mathbf{u}}=0$, [18], Lemma 9 gives that $\tilde{\mathbf{u}} \in L^{q^{\prime}}\left(\partial \omega, R^{m}\right)$. Since $\tilde{\mathbf{u}}=D_{\omega}^{O s} \tilde{\mathbf{u}}-O_{\omega} h \tilde{\mathbf{u}}$, Proposition 5.3 and Proposition 5.8 give $(\tilde{\mathbf{u}})^{*} \in L^{q^{\prime}}(\partial \omega)$. So, $\tilde{\mathbf{u}} \equiv 0$ by Proposition 7.2.

The estimate (42) is a consequence of Proposition 5.3 and Proposition 5.5.
Theorem 8.2. Let $\omega \subset R^{m}$ be an unbounded domain with compact Lipschitz boundary, $m=2$ or $m=3, \tilde{h} \in L^{\infty}(\partial \omega)$, $\tilde{h} \geq 0,1<q<\infty$. Fix $\tilde{\mathbf{g}} \in$ $L^{q}\left(\partial \omega, R^{m}\right)$. If $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{q}-solution of the Robin problem (4), (5) then there exists a constant p_{∞} and a vector \mathbf{u}_{∞} such that $p(\mathbf{x}) \rightarrow p_{\infty}, \tilde{\mathbf{u}}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. Let now $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$ be given. Denote $\mathbf{\Psi}=\tau_{\tilde{h}}^{-1}\left[\mathbf{g}+p_{\infty} \mathbf{n}^{\omega}+\right.$ $\left.\left(n_{1}^{\omega}-\tilde{h}\right) \mathbf{u}_{\infty}\right]$. Let $\tilde{\mathbf{u}}, \tilde{p}$ be given by (31), (32). Then $\mathbf{u}=\tilde{\mathbf{u}}+\mathbf{u}_{\infty}, p=\tilde{p}+p_{\infty}$ is a unique L^{q}-solution of the Robin problem (4), (5) such that $p(\mathbf{x}) \rightarrow p_{\infty}$, $\tilde{\mathbf{u}}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. Moreover,

$$
\begin{equation*}
\left\|(|\mathbf{u}|+|\nabla \mathbf{u}|+|p|)^{*}\right\|_{L^{q}(\partial \omega)} \leq C\left[\|\tilde{\mathbf{g}}\|_{L^{q}(\partial \omega)}+\left|p_{\infty}\right|+\mid \mathbf{u}_{\infty}\right] \tag{43}
\end{equation*}
$$

where C depends only on ω, p and \tilde{h}.
Proof. If $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{q}-solution of the Robin problem (4), (5) then there exists a constant p_{∞} and a vector \mathbf{u}_{∞} such that $p(\mathbf{x}) \rightarrow p_{\infty}, \tilde{\mathbf{u}}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$ as $|\mathbf{x}| \rightarrow \infty$. (See Theorem 6.8.)

Let now $p_{\infty} \in R^{1}, \mathbf{u}_{\infty} \in R^{m}$ be given. The operator $\tau_{\tilde{h}}$ is invertible in $L^{q}\left(\partial \omega, R^{m}\right)$ by Proposition 7.5. Clearly, \mathbf{u}, p is an L^{q}-solution of the Robin problem such that $p(\mathbf{x}) \rightarrow p_{\infty}, \mathbf{u}(\mathbf{x}) \rightarrow \mathbf{u}_{\infty}$.

Let now $\tilde{\mathbf{g}} \equiv 0$ and $\tilde{\mathbf{u}}, \tilde{p}$ be an L^{q}-solution of the Robin problem (4), (5) such that $p(\mathbf{x}) \rightarrow 0, \tilde{\mathbf{u}}(\mathbf{x}) \rightarrow 0$ as $|\mathbf{x}| \rightarrow \infty$. If $p \geq 2$ then $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{2}-solution of the problem (4), (5). Let now $p<2$. Fix $r>0$ such that $\partial \omega \subset B(0 ; r)$ and set $\Omega=\omega \cap B(0 ; r)$. Define $\tilde{h}=0$ on $\partial B(0 ; r), \tilde{\mathbf{g}}=T(\tilde{\mathbf{u}}, \tilde{p}) \mathbf{n}^{\Omega}-n_{1}^{\Omega} \tilde{\mathbf{u}} / 2$ on $\partial B(0 ; r)$. Then $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{q}-solution of the Robin problem (4), (5) in Ω. Theorem 8.1 gives that $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{2}-solution of this problem. Hence $\tilde{\mathbf{u}}, \tilde{p}$ is an L^{2}-solution of the problem (4), (5) in ω. Proposition 7.4 gives that $\tilde{\mathbf{u}} \equiv 0, \tilde{p} \equiv 0$.

The estimate (43) is a consequence of Proposition 5.3 and Proposition 5.5.
Acknowledgement: Supported by RVO: 67985840

References

[1] Ch. Amrouche, M. A. Rodrígues-Bellido: On the very weak solution for the Oseen and Navier-Stokes equations. Discrete and Continuous Dynamical Systems, ser. S, 3 (2010), 159-183
[2] Ch. Amrouche, M. A. Rodrígues-Bellido: Very weak solutions for the stationary Osee and Navier-Stokes equations. C. R. Acad. Sci. Paris, Ser. I, 348 (2010), 335-339
[3] Ch. Amrouche, M. A. Rodrígues-Bellido: Stationary Stokes, Oseen and Navier-Stokes equations with singular data. Arch. Rational Mech. Anal. 199 (2011), 597-651
[4] V. Barbu, I. Lasiecka: The unique continuation property of eigenfunctions to Stokes-Oseen operator is generic with respect to the coefficients. Nonlinear Anal. 75 (2012), 4384-4397
[5] Brown, R., Mitrea, I., Mitrea, M., Wright, M.: Mixed boundary value problems for the Stokes system. Trans. Amer. Math. Soc. 362, 1211-1230 (2010)
[6] H. J. Choe, E. H. Kim: Dirichlet problem for the stationary Navier-Stokes system on Lipschitz domains. Commun. Part. Diff. Equ. 36 (2011), 19191944
[7] M. Dindoš, M. Mitrea: The stationary Navier-Stokes system in nonsmooth manifolds: The Poisson problem in Lipschitz and C^{1} domains. Arch. Rational Mech. Anal. 174 (2004), 1-37.
[8] Fabes, E. B., Kenig, C. E., Verchota, G. C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769-793 (1988)
[9] S. Fenyö, H. W. Stolle: Theorie und Praxis der linearen Integralgleichungen 1-4, VEB Deutscher Verlag der Wissenschaften, Berlin 1982
[10] Galdi, G. P.: An introduction to the Mathematical Theory of the NavierStokes Equations I, Linearised Steady Problems. Springer Tracts in Natural Philosophy vol. 38, Springer Verlag, Berlin - Heidelberg - New York (1998)
[11] C. E. Kenig: Weighted H^{p} spaces on Lipschitz domains, Amer. J. Math. 102 (1980), 129-163
[12] C. E. Kenig: Boundary value problems of linear elastostatics and hydrostatics on Lipschitz domains. Seminaire Goulaovic - Meyer - Schwartz 19831984. Équat. dériv. part., Exposé No. 21 (1984), 1-12
[13] Kenig, C. E.: Recent progress on boundary value problems on Lipschitz domains. Pseudodifferential operators and Applications. Proc. Symp., Notre Dame/ Indiana 1984. Proc. Symp. Pure Math. 43, 175-205 (1985)
[14] M. Kohr, I. Pop: Viscous Incompressible Flow for Low Reynolds Numbers. Advances in Boundary Elements 16, WIT Press, Southampton 2004
[15] S. Kračmar, D. Medková, Š. Nečasová, W. Varnhorn: A Maximum Modulus Theorem for the Oseen Problem. Annali di Matematica Pura ed Applicata, to appear
[16] Ladyzenskaya, O. A.: The mathematical theory of viscous incompressible flow. Gordon and Breach, New York-London-Paris (1969)
[17] V. Maz'ya, M. Mitrea, T. Shaposhnikova: The inhomogenous Dirichlet problem for the Stokes system in Lipschitz domains with unit normal close to $V \mathrm{VO}^{*}$. Funct. Anal. Appl. 43 (2009), No. 3, 217-235
[18] D. Medková: Regularity of solutions of the Neumann problem for the Laplace equation. Le Matematiche, LXI (2006), 287-300.
[19] D. Medková: Integral representation of a solution of the Neumann problem for the Stokes system. Numerical Algorithms 54 (2010), No. 4, 459-484
[20] Medková, D.: Convergence of the Neumann series in BEM for the Neumann problem of the Stokes system. Acta Appl. Math. 116, 281-304 (2011)
[21] D. Medková: Transmission problem for the Brinkman system. Complex Variables and Elliptic Equations, to appear
[22] M. Mitrea, M. Wright: Boundary value problems for the Stokes system in arbitrary Lipschitz domains. Astérisque 344, Paris 2012
[23] Odquist, F. K. G.: Über die Randwertaufgaben in der Hydrodynamik zäher Flüssigkeiten. Math. Z. 32 (1930), 329-375.
[24] M. Pokorný: Comportement asymptotique des solutions de quelques equations aux derivees partielles decrivant l'ecoulement de fluides dans les domaines non-bornes. These de doctorat. Universite de Toulon et Du Var, Universite Charles de Prague
[25] Schulze, B. W., Wildenhein, G.: Methoden der Potentialtheorie für elliptisch Differentialgleichungen beliebiger Ordnung. Akademie-Verlag, Berlin (1977)
[26] E. M. Stein: Harmonic Analysis. Real-Variable Methods, Orthogonality, and Oscilatory Integrals, Princeton Univ. Press, Princeton 1993
[27] G. Verchota: Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains. Journal of Functional Analysis 59 (1984), 572-611
[28] W. P. Ziemer: Weakly Differentiable Functions. Springer-Verlag, New York, 1989.
D. Medková

Mathematical Institute of the Academy of Sciences of the Czech Republic, Žitná 25, 11567 Praha 1, Czech Republic
medkova@math.cas.cz

