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Setting of the problem

We study the compressible isentropic Euler system in the whole 2D
space 

∂tρ+ divx(ρv) = 0
∂t(ρv) + divx (ρv ⊗ v) +∇x [p(ρ)] = 0
ρ(·, 0) = ρ0

v(·, 0) = v0 .

(1)

Unknowns:

ρ(x , t) . . . density

v(x , t) . . . velocity

The pressure p(ρ) is given.
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Introduction

It is a hyperbolic system of conservation laws

The theory of hyperbolic conservation laws is far frome being
completely understood

Solutions develop singularities in finite time even for smooth
initial data

Admissibility comes into play due to the entropy inequality
(”selector” of physical solutions in case of existence of many
solutions)

There are satisfactory results in the case of scalar conservation
laws (in 1D as well as in multi-D), there is a lot of entropies:
⇒ Kruzkov, 1970: Well–posedness theory in BV .

There are also satisfactory results in the case of systems of
conservation laws in 1D: Lax, Glimm, Bressan, Bianchini, . . .
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Introduction II

Back to our case, the Euler system:

In more than 1D there is only one (entropy, entropy flux) pair,
which is (

ρε(ρ) +
ρ|v |2

2
,

(
ρε(ρ) +

ρ|v |2

2
+ p(ρ)

)
v

)
with the internal energy ε(ρ) given through

p(ρ) = ρ2ε′(ρ).

Local existence of strong (and therefore admissible) solutions
is proved

On the other hand global existence of weak solutions in
general (it is a system in multi D!) is still an open problem,
there are only partial results

The weak–strong uniqueness property holds for this system
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Weak solution

Definition 1

By a weak solution of Euler system on R2 × [0,∞) we mean a pair
(ρ, v) ∈ L∞(R2 × [0,∞)) such that the following identities hold for
every test functions ψ ∈ C∞c (R2 × [0,∞)), φ ∈ C∞c (R2 × [0,∞)):∫ ∞

0

∫
R2

[ρ∂tψ + ρv · ∇xψ] dxdt +

∫
R2
ρ0(x)ψ(x , 0)dx = 0

∫ ∞
0

∫
R2

[ρv · ∂tφ+ ρv ⊗ v : ∇xφ+ p(ρ)divx φ] dxdt

+

∫
R2
ρ0(x)v0(x) · φ(x , 0)dx = 0.

Ondřej Kreml Nonuniqueness of solutions to compressible Euler 5/43



Admissible weak solution

Definition 2

A bounded weak solution (ρ, v) of Euler system is admissible if it
satisfies the following inequality for every nonnegative test function
ϕ ∈ C∞c (R2 × [0,∞)):∫ ∞

0

∫
R2

[(
ρε(ρ) + ρ

|v |2

2

)
∂tϕ

+

(
ρε(ρ) + ρ

|v |2

2
+ p(ρ)

)
v · ∇xϕ

]
dxdt

+

∫
R2

(
ρ0(x)ε(ρ0(x)) + ρ0(x)

∣∣v0(x)
∣∣2

2

)
ϕ(x , 0) dx ≥ 0 .
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Previous results

De Lellis, Székelyhidi: There exist initial data (ρ0, v0) ∈ L∞

such that there are infinitely many bounded admissible weak
solutions

Chiodaroli: ill-posedness of bounded admissible weak solutions
for initial data with regular density (ρ0 ∈ C 1) and irregular
velocity (v0 ∈ L∞)
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Main Theorem of Part I

Theorem 3 (Chiodaroli, De Lellis, K.)

Let p(ρ) = ρ2. There exist Lipschitz initial data (ρ0, v0) for which
there are infinitely many bounded admissible weak solutions (ρ, v)
of Euler system on R2 × [0,∞) with inf ρ > 0. These solutions are
all locally Lipschitz on a finite interval of time where they therefore
all coincide with the unique classical solution.

The proof is based on analysis of the Riemann problem and a
suitable application of the theory of De Lellis and Székelyhidi for
incompressible Euler equations.
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Riemann problem

Denote x = (x1, x2) ∈ R2 and consider the special initial data

(ρ0(x), v0(x)) :=


(ρ−, v−) if x2 < 0

(ρ+, v+) if x2 > 0,
(2)

where ρ±, v± are constants.
In particular the initial data are ”1D” and there is a classical theory
about self-similar solutions to the Riemann problem in 1D (they
are unique in the class of BV functions).
In the case of system (1), the initial singularity can resolve to at
most 3 structures (rarefaction wave, admissible shock or contact
discontinuity) connected by constant states.
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First observation

If v−1 = v+1, then any self-similar solution to (1), (2) has to
satisfy v1(t, x) = v−1 = v+1 and in particular there is no contact
discontinuity in the self-similar solution.
The initial singularity then resolves into at most 2 structures
(rarefaction waves or admissible shocks) connected by constant
states.
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Classification of self-similar solutions I

1) If

v+2 − v−2 ≥
∫ ρ−

0

√
p′(τ)

τ
dτ +

∫ ρ+

0

√
p′(τ)

τ
dτ,

then the self-similar solution consists of a 1−rarefaction wave
and a 3−rarefaction wave. The intermediate state is vacuum,
i.e. ρm = 0.

2) If∣∣∣∣∣
∫ ρ+

ρ−

√
p′(τ)

τ
dτ

∣∣∣∣∣ < v+2−v−2 <
∫ ρ−

0

√
p′(τ)

τ
dτ+

∫ ρ+

0

√
p′(τ)

τ
dτ,

then the self-similar solution consists of a 1−rarefaction wave
and a 3−rarefaction wave. The intermediate state has ρm > 0.
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Classification of self-similar solutions II

3) If ρ− > ρ+ and

−

√
(ρ− − ρ+)(p(ρ−)− p(ρ+))

ρ−ρ+
< v+2−v−2 <

∫ ρ−

ρ+

√
p′(τ)

τ
dτ,

then the self-similar solution consists of a 1−rarefaction wave
and an admissible 3−shock.

4) If ρ− < ρ+ and

−

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−
< v+2−v−2 <

∫ ρ+

ρ−

√
p′(τ)

τ
dτ,

then the self-similar solution consists of an admissible
1−shock and a 3−rarefaction wave.
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Classification of self-similar solutions III

5) If

v+2 − v−2 < −

√
(ρ+ − ρ−)(p(ρ+)− p(ρ−))

ρ+ρ−
(3)

then the self-similar solution consists of an admissible
1−shock and an admissible 3−shock.
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Proof of Theorem 3

Step 1 - self-similar solution to Riemann:

Observe that if (ρ, v) is a solution then also

(ρ̃(x2, t), ṽ(x2, t)) := (ρ(−x2,−t), v(−x2,−t))

is.

If (ρ, v) is locally Lipschitz, it satisfies the admissibility
condition with equality, so does (ρ̃, ṽ).

Consider Riemann data resolving into a single 1-rarefaction
wave and switch left and right.
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Statement of the Lemma

Thus it holds the following.

Lemma 4

Let 0 < ρ− < ρ+, v− = (− 1ρ+ , 2
√

2(
√
ρ+ −

√
ρ−)) and

v+ = (− 1ρ+ , 0). Then there is a pair

(ρ, v) ∈W 1,∞
loc ∩ L∞(R2 × (−∞, 0),R+ × R2) such that

(i) ρ+ ≥ ρ ≥ ρ− > 0;

(ii) The pair solves the Euler system with p(ρ) = ρ2 in the
classical sense (pointwise a.e. and distributionally);

(iii) for t ↑ 0 the pair (ρ(·, t), v(·, t)) converges pointwise a.e. to
(ρ0, v0) as in (2);

(iv) (ρ(·, t), v(·, t)) ∈W 1,∞ for every t < 0.
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Some definitions

Definition 5 (Fan partition)

A fan partition of R2 × (0,∞) consists of three open sets
P−,P1,P+ of the following form

P− = {(x , t) : t > 0 and x2 < ν−t}
P+ = {(x , t) : t > 0 and x2 > ν+t}
P1 = {(x , t) : t > 0 and ν−t < x2 < ν+t}

where ν− < ν+ is an arbitrary couple of real numbers.
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Picture of fan partition

x2ν+ν−

1

P1

P+

P−

t
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Fan subsolution

Definition 6 (Fan subsolution I)

A fan subsolution to the compressible Euler equations with initial
data (2) is a triple (ρ, v , u) : R2 × (0,∞)→ (R+,R2,S2×20 ) of
bounded measurable functions satisfying the following
requirements.

(i) There is a fan partition P−,P1,P+ of R2 × (0,∞) such that

(ρ, v , u) = (ρ−, v−, u−)1P− + (ρ1, v1, u1)1P1 + (ρ+, v+, u+)1P+

where ρ1 > 0, v1, u1 are constants and

u± = v± ⊗ v± − 12 |v±|
2Id
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Fan subsolution II

(ii) There exists a positive constant C such that

v1 ⊗ v1 − u1 <
C

2
Id a.e.

(iii) The triple (ρ, v , u) solves the following system in the sense of
distributions:

∂tρ+ divx(ρ v) = 0

∂t(ρ v) + divx (ρ u)

+∇x

(
p(ρ) +

1
2
(
Cρ11P1 + ρ|v |21P+∪P−

))
= 0
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Admissible fan subsolution

Definition 7 (Admissible fan subsolution)

A fan subsolution (ρ, v , u) is said to be admissible if it satisfies the
following inequality in the sense of distributions

∂t (ρε(ρ)) + divx [(ρε(ρ) + p(ρ)) v ]

+ ∂t

(
ρ
|v |2

2
1P+∪P−

)
+ divx

(
ρ
|v |2

2
v1P+∪P−

)
+ ∂t

(
ρ1

C

2
1P1

)
+ divx

(
ρ1 v

C

2
1P1

)
≤ 0 .
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Key Lemma

The true core of our construction is the following Lemma.

Lemma 8

Let (ṽ , ũ) ∈ R2 × S2×20 and C > 0 be such that ṽ ⊗ ṽ − ũ < C
2 Id.

For any open set Ω ⊂ R2 × R there are infinitely many maps
(v , u) ∈ L∞(Ω,R2 × S2×20 ) with the following property

(i) v and u vanish identically outside Ω

(ii) {
divx v = 0
∂tv + divx u = 0

(iii) (ṽ + v)⊗ (ṽ + v)− (ũ + u) = C
2 Id a.e. on Ω.

Proof of this statement is (up to minor modifications) in the first
two papers of De Lellis and Székelyhidi on incompressible Euler
equations. There is no time to present it here.
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From subsolution to solutions

Using this Lemma we easily prove the following

Proposition 9

Let p be any C 1 function and (ρ±, v±) be such that there exists at
least one admissible fan subsolution (ρ, v , u) of the Euler equations
with initial data (2). Then there are infinitely many bounded
admissible solutions (ρ, v) to (1),(2) such that ρ = ρ.

To prove Theorem 12 we therefore need to find an admissible fan
subsolution.
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Algebra I

Introduce the real numbers α, β, γ1, γ2, v−1, v−2, v+1, v+2 such that

v1 = (α, β)

v− = (v−1, v−2)

v+ = (v+1, v+2)

u1 =

(
γ1 γ2
γ2 −γ1

)
.

Proposition 10
Let P−,P1,P+ be a fan partition. The constants
v1, v−, v+, u1, ρ−, ρ+, ρ1 define an admissible fan subsolution if and
only if the following identities and inequalities hold:
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Algebra II

(i) Rankine-Hugoniot conditions on the left interface

ν−(ρ− − ρ1) = ρ−v−2 − ρ1β
ν−(ρ−v−1 − ρ1α) = ρ−v−1v−2 − ρ1γ2

ν−(ρ−v−2 − ρ1β) = ρ−v
2
−2 + ρ1γ1 + p(ρ−)− p(ρ1)− ρ1

C

2

(ii) Rankine-Hugoniot conditions on the right interface

ν+(ρ1 − ρ+) = ρ1β − ρ+v+2
ν+(ρ1α− ρ+v+1) = ρ1γ2 − ρ+v+1v+2

ν+(ρ1β − ρ+v+2) = −ρ1γ1 − ρ+v2+2 + p(ρ1)− p(ρ+) + ρ1
C

2

Ondřej Kreml Nonuniqueness of solutions to compressible Euler 24/43



Algebra III

(iii) Subsolution condition

α2 + β2 < C(
C

2
− α2 + γ1

)(
C

2
− β2 − γ1

)
− (γ2 − αβ)2 > 0

(iv) Admissibility condition on the left interface

ν−(ρ−ε(ρ−)− ρ1ε(ρ1)) + ν−

(
ρ−
|v−|2

2
− ρ1

C

2

)
≤ [(ρ−ε(ρ−) + p(ρ−))v−2 − (ρ1ε(ρ1) + p(ρ1))β]

+

(
ρ−v−2

|v−|2

2
− ρ1β

C

2

)
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Algebra IV

(v) Admissibility condition on the right interface

ν+(ρ1ε(ρ1)− ρ+ε(ρ+)) + ν+

(
ρ1

C

2
− ρ+

|v+|2

2

)
≤ [(ρ1ε(ρ1) + p(ρ1))β − (ρ+ε(ρ+) + p(ρ+))v+2]

+

(
ρ1β

C

2
− ρ+v+2

|v+|2

2

)
.
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Algebra V

The proof of the main Theorem is finished as soon as we prove the
following:

Lemma 11

Let p(ρ) = ρ2. There exist (ρ−, v−), (ρ+, v+) producing a
compression wave on time interval (−∞, 0) and ρ1,C1, v1, u1, ν±
satisfying the algebraic identities and inequalities in the previous
Proposition.

Proof:
We already know how should the initial data look:

0 < ρ− < ρ+

v− =

(
− 1
ρ+
, 2
√

2(
√
ρ+ −

√
ρ−)

)
v+ =

(
− 1
ρ+
, 0
)
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Algebra VI

Plug these values to the set of identities and inequalities

Try the choice ν+ = 0 and observe that then β = γ2 = 0

Observe that the second admissibility condition is now
satisfied as an equality!
Try the choice ρ− = 1 and ρ+ = 4 and observe that

α = − 14
ν− = − 7

2
√
2

ρ1 = 15
7

C1
2 − γ1 = 559

105

Finally observe that the remaining three inequalities yield a
nonempty interval for C1 and therefore we have miraculously
found a solution!
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First Theorem of Part II

Theorem 12 (Chiodaroli, K.)

Let p(ρ) = ργ with γ ≥ 1. For every Riemann data (2) such that
the self-similar solution to the Riemann problem (1), (2) consists
of an admissible 1−shock and an admissible 3−shock, i.e.
v−1 = v+1 and

v+2 − v−2 < −

√
(ρ− − ρ+)(p(ρ−)− p(ρ+))

ρ−ρ+
, (4)

there exist infinitely many admissible solutions to (1), (2).
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Some remarks

Compared to Theorem 3, the new Theorem 12 widely extends
the set of initial data for which there exist infinitely many
admissible solutions to the Riemann problem.

Moreover Theorem 12 gives this result for any pressure law
p(ρ) = ργ , instead of the specific case γ = 2 in Theorem 3
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Entropy rate admissibility I

Define the total energy of the solutions (ρ, v) to (1) as

E [ρ, v ](t) =

∫
R2

(
ρε(ρ) + ρ

|v |2

2

)
dx (5)

and the energy dissipation rate of (ρ, v) at time t:

D[ρ, v ](t) =
d+E [ρ, v ](t)

dt
. (6)

In our case the energy is always infinite, so we restrict the integrals
to a finite box:

EL[ρ, v ](t) =

∫
(−L,L)2

(
ρε(ρ) + ρ

|v |2

2

)
dx (7)

DL[ρ, v ](t) =
d+EL[ρ, v ](t)

dt
. (8)
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Entropy rate admissibility II

Definition 13 (Entropy rate admissible solution)

A weak solution (ρ, v) of (1) is called entropy rate admissible if
there exists L∗ > 0 such that there is no other weak solution (ρ, v)
with the property that for some τ ≥ 0, (ρ, v)(x , t) = (ρ, v)(x , t)
on R2 × [0, τ ] and DL[ρ, v ](τ) < DL[ρ, v ](τ) for all L ≥ L∗.

This definition is motivated by Dafermos. He proved that for a
single equation the entropy rate criterion is equivalent to the
viscosity criterion in the class of piecewise smooth solutions.
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Second Theorem of Part II

Theorem 14 (Chiodaroli, K.)

Let p(ρ) = ργ , 1 ≤ γ < 3. There exist Riemann data (2) for which
the self-similar solution to (1) emanating from these data is not
entropy rate admissible.

Theorem 14 ensures that for 1 ≤ γ < 3 there exist initial Riemann
data (2) for which some of the infinitely many nonstandard
solutions constructed as in Theorem 12 dissipate more total energy
than the self-similar solution, suggesting in particular that the
Dafermos entropy rate admissibility criterion would not pick the
self-similar solution as the admissible one.
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Algebra revisited I

We are trying to find a solution to the above mentioned system of
algebraic identities and inequalities.

Since v−1 = v+1 it is easy to prove that α = v−1 = v−2 and
γ2 = αβ.

Then observe that the subsolution inequalities are equivalent
to existence of ε1, ε2 such that

0 < ε1 =
C

2
− γ1 − β2

0 < ε2 = C − α2 − β2 − ε1

Reformulate the system of identities and inequalities in terms
of ε1 and ε2
Achieve 4 identities and 4 inequalities for 6 unknowns
(ν±, ρ1, β, ε1, ε2). Moreover ε2 appears only in inequalities.
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Algebra revisited II

Take ρ1 as a parameter and express ν±, β and ε1 as functions
of initial data and ρ1
Crucial observation: ε1 > 0 if and only if ρ1 < ρm with ρm
being the density of the intermediate state of the self-similar
solution.

Moreover, for fixed ρ± the value of ρm grows as (v−2 − v+2)
2
γ

Both admissibility inequalities yield ε2 < A± ε1B with
A(ρ±, ρ1) strictly positive. Therefore by continuity the
inequalities are satisfied at least in some left neighborhood of
ρm.

The proof of Theorem 12 is finished.
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Proof of Theorem 14 I

Set v±1 = α = 0. Denote the energy of the constant state (ρ∗, v∗)
by E∗:

E∗ := ρ∗ε(ρ∗) + ρ∗
|v∗|2

2
(9)

If (ρc , vc) is the self-similar solution of the Riemann problem
consisting of two admissible shocks, the dissipation rate is given by

DL[ρc , vc ](t) = 2L (ν−(E− − Em) + ν+(Em − E+)) (10)

at least for t ≤ T ∗ with some T ∗ depending on L∗.
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Proof of Theorem 14 II

Consider any solution (ρn, vn) constructed from a subsolution
achieved as above. Even though the velocity vn is highly oscillating
in the region P1, it holds |vn|2 |P1 = C = β2 + ε1 + ε2 and thus the
energy of all such solutions is given by the subsolution

E1 = ρ1ε(ρ1) + ρ1
β2 + ε1 + ε2

2
. (11)

Therefore we can again write down the dissipation rate similarly as
above:

DL[ρn, vn](t) = 2L (ν−(E− − E1) + ν+(E1 − E+)) (12)

again at least for small t.
Therefore we study properties of function

f (ρ1) := ν−(ρ1)(E− − E1(ρ1)) + ν+(ρ1)(E1(ρ1)− E+) (13)
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Proof of Theorem 14 III

Our aim is to make f (ρ1) as small as possible. Concerning
dependence on ε2 it is easy to observe that smallest possible value
of f (ρ1) is achieved by taking ε2 = 0.
Moreover

lim
ρ1→ρm

lim
ε2→0

2Lf (ρ1) = DL[ρc , vc ](t). (14)

We conclude therefore that Theorem 14 is a direct consequence of
the following Lemma.

Lemma 15

Let 1 ≤ γ < 3. There exist initial data ρ±, v±2 for which the
function f (ρ1) defined in (13) is increasing in the neighborhood of
ρm.

Ondřej Kreml Nonuniqueness of solutions to compressible Euler 38/43



Proof of Theorem 14 IV

Some easy manipulation yields that f (ρ1) has the following
structure

f (ρ1) = C1(data) + C2(data)g(ρ1) (15)

and we prove

Proposition 16

For any 1 ≤ γ < 3 and any couple of densities ρ− > ρ+ there exists
a unique local minimum ρ > ρ− of the function g(ρ1). For fixed

γ, ρ−, ρ+ the value of ρ grows asymptotically as (v−2 − v+2)
2

γ+1 .
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Proof of Theorem 14 V

Calculating the derivative of g(ρ1) and setting it equal to zero we
achieve that any critical point of g(ρ1) satisfies equation

z(ρ1) = ρ−ρ+(v−2 − v+2)
2 − (ρ− − ρ+)(p(ρ−)− p(ρ+)) (16)

and we show that z(ρ1) has the following properties

it is strictly increasing

z(ρ−) = 0 (assuming ρ− > ρ+)

z(ρ1) ∼ ργ+11
Therefore for given data there is a unique point of local minimum
ρ of f (ρ1). Finally ρ grows with respect to (v−2 − v+2) slower than
ρm, so it is enough to take (v−2− v+2) large enough to get ρ < ρm.
The proof is finished.
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Concluding remarks

We show nonuniqueness of admissible weak solutions in case when
the self-similar solution contains at least one shock.
On the other hand it holds

Theorem 17 (Feireisl, K.)

The self-similar solution to the isentropic Euler system containing
only rarefaction waves is unique in the class of all bounded
admissible weak solutions to the problem.

This property remains true also in the case of the nonisentropic
compressible Euler system (with temperature).

Theorem 18 (Feireisl, K., Vasseur)

The self-similar solution to the full compressible Euler system
containing only rarefaction waves is unique in the class of all
bounded admissible weak solutions to the problem.
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Open problems

Nonuniqueness for general case of one shock and one
rarefaction wave and in the case of just one shock

What happens with contact discontinuities?

Nonuniqueness example for full compressible Euler system

Admissibility criterion working well for multi-D problem
(killing wild solutions and preserving self-similar solutions)
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Thank you

Thank you for your attention.
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