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December 7, 2014

Abstract

The aim of this paper is to present the existence and uniqueness result for the

diffusive Peterlin viscoelastic model describing the unsteady behavior of some in-

compressible polymeric fluids. The polymers are treated as two beads connected by

a nonlinear spring. The Peterlin approximation of the spring force is used to derive

the equation for the conformation tensor. The latter is the time evolution equa-

tion with spatial diffusion of the conformation tensor. Using the energy estimates

we prove global in time existence of a weak solution in two space dimensions. We

are also able to show the regularity and consequently the uniqueness of the weak

solution.

1 Introduction

The long chain molecules, typical for polymeric liquids, are modelled as chains of beads
and springs or beads and rods. The spring forces, stochastic forces and forces exerted by
the surrounding fluid are responsible for the movement of molecules. There are basically
three different approaches how to model the environment with which a polymer molecule
interacts. Firstly, the dilute solution theories, which consider the polymer molecule to
be surrounded by a Newtonian fluid. In this case, the hydrodynamic drag forces are
resulting in the interaction between the molecules and the flow. On the contrary, there
are the network theories motivated by theories of rubber elasticity. Molecules are linked
together at junction points in a network. The interaction between the polymer molecule
and the flow results from the motion of the junctions. Finally, the middle ground of the
above two theories are the reptation theories, which visualize the molecule as slithering
inside a tube formed by the other polymer molecules. For details see e.g. [31], [32]. The
history of molecular modelling can be found in [8] and the references therein.

The simplest model representing the dilute solution theories is the so called dumbbell
model consisting of two beads connected by a spring. Considering the linear force law for
the spring force: F(R) = HR, where R is the vector connecting the beads, we obtain the
upper convected Maxwell model, cf. [31]. The well-known Oldroyd-B model has the stress
that is a linear superposition of the upper convected Maxwell model and the Newtonian
model.
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For the nonlinear force, F(R) = γ(|R|2)R it is not possible to obtain a closed system
of equations for the conformation tensor, except by approximating the force law. The
Peterlin approximation replaces this law by F(R) = γ(〈|R|2〉)R. That means, the length
of the spring in the spring function γ is replaced by the length of the average spring
〈|R|2〉 = tr C. Consequently, we can derive the evolution equation for the conformation
tensor C, which is in a closed form, see [31].

Mathematical analysis of complex viscoelastic fluids is an active research area. In the
literature we can find already various mathematical results dealing with the questions
of well-posedness of the viscoelastic flows and in particular with the Oldroyd-B model.
Concerning the local in time existence results and global in time results for small data
let us mention the classical results of Fernández-Cara, Guillén and Ortega [16] and of
Guillopé and Saut [17]. Theoretical results for stationary generalized Oldroyd-B, power-
law flows were published by Arada and Sequeira [1], see also [18] for further related results
on the existence of strong solutions in exterior domains obtained by Hieber, Naito and
Shibata.

Recently, the global existence result for fully two- and three-dimensional flow has been
obtained by Lions and Masmoudi [24] for the case of the so-called corotational Oldroyd-B
model, where the gradient of velocity ∇v in the evolution equation for the elastic stress
tensor is replaced by its anti-symmetric part 1

2
(∇v −∇vT ). The goal is to obtain strong

convergence of elastic stress tensor. To this end, the authors introduce a new quantity
that measures losses of compactness in nonlinear terms and apply DiPerna, Lions theory
of renormalized solutions. Once the strong convergence for elastic stress tensor is obtained
one can clearly pass to limit in all nonlinear terms involving and deal with other terms
as in the Navier-Stokes theory. Unfortunately, the proof cannot be extended easily to
other Oldroyd-type fluids since a specific structure of corotational model has been used
here. In the viscoelastic models the transport equation for the elastic stress tensor plays an
important role. Bahouri and Chemin [2] proved a losing a priori estimate for the transport
equation. Based on this theory Chemin and Masmoudi [26] showed the blowup criterion
in two-dimensional situation. Recently this result was improved by Lei, Masmoudi and
Zhou [22]. Global existence of weak solutions for small data can be found, e.g., in [14].
Local existence of solutions and global existence of small solutions of some rate type fluids
have been shown by Lin, Liu and Zhang in [23]. In the recent work [3] Barrett and Boyaval
studied the so-called diffusive Oldroyd-B model both from numerical as well as analytical
point of view. For two space dimensions they were able to prove the global existence of
weak solutions.

On the other hand, as already pointed up above, complex viscoelastic fluids can be also
modelled using the molecular description of the complex fluids, which yields the so-called
micro-macro models. Here we couple the macroscopic equation for the conservation of
mass and momentum (time evolution of fluid velocity and divergence freedom of the
velocity for incompressible fluid) with the Fokker-Planck equation arising from the kinetic
approach. The Fokker-Planck equation is a nonlinear equation describing time evolution
for the particle distribution. The (macroscopic) elastic stress tensor, appearing on the
right hand side of the momentum equation, is then obtained by an averaging process
by means of the particle distribution function, cf. the Kramers expression. Indeed, the
Oldroyd-B model can be obtained as an exact closure of the linear Fokker-Planck equation,
see, e.g., [12]. Mathematical literature dealing with the analysis of such micro-macro
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viscoelastic models is growing quite rapidly, see, e.g., [6,7,9–11,13–15,19,20,23,27–30] and
the references therein. For example, in [27–29] Masmoudi and collaborators combine the
macroscopic fluid model with the so-called FENE (finitely extensible nonlinear elastic)
model, which assumes that the interaction potential can be infinite at finite extension
length. In [28] the global existence of weak solution for FENE dumbell polymeric flows
is proved. The proof is based on the control of the propagation of strong convergence
of some well chosen quantity by studying a transport equation for its defect measure.
Furthermore, in [29] the existence of global smooth solutions for a coupled micro-macro
model for polymeric fluid in two space dimensions under the co-rotational assumption is
obtained.

For the dilute polymers using the kinetic model having a diffusive term the global existence
of weak solutions has been proved by Barrett and Süli in [4]. In this paper the authors
work with the FENE model in order to represent viscoelastic effects. Thus, the spring force
F(R) is no more linear but given by such a nonlinear potential, see [4] for more details.
In [5] analogous existence result for the Hookean-type kinetic model with a diffusive term
has been presented. The diffusive Oldroyd-B model has been also studied by Constantin
and Kliegl in [12] and the global regularity in two space dimensions has been proven.

Let us point out that in standard derivations of bead-spring models the diffusive term in
the equation for the elastic stress tensor is routinely omitted. As pointed out in [4,15,33]
in the case of heterogeneous fluid velocity this diffusive term indeed appears in the Fokker-
Planck equation and, consequently, also in the corresponding macroscopic equation for
the elastic stress.

The main aim of the present paper is to analyze a model for complex viscoelastic fluids,
where the Peterlin approximation is used in order to derive the evolution equation for the
elastic conformation tensor. Following Barrett and Süli [4] we would like to emphasize
that the diffusive term appearing in the evolution equation for the conformation tensor
is not a regularizing term but rather an outcome of physical modelling. The paper is
organized in the following way. In the next section we present a mathematical model for
our complex viscoelastic fluid and formal energy estimates. Further, in the Section 3 we
show the global existence of the weak solutions in two space dimensions by studying the
Galerkin approximation, a priori estimates, compactness results and passage to the limit.
Unfortunately the functional spaces obtained for the conformation tensor do not allow to
obtain the uniqueness of the weak solution. Therefore we show that this model indeed
enjoys higher regularity, provided data are more regular. Consequently, we are able to
show the uniqueness of global more regular weak solution.

2 Model

In this section we will firstly describe the mathematical model and show formal energy
estimates. Let Ω ⊂ R

2 be a bounded smooth domain and let T > 0. We consider the
system of equations on Ω × (0, T ) describing the unsteady motion of an incompressible
viscoelastic fluid

ρ
∂v

∂t
+ ρ(v · ∇)v = ν∆v + div T −∇p (1a)

3



div v = 0. (1b)

Here v(x, t) ∈ R
2 denotes the velocity of fluid, p(x, t) ∈ R is the pressure for all (x, t) ∈

Ω× (0, T ). The elastic stress tensor T can be expressed by the conformation tensor C in
the following way

T = tr CC, (1c)

where C(x, t) ∈ R
2×2 is a symmetric positive definite tensor for all (x, t) ∈ Ω × (0, T ),

which satisfies the equation of the form

∂C

∂t
+ (v · ∇)C − (∇v)C −C(∇v)T = tr CI − (tr C)2C + ε∆C. (1d)

We impose the homogeneous Dirichlet boundary condition on v and the no-flux condition
on C on the boundary ∂Ω

(

v,
∂C

∂n

)

= (0, 0) , (1e)

and we consider v0 and C0 to be the enough smooth initial data

(v(0),C(0)) = (v0,C0) . (1f)

ρ, ν and ε are given constants describing the density, fluid viscosity and elastic stress
viscosity, respectively.

Remark 1. The above model is a variant of the so-called Peterlin model, cf. [31]. As
pointed out in the introduction we replace a general nonlinear spring force F(R) =
γ(|R|2)R by its suitable approximation F(R) = γ(〈|R|2〉)R taking into account the length
of an average spring, represented by 〈|R|2〉 = tr C. In our model (1) we consider a par-
ticular nonlinear Peterlin approximation with γ being a linear function of tr C and allow
a nonlinear (quadratic) dependence on tr C at the right hand side of (1d).

In order to show the formal energy estimates we first need the following result.

Proposition 1.

Let C ∈ R
2×2 be a symmetric tensor and let v ∈ R

2 be a solenoidal vector field. Then the
following identity holds truei

tr CC : ∇v =
1

2

[
(∇v)C + C(∇v)T

]
: C. (2)

Proof. Let us rewrite the left hand side of (2) using the symmetry of C in the following
way

tr CC : ∇v = tr C

2∑

i,j=1

Cij
∂vi

∂xj
=

2∑

i=1

C2
ii

∂vi

∂xi
+ tr CC12

(
∂v1

∂x2
+

∂v2

∂x1

)

+ C11C22 div v.

iNote that for square matrices of the same size we use the notation A : B =
∑

2

i,j=1
AijBij . Moreover,

A : A = |A|2.
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The right hand side of (2) can be rewritten in an analogous way

1

2

[
(∇v)C + C(∇v)T

]
: C =

2∑

i,j,k=1

∂vi

∂xk

CkjCij + Cik
∂vj

∂xk

Cij =

=
2∑

i=1

C2
ii

∂vi

∂xi

+ tr CC12

(
∂v1

∂x2

+
∂v2

∂x1

)

+ C2
12 div v.

Since div v = 0, we can conclude that the identity (2) holds true.

Remark 2. Let us point out that the above result is crucial in order to control nonlin-
ear term (∇v)C + C(∇v)T arising from the objective derivative in the equation for the
conformation tensor. Indeed, due to (2) in the energy estimates this term will be canceled
by the div T appearing in the momentum equation (1a). Unfortunately, the property (2)
does not hold in three space dimensions.

Now, we proceed with the formal energy estimates for our model. We multiply the
momentum equation (1a) by v and integrate using the Gauss theorem

ρ

2

∫

Ω

|v|2 dx −
ρ

2

∫

Ω

|v0|
2 dx −

1

2

∫ t

0

∫

Ω

div v|v|2 dx dt

︸ ︷︷ ︸
=0

+
1

2

∫ t

0

∫

∂Ω

(v · n)|v|2 dS dt

︸ ︷︷ ︸
=0

=

= −ν

∫ t

0

∫

Ω

|∇v|2 dx dt + ν

∫ t

0

∫

∂Ω

(n · ∇)v · v dS dt

︸ ︷︷ ︸
=0

−

∫ t

0

∫

Ω

T : ∇v dx dt +

+

∫ t

0

∫

∂Ω

(n · T) · vT dS dt

︸ ︷︷ ︸
=0

+

∫ t

0

∫

Ω

div v p dx dt

︸ ︷︷ ︸
=0

−

∫ t

0

∫

∂Ω

(v · n)p dS dt

︸ ︷︷ ︸
=0

.

The divergence freedom of velocity and the boundary conditions yield the following equal-
ity

ρ

2

∫

Ω

|v|2 dx −
ρ

2

∫

Ω

|v0|
2 dx = −ν

∫ t

0

∫

Ω

|∇v|2 dx dt −

∫ t

0

∫

Ω

T : ∇v dx dt . (3)

Now, we multiply (1d) by 1
2
C and integrate this equation using the Gauss theorem. Thus

we obtain

1

4

∫

Ω

|C|2 dx −
1

4

∫

Ω

|C0|
2 dx −

1

2

∫ t

0

∫

Ω

div v C : C dx dt

︸ ︷︷ ︸
=0

+
1

2

∫ t

0

∫

∂Ω

(v · n)C : C dS dt

︸ ︷︷ ︸
=0

−

−
1

2

∫ t

0

∫

Ω

[
(∇v)C + C(∇v)T

]
: C dx dt =

1

2

∫ t

0

∫

Ω

(tr C)2 dx dt −

−
1

2

∫ t

0

∫

Ω

(tr C)2C : C dx dt −
ε

2

∫ t

0

∫

Ω

|∇C|2 dx dt +
ε

2

∫ t

0

∫

∂Ω

C(∇C · n) dS dt

︸ ︷︷ ︸
=0

.
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Again, by the divergence freedom of velocity and the boundary conditions, we have

1

4

∫

Ω

|C|2 dx +
ε

2

∫ t

0

∫

Ω

|∇C|2 dx dt +
1

2

∫ t

0

∫

Ω

(tr C)2C : C dx dt −

−
1

2

∫ t

0

∫

Ω

[
(∇v)C + C(∇v)T

]
: C dx dt =

1

4

∫

Ω

|C0|
2 dx +

1

2

∫ t

0

∫

Ω

(tr C)2 dx dt .

(4)

Thus by adding the equations (3) and (4) together, and using the identity (2), we get the
following energy equality

ρ

2

∫

Ω

|v|2 dx +
1

4

∫

Ω

|C|2 dx + ν

∫ t

0

∫

Ω

|∇v|2 dx dt +
ε

2

∫ t

0

∫

Ω

|∇C|2 dx dt +

+
1

2

∫ t

0

∫

Ω

(tr C)2C : C dx dt =
ρ

2

∫

Ω

|v0|
2 dx +

1

4

∫

Ω

|C0|
2 dx +

1

2

∫ t

0

∫

Ω

|tr C|2 dx dt .

(5)
Since (tr C)2 ≤ 2C : C, equation (5) indicates, by the Gronwall inequality, that the
following functional spaces are appropriate for v and C

v ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)), C ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Moreover, T ∈ L2((0, T ) × Ω). In what follows we will need the following interpolation
inequalities. For proof see e.g. [21].

Proposition 2. (interpolation inequalities)
Let Ω ⊂ R

2 be a bounded smooth domain. Then the following inequalities hold true

‖v‖L4(Ω) ≤ c‖v‖
1/2
L2(Ω)‖∇v‖

1/2
L2(Ω), v ∈ H1

0(Ω) (6a)

‖C‖L4(Ω) ≤ c(Ω)
(

‖C‖L2(Ω) + ‖C‖
1/2
L2(Ω)‖∇C‖

1/2
L2(Ω)

)

, C ∈ H1(Ω). (6b)

Let us point out that the energy equality (5) together with (6b) yields C ∈ L4((0, T )×Ω).

3 Existence of weak solution

The goal of this section is to show the existence of a weak solution. In the next part, we
will use the following notation:

V = {v ∈ H1
0(Ω)| div v = 0}, equipped with the norm ‖|v‖| := ‖∇v‖L2(Ω)

H = {v ∈ L2(Ω)| div v = 0}

b
(
u,v,w

)
=

∫

Ω

(u · ∇)v · w dx u,v,w ∈ V

((
v,w

))
=

∫

Ω

∇v : ∇w dx v,w ∈ V

B
(
v,C,D

)
=

∫

Ω

(v · ∇)C : D dx v ∈ V, C,D ∈ H1(Ω)

((
C,D

))
=

∫

Ω

∇C : ∇D dx C,D ∈ H1(Ω).
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Analogously as in [34] one can easily show that

b(u,v,w) = −b(u,w,v) u,v,w ∈ V (7)

B(v,C,D) = −B(v,D,C) v ∈ V, C,D ∈ H1(Ω). (8)

Definition 1. (weak solution)
Let (v0,C0) ∈ H × L2(Ω). The couple

(v,C) ∈
[
L∞(0, T ;H) ∩ L2(0, T ;V)

]
×
[
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

]
(9a)

is called a weak solution to (1) if

(v(0),C(0)) = (v0,C0) (9b)

and if it satisfies

ρ

∫

Ω

∂v

∂t
·w + (v · ∇)v · w dx + ν

∫

Ω

∇v : ∇w dx = −

∫

Ω

tr CC : ∇w dx (9c)
∫

Ω

∂C

∂t
: D dx +

∫

Ω

(v · ∇)C : D dx + ε

∫

Ω

∇C : ∇D dx −

−

∫

Ω

[(∇v)C + C(∇v)T ] : D dx =

∫

Ω

[tr CI − (tr C)2C] : D dx (9d)

∀ w ∈ V, ∀ D ∈ H1(Ω), a.e. t ∈ (0, T ).

Theorem 1. (existence of weak solution)
There exists a weak solution to the problem (1) such that (9) is satisfied.

Proof. The proof of the existence of a weak solution to (1) will be based on the Galerkin
approximation.

Galerkin approximation

Let us take the orthonormal countable bases of the spaces V and H1(Ω)

V = span{wi}∞i=1 and H1(Ω) = span{Di}∞i=1.

The m−th approximate Galerkin solution can be expressed as follows
(

vm(t) =
m∑

i=1

gim(t)wi, Cm(t) =
m∑

i=1

Gim(t)Di

)

ρ
(
v′

m(t),wj

)
+ ρb

(
vm(t),vm(t),wj

)
+ ν
((

vm(t),wj

))
= −

(
tr Cm(t)Cm(t),∇wj

)

(10a)
(
C′

m(t),Dj

)
+ B

(
vm(t),Cm(t),Dj

)
+ ε
((

Cm(t),Dj

))
=

=
(
(∇vm(t))Cm(t) + Cm(t)(∇vm(t))T ,Dj

)
+
(
tr Cm(t) I − (tr Cm(t))2Cm(t),Dj

)

(10b)

(vm(0),Cm(0)) = (v0m,C0m)

for j = 1, . . . , m, t ∈ [0, T ].

Functions v0m and C0m are the orthogonal projections in H of v0 and in L2(Ω) of C0 on the
spaces spanned by wj and Dj . The nonlinear system of differential equations together with
the initial conditions (and the following a priori bounds) gives us the solution (vm,Cm)
defined in interval [0, T ].
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A priori estimates

Repeating the energy estimates from Section 2 for the m−th Galerkin approximation we
obtain

(vm,Cm) ∈
[
L∞(0, T ;H) ∩ L2(0, T ;V)

]
×
[
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

]
.

Finally, we have shown that there exists a positive constant k = k (Ω, T, 1/ρ, 1/ν, 1/ε,v0,C0)
such that

‖vm‖L2(0,T ;V) + ‖vm‖L∞(0,T ;H) + ‖Cm‖L2(0,T ;H1(Ω)) + ‖Cm‖L∞(0,T ;L2(Ω)) ≤ k.

In order to get the strong convergences of our approximate Galerkin sequence we first
define the following operators

A : V → V∗ 〈Av,w〉 =
((

v,w
))

B : V → V∗ 〈Bv,w〉 = b
(
v,v,w

)

E : L2(Ω) → V∗ 〈ET,w〉 =
(
T,∇w

)
.

Then (9c) can be rewritten in the following operator form

v′ = −ET − ρBv − νAv, v ∈ V,T ∈ L2(Ω).

First, we have the standard estimate of the operator Av

∫ T

0

‖Av‖2
V∗ dt ≤

∫ T

0

‖|v‖|2 dt ,

and by (6a), of the operator Bv

∫ T

0

‖Bv‖2
V∗ dt ≤ c

∫ T

0

‖v‖2
L2(Ω)‖|v‖|

2 dt ≤ c‖v‖2
L∞(0,T ;H)

∫ T

0

‖|v‖|2 dt .

Moreover, we have also

∫ T

0

‖ET‖2
V∗ dt ≤

∫ T

0

‖T‖2
L2(Ω) dt .

Consequently, we obtain v′ ∈ L2(0, T ;V∗). Since V →֒→֒ L4
div(Ω) →֒ H →֒ V∗, we can

apply the Lions - Aubin lemma and thus we have a compact embedding of {vm}
∞

m=1 into
the space L2(0, T ;L4

div(Ω)).

We have a similar result for the conformation tensor C. Let us define the operators

Ã : H1(Ω) → H−1(Ω) 〈ÃC,D〉 =
((

C,D
))

B̃ : V ×H1(Ω) → H−1(Ω) 〈B̃(v,C),D〉 = B
(
v,C,D

)

O : V × H1(Ω) → H−1(Ω) 〈O(v,C),D〉 =
(
(∇v)C + C(∇v)T ,D

)

T : H1(Ω) → H−1(Ω) 〈T C,D〉 =
(
tr CI − (tr C)2C,D

)
.

Then (9d) can be rewritten in the following operator form

C′ = O(v,C) − T C − B̃(v,C) − εÃv, v ∈ V,C ∈ H1(Ω).
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We have the analogous estimates of the operators ÃC, O(v,C) and T C defined above

∫ T

0

‖Ãv‖2
H−1(Ω) dt ≤ c

∫ T

0

‖∇C(t)‖2
L2(Ω) dt

∫ T

0

‖O(v,C)‖
4/3

H−1(Ω) dt ≤ c

∫ T

0

‖|v(t)‖|4/3‖C(t)‖
4/3

L4(Ω) dt ≤ c‖v‖
4/3

L2(0,T ;V)‖C‖
4/3

L4((0,T )×Ω)

∫ T

0

‖T C‖
4/3

H−1(Ω) dt ≤ c

∫ T

0

‖tr C(t)‖
4/3

L2(Ω) + ‖tr C(t)‖
8/3

L4(Ω)‖C(t)‖
4/3

L4(Ω) dt ≤

≤ c‖tr C‖
4/3

L2((0,T )×Ω) + c‖tr C‖
8/3

L4((0,T )×Ω)‖C‖
4/3

L4((0,T )×Ω).

By using (6a) and (8) we obtain the following estimates of the operator B̃(v,C)

∫ T

0

‖B̃(v,C)‖2
H−1(Ω) dt ≤ c

∫ T

0

‖|v(t)‖|‖v(t)‖L2(Ω)‖C(t)‖2
L4(Ω) dt ≤

≤ c‖v‖L∞(0,T ;H)

∫ T

0

‖|v‖|‖C‖2
L4(Ω) dt .

Since ÃC, B̃(v,C) ∈ L2(0, T ;H−1(Ω)) and O(v,C), T C ∈ L4/3(0, T ;H−1(Ω)) we get
C′ ∈ L4/3(0, T ;H−1(Ω)). The following embeddings H1(Ω) →֒→֒ L4(Ω) →֒ H−1(Ω) yield
due to the Lions - Aubin lemma the compact embedding of {Cm}

∞

m=1 into the space
L2(0, T ;L4(Ω)). Consequently, there exists a subsequence, denoted again by (vm,Cm), of
the Galerkin approximate sequence such that

vm ⇀∗ v in L∞(0, T ;H)

vm ⇀ v in L2(0, T ;V)

vm → v in L2(0, T ;L4(Ω))

Cm ⇀∗ C in L∞(0, T ;L2(Ω))

Cm ⇀ C in L2(0, T ;H1(Ω))

Cm → C in L2(0, T ;L4(Ω)).

Passage to the limit

Now we are able to pass to the limit in (10) for m → ∞. Let us take ϕ ∈ C1([0, T ]),
ϕ(T ) = 0. Multiply (10a) and (10b) by ϕ(t) and integrate per partes over [0, T ]. In what
follows we only concentrate on the limiting process in some nonlinear terms. The limiting
process in other terms can be easily done. In the velocity equation (10a) we need to
control the elastic term
∣
∣
∣
∣

∫ T

0

∫

Ω

(
tr C(t)C(t) − tr Cm(t)Cm(t)

)
: ∇(ϕ(t)wj) dx dt

∣
∣
∣
∣
≤

≤ max
t∈[0,T ]

|ϕ(t)|‖∇wj‖L2(Ω)

(
∫ T

0

(∫

Ω

|tr C(t) − tr Cm(t)|4 dx

)1/4(∫

Ω

|Cm(t)|4 dx

)1/4

dt +

+

∫ T

0

(∫

Ω

|tr C(t)|4 dx

)1/4(∫

Ω

|C(t) − Cm(t)|4 dx

)1/4

dt

)

≤

9



≤c‖∇wj‖L2(Ω)

(

‖tr C − tr Cm‖L2(0,T ;L4(Ω))‖Cm‖L2(0,T ;L4(Ω))+

+ ‖tr C‖L2(0,T ;L4(Ω))‖C −Cm‖L2(0,T ;L4(Ω))

)

,

which goes to zero letting m to ∞. The nonlinear term in the equation for the conforma-
tion tensor (10b) can be estimated in the following way
∣
∣
∣
∣

∫ T

0

(
(tr Cm(t))2Cm(t) − (tr C(t))2C(t),Dj ϕ(t)

)
dt

∣
∣
∣
∣
≤

≤ max
t∈[0,T ]

|ϕ(t)|‖Dj‖L4(Ω)

(
∫ T

0

(∫

Ω

|tr Cm(t) − tr C(t)|4 dx

)1/4(∫

Ω

|Cm(t)|4 dx

)1/2

dt +

+

∫ T

0

(∫

Ω

|tr Cm − tr C(t)|4 dx

)1/4(∫

Ω

|tr C(t)|4 dx

)1/4(∫

Ω

|Cm(t)|4 dx

)1/4
)

dt +

+

∫ T

0

(∫

Ω

|Cm(t) − C(t)|4 dx

)1/4(∫

Ω

|tr C(t)|4 dx

)1/2

dt

)

≤

≤ c‖Dj‖L4(Ω)

(

‖tr Cm − tr C‖L2(0,T ;L4(Ω))‖Cm‖
2
L4(0,T ;L4(Ω))+

+ ‖tr Cm − tr C‖L2(0,T ;L4(Ω))‖tr C‖L4(0,T ;L4(Ω))‖Cm‖L4(0,T ;L4(Ω))+

+ ‖C − Cm‖L2(0,T ;L4(Ω))‖tr C‖2
L4(0,T ;L4(Ω))

)

,

which goes to zero letting m to ∞. Let us point out that the limiting process in the
convective terms

∫ T

0
b
(
vm(t),vm(t),wjϕ(t)

)
dt and

∫ T

0
B
(
vm(t),Cm(t),Djϕ(t)

)
dt is

straightforward and can be done in an analogous way as, e.g. in [34]. Finally, after the
limiting process, we obtain that the limit of the Galerkin approximate solution satisfies
the weak formulation for any w ∈ V, any D ∈ H1(Ω) and any ϕ ∈ C1([0, T ]), ϕ(T ) = 0,
i.e.

− ρ

∫ T

0

(
v(t),w ϕ′(t)

)
dt + ρ

(
v0,w

)
ϕ(0) + ν

∫ T

0

((
v(t),w ϕ(t)

))
dt +

+ ρ

∫ T

0

b
(
v(t),v(t),w ϕ(t)

)
dt = −

∫ T

0

∫

Ω

tr C(t)C(t) : ∇w ϕ(t) dx dt

(11a)

−

∫ T

0

(C(t),D ϕ′(t)) dt + (C0,D)ϕ(0) + ε

∫ T

0

((C(t),D ϕ(t))) dt +

+

∫ T

0

B (v(t),C(t),D ϕ(t)) dt −

∫ T

0

(
(∇v(t))C(t) + C(t)(∇v(t))T ,D ϕ(t)

)
dt =

=

∫ T

0

(
tr C(t) I − (tr C(t))2C(t),D ϕ(t)

)
dt .

(11b)
To show that the initial condition is satisfied we first realize that since (v,C) ∈ L2(0, T ;V)×
L2(0, T ;H1(Ω)) satisfies the weak formulation (9) we have that v is almost everywhere
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equal to a continuous function from [0, T ] to V∗ and C is almost everywhere equal to
a continuous function from [0, T ] to H−1. Thus the initial condition (9b) makes sense.
Multiplying (9c) and (9d) by ϕ(t) and integrating per partes in time we get

ρ
(
v0 − v(0),w

)
ϕ(0) = 0 and (C0 − C(0),D)ϕ(0) = 0

for each w ∈ V, D ∈ H1(Ω). We can choose ϕ such that ϕ(0) = 1, and therefore

ρ
(
v0 − v(0),w

)
= 0 ∀ w ∈ V and (C0 − C(0),D) = 0 ∀ D ∈ H1(Ω).

This implies (v(0),C(0)) = (v0,C0) . We have proven the existence of the weak solution
to (1).

4 Uniqueness and regularity

We would like to point out that in the above existence result we only obtain that C′ ∈
L4/3(0, T ;H−1(Ω)), which implies that the following property needed for the uniqueness
study

C ∈ C([0, T ];L2(Ω)), 2〈C′,C〉 =
d

dt
‖C‖2

L2(Ω)

is missing even in two space dimensions. In order to obtain the uniqueness of the weak
solution we firstly investigate possible higher regularity of our weak solution.

4.1 More regular solutions

Theorem 2. (regularity result)
Let the domain Ω be of class C2 and (v0,C0) ∈ [H2(Ω) ∩V] × H2(Ω). Then the weak
solution (9) satisfies additionally

v′ ∈ L2(0, T ;V) ∩ L∞(0, T ;H), C′ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

v ∈ L∞(0, T ;H2(Ω)), C ∈ L∞(0, T ;H2(Ω)).

Proof. We return to the Galerkin approximation used in the proof of existence of the
weak solution. We need to show that this approximate solution also satisfies the second
a priori estimates, i.e. there exists a positive constant K independent of m such that

‖v′

m‖L2(0,T ;V) + ‖v′

m‖L∞(0,T ;H) + ‖C′

m‖L2(0,T ;H1(Ω)) + ‖C′

m‖L∞(0,T ;L2(Ω)) ≤ K.

In order to obtain a regularity result we now assume that our basis functions {wi}
∞

i=1 ,
{Di}

∞

i=1 , are the eigenfunctions of the Stokes and the Laplace operator, respectively. Since
v0 ∈ H2(Ω) ∩V, C0 ∈ H2(Ω), we can choose v0m and C0m as the orthogonal projections
in V ∩ H2(Ω) of v0 onto the space spanned by w1, . . . ,wm and in H2(Ω) of C0 onto the
space spanned by D1, . . . ,Dm, respectively. Then, for c̃ = c̃(Ω) > 0,

‖v0m‖H2(Ω) ≤ c̃‖v0‖H2(Ω) and v0m → v0 in H2(Ω), as m → ∞, (12a)
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‖C0m‖H2(Ω) ≤ c̃‖C0‖H2(Ω) and C0m → C0 in H2(Ω), as m → ∞. (12b)

For proof of (12) see e.g. [25]. We multiply the equation for the Galerkin approximation
of v by g′

jm(t) and of C by G′

jm(t), respectively. We add the resulting equations for
j = 1, . . . , m. This gives us

ρ‖v′

m(t)‖2
L2(Ω) + ν

((
vm(t),v′

m(t)
))

+ ρb
(
vm(t),vm(t),v′

m(t)
)

= −
(
tr Cm(t)Cm(t),∇v′

m(t)
)

‖C′

m(t)‖2
L2(Ω) + ε

((
Cm(t),C′

m(t)
))

+ B
(
vm(t),Cm(t),C′

m(t)
)

=

=
(
(∇vm(t))Cm(t) + Cm(t)(∇vm(t))T ,C′

m(t)
)
+

+
(
tr Cm(t) I− (tr Cm(t))2Cm(t),C′

m(t)
)
.

In particular, at time t = 0

‖v′

m(0)‖2
L2(Ω) =

ν

ρ

(
∆v0m,v′

0m

)
− b
(
v0m,v0m,v′

m(0)
)

+
1

ρ

(
div (tr C0m.C0m),v′

m(0)
)

‖v′

m(0)‖L2(Ω) ≤
ν

ρ
‖∆v0m‖L2(Ω) + ‖Bv0m‖L2(Ω) +

1

ρ
‖div (tr C0m.C0m)‖L2(Ω).

Using (12) we get

‖∆v0m‖L2(Ω) ≤ c‖v0m‖H2(Ω) ≤ c0‖v0‖H2(Ω)

‖div (tr C0m.C0m)‖L2(Ω) = ‖∇tr C0m · C0m + tr C0m.div C0m‖L2(Ω) ≤

≤ c‖tr C0m‖H2(Ω)‖C0m‖H2(Ω) ≤ c‖C0m‖
2
H2(Ω) ≤ c1‖C0‖

2
H2(Ω).

For Bv0m we have, by the Hölder inequality,

b
(
v,v,w

)
≤ c‖v‖L4(Ω)‖∇v‖L4(Ω)‖w‖L2(Ω) ≤ c‖|v‖|‖v‖H2(Ω)‖w‖L2(Ω), v ∈ H2(Ω), w ∈ L2(Ω),

and hence

‖Bv0m
‖L2(Ω) ≤ c‖|v0m‖|‖v0m‖H2(Ω) ≤ c‖v0m‖

2
H2(Ω) ≤ c2‖v0‖H2(Ω).

Thus we get

‖v′

m(0)‖L2(Ω) ≤

(
νc0

ρ
+ c2

)

‖v0‖H2(Ω) +
c1

ρ
‖C0‖

2
H2(Ω) =: a1, (13)

which implies that v′

m(0) belongs to a bounded set in H. Further we have

‖C′

m(0)‖2
L2(Ω) = ε

(
∆C0m,C′

m(0)
)
− B

(
v0m,C0m,C′

m(0)
)
+

+
(
(∇v0m)C0m + C0m(∇v0m)T ,C′

m(0)
)

+
(
tr C0m I − (tr C0m)2C0m,C′

m(0)
)

‖C′

m(0)‖L2(Ω) ≤ ε‖∆C0m‖L2(Ω) + ‖B(v0m,C0m)‖L2(Ω)+

+ ‖(∇v0m)C0m + C0m(∇v0m)T‖L2(Ω) + ‖tr C0m I − (tr C0m)2C0m‖L2(Ω).

Again, using (12) we get

‖∆C0m‖L2(Ω) ≤ c‖C0m‖H2(Ω) ≤ c3‖C0‖H2(Ω)

‖(∇v0m)C0m + C0m(∇v0m)T‖L2(Ω) ≤ 2‖∇v0m‖L4(Ω)‖C0m‖L4(Ω) ≤ c‖v0m‖H2(Ω)‖C0m‖H2(Ω) ≤

≤ c4‖v0‖H2(Ω)‖C0‖H2(Ω)
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‖tr C0mI − (tr C0m)2C0m‖L2(Ω) ≤ n1/2‖tr C0m‖L2(Ω) + ‖tr C0m‖
3
L6(Ω) ≤

≤ c‖C0m‖H2(Ω) + c‖C0m‖
3
H2(Ω) ≤ c5‖C0‖H2(Ω) + c6‖C0‖

2
H2(Ω).

By the Hölder inequality we have

B
(
v,C,D

)
≤ c‖v‖L4(Ω)‖∇C‖L4(Ω)‖w‖L2(Ω) ≤ c‖v‖H1(Ω)‖C‖H2(Ω)‖D‖L2(Ω),

v ∈ H2(Ω), C ∈ H2(Ω), D ∈ L2(Ω),

and thus

‖B(v0m,C0m)‖L2(Ω) ≤ c‖v0m‖H2(Ω)‖C0m‖H2(Ω) ≤ c7‖v0‖H2(Ω)‖C0‖H2(Ω).

Finally we obtain

‖C′

m(0)‖L2(Ω) ≤ (εc3 + c5) ‖C0‖H2(Ω) + (c4 + c7)‖v0‖H2(Ω)‖C0‖H2(Ω) + c6‖C0‖
3
H2(Ω) =: a2.

(14)

This implies that C′

m(0) belongs to a bounded set in L2(Ω).

Differentiating the equations for the Galerkin approximation in time we get

ρ
(
v′′

m(t),wj

)
+ ν
((

v′

m(t),wj

))
+ ρb

(
v′

m(t),vm(t),wj

)
+ ρb

(
vm(t),v′

m(t),wj

)
=

= −
(
tr C′

m(t)Cm(t),∇wj

)
−
(
tr Cm(t)C′

m(t),∇wj

)
(15a)

(
C′′

m(t),Dj

)
+ ε
((

C′

m(t),Dj

))
+ B

(
v′

m(t),Cm(t),Dj

)
+ B

(
vm(t),C′

m(t),Dj

)
=

=
(
(∇v′

m(t))Cm(t) + Cm(t)(∇v′

m(t))T ,Dj

)
+

+
(
(∇vm(t))C′

m(t) + C′

m(t)(∇vm(t))T ,Dj

)
+

+
(
tr C′

m(t) I − (tr Cm(t))2
C′

m(t) − 2tr Cm(t) tr C′

m(t)Cm(t),Dj

)
(15b)

for j = 1, . . . , m, t ∈ [0, T ].

Now, we will show the a priori estimates for v′

m and C′

m. We multiply the equation (15a)
for the velocity and the equation (15b) for the conformation tensor by g′

jm(t) and G′

jm(t),
respectively. Summing the resulting equations for j = 1, . . . , m we obtain

ρ

2

d

dt
‖v′

m(t)‖2
L2(Ω) +

1

2

d

dt
‖C′

m(t)‖2
L2(Ω) + ν‖|v′

m(t)‖|2 + ε‖∇C′

m(t)‖2
L2(Ω) =

= −ρb
(
v′

m(t),vm(t),v′

m(t)
)
− B

(
v′

m(t),Cm(t),C′

m(t)
)
−

−
(
tr C′

m(t)Cm(t),∇v′

m(t)
)
−
(
tr Cm(t)C′

m(t),∇v′

m(t)
)
+

+
(
(∇v′

m(t))Cm(t) + Cm(t)(∇v′

m(t))T ,C′

m(t)
)
+

+
(
(∇vm(t))C′

m(t) + C′

m(t)(∇vm(t))T ,C′

m(t)
)

+
(
tr C′

m(t), tr C′

m(t)
)
−

−
(
(tr Cm(t))2C′

m(t),C′

m(t)
)
− 2
(
tr Cm(t) tr C′

m(t)Cm(t),C′

m(t)
)
.
(16)

Further, we shall estimate the integrals on the right hand side of (16). Using the Hölder,
the Young inequalities, the interpolation inequality (6a) and the property (8) for the
convective terms we have

ρb
(
v′

m(t),vm(t),v′

m(t)
)
≤

ν

6
‖|v′

m(t)‖|2 +
cρ2

ν
‖v′

m(t)‖2
L2(Ω)‖|vm(t)‖|2
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B
(
v′

m(t),Cm(t),C′

m(t)
)
≤

ε

6
‖∇C′

m(t)‖2
L2(Ω) +

ν

6
‖|v′

m(t)‖|2 +
c

νε2
‖v′

m(t)‖2
L2(Ω)‖Cm(t)‖4

L4(Ω).

For the nonlinear viscoelastic term, by the Hölder, the Young and the interpolation in-
equality (6b), we have

(
tr Cm(t)C′

m(t),∇v′

m(t)
)
≤ c‖tr Cm(t)‖L4(Ω)‖C

′

m(t)‖L4(Ω)‖|v
′

m(t)‖| ≤

≤ c‖Cm(t)‖L4(Ω)

(

‖C′

m(t)‖
1/2

L2(Ω)‖∇C′

m(t)‖
1/2

L2(Ω) + ‖C′

m(t)‖L2(Ω)

)

‖|v′

m(t)‖| ≤

≤
ν

12
‖|v′

m(t)‖|2 +
ε

12
‖∇C′

m(t)‖2
L2(Ω) +

c

ν
‖C′

m(t)‖2
L2(Ω)‖Cm(t)‖2

L4(Ω)+

+
c

ν2ε
‖C′

m(t)‖2
L2(Ω)‖Cm(t)‖4

L4(Ω).

The remaining elastic terms can be estimated in an analogous way. Using these estimates
we obtain from (16) that

ρ

2

d

dt
‖v′

m(t)‖2
L2(Ω) +

1

2

d

dt
‖C′

m(t)‖2
L2(Ω) +

ν

2
‖|v′

m(t)‖|2 +
ε

2
‖∇C′

m(t)‖2
L2(Ω) ≤

≤

(
ρ

2
‖v′

m(t)‖2
L2(Ω) +

1

2
‖C′

m(t)‖2
L2(Ω)

)

β(t),
(17)

where

β(t) = c(ρ, 1/ν, 1/ε)

(

1 + ‖Cm(t)‖4
L4(Ω) + ‖Cm(t)‖2

L4(Ω) + ‖|vm(t)‖|2 + ‖|vm(t)‖|

)

is an integrable function. The Gronwall inequality, using (13) and (14), yields

ρ

2
‖v′

m(s)‖2
L2(Ω) +

1

2
‖C′

m(s)‖2
L2(Ω) ≤

(
ρ

2
‖v′

m(0)‖2
L2(Ω) +

1

2
‖C′

m(0)‖2
L2(Ω)

)

exp

{∫ T

0

β(t)

}

≤

≤

(
ρ

2
a2

1 +
1

2
a2

2

)

c,

where c = c(ρ, 1/ν, 1/ε, ‖vm‖L2(0,T ;V), ‖Cm‖L4((0,T )×Ω)) is a positive constant, Consequently
we have the second a priori estimate

‖v′

m‖L∞(0,T ;H) + ‖C′

m‖L∞(0,T ;L2(Ω)) ≤ K, (18)

and by using (17) we have

‖v′

m‖L2(0,T ;V) + ‖C′

m‖L2(0,T ;H1(Ω)) ≤ K.

From now on K = K(Ω, T, ρ, 1/ν, 1/ε,v0,C0) is a positive constant depending only on
the data. We have shown the uniform a priori estimates for v′

m, C′

m, so we finally get
that also the limit

(v′,C′) ∈
[
L∞(0, T ;H) ∩ L2(0, T ;V)

]
×
[
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

]
.

Now, in order to show that v ∈ L∞(0, T ;H2(Ω)) we consider the velocity equation (9c)
in the following form

ν
((

v(t),w
))

=
(
g(t),w

)
, w ∈ V,
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where g(t) = −v′(t) − Bv(t) − ET(t). Since

|〈ET(t),w〉| =
∣
∣
(
tr C(t)C(t),∇w

)∣
∣ ≤ c‖|w‖|‖C(t)‖2

H1(Ω)

and C ∈ L∞(0, T ;H1(Ω)) we know that ET ∈ L∞(0, T ;L2(Ω)). We already know that
v′ ∈ L∞(0, T ;L2(Ω)). Further,

|b
(
v(t),v(t),w

)
| ≤ c‖v(t)‖L4(Ω)‖|v(t)‖|‖w‖L4(Ω) ≤ c‖|v(t)‖|2‖w‖L4(Ω), (19)

thus Bv ∈ L∞(0, T ;L4/3(Ω)). Consequently

g ∈ L∞(0, T ;L4/3(Ω)). (20)

Using the regularity result for the Stokes equation, cf. [34], we have v ∈ L∞(0, T ;W2,4/3).
By the Sobolev theorem in two dimensions we have W2,4/3(Ω) →֒ C0(Ω). Hence v ∈
L∞(Ω × (0, T )). Now we can improve (20). We replace (19) by the inequality

|b
(
v(t),v(t),w

)
| ≤ c4‖v(t)‖L∞(Ω×(0,T ))‖|v(t)‖|‖w‖L2(Ω),

and thus g ∈ L∞(0, T ;H). Again, the regularity of the solution to the Stokes equation
yields v ∈ L∞(0, T ;H2(Ω)).

Now, let us consider the equation for the conformation tensor to show that C ∈ L∞(0, T ;H2(Ω)).
We can rewrite the weak formulation for the conformation tensor (9d) in the following
operator form

− ε
((

C(t),D
))

=
(
G(t),D

)
, D ∈ H1(Ω),

where G(t) = −C′(t) − B̃(v(t),C(t)) + OC(t) + T C(t). The following inequality

|〈T C(t),D〉| =
∣
∣
(
tr C(t).I − (tr C(t))2

C(t),D
)∣
∣ ≤

≤ c

(

‖tr C(t)‖L2(Ω)‖tr D‖L2(Ω) + ‖tr C(t)‖3
L6(Ω)‖D‖L2(Ω)

)

≤

≤ c

(

‖tr C(t)‖H1(Ω) + ‖tr C(t)‖3
H1(Ω)

)

‖D‖L2(Ω)

implies T C ∈ L∞(0, T ;L2(Ω)), since we know C ∈ L∞(0, T ;H1(Ω)). Further, we can
write

|B
(
v(t),C(t),D

)
| ≤ c‖v(t)‖L∞(Ω×(0,T ))‖C(t)‖H1(Ω)‖D‖L2(Ω), (21)

which leads to B(v,C) ∈ L∞(0, T ;L2(Ω)). Similarly we get O(v,C) ∈ L∞(0, T ;L4/3(Ω))
by the estimate

|〈O(v(t),C(t)),D〉| =
∣
∣
(
(∇v(t))C(t) + C(t)(∇v(t))T ,D

)∣
∣ ≤ c‖C(t)‖L4(Ω)‖|v(t)‖|‖D‖L4(Ω) ≤

≤ c‖C(t)‖H1(Ω)‖|v(t)‖|‖D‖L4(Ω). (22)

Thus, we have

G(t) ∈ L∞(0, T ;L4/3(Ω)). (23)

Using the regularity result for the solution to the Laplace equation we get C ∈ L∞(0, T ;W2,4/3).
The embedding W2,4/3(Ω) →֒ C0(Ω) yields C ∈ L∞(Ω × (0, T )). Realizing that v ∈
L∞(Ω × (0, T )), we can improve (23) and replace (22) by the inequality

|〈O(v(t),C(t)),D〉| ≤ c3‖C(t)‖L∞(Ω×(0,T ))‖|v(t)‖|‖D‖L2(Ω).

Finally we get O(v,C) ∈ L∞(0, T ;L2(Ω)) and G(t) ∈ L∞(0, T ;L2(Ω)). Hence, the regu-
larity of the solution to the Laplace equation gives us C ∈ L∞(0, T ;H2(Ω)).
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4.2 Uniqueness of regular solutions

In this section we will study the question of uniqueness of regular solutions.

Theorem 3. (uniqueness)
Let the domain Ω be of class C2 and (v0,C0) ∈ [H2(Ω) ∩ V] × H2(Ω). Then the weak
solution of (1) is unique.

Proof. Let us recall that for more regular data satisfying the assumptions of Theorem 3
we have also more regular weak solution, i.e.

v′ ∈ L2(0, T ;V) ∩ L∞(0, T ;H), C′ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

v ∈ L∞(0, T ;H2(Ω)), C ∈ L∞(0, T ;H2(Ω)).
(24)

Let us assume (v1,C1) , (v2,C2) are two different solutions satisfying the same initial data
and let us denote (v,C) = (v1 − v2,C1 −C2). We test the weak solution at a.e. t with
v(t) and C(t), respectively. Then the difference (v,C) satisfies the following equality

ρ

2

d

dt
‖v(t)‖2

L2(Ω) +
1

2

d

dt
‖C(t)‖2

L2(Ω) + ν‖|v(t)‖|2 + ε‖∇C(t)‖2
L2(Ω) =

= −ρb
(
v(t),v1(t),v(t)

)
− B

(
v(t),C1(t),C(t)

)
+

+
(
(∇v2(t))C(t) + C(t)(∇v2(t))

T ,C(t)
)

+
(
(∇v(t))C1(t) + C1(t)(∇v(t))T ,C(t)

)
−

−
(
tr C(t)C1(t),∇v(t)

)
−
(
tr C2(t)C(t),∇v(t)

)
+
(
tr C(t), tr C(t)

)
−

−
(
tr C(t) tr C1(t)C1(t),C(t)

)
−
(
tr C2(t) tr C(t)C1(t),C(t)

)
−

−
(
(tr C2(t))

2C(t),C(t)
)
.

(25)
In what follows we need to estimate each term on the right hand side of (25). Let us
firstly show the estimates of trilinear terms of the velocity and the conformation tensor.
Applying the Hölder, the Young inequalities, the interpolation inequality (6a) and (8) we
get

ρb
(
v(t),v1(t),v(t)

)
≤ cρ‖v(t)‖L2(Ω)‖|v(t)‖|‖|v1(t)‖| ≤

ν

14
‖|v(t)‖|2 +

cρ2

ν
‖v(t)‖2

L2(Ω)‖|v1(t)‖|
2

B
(
v(t),C1(t),C(t)

)
≤ c‖v(t)‖

1/2
L2(Ω)‖|v(t)‖|1/2‖∇C(t)‖L2(Ω)‖C1(t)‖L4(Ω) ≤

≤
ε

16
‖∇C(t)‖2

L2(Ω) +
ν

14
‖|v(t)‖|2 +

c

νε2
‖v(t)‖2

L2(Ω)‖C1(t)‖
4
L4(Ω).

Further, nonlinear terms from (25) can be estimated by using the Hölder, the Young and
the interpolation inequalities (6), i.e. in an analogous way as for this term

(
(∇v2(t))C(t) + C(t)(∇v2(t))

T ,C(t)
)
≤

ε

16
‖∇C(t)‖2

2 +
c

ε
‖C(t)‖2

L2(Ω)‖|v2(t)‖|
2+

+ c‖C(t)‖2
L2(Ω)‖|v2(t)‖|.

Putting the above estimates together we obtain

ρ

2

d

dt
‖v(t)‖2

L2(Ω) +
1

2

d

dt
‖C(t)‖2

L2(Ω) +
ν

2
‖|v(t)‖|2 +

ε

2
‖∇C(t)‖2

L2(Ω) ≤

≤

(
ρ

2
‖v(t)‖2

L2(Ω) +
1

2
‖C(t)‖2

L2(Ω)

)

G(t),
(26)
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where

G(t) = c(Ω, ρ, 1/ν, 1/ε)

(

‖|v1(t)‖|
2 + ‖|v2(t)‖|

2 + ‖|v2(t)‖| + ‖tr C2(t)‖
4
L4(Ω) + ‖tr C2(t)‖

2
L4(Ω)+

+ ‖C1(t)‖
4
L4(Ω) + ‖C1(t)‖

2
L4(Ω)

)

.

The Gronwall inequality then yields

ρ

2
‖v(s)‖2

L2(Ω) +
1

2
‖C(s)‖2

L2(Ω) ≤

(
ρ

2
‖v(0)‖2

L2(Ω) +
1

2
‖C(0)‖2

L2(Ω)

)

exp

{∫ T

0

G(s)

}

︸ ︷︷ ︸

Ḡ

,

where Ḡ is a positive constant depending on Ω, ρ, 1/ν, 1/ε, ‖v1‖L2(0,T ;V), ‖v2‖L2(0,T ;V),
‖tr C2‖L4((0,T )×Ω) and ‖C1‖L4((0,T )×Ω). Consequently, we have the uniqueness of velocity
v and of the conformation tensor C.

5 Conclusions

We have proven global in time existence of weak solutions to the diffusive Peterlin model
describing time evolution of complex viscoelastic fluids in two space dimensions, see The-
orem 1. Our weak solutions belong to the following spaces

(v,C) ∈
[
L∞(0, T ;H) ∩ L2(0, T ;V)

]
×
[
L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω))

]
.

For the time derivative of the conformation tensor we only have C′ ∈ L4/3(0, T ;H−1(Ω)).
Thus, in order to prove the uniqueness of the weak solution, we show in Theorem 2 the
higher regularity of the weak solution for more regular data; more precisely we obtain
that

v′ ∈ L2(0, T ;V) ∩ L∞(0, T ;H), C′ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ;L2(Ω)),

v ∈ L∞(0, T ;H2(Ω)), C ∈ L∞(0, T ;H2(Ω)).

The above regularity results finally allow to show the uniqueness of this more regular
solution, cf. Theorem 3. The above analytical results on global in time existence and
uniqueness of (more regular) weak solution is an important prerequisite in order to study
convergence and error estimates of a suitable finite element approximation of the diffusive
Peterlin model. This task is our future goal.
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de vecteurs non-lipschitziens et méchanique des fluides, Arch. Rational Mech. Anal.,
127 (1994), pp. 159–182.

[3] J.W. Barrett and S. Boyaval, Existence and approximation of a (regularized)
Oldroyd-B model, Math. Models Methods Appl. Sci., 21 (2011), pp. 1783–1837.
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Republic

20

Powered by TCPDF (www.tcpdf.org)

http://www.tcpdf.org

