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Abstract

We consider the Navier-Stokes system with Oseen and rotational terms describing
the stationary flow of a viscous incompressible fluid around a rigid body moving at a
constant velocity and rotating at a constant angular velocity. In a previous paper, we
prove a representation formula for weak solutions of the system. Here the represen-
tation formula is used to get an asymptotic expansion of respectively velocity and its
gradient, and to establish pointwise decay estimates of remainder terms. Our results
are based on a fundamental solution proposed by Guenther and Thomann [31]. We
thus present a different approach to this result, besides the one, given by Kyed [43].

AMS subject classifications. 35Q30, 65N30, 76D05.
Key words. exterior domain, viscous incompressible flow, rotating body, funda-

mental solution, asymptotic expansion, Navier-Stokes system.

1 Introduction

The aim of this paper is to find the asymptotic structure, particularly the leading terms,
of the velocity part of the solution to the system

−μΔu(z) − (U + ω × z) ∙ ∇u(z) + ω × u(z) + u ∙ ∇u(z) + ∇π(z) = f(z),
div u(z) = 0,

}

(1.1)

u(x) → 0 for |x| → ∞. (1.2)

This system describes the stationary flow of a viscous incompressible fluid around a rigid
body moving at a constant velocity and rotating at a constant angular velocity. We
refer to [21] for more details on the physical background of (1.1). Here we only indicate
that D ⊂ R3 is an open bounded set describing the rigid body, the vector U ∈ R3\{0}
represents the constant translational velocity of this body, the vector ω ∈ R3\{0} stands
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for its constant angular velocity, and μ denotes the constant kinematic viscosity of the
fluid. The given function f : R3\D 7→ R3 describes a body force, and the unknowns
u : R3\D 7→ R3 and π : R3\D 7→ R correspond respectively to the velocity and pressure
field of the fluid. We assume that U ∙ ω 6= 0. Then, according to [23], without loss of
generality we may replace (1.1) by the normalized system

L(u) + τ(u ∙ ∇)u + ∇π = f, div u = 0 in R3\D, (1.3)

where the differential operator L is defined by

L(u)(z) := −Δu(z) + τ ∂1u(z) − (ω × z) ∙ ∇u(z) + ω × u(z)

for u ∈ W 2,1
loc (U)3, z ∈ U, U ⊂ R3 open,

with τ ∈ (0,∞) (Reynolds number) and ω = %(1, 0, 0) for some % ∈ R \ {0} (Taylor
number).

Suppose that f ∈ Lp0(R3)3 for some p0 ∈ (1,∞) and f has compact support. Further
suppose there is a pair of functions (u, π) with u ∈ L6(D

c
)3, ∇u ∈ L2(D

c
)9 and π ∈

L2
loc(D

c
) satisfying (1.1) in the distributional sense (”Leray solution”). Such a solution

exists under suitable assumptions on ∂D, u|∂D and p0 ([25, Theorem XI.3.1]). Note that
the condition u ∈ L6(D

c
)3, ∇u ∈ L2(D

c
)9 means in particular that (1.2) holds in a weak

sense; compare [26, Theorem II.5.1]. In this situation, it was shown by Galdi and Kyed
[23] that

|∂αu(x)| = O
[ (

|x| sτ (x)
)−1−|α|/2 ] (|x| → ∞), (1.4)

where α ∈ N3
0 with |α| := α1 + α2 + α3 ≤ 1 (decay of u and ∇u). The term sτ (x) in (1.4)

is defined by

sτ (x) := 1 + τ (|x| − x1) (x ∈ R3). (1.5)

Its presence in (1.4) may be considered as a mathematical manifestation of the wake
extending downstream behind the rigid body. Even in the linear nonrotational case, that
is, in the case of solutions to the Oseen system

−Δu + τ ∂1u + ∇π = f, div u = 0, (1.6)

the velocity cannot be expected to decay more rapidly than
(
|x| sτ (x)

)−1 for |x| → ∞,

nor its gradient more rapidly than
(
|x| sτ (x)

)−3/2 ([40]). Therefore the decay rate in (1.4)
should be best possible in the present case, too. By Kyed [43] it was shown that

u(x) = O(x) ∙ α + R(x), ∇u(x) = ∇O(x) ∙ α + S(x), (1.7)

where O is the fundamental solution of the stationary Oseen system, α represents the force
F exerted by the liquid on the body, and R and S are some remainder terms decaying
faster than O and∇O, respectively, as |x| → ∞.

In the work at hand, we also derive an asymptotic expansion of respectively u and ∇u.
These expansions – stated in Theorem 3.1 below – differ in two respects from those pre-
sented in [43] and indicated in (1.7). Firstly, our leading term is less explicit than the term
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O∙α in (1.7). Instead of the fundamental solution O of the stationary Oseen system, we use
the time integral of the fundamental solution of the evolutionary Oseen system multiplied
by a rotation depending on time. Secondly, and this is an aspect which goes beyond the
theory in [43], we establish pointwise decay estimates of our remainder terms (see (3.2)),
whereas in [43], it is only shown that the function R in (1.7) belongs to Lp(R3\BS)3 for
p ∈ (4/3, ∞), and S to Lp(R3\BS)9 for p ∈ (1,∞), where BS is an open ball with suffi-
ciently large radius S > 0. Interestingly, by integrating the decay rates in (3.2) and using
Lemma 2.1, we find that our remainder terms belong to the same Lp-spaces.

We further indicate that our results are derived by an approach different from the one in
[43]: whereas the theory in [43] reduces (1.7) to estimates of solutions to the time-periodic
Oseen system in the whole space R3, our results are based on a representation formula of
solutions to (1.3) (see Theorem 2.15). As a consequence of our approach, our remainder
terms are expressed explicitly in terms of u, π and f . In particular, sharpening (1.7), we
obtain that S = ∇R.

Our access is made difficult by the structure of the Guenther-Thomann fundamental solu-
tion. In fact, as was already pointed out in [17] for the case τ = 0, a fundamental solution
Z(x, y) to (1.3) cannot be bounded by c |x − y|−1 uniformly in x, y ∈ R3 with |x| and |y|
large, contrary to what may be expected in view of the situation in the Stokes and Oseen
case. Actually it seems that no uniform bound c |x − y|−ε exists, for whatever ε ∈ (0,∞).

In [3] – [6], we proved a representation formula, a decay estimate as in (1.4), and asymptotic
expansions for weak solutions of the linearized problem

L(u) + ∇π = f, div u = 0, u(x) → ∞ (|x| → ∞),

as well as a representation formula for weak solutions of (1.3). In the context of these
papers, a weak solution (u, π) of (1.3) is characterized by the assumptions that u is L6-
integrable outside a ball containing D, and ∇u and π are L2-integrable outside such a
ball. In [8], we extended the results from [3] – [6] from weak solutions to Leray solutions.

In [7], we considered the nonlinear problem (1.3), deriving optimal rates of decay as in
(1.4) for the velocity and its gradient, on the basis of the representation formula proved
in [4] and [8] and restated below as Theorem 2.15.

The asymptotic behavior of purely rotating case was studied by Farwig, Hishida; see [15],
[14] for the linear case and [16, 11] in the nonlinear one.

Concerning further articles related to the work at hand, we mention [1], [10], [12], [13],
[18] – [20], [22], [24], [28], [30], [32] – [39], [41] – [45], [47], [48].

Let us briefly indicate how we will proceed in the following. In Section 2 we will present
various auxiliary results. Section 3 deals with the main theorem - leading term for the
velocity field and its gradient.

2 Notation and preliminaries

The open bounded set D ⊂ R3 introduced in Section 1 will be kept fixed throughout. We
assume its boundary ∂D to be of class C2, and we denote its outward unit normal by
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n(D). The numbers τ and % and the vector ω also introduced in Section 1 will be kept
fixed, too. Define the matrix Ω ∈ R3×3 by

Ω :=




0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0



 = %




0 0 0
0 0 −1
0 1 0



 ,

so that ω × x = Ω ∙ x for x ∈ R3.

Let us denote s(x) := s1(x) = 1 + (|x| − x1). We recall that the function sτ was defined
in Section 1, as was the notation |α| for the length of a multi-index α ∈ N3

0. If A ⊂ R3,
we write Ac for the complement R3\A of A. The open ball centered at x ∈ R3 and with
radius r > 0 is denoted by Br(x). If x = 0, we will write Br instead of Br(0). Put
e1 := (1, 0, 0). Let x× y denote the usual vector product of x, y ∈ R3. For T ∈ (0,∞), set
DT := BT \D (”truncated exterior domain”). By the symbol C, we denote constants only
depending on D, τ or ω. We write C(β1, ..., βn) for positive constants that additionally
depend on parameters β1, ..., βn ∈ R, for some n ∈ N. As usual, C(γ1, . . . , γn) means a
positive constant only depending on γ1, . . . , γn.

We will further use the ensuing estimate, which was proved in [9].

Lemma 2.1. Let β ∈ (1,∞). Then
∫
∂Br

sτ (x)−β dox ≤ C(β) r for r ∈ (0,∞).

We begin by introducing the fundamental solutions used in what follows. We set

K(x, t) = (4πt)−3/2e−
|x|2

4t , x ∈ R3, t ∈ (0,∞),

Njk(x) = xjxk|x|
−2, x ∈ R3 \ {0},

Λjk(x, t) = K(x, t)

(

δjk − Njk(x) − 1F1

(

1, 5/2,
|x|2

4t

)

(δjk/3 − Njk(x))

)

,

x ∈ R3 \ {0}, t ∈ (0,∞), j, k ∈ {1, 2, 3},

1F1(1, c, u) :=
∞∑

n=0

(
Γ(c)/Γ(n + c)

)
∙ un for u ∈ R, c ∈ (0,∞),

where Γ denotes the usual Gamma function. In the following, the letter Γ will stand for

the matrix-valued function defined by

(Γjk(y, z, t))1≤j,k≤3 := (Λrs(y − τ t e1 − e−tΩ ∙ z, t))1≤r,s≤3 ∙ e
−tΩ,

y, z ∈ R3, t ∈ (0,∞) with y − τ t e1 − e−tΩ ∙ z 6= 0.

E4j(x) := (4π)−1xj |x|
−3, 1 ≤ j ≤ 3, x ∈ R3\{0}.

Our following lemma restates [3, Corollary 3.1]:

Lemma 2.2. The function Γ may be continuously extended to a function from C∞
(
R3 ×

R3 × (0,∞)
)
.

According to [3, Theorem 3.1], we have

Lemma 2.3.
∫∞
0 |Γjk(y, z, t)|dt < ∞ for y, z ∈ R3 with y 6= z, 1 ≤ j, k ≤ 3.
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Thus we may define

Zjk(y, z) :=
∫ ∞

0
Γjk(y, z, t)dt

for y, z ∈ R3 with y 6= z, 1 ≤ j, k ≤ 3.

The matrix-valued function Z constitutes the velocity part of the fundamental solution
introduced by Guenther, Thomann [31] for the system (1.3).

We will use the following technical lemmas:

Lemma 2.4. Let δ > 0. Assuming z ∈ Bδ(x), we have

|z| ≥ |x|/2, for |x| ≥ 2δ, (2.1)

sτ (z)−1 ≤ C (1 + |x − z|) sτ (x)−1 ≤ C(δ) sτ (x)−1. (2.2)

Proof: For |x| ≥ 2δ we have |z| ≥ |x| − |x− z| ≥ |x| − δ ≥ |x|/2, i.e. the relation (2.1) is
satisfied. For the proof of (2.2) see [2, Lemma 4.8].

Lemma 2.5 ([5, Corollary 3.1]). Let j, k ∈ {1, 2, 3}, α, β ∈ N3
0 with |α + β| ≤ 2,

y, z ∈ R3, t ∈ (0,∞). Then

|∂α
y ∂β

z Γjk(y, z, t)| ≤ C (|y − τ t e1 − e−t∙Ω ∙ z|2 + t)−3/2−|α+β|/2.

Lemma 2.6 ([4, Theorem 2.19]). Let S1, S ∈ (0,∞) with S1 < S, ν ∈ (1,∞). Then
∫ ∞

0
(|y − τ t e1 − e−t∙Ω ∙ z|2 + t)−ν dt ≤ C(S1, S, ν)

(
|y| ∙ sτ (y)

)−ν+1/2 (2.3)

for y ∈ Bc
S , z ∈ BS1 .

Lemma 2.7 ([5, Lemma 3.2]). Let j, k ∈ {1, 2, 3}. For α, β ∈ N3
0 with |α + β| ≤ 2, y, z ∈

R3 with y 6= z, the function (0,∞) 3 t 7→ ∂α
y ∂β

z Γjk(y, z, t) ∈ R is integrable, the derivative

∂α
y ∂β

z Zjk(y, z) exists, and

∂α
y ∂β

z Zjk(y, z) =
∫ ∞

0
∂α

y ∂β
z Γjk(y, z, t) dt. (2.4)

Moreover, for α, β as before, the derivative ∂α
y ∂β

z Zjk(y, z) is a continuous function of
y, z ∈ R3 with y 6= z.

Lemma 2.8. Let S1, S ∈ (0,∞) with S1 < S, α, β ∈ N3
0 with |α + β| ≤ 2, 1 ≤ j, k ≤ 3.

Then

|∂α
y ∂β

z Zjk(y, z)| ≤ C(S1, S)
(
|y| ∙ sτ (y)

)−1−|α+β|/2 for y ∈ Bc
S , z ∈ BS1 ,

|∂α
y ∂β

z Zjk(y, z)| ≤ C(S1, S)
(
|z| ∙ sτ (z)

)−1−|α+β|/2 for z ∈ Bc
S , y ∈ BS1 .

Proof: Lemma 2.6 - 2.7.
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Lemma 2.9 ([3, Theorem 3.1]). Let k ∈ {0, 1}, R ∈ (0,∞), y, z ∈ BR with y 6= z. Then
∫ ∞

0

(
|y − τ t e1 − e−t Ω ∙ z|2 + t

)−3/2−k/2
dt ≤ C(R) |y − z|−1−k.

Due to Lemma 2.5, this means for y, z as above, and for j, k ∈ {1, 2, 3}, α ∈ N3
0 with

|α| ≤ 1 that ∣
∣∂α

y Z(y, z)
∣
∣+ |∂α

z Z(y, z)| ≤ C(R) |y − z|−1−|α|.

Lemma 2.10 ([5, Lemma 4.1]). Let j, k ∈ {1, 2, 3}, g ∈ L1(∂D), and put

F (y) :=
∫

∂D
Zjk(y, z) g(z) doz for y ∈ D

c
.

Then F ∈ C1(D
c
) and

∂mF (y) =
∫

∂D
∂ymZjk(y, z) g(z) doz for 1 ≤ m ≤ 3, y ∈ D

c
. (2.5)

Lemma 2.11. ([5, Lemma 4.2]) Let j, k, l ∈ {1, 2, 3}, R > 0, g ∈ L1(BR), and put

F (y) :=
∫

BR

∂zl
Zjk(y, z) g(z) dz for y ∈ BR

c
.

Then F ∈ C1(BR
c
) and

∂mF (y) =
∫

BR

∂ym∂zl
Zjk(y, z) g(z) dz for y ∈ BR

c
, 1 ≤ m ≤ 3.

Lemma 2.12. Let γ ∈ (1/4,∞). Then there is a constant C(γ) > 0 such that for all
x ∈ R3 :
∫

R3

[
(1 + |x− y|) s(x− y)

]−3/2 [(1 + |y|)s(y) ]−γ dy ≤ C(γ) (1 + |x|)−c s(x)−d lnk(2 + |x|),

where

c :=

{
γ − 1/2 if γ ∈ (1/4, 2]

3/2 if γ ∈ (2, +∞)
d :=

{
γ if γ ∈ (1/4, 3/2]

3/2 if γ ∈ (3/2, +∞)
k :=

{
0 if γ 6= 2

1 if γ = 2.

Proof: See the proof of [40, Theorem 3.2].

Lemma 2.13. There exist a constant C > 0 such that for all x ∈ R3 :
∫

R3

[(1 + |x − y|) s(x − y)]−2 [(1 + |y|) s(y)]−2 dy ≤ C [(1 + |x|) s(x)]−2 ln(2 + |x|)

Proof.

Let us denote r∗ := min(1, r), r ∈ R, ηα
β (x) := (1 + |x − y|)α s(x−y)β , x, y ∈ RN , N ∈ N,

N ≥ 2, α, β ∈ R. In [40] the inequalities of the type η−a
−b ∗ η−c

−d ≤ c η−e
−f are studied in

RN . If |x| ≤ 1, the conditions a + b∗ + c + d > N and a + b + c + d∗ > N ensure that
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the convolution η−a
−b ∗ η−c

−d is bounded by C(a, b, c, d), and thus by C(a, b, c, d) η−e
−f , ([40, p.

73]). So, we may consider the case |x| ≥ 1. In that case the whole space RN is divided
into sixteen regions Ωi, 0 ≤ i ≤ 15, and the optimal choice of ei, fi in the inequality

η−a
−b ∗ η−c

−d ≤ Ci η−ei
−fi

in Ωi, 0 ≤ i ≤ 15,

for given a, b, c, d is stated in [40, Tab. 1, 2] included in this paper as an appendix. Using
the expressions of ei and fi, we have to find

e = min
i=0,1,...15

ei, e + f = min
i=0,1,...15

(ei + fi).

Let us mention that ηα
β (x) ≤ 2γ−α ηγ

δ (x), for x ∈ RN if α ≤ γ and α + β ≤ γ + δ,
α, β, γ, δ ∈ R. Using expressions of ei from [40, Tab. 1, 2], where we put N = 3, we define
e as the minimum of the following values:

c + 1
2 min(0, a + b∗ − 3), a + 1

2 min(0, c + d∗ − 3),

a + c − 2 + 1
2 min(0, 1 + b∗ − a, 1 + d − c), a + c − 2 + 1

2 min(0, 1 + b − a, 1 + d∗ − c),

a + c + d − 2 + 1
2 min(0, 1 − c − d), a + c + b − 2 + 1

2 min(0, 1 − a − b),

a + b + c + d − 3 + 1
2 min(0, 3 − 2b − c − d), a + b + c + d − 3 + 1

2 min(0, 3 − a − b − 2d),

a + b∗ + c + d − 3, a + b + c + d∗ − 3.

Substituting a = b = c = d = 2, we get e = 2. Analogously, using expressions of ei, fi

from [40, Tab. 1, 2] we define e + f as the minimum of the following values

c + d + min(0, a + b∗ − 3), a + b + min(0, c + d∗ − 3),

a + b∗ + c + d − 3, a + b + c + d∗ − 3.

So, we get e + f = 4, hence f = 2.

The logarithmic factor of the type ln(2+ |x|) appears on Ω0 because a+ b∗ = 3, and on Ω1

because c + d∗ = 3, see [40, Tab. 1, 2]. Regions Ω2, Ω3 and Ω4 also contribute logarithmic
factors, they are covered by the logarithmic factor of the mentioned type ln(2 + |x|). �

Starting point of our considerations will be the following theorem about the integrability
and pointwise decays of the velocity and its gradient, where the velocity is a solution of
the rotational Navier-Stokes equations:

Theorem 2.14 ([7, Theorem 1.1]). Let τ ∈ (0,∞), ω ∈ R3\{0}, D ⊂ R3 open and
bounded. Take γ, S1 ∈ (0,∞), p0 ∈ (1,∞), A ∈ (2,∞), B ∈ [0, 3/2], f : R3 7→ R3

measurable with D ⊂ BS1 , A + min{B, 1} > 3, A + B ≥ 7/2, f |BS1 ∈ Lp0(BS1)
3,

|f(y)| ≤ γ |y|−A sτ (y)−B for y ∈ Bc
S1

. (2.6)

Let u ∈ L6(D
c
)3 ∩ W 1,1

loc (D
c
)3, π ∈ L2

loc(D
c
), ∇u ∈ L2(D

c
)9, and

∫

D
c

[

∇u ∙ ∇ϕ +
(
τ ∂1u + τ (u ∙ ∇)u

−(ω × z) ∙ ∇u + ω × u
)
∙ ϕ − π div ϕ − f ∙ ϕ

]

dz = 0, divu = 0 (2.7)

7



for ϕ ∈ C∞
0 (D

c
)3. Let S ∈ (S1,∞). Then

|∂αu(y)| ≤ D
(
|y| sτ (y)

)−1−|α|/2 for x ∈ Bc
S , α ∈ N3

0 , |α| ≤ 1, (2.8)

with the constant D depending on τ, ρ, γ, S1, p0, A, B, ‖f |BS1‖1, u, π, S, and on an arbi-
trary but fixed number S0 ∈ (0, S1) with D ⊂ BS0 .

Let p ∈ (1,∞), q ∈ (1, 2), f ∈ Lp
loc(R

3)3 with f |Bc
S ∈ Lq(Bc

S)3 for some S ∈ (0,∞).

For y ∈ R3, j ∈ {1, 2, 3}, we set

Rj(f)(y) :=
∫

R3

3∑

k=1

Zjk(y, z) fk(z) dz.

According to [4, Lemma 3.1], the integral appearing in the definition of Rj(f) is well
defined at least for almost every y ∈ R3. If f is a function on D

c
, the function f in the

previous definition is to be replaced by the extension of f by zero to R3.

In order to derive the leading terms of the velocity and its gradient we are going to use
the representation formula of a solution of the rotational Navier-Stokes equation:

Theorem 2.15. Let u ∈ W 1,1
loc (D

c
)3 ∩ L6(D

c
)3 with ∇u ∈ L2(D

c
)9. Let p ∈ (1,∞), q ∈

(1, 2), f : D
c
7→ R3 a function with f |DT ∈ Lp(DT )3 for T ∈ (0,∞) with D ⊂ BT , f |Bc

S ∈
Lq(Bc

S)3 for some S ∈ (0,∞) with D ⊂ BS. Further assume that u|∂D ∈ W 2−1/p,p(∂D)3

and π : D
c
7→ R is a function with π|DT ∈ Lp(DT ) for T as above.

Suppose that the pair (u, π) is a weak solution of the Navier-Stokes system with Os-
een and rotational terms, and with right-hand side f in the sense of (2.7). Then
u ∈ W 2, min{p,3/2}(DT )3, π ∈ W 1, min{p,3/2}(DT ) for any T ∈ (0,∞) with D ⊂ BT ,

uj(y) = Rj

(
f − τ (u ∙ ∇)u

)
(y) +Bj(u, π)(y) for j ∈ {1, 2, 3}, a.e. y ∈ D

c
, (2.9)

where Bj(u, π) is defined by

Bj (u, π)(y) (2.10)

:=
∫

∂D

3∑

k=1

[ 3∑

l=1

(
Zjk(y, z)

(
−∂luk(z) + δkl π(z) + uk(z) (τ e1 − ω × z)l

)

+∂zlZjk(y, z) uk(z)
)

n
(D)
l (z) + E4j(y − z) uk(z) n

(D)
k (z)

]
doz

for y ∈ D
c
.

Proof: See [8, Theorem 4.1], and its proof, as well as [4, Theorem 4.4]. �

In comparison with the linear case we will need some additional lemma:

Lemma 2.16. Let φ ∈ W 1,1
loc (U) for some open set U ⊂ R3 and A ∈ R3×3 such that

A−1 = AT . Then:
A∇z (φ(Az)) = ∇φ(Az)

8



Proof: Indeed:

∂

∂zl
(φ(Az)) =

3∑

k=1

∂kφ(Az)
∂(Az)k

∂zl
=

3∑

k=1

∂kφ(Az)Ak l =
3∑

k=1

AT
l k ∂kφ(Az)

i.e. ∇z (φ(Az)) = AT ∇φ(Az), which gives the mentioned formula. �

Corollary 2.17. In the situation of Theorem 2.14, we get for z ∈ BS1

c
that

3∑

l=1

(ul ∂lu) (etΩz) =
3∑

l=1

∂l (ulu) (etΩz)

=
3∑

l=1

3∑

k=1

(
etΩ
)
lk

∂

∂zk

[
(ulu) (etΩz)

]
=

3∑

l=1

(
etΩ ∇z

)
l

[
(ulu) (etΩz)

]
.

Lemma 2.18. In the situation of Theorem 2.14, we have
∫

D
c
|∂α

xZ(x, y) [(u ∙ ∇)u](y)| dy < ∞ for x ∈ BS1

c
, α ∈ N3

0 with |α| ≤ 1. (2.11)

Moreover the function V(x) :=
∫
D

c Z(x, y) [(u ∙ ∇)u](y) dy (x ∈ BS1

c
) belongs to

C1(BS1

c
)3, with

∂αV(x) =
∫

D
c
∂α

xZ(x, y) [(u ∙ ∇)u(y)| dy for x, α as in (2.11). (2.12)

Proof: Let U ⊂ R3 be open and bounded, with U ⊂ BS1

c
. It is enough to show that

(2.11) holds for x ∈ U , that V|U ∈ C1(U)3, and (2.12) is valid for x ∈ U .

Due to our assumptions on U , we may choose R, S ∈ (S1,∞) such that BS ∩ U = ∅ and
U ⊂ BR. In particular we have dist(BS , U) > 0 and dist(U,Bc

R) > 0. This observation
and Lemma 2.8 imply that |∂α

xZ(x, y)| ≤ C0 for x ∈ U, y ∈ BS\D, α ∈ N3
0 with |α| ≤ 1,

where C0 is independent of x and y. We further observe that (u ∙ ∇)u ∈ L3/2(D
c
)3, hence

(u ∙ ∇)u|BS\D ∈ L1(BS\D)3. Lemma 2.8 and (2.8) yield that |∂α
xZ(x, y) [(u ∙ ∇)u](y)| ≤

C1 ∙ |y|−7/2−|α|/2 for x ∈ U, y ∈ Bc
R , with C1 again being independent of x and y. In view

of the last statement of Lemma 2.7, we may thus conclude by Lebesgue’s theorem that
the function

y 7→ ∂α
xZ(x, y) [(u ∙ ∇)u](y), y ∈ A := (BS\D) ∪ Bc

R,

is integrable for x ∈ U, α ∈ N3
0 with |α| ≤ 1, that the function

V(I)(x) :=
∫

A
Z(x, y) [(u ∙ ∇)u](y) dy, x ∈ U,

belongs to C1(U)3, and that ∂αV(I)(x) =
∫
A ∂α

xZ(x, y) [(u ∙ ∇)u](y) dy for x, α as before.

Let ϕ ∈ C∞
0 (R3) with 0 ≤ ϕ ≤ 1, ϕ|B1/2 = 0, ϕ|Bc

1 = 1, and define ϕδ(x) := ϕ(δ−1x)
for x ∈ R3, δ > 0. Then ϕδ ∈ C∞

0 (R3), 0 ≤ ϕδ ≤ 1, ϕδ|Bδ/2 = 0, ϕδ|Bc
δ = 1 and

|∇ϕδ(x)| ≤ C δ−1 for x ∈ R3, δ > 0.

9



Using Lemma 2.9 and Theorem 2.14, we see there are constants C2, C3 with

|∂α
x

(
Z(x, y) ϕδ(x − y)

)
[(u ∙ ∇)u](y)|

≤ C2(|x − y|−2 + δ−1|x − y|−1) χ(δ/2,∞)(|x − y|) ≤ C3δ
−2 (2.13)

for x ∈ U, y ∈ BR\BS , α ∈ N3
0 with |α| ≤ 1. In addition, if y ∈ BR\BS , the function

x 7→ Z(x, y) ϕδ(x − y) [(u ∙ ∇)u](y), x ∈ U, is continuously differentiable, as follows from
Lemma 2.6. Now we may conclude from Lebesgue’s theorem that the function y 7→
∂α

x

(
Z(x, y) ϕδ(x−y)

)
[(u ∙∇)u](y), y ∈ BR\BS , is integrable for any δ > 0, x ∈ U, α ∈ N3

0

with |α| ≤ 1, the function

Bδ(x) :=
∫

BR\BS

Z(x, y) ϕδ(x − y) [(u ∙ ∇)u](y) dy, x ∈ U,

belongs to C1(U)3 for any δ > 0, and

∂αBδ(x) =
∫

BR\BS

∂α
x

(
Z(x, y) ϕδ(x − y)

)
[(u ∙ ∇)u](y) dy

for δ, x, α as before. Proceeding as in (2.13), we further obtain
∫

BR\BS

|∂α
x

(
Z(x, y) ϕδ(x − y) − Z(x, y)

)
[(u ∙ ∇)u](y)| dy

≤ C4

∫

BR\BS

χBδ
(x − y) (|x − y|−2 + δ−1|x − y|−1) dy ≤ C5δ

for x ∈ U, α ∈ N3
0 with |α| ≤ 1, with the C4, C5 denoting constants independent of δ and

x. Therefore, by an argument involving uniform convergence of Bδ and ∇Bδ for δ ↓ 0, we
may conclude that the function

V(II)(x) :=
∫

BR\BS

Z(x, y) [(u ∙ ∇)u](y) dy, x ∈ U,

belongs to C1(U)3, and

∂αV(II)(x) =
∫

BR\BS

∂α
xZ(x, y) [(u ∙ ∇)u](y) dy for x ∈ U, α ∈ N3

0 with |α| ≤ 1.

Since V(x) = V(I)(x) +V(II)(x) for x ∈ U, the proof of the lemma is complete. �

3 Leading term of the velocity and of its gradient

The aim of this part is to find the leading term of the velocity and its gradient for the
Navier-Stokes problem with rotation. Let us recall that the quantities τ, ω and the set D
were fixed in Section 2. We study the case f has a compact support in D

c
. The result we

will prove in the work at hand may be stated as:

10



Theorem 3.1. Let S1 ∈ (0,∞) with D ⊂ BS1 , p ∈ (1,∞), f ∈ Lp(D
c
)3 with supp(f) ⊂

BS1 , u ∈ L6(D
c
)3 ∩ W 1,1

loc (D
c
)3 with ∇u ∈ L2(D

c
)9 and u|∂D ∈ W 2−1/p, p(∂D)3, π ∈

L2
loc(D

c
) with π|DS1 ∈ Lp(DS1). Suppose that the pair (u, π) is a weak solution of the

Navier-Stokes system with Oseen and rotational terms, and with right-hand side f in
the sense of (2.7). Then there are coefficients β1, β2, β3 ∈ R and functions F1,F2,F3 ∈
C1(BS1

c
) such that for j ∈ {1, 2, 3}, α ∈ N3

0 with |α| ≤ 1, x ∈ BS1

c
,

∂αuj(x) =

{
3∑

k=1

βk ∂αZjk(x, 0) +

(∫

∂D
u ∙ n(D) doz

)

∂αE4j(x)

}

+ ∂αFj(x), (3.1)

and if S ∈ (S1,∞), x ∈ Bc
S,

|∂αF(x)| ≤ C (|x| sτ (x))−3/2−|α|/2 ln(2 + |x|), (3.2)

where C depends on τ, ω, p, S1, S, certain norms of u, π and f , and on the constant D
from (2.8).

In Theorem 3.1, the estimate presented in [8, Theorem 3.14] for the linear case is extended
to the nonlinear one. Note that by [31, (3.9)], the function Z(x, 0) in the leading term on
the right-hand side of (3.1) corresponds to the time integral of a fundamental solution of
the evolutionary Oseen system multiplied by a rotation depending on time.

Proof of Theorem 3.1 The term of (3.1) contained in braces {. . . } we will call ”the
leading term”, term F we will call ”the remainder”. From Theorem 2.15 we have

uj(x) = Rj

(
f − τ (u ∙ ∇)u

)
(x) +Bj(u, π)(x), j ∈ {1, 2, 3}, for a.e. x ∈ D

c
, (3.3)

where Bj(u, π) was defined in (2.10).

We put

βk := β
(I)
k − τβ

(II)
k

β
(I)
k :=

∫

BS1

fk(y) dy

+
∫

∂D

3∑

l=1

(
−∂luk(y) + δkl π(y) + uk(y) (τ e1 − ω × y)l

)
n

(D)
l (y) doy

β
(II)
k :=

∫

∂D

3∑

m=1

(nmum uk)(y) doy

for 1 ≤ k ≤ 3. By the definition of βk the leading term in formula (3.1) is determined.
Because (3.1) is in fact rearrangement of formula (3.3), we now define the value Fj as
the difference of the right-hand side of the representation formula (3.3) minus the leading
term. We will distinguish F(I) coming from the linear terms and F(II) arising from the

11



non-linear part, i.e. from Rj

(
(u ∙ ∇)u

)
:

Fj(x) := F(I)
j(x) − τ F

(II)
j (x),

F(I)
j(x) :=

∫

BS1

( 3∑

k=1

[ (
Zjk(x, y) − Zjk(x, 0)

)
fk(y)

])
dy

+
∫

∂D

3∑

k=1

((
Zjk(x, y) − Zjk(x, 0)

)

∙
3∑

l=1

(
−∂luk(y) + δkl π(y) + uk(y) (τ e1 − ω × y)l

)
n

(D)
l (y)

+
(
E4j(x − y) − E4j(x)

)
uk(y) n

(D)
k (y)

)
doy +

∫

∂D

3∑

k,l=1

∂yl Zjk(x, y) uk(y) n
(D)
l (y) doy ,

F(II)
j(x) :=

∫

D
c

3∑

k,l=1

Zjk(x, y) (ul ∂luk) (y)dy −
∫

∂D

3∑

k,l=1

Zjk(x, 0)(nlul uk)(y) doy (3.4)

for x ∈ BS1

c
, 1 ≤ j ≤ 3. Then by (3.3) we get (3.1).

The assertion of the theorem will be proved in four steps:

1. Estimates and continuity of ∂αF(I), where |α| = 0 or |α| = 1.

By exactly the same proof as given in [5, p. 473-474] for [5, Theorem 1.1], we obtain that
F(I) ∈ C1(BS1

c
)3 and

|∂αF(I)(x)| ≤ C(‖f‖1 + ‖∇u|∂D‖1 + ‖π|∂D‖1 + ‖u|∂D‖1)(|x| sτ (x))−3/2−|α|/2

for S ∈ (S1,∞), x ∈ BS
c
, α ∈ N3

0 with |α| ≤ 1, with C depending on τ, ω, p, S1 and S.

2. C1-continuity of FII .

By Lemma 2.18, the function F(II) ∈ C1(BS1

c
)3, and first-order derivatives may be moved

into the volume integral appearing on the right-hand side of (3.4).

3. Estimates of ∂αF(II): first steps.

Let x ∈ Bc
S . Recalling that

F(II)(x) =
∫

D
c

3∑

l=1

Z(x, y) (ul ∂lu) (y)dy −
∫

∂D

3∑

l=1

Z(x, 0)(nlul u)(y) doy, (3.5)

we apply firstly the integration by parts and and then split the resulting volume integral
in an integral BR on the bounded domain BR \D and integral ER on the exterior domain
(BR)c, where R = (S1 + S)/2. Thus FII(x) becomes

∫

∂D

3∑

l=1

[Z(x, y) − Z(x, 0)] (nlul u)(y) doy −

{∫

BR\D
+
∫

(BR)c

}
3∑

l=1

∂yl
Z(x, y)(ul u)(y) dy

12



= S∂D − BR − ER. (3.6)

Of course, here and in similar situations in the following, a partial integration has to be per-
formed first on a bounded domain, where BT \(BR∪Bε(x)) with T > max{2R, 2|x|}, 0 < ε
is a good choice for such a domain. In the next step we let ε tend to zero. This passage
to the limit may be handled by referring to Lemma 2.9 and (2.8). Finally we let T tend
to infinity. The surface integral on ∂BT which came up in the partial integration then
vanishes, as follows from Lemma 2.8 and (2.8). The same references imply that all the
volume integrals involved tend to integrals on Bc

R when T → ∞.

In volume integral ER over the exterior domain (BR)c we use firstly the definition of Z,
(2.4) and the Fubini’s theorem, and then the domain invariant transformation y = etΩz
for fixed t > 0. The reason why we use the mentioned transformation is that we would
like to avoid a periodic term in the right-hand side of (3.11):

ER =
∫

(BR)c

3∑

l=1

∂yl
Z(x, y)(ul u)(y) dy =

∫ ∞

0

∫

(BR)c

3∑

l=1

∂yl
Γ(x, y, t)[ul u](y) dy dt

=
∫ ∞

0

∫

(BR)c

3∑

l=1

∂yl
Γ(x, y, t)|y=etΩz[ul u](etΩz) dz dt

Finally we split the the exterior domain of integration Bc
R on two domains: Let δ be a

sufficiently small positive number comparing to 1, R and S − S1, f.e. δ := min{1, (S −
S1)/2, R/2} = min{1, S − R,R/2}. Note that Bδ(x) ⊂ Bc

R. We obtain:

ER =

{∫ ∞

0

∫

Bδ(x)
+
∫ ∞

0

∫

(BR)c\Bδ(x)

}
3∑

l=1

∂yl
Γ(x, y, t)|y=etΩz[(ul u)(etΩz) dz dt

= Vδ + VR,δ

Substituting the expression of ER into (3.6) we get:

FII = S∂D − BR − Vδ − VR,δ (3.7)

∂α
xBR, ∂α

xS∂D : Estimating the behavior of the first two terms and their derivatives ∂α
x

for |α| = 0, 1, we get the following estimate:

|∂α
xBR| + |∂α

xS∂D| ≤ C(S1, S) (|x|sτ (x))−3/2−|α|/2, x ∈ Bc
S (3.8)

Indeed, from Lemma 2.8 for y ∈ BR, x ∈ Bc
S :

|∂α
x ∂yl
Z(x, y)| ≤ C(S1, S) (|x|sτ (x))−3/2−|α|/2, (3.9)

∣
∣∂α

x

(
Z(x, y) − Z(x, 0)

)∣∣ =

∣
∣
∣
∣
∣

3∑

k=1

∂α
x ∂yk

Z(x, θy) yk

∣
∣
∣
∣
∣
≤ C(S1, S) (|x|sτ (x))−3/2−|α|/2 (3.10)

for some 0 ≤ θ ≤ 1. So, with Lemma 2.11 and (3.9)

|∂α
xBR| ≤

∣
∣
∣
∣
∣

∫

BR\D

3∑

l=1

∂α
x ∂yl
Z(x, y)(uj u)(y) dy

∣
∣
∣
∣
∣
≤
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≤ C(S1, S)(|x|sτ (x))−3/2−|α|/2

∫

BR\D

3∑

l=1

∣
∣(ul u)(y)

∣
∣dy ≤ C(S1, S) (|x|sτ (x))−3/2−|α|/2,

because |u|2 is L1-integrable on bounded domain BR \ D. Similarly, we have with (2.5)
and (3.10):

|∂α
xS∂D| ≤ C(S1, R) (|x|sτ (x))−3/2−|α|/2

∫

∂D

3∑

l=1

∣
∣(nlul u)(y)

∣
∣doy

≤ C(S1, R) (|x|sτ (x))−3/2−|α|/2.

4. Estimates of ∂αF(II) for α = 0.

Vδ: For the estimation of this term we use Lemma 2.5 for the first order derivatives of Γ :
We have (for x 6= etΩz)

∣
∣
∣∂yjΓ(x, y, t)|y=etΩz

∣
∣
∣ ≤ C

(
|x − τte1 − z|2 + t

)−2
. (3.11)

From Theorem 2.14 we have for y ∈ Bc
R

|u(y)|2 ≤ C(R) (|y| sτ (y))−2 .

If z ∈ (BR)c then etΩz ∈ (BR)c, we get:

|u(etΩz)|2 ≤ C(R)
(
|etΩz| sτ (e

tΩz)
)−2

= C(R) (|z| sτ (z))−2 (3.12)

Since Bδ(x) ⊂ Bc
R, we thus get due to (2.1), (2.2)

|u(etΩz)| ≤ C(R, δ) (|x| sτ (x))−2 for z ∈ Bδ(x). (3.13)

So, we have

|Vδ| =

∣
∣
∣
∣
∣
∣

∫ ∞

0

∫

Bδ(x)

3∑

j=1

∂yj Γ(x, y, t)|y=etΩz

[
(uju) (etΩz)

]
dz dt

∣
∣
∣
∣
∣
∣

≤ C(R)
∫

Bδ(x)

∫ ∞

0

(
|x − τte1 − z|2 + t

)−2
(|x| sτ (x))−2 dt dz

≤ C(R, δ) (|x|sτ (x))−2
∫

Bδ(x)
|x − z|−2 dz ≤ C(R, δ) (|x|sτ (x))−2 ,

where the integral with respect to variable t is estimated using Lemma 2.9, choosing in its
application y := x − z, z := 0.

VR,δ : Similarly as in the previous case using (3.11) and (3.12):

|VR,δ| ≤

∣
∣
∣
∣
∣
∣

∫ ∞

0

∫

Bc
R\Bδ(x)

3∑

j=1

∂yj Γ(x, y, t)|y=etΩz

[
(uju) (etΩz)

]
dz dt

∣
∣
∣
∣
∣
∣
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≤ C(R)
∫ ∞

0

∫

Bc
R\Bδ(x)

(
|x − τte1 − z|2 + t

)−2
(|z| sτ (z))−2 dz dt

Now, the integral with respect to t can be estimated using Lemma 2.6, y := x−z, z := 0 :
∫ ∞

0

(
|x − τte1 − z|2 + t

)−2
dt ≤ C(S1, S) (|x − z|sτ (x − z))−3/2 , z ∈ Bc

R \ Bδ(x)

|VR,δ| ≤ C(S1, S)
∫

Bc
R\Bδ(x)

(|x − z|sτ (x − z))−3/2 (|z| |sτ (z)|)−2 dz

≤ C(S1, S) ln(2 + |x|) (|x||sτ (x)|)−3/2 .

The last inequality follows from Lemma 2.12 (γ = 2).

5. Estimates of ∂αF(II) for |α| = 1.

Let us mention that S, S1, R, δ are the same as in the previous section, so Bδ(x) ⊂ Bc
R.

The aim of this part is to find the leading term of the gradient of velocity for the Navier-
Stokes problem with rotation: The difference with the previous case is that we cannot
apply the integration by parts over the whole domain D

c
because we have to protect the

neighbourhood Bδ(x) due to singularities of the second order derivatives of Z. On the other
hand, to avoid some technical difficulties, we are able to handle the integrals with respect
to t only in domains invariant with respect to the transformation y = etΩz, t > 0. These
facts causes some additional computations. So, we use Lemma 2.18, split the domain of
integration into the bounded part BR \D

c
and the exterior domain (BR)c, and we apply

the integration by parts firstly only on the bounded domain:

∂α
xF

(II)
j (x) =

∫

D
c

3∑

k,l=1

∂α
xZjk(x, y) (ul ∂luk) (y)dy −

∫

∂D

3∑

k,l=1

∂α
xZjk(x, 0)(nlul uk)(y) doy

=

{∫

BR\D
+
∫

(BR)c

}
3∑

k,l=1

∂α
xZjk(x, y) (ul ∂luk) (y)dy

−
∫

∂D

3∑

k,l=1

∂α
xZjk(x, 0)(nlul uk)(y) doy

=
∫

∂D

3∑

k,l=1

[∂α
xZjk(x, y) − ∂α

xZjk(x, 0)] (nlul uk)(y) doy

−
∫

BR\D

3∑

k,l=1

∂yl ∂
α
xZjk(x, y)(ul uk)(y) dy +

∫

∂BR

3∑

k,l=1

∂α
xZjk(x, y)(ul uk)(y)

yl

R
doy

+
∫

(BR)c

3∑

k,l=1

∂α
xZjk(x, y) (ul ∂luk) (y)dy
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So, we get:
∂α

xF
(II)(x) = ∂αS∂D − ∂αBR + S ′

R + E ′
R (3.14)

Evaluation of the last term in (3.14) with (2.4):

E ′
R(x)j =

∫

(BR)c

3∑

k,l=1

∂α
xZjk(x, y) (ul ∂luk) (y)dy

=
∫

(BR)c

∫ +∞

0

3∑

k,l=1

∂α
x Γjk(x, y, t) (ul ∂luk) (y)dy dt

The domain of integration of E ′
R is (BR)c. This exterior domain is invariant with respect

to the transformation y = etΩz, t > 0. We use the same transformation to avoid periodic
terms as in the case |α| = 0 :

E ′
R(x)j =

∫ +∞

0

∫

(BR)c

3∑

k,l=1

∂α
x Γjk(x, eτΩz, t) (ul ∂luk) (eτΩz)dz dt

Unlike the case |α| = 0, the mentioned transformation is used before the integration by
parts. We split the domain of integration into two domains Bδ(x) and (BR)c \ Bδ(x). In
the integral over the unbounded domain we apply the identity from Corollary 2.17 and
integrate by parts:

E ′
R(x)j =

∫ +∞

0

∫

Bδ(x)

3∑

k,l=1

∂α
x Γjk(x, eτΩz, t) (ul ∂luk) (eτΩz)dz dt

+
∫ ∞

0

∫

∂Bδ(x)

3∑

k,l=1

∂α
x Γjk(x, etΩz, t)

[
(uluk) (etΩz)

] (
etΩ (x − z)/δ

)
l
doz dt

+
∫ ∞

0

∫

∂BR

3∑

k,l=1

∂α
x Γjk(x, etΩz, t)

[
(uluk) (etΩz)

] (
etΩ (−z)/R

)
l
doz dt

−
∫ ∞

0

∫

Bc
R\Bδ(x)

3∑

k,l=1

(
etΩ ∇z

)
l
∂α

x Γjk(x, etΩz, t)
[
(uluk) (etΩz)

]
dz dt

=
(
Uδ

)
j
+
(
S ′

δ

)
j
+
(
− S ′

R

)
j
+
(
UR,δ

)
j

Substituting the expression of E ′
R(x) into (3.14) and using (2.4), we get finally:

∂α
xF

(II)(x) = ∂αS∂D − ∂αBR + Uδ + S ′
δ + UR,δ (3.15)

Now we will estimate all terms of (3.15) for |α| = 1:

∂αS∂D, ∂αBBR
: From (3.8) we know that |∂α

xS∂D| + |∂α
xBR| ≤ C1(S1, S) (|x| sτ (x))−2.
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Uδ: Estimates of this term are completely analogous to the evaluation of Vδ in the case
|α| = 0. Only difference is that from Theorem 2.14: |u(y)||∇u(y)| ≤ C(S) (|y| sτ (y))−5/2

for y ∈ (BR)c: We get
|Uδ| ≤ C(S1, S) (|x||sτ (x)|)−5/2 .

S ′
δ: From Lemma 2.5 for the first order derivatives of Γ, x 6= etΩz :

∣
∣∂α

x Γ(x, etΩz, t)
∣
∣ ≤ C

(
|x − τte1 − z|2 + t

)−2
.

By (3.13)
|u(etΩz)|2 ≤ C(R, δ) (|x| sτ (x))−2 for z ∈ ∂Bδ(x).

It is also clear that
∣
∣etΩ (x − z)/δ

∣
∣ = 1 for z ∈ Bδ(x).

So, we have

∣
∣S ′

δ

∣
∣ ≤ C(R)

∫

∂Bδ(x)

∫ ∞

0

(
|x − τte1 − z|2 + t

)−2
(|x| sτ (x))−2 dt doz

≤ C(R, δ) (|x| sτ (x))−2
∫

∂Bδ(x)
|x − z|−2 doz ≤ C(R, δ) (|x| sτ (x))−2

where the integral with respect to variable t is estimated using Lemma 2.9, y := x − z,
z := 0. So, the integral S ′

δ belongs to the remainder.

UR,δ : We shall use Lemma 2.5, for the evaluation of the second order derivatives of the
function Γ: ∣

∣
∣
(
etΩ ∇z

)
j
∂α

x Γ(x, etΩz, t)
∣
∣
∣ ≤ C

(
|x − τte1 − z|2 + t

)−5/2

The integral with respect to t of the right-hand side can be estimated using Lemma 2.6
choosing y, z from the lemma by the following way: y := x − z, z := 0. Hence:

∫ ∞

0

(
|y − τte1 − z|2 + t

)−5/2
dt ≤ C(S1, S) (|x − z| sτ (x − z))−2

Using (3.12), we find

|UR,δ| ≤

∣
∣
∣
∣
∣
∣

∫ ∞

0

∫

Bc
R\Bδ(x)

3∑

j=1

(
etΩ ∇z

)
j
∂xmΓ(x, etΩz, t)

[
(uju) (etΩz)

]
dz dt

∣
∣
∣
∣
∣
∣

≤ C(S1, S)
∫

Bc
R\Bδ(x)

(|x − z|sτ (x − z))−2 (|z||sτ (z)|)−2 dz

≤ C(S1,S) (|x| sτ (x))−2 ln(2 + |x|).

The last inequality we get by Lemma 2.13. �
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Remark: So, finally we get that the leading term of ∂αuj is expressed as in the linear case

3∑

k=1

βk ∂α
xZjk(x, 0),

where β = (β1, β2, β3) contains additionally the term
∫
∂D

∑3
j=1(njuj u)(y) doy.

Corollary 3.2. Let U ⊂ R3 be open and bounded, S1 ∈ (0,∞) with U ⊂ BS1 , p ∈ (1,∞),
f ∈ Lp(U)3 with supp(f) ⊂ BS1 . Let u ∈ W 1,1

loc (U
c
)3 with u ∈ L6(U

c
)3, ∇u ∈ L2(U

c
)9,

π ∈ L2
loc(U

c
), and suppose that u, π satisfy (2.7) (weak form of rotational Navier-Stokes

system, as in Theorem 2.14) with U in the place of D. Let S0 ∈ (0, S1) with U ⊂ BS0 .
Then the conclusions of Theorem 3.1 hold, with D replaced by BS0 .

Proof: Obviously (u ∙∇)u ∈ L3/2(U
c
)3 so that f − (u ∙∇)u ∈ L

min{p,3/2}
loc (U

c
)3. Therefore,

by interior regularity of the Stokes system, as stated in [26, Theorem IV.4.1], we have

u ∈ W
2, min{p, 3/2}
loc (U

c
)3 and π ∈ W

1, min{p, 3/2}
loc (U

c
); also see the proof of [4, Theorem 5.5].

Now the corollary follows from Theorem 3.1, with p0 = min(p, 3/2) and BS0 in the place
of D. �
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