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Abstract

We consider the Cauchy problem for the 3D Euler system with damping coupled to radiation

through two singular limits. Assuming suitable smallness hypotheses for the data, we prove

that each of these two problems admits a unique smooth solution.
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1 Introduction

After the study of Buet and Després [5] we consider two singular limits for a compressible inviscid
radiative flow where the motion of the fluid is given by the Euler system with damping for the
evolution of the density ̺ = ̺(t, x), the velocity field ~u = ~u(t, x), and the absolute temperature
ϑ = ϑ(t, x) as functions of the time t and the Eulerian spatial coordinate x ∈ R

3.
In the first regime (equilibrium diffusion), the effect of radiation is incorporated in the state

functions p (pressure) and e (internal energy). In the second regime (non equilibrium diffusion),
the radiation appears through an extra equation of parabolic type for the radiative temperature
which is a priori different from the matter temperature.

More specifically, in the equilibrium case, the system of equations to be studied for the three
unknowns (̺, ~u, ϑ) reads

∂t̺ + divx(̺~u) = 0, (1.1)

∂t(̺~u) + divx(̺~u ⊗ ~u) + ∇x (p + pr) + ν~u = 0, (1.2)

∂t (̺E + Er) + divx [(̺E + Er) ~u + (p + pr)~u] = divx (κ∇xϑ) + divx

(
1

3σa
∇xEr

)
, (1.3)

where E = 1
2 |~u|

2 + e(̺, ϑ), Er = aϑ4 and pr = a
3 ϑ4.

In the non-equilibrium case, the system of equations for the four unknowns (̺, ~u, ϑ, Er) is

∂t̺ + divx(̺~u) = 0, (1.4)

∂t(̺~u) + divx(̺~u ⊗ ~u) + ∇x(p + pr) + ν~u = 0, (1.5)

∂t (̺E) + divx ((̺E + p)~u) + ~u · ∇xpr = divx (κ∇xϑ) − σa

(
aϑ4 − Er

)
, (1.6)

∂tEr + divx (Er~u) + prdivx~u = divx

(
1

3σs
∇xEr

)
− σa

(
Er − aϑ4

)
, (1.7)
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where E = 1
2 |~u|

2 + e(̺, ϑ), Er is the radiative energy related to the temperature of radiation Tr

by Er = aT 4
r and pr is the radiative pressure given by pr = 1

3aT 4
r = 1

3 Er, with a > 0.
Systems (1.1) - (1.3) and (1.4) - (1.7) can be viewed as singular limits in radiation hydrodynam-

ics in two limit diffusion regimes. Such systems (when damping is absent) have been investigated
by Lowrie, Morel and Hittinger [25] and more recently by Buet and Després [5].

In a recent paper, Lin and Goudon [24] consider an equilibrium diffusion system close to (1.1 -
1.3). Using a similar analysis and additional arguments introduced by Beauchard and Zuazua [3],
our goal is to prove global existence of solutions for the system (1.1) - (1.3) (resp. (1.4) - (1.7))
when data are sufficiently close to an equilibrium state (̺, 0, θ) (resp. (̺, 0, ϑ, Er)), with ̺ > 0,
ϑ > 0 and Er > 0 .

2 Hypotheses

Hypotheses imposed on constitutive relations and transport coefficients are motivated by the gen-
eral (local) existence theory for the Euler-Fourier system developed in [?, 31] (see also [12, Chapter
3] for the Navier-Stokes-Fourier framework) and reasonable physical assumptions for the radiative
part [27, 29].

In our simplified setting, transport coefficients κ, σa, σs and the Planck’s coefficient a are sup-
posed to be fixed positive numbers.

The damping with coefficient ν > 0 of Darcy type can be interpreted here as a diffusion of a
light gas into a heavy one.

We consider the pressure in the form

p(̺, ϑ) = ϑ5/2P
( ̺

ϑ3/2

)
, a > 0, (2.1)

where P : [0,∞) → [0,∞) is a given function with the following properties:

P ∈ C1[0,∞), P (0) = 0, P ′(Z) > 0 for all Z ≥ 0, (2.2)

0 <
5
3P (Z) − P ′(Z)Z

Z
< c for all Z ≥ 0, (2.3)

lim
Z→∞

P (Z)

Z5/3
= p∞ > 0. (2.4)

After Maxwell’s relations, the specific internal energy e is

e(̺, ϑ) =
3

2
ϑ

(
ϑ3/2

̺

)
P
( ̺

ϑ3/2

)
, (2.5)

and the associated specific entropy reads

s(̺, ϑ) = M
( ̺

ϑ3/2

)
, (2.6)

with

M ′(Z) = −
3

2

5
3P (Z) − P ′(Z)Z

Z2
< 0.

3 Main results

We are going to prove that, under the above structural assumptions on the equation of state,
system (1.1)-(1.2)-(1.3) on the one hand, and system (1.4)-(1.5)-(1.6) on the other hand, have
global smooth solutions close to any equilibrium state.
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Theorem 3.1. Let
(
̺, 0, ϑ

)
be a constant state with ̺ > 0, ϑ > 0. Consider d > 7/2. There exists

ε > 0 such that, for any initial state (̺0, ~u0, ϑ0) satisfying
∥∥(̺0, ~u0, ϑ0) −

(
̺, 0, ϑ

)∥∥
Hd

�
R

3
� ≤ ε, (3.1)

there exists a unique global solution (̺, ~u, ϑ) to (1.1)-(1.2)-(1.3), such that

(
̺ − ̺, ~u, ϑ − ϑ

)
∈ C

(
[0, +∞); Hd

(
R

3
))

. In addition, this solution satisfies the following en-
ergy inequality:

∥∥(̺(t) − ̺, ~u(t), ϑ(t) − ϑ)
∥∥

Hd

�
R

3
� +

∫ t

0

(
‖∇x (̺, ~u, ϑ) (s)‖

2

Hd−1

�
R

3
� + ‖∇xϑ(s)‖

2

Hd

�
R

3
�) ds

≤ C
∥∥(̺0 − ̺, 0, ϑ0 − ϑ)

∥∥2

Hd

�
R

3
� , (3.2)

for some constant C > 0 which does not depend on t.

The same result holds in the case of system (1.4)-(1.5)-(1.6)-(1.7):

Theorem 3.2. Let
(
̺, 0, ϑ, Er

)
be a constant state with ̺ > 0, ϑ > 0, Er > 0. Consider d > 7/2.

There exists ε > 0 such that, for any initial state
(
̺0, ~u0, ϑ0, E

0
r

)
satisfying

∥∥(̺0, ~u0, ϑ0, E
0
r

)
−
(
̺, 0, ϑ, Er

)∥∥
Hd

�
R

3
� ≤ ε, (3.3)

there exists a unique global solution (̺, ~u, ϑ, Er) to (1.4)-(1.5)-(1.6)-(1.7), such that
(
̺ − ̺, ~u, ϑ − ϑ, Er − Er

)
∈

C
(
[0, +∞); Hd

(
R

3
))

. In addition, this solution satisfies the following energy inequality:

∥∥(̺(t) − ̺, ~u(t), ϑ(t) − ϑ, Er(t) − Er)
∥∥

Hd

�
R

3
� +

∫ t

0

‖∇x (̺, ~u, ϑ, Er) (s)‖
2

Hd−1

�
R

3
� ds

+

∫ t

0

(
‖∇xϑ(s)‖2

Hd

�
R

3
� + ‖∇xEr(s)‖

2

Hd

�
R

3
�)ds

≤ C
∥∥(̺0 − ̺, 0, ϑ0 − ϑ, E0

r − Er

)∥∥2

Hd

�
R

3
� , (3.4)

for some constant C > 0 which does not depend on t.

As we will see in Section 4 below, the structure of these two systems is very similar. Indeed,
imposing the equality Er = aϑ4 in the system (1.4)-(1.5)-(1.6)-(1.7), one finds (1.1)-(1.2)-(1.3).
Therefore, the proofs of the above results are very similar. Hence, we will only give the proof of
Theorem 3.2, which is a generalization of that of Theorem 3.1.

4 The linearized systems

4.1 The equilibrium limit

Equation (1.3) rewrites

̺Cv (∂tϑ + ~u · ∇xϑ) + ϑpϑdivx~u + ν |~u|
2

= −prdivx~u + divx (κ∇xϑ) + divx

(
1

3σa
∇xEr

)
. (4.1)

Linearizing the system (1.1) - (1.3) around the constant state (̺, 0, ϑ) and putting ̺ = r + ̺,
ϑ = T + ϑ and Er = er + Er, we get

∂tr + ̺ divx~u = 0, (4.2)
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∂t~u +
p̺

̺
∇xr +

1

̺

(
pϑ +

4aϑ
3

3

)
∇xT + ν~u = 0, (4.3)

∂tT +
ϑpϑ

̺Cv

divx~u = divx

(
1

̺Cv

(
κ +

4aϑ
3

3σa

)
∇xT

)
, (4.4)

where Cv = eϑ(ϑ).

Using the vector notation U :=




r
u1

u2

u3

T




, the linearized system (1.1) - (1.3) rewrites

∂tU +

3∑

j=1

Aj∂jU = D∆U − BU, (4.5)

with

A1 :=




0 ̺ 0 0 0
α 0 0 0 β
0 0 0 0 0
0 0 0 0 0
0 γ 0 0 0




, A2 :=




0 0 ̺ 0 0
0 0 0 0 0
α 0 0 0 β
0 0 0 0 0
0 0 γ 0 0




, A3 :=




0 0 0 ̺ 0
0 0 0 0 0
0 0 0 0 0
α 0 0 0 β
0 0 0 γ 0




,

and

B :=




0 0 0 0 0
0 ν 0 0 0
0 0 ν 0 0
0 0 0 ν 0
0 0 0 0 0




, D :=




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 δ




,

where

α =
p̺

̺
, β =

1

̺

(
pϑ +

4aϑ
3

3

)
, γ =

ϑpϑ

̺Cv

, δ =
1

̺Cv

(
κ +

4aϑ
3

3σa

)
. (4.6)

In order to apply the Kreiss theory we have to put the system (4.5) in a symmetric form [4].
For that purpose it is sufficient to consider a diagonal symmetrizer

Ã0 =




a 0 0 0 0
0 b 0 0 0
0 0 b 0 0
0 0 0 b 0
0 0 0 0 c




.

with the relations a = αγ
̺β and b = γ

β and choosing c = 1 in order to keep the parabolic term
unchanged.

Multiplying the first equation (4.5) by Ã0 on the left, we get

Ã0∂tU +

3∑

j=1

Ãj∂jU = D̃∆U − B̃U, (4.7)

where the matrices Ãj = Ã0Aj and B̃ = Ã0B are symmetric for j = 0, 1, 2, 3, that is,

Ã1 :=




0 αγ
β 0 0 0

αγ
β 0 0 0 γ

0 0 0 0 0
0 0 0 0 0
0 γ 0 0 0




, Ã2 :=




0 0 αγ
β 0 0

0 0 0 0 0
αγ
β 0 0 0 γ

0 0 0 0 0
0 0 γ 0 0




, Ã3 :=




0 0 0 αγ
β 0

0 0 0 0 0
0 0 0 0 0

αγ
β 0 0 0 γ

0 0 0 γ 0




,
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and

B̃ :=




0 0 0 0 0
0 νγ

β 0 0 0

0 0 νγ
β 0 0

0 0 0 νγ
β 0

0 0 0 0 0




, D̃ :=




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 δ




,

where α, β γ and δ are defined by (4.6).
The hyperbolic-parabolic system (4.7) is now symmetric.

4.2 The non-equilibrium limit

Equation (1.6) rewrites

̺Cv (∂tϑ + ~u · ∇xϑ) + ϑpϑdivx~u = −prdivx~u + divx (κ∇xϑ) − σa

(
aϑ4 − Er

)
− ν |~u|

2
. (4.8)

Linearizing the system (1.4) - (1.6) around the constant state (̺, 0, ϑ, Er) with the compatibility

condition Er = aϑ
4

and putting ̺ = r + ̺, ϑ = T + ϑ and Er = er + Er we get

∂tr + ̺ divx~u = 0, (4.9)

∂t~u +
p̺

̺
∇xr +

pϑ

̺
∇xT +

1

3̺
∇xer + ν~u = 0, (4.10)

∂tT +
ϑpϑ

̺Cv

divx~u = divx

(
κ

̺Cv

∇xT

)
−

σa

̺Cv

(
4aϑ

3
T − er

)
, (4.11)

∂ter +
4

3
Erdivx~u = divx

(
1

3σs
∇xer

)
− σa

(
er − 4aϑ

3
T
)

. (4.12)

Using the vector notation U :=




r
u1

u2

u3

T
er




, the linearized system (4.9) - (4.12) rewrites

∂tU +

3∑

j=1

Aj∂jU = D∆U − BU, (4.13)

with

A1 :=




0 ̺ 0 0 0 0
α 0 0 0 β 1

3̺

0 0 0 0 0 0
0 0 0 0 0 0
0 γ 0 0 0 0
0 δ 0 0 0 0




, A2 :=




0 0 ̺ 0 0 0
0 0 0 0 0 0
α 0 0 0 β 1

3̺

0 0 0 0 0 0
0 0 γ 0 0 0
0 0 δ 0 0 0




,

A3 :=




0 0 0 ̺ 0 0
0 0 0 0 0 0
0 0 0 0 0 0
α 0 0 0 β 1

3̺

0 0 0 γ 0 0
0 0 0 δ 0 0




,
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and

D :=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 µ 0
0 0 0 0 0 ν




, B :=




0 0 0 0 0 0
0 ν 0 0 0 0
0 0 ν 0 0 0
0 0 0 ν 0 0
0 0 0 0 ζ −η
0 0 0 0 −π σa




,

where

α =
p̺

̺
, β =

pϑ

̺
, γ =

ϑpϑ

̺Cv

, δ =
4

3
Er, µ =

κ

̺Cv

,

τ =
1

3σs
, ζ =

4aσaϑ
3

̺Cv

, η =
σa

̺Cv

, π = 4aσaϑ
3
.

In order to apply the Kreiss theory we have to put the system (4.13) in a symmetric form [4].
For that purpose it is sufficient to consider a diagonal symmetrizer

Ã0 =




a 0 0 0 0 0
0 b 0 0 0 0
0 0 b 0 0 0
0 0 0 b 0 0
0 0 0 0 c 0
0 0 0 0 0 d




.

We get the relations a = α
̺ b, c = β

γ b and d = 1
3̺δ b.

Multiplying the first equation (4.13) by Ã0 on the left, we get

Ã0∂tU +

3∑

j=1

Ãj∂jU = D̃∆U − B̃U, (4.14)

where the matrices Ãj = Ã0Aj are symmetric, for all j = 1, 2, 3. More specifically,

Ã1 :=




0 αb 0 0 0 0
αb 0 0 0 βb b

3̺

0 0 0 0 0 0
0 0 0 0 0 0
0 βb 0 0 0 0
0 b

3̺ 0 0 0 0




, Ã2 :=




0 0 αb 0 0 0
0 0 0 0 0 0
αb 0 0 0 βb b

3̺

0 0 0 0 0 0
0 0 βb 0 0 0
0 0 b

3̺ 0 0 0




,

Ã3 :=




0 0 0 αb 0 0
0 0 0 0 0 0
0 0 0 0 0 0
αb 0 0 0 βb b

3̺

0 0 0 βb 0 0
0 0 0 b

3̺ 0 0




.

The hyperbolic part system (4.14) is now symmetric while its symmetric dissipative part is
given by

D̃ :=




0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 cµ 0
0 0 0 0 0 dτ




, B̃ :=




0 0 0 0 0 0
0 bν 0 0 0 0
0 0 bν 0 0 0
0 0 0 bν 0 0
0 0 0 0 cζ −cη
0 0 0 0 −dπ dσa




, (4.15)
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where one checks the relation cη = dπ = σa

̺ϑ
b and the positiveness condition of B̃

tXB̃X > 0, for any vector X ∈ R
6.

Applying the Fourier transform in x to (4.14) we get

Ã0∂tÛ + i

3∑

j=1

ξjÃjÛ = −|ξ|2D̃Û − B̃Û , (4.16)

or
Ã0∂tÛ = E(ξ)Û , (4.17)

with
E(ξ) = −B(ξ) − iA(ξ),

where

A(ξ) =
3∑

j=1

ξjÃj =




0 a̺ξ1 a̺ξ2 a̺ξ3 0 0
bαξ1 0 0 0 bβξ1

b
3̺ξ1

bαξ2 0 0 0 bβξ2
b
3̺ξ2

bαξ3 0 0 0 bβξ3
b
3̺ξ3

0 cγξ1 cγξ2 cγξ3 0 0
0 dδξ1 dδξ2 dδξ3 0 0




(4.18)

and

B(ξ) := B̃ + |ξ|2D̃ =




0 0 0 0 0 0
0 bν 0 0 0 0
0 0 bν 0 0 0
0 0 0 bν 0 0
0 0 0 0 c(µ|ξ|2 + ζ) −cη
0 0 0 0 −dπ d(τ |ξ|2 + σa)




.

Choosing b = 3̺, we get

a =
3pϑ

̺
, c =

3Cv̺

ϑ
, d =

3

4Er

,

so

A(ξ) =




0 3p̺ξ1 3p̺ξ2 3p̺ξ3 0 0
3p̺ξ1 0 0 0 3pϑξ1 ξ1

3p̺ξ2 0 0 0 3pϑξ2 ξ2

3p̺ξ3 0 0 0 3pϑξ3 ξ3

0 3pϑξ1 3pϑξ2 3pϑξ3 0 0
0 ξ1 ξ2 ξ3 0 0




,

and

B(ξ) :=




0 0 0 0 0 0
0 3̺ν 0 0 0 0
0 0 3̺ν 0 0 0
0 0 0 3̺ν 0 0

0 0 0 0 3κ
ϑ
|ξ|2 + 12aσaϑ

2
− 3σa

ϑ
0 0 0 0 − 3σa

ϑ
1

4aσsϑ
4 |ξ|2 + 3σa

4aϑ
4




.

Solving this equation with initial condition Û0(ξ) we get

Û(t, ξ) = Ã−1
0 exp [tE(ξ)] Û0(ξ). (4.19)
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In the strictly hyperbolic case D̃ = 0, under the Kalman rank condition [20] for the pair (A(ξ), B),
it can be proved [3] that

∃C > 0, λ(ξ) > 0 : exp [tE(ξ)] ≤ Ce−λ(ξ)t.

Observing the partially parabolic character of the system, one can expect a similar result when
D̃ 6= 0 with a parabolic smoothing effect at low frequencies and an extra damping in the high
frequency regime.

Taking benefit of the damping, we can use the Shizuta-Kawashima condition (SK) [32] which
applies to the previous systems when α > 0. Following the arguments of Beauchard and Zuazua
[3], we have

Lemma 1. For any ξ ∈ S2, the matrices B(ξ) and A(ξ) satisfy the Shizuta-Kawashima condition
(SK): {

eigenvectors of
(
Ã0

)−1

A(ξ)

}
∩ Ker B(ξ) = {0}. (4.20)

As suggested in [3], one expects that the previous systems are strongly stable in L2: all L2

solutions tend to zero in L2 when t → ∞.
Proof: One first checks that Ker B(ξ) is the 1-dimensional subspace spanned by the vector

(1, 0, 0, 0, 0, 0). Therefore, if X ∈ Ker B(ξ) \ {0} is an eigenvector of
(
Ã0

)−1

A(ξ), we have

X = (x1, 0, 0, 0, 0, 0), x1 6= 0, and

A(ξ)X = λÃ0X,

for some λ ∈ R. According to the values of Ã0 and A(ξ), this implies that λ = 0, ξ1 = ξ2 = ξ3 = 0,
which is in contradiction with the hypotesis ξ ∈ S2. �

Remark 4.1. It is clear in the above proof that ν > 0 is necessary. Indeed, in the case ν = 0,
one easily sees that (4.20) is not satisfied. Indeed, in such a case, any vector of the form X =
(0, ω1, ω2, ω3, 0, 0)T satisfies A(ξ)X = 0 and B(ξ)X = 0.

The stability condition (4.20) was first introduced in [32]. It was also used in [24] and [3]
to prove global existence for hyperbolic-parabolic systems. It was proved in [32] that (4.20) is
equivalent to the existence of a compensating matrix:

Proposition 4.1. There exists a matrix-valued function

K : S2 −→ R
6×6

ω 7−→ K(ω)

such that

1. ω 7→ K(ω) is a C∞ function, and satisfies K(−ω) = −K(ω) for any ω ∈ S2.

2. K(ω)Ã0 is a skew-symmetric matrix for any ω ∈ S2.

3. Denoting by [A] = 1
2

(
A + AT

)
the symmetric part of A, the matrix [K(ω)A(ω)] + B(ω) is

symmetric positive definite for any ω ∈ S2.

The proof of the equivalence between the Shizuta-Kawashima stability condition and the exis-
tence of a compensating matrix (Proposition 4.1) can be found in [21]. As in [24] and [3], we will
use the existence of the compensating matrix K(ω) as a fundamental property allowing to prove
global existence.
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5 Entropy properties

Adding equations (1.6) and (1.7) we get

∂t

(
1

2
̺ |~u|2 + ̺e + Er

)
+ divx ((̺E + Er)~u + (p + pr)~u) = divx (κ∇xϑ) + divx

(
1

3σs
∇xEr

)
.

(5.1)

Introducing the entropy s of the fluid by the Gibbs law ϑds = de + pd
(

1
̺

)
and denoting by

Sr := 4
3aT 3

r the radiative entropy, equation (1.7) rewrites

∂tSr + divx (Sr~u) =
1

Tr
divx

(
1

3σs
∇xEr

)
− σa

Er − aϑ4

Tr
,

or

∂tSr + divx (Sr~u) = divx

(
1

3σsTr
∇xEr

)
+

4a

3σs
Tr|∇xTr|

2 − σa
Er − aϑ4

Tr
. (5.2)

Replacing equation (1.6) by the internal energy equation

∂t(̺e) + divx(̺e~u) + pdivx~u − ν |~u|
2

= divx (κ∇xϑ) − σa

(
aϑ4 − Er

)
, (5.3)

and dividing it by ϑ, we may write an entropy equation for matter

∂t(̺s) + divx(̺s~u) −
ν

ϑ
|~u|

2
= divx

(
κ∇xϑ

ϑ

)
+

κ|∇xϑ|2

ϑ2
− σa

aϑ4 − Er

ϑ
. (5.4)

So adding (5.4) and (5.2) we obtain

∂t (̺s + Sr) + divx ((̺s + Sr)~u) − divx

(
κ∇xϑ

ϑ
+

1

3σsTr
∇xEr

)

=
κ|∇xϑ|2

ϑ2
+

4a

3σs
Tr|∇xEr|

2 +
aσa

ϑTr
(ϑ − Tr)

2
(ϑ + Tr)

(
ϑ2 + T 2

r

)
+

ν

ϑ
|~u|

2
. (5.5)

Introducing the Helmholtz functions Hϑ(̺, ϑ) := ̺
(
e − ϑs

)
and Hr,ϑ(Tr) := Er − ϑSr, we check

that the quantities Hϑ(̺, ϑ)−(̺−̺)∂̺Hϑ(̺, ϑ)−Hϑ(̺, ϑ) and Hr,ϑ(Tr)−Hr,ϑ(T r) are non-negative

and strictly coercive functions reaching zero minima at the equilibrium state (̺, ϑ, Er).

Lemma 2. Let ̺, ϑ and T r be three given positive constants. Let O1 and O2 be the sets defined
by

O1 :=

{
(̺, ϑ) ∈ R

2 :
̺

2
< ̺ < 2̺,

ϑ

2
< ϑ < 2ϑ,

}
. (5.6)

O2 :=

{
Tr ∈ R :

T r

2
< Tr < 2T r,

}
. (5.7)

There exist positive constants C1,2(̺, ϑ) and C3,4(T r) such that

1.
C1

(
|̺ − ̺|2 + |ϑ − ϑ|2

)
≤ Hϑ(̺, ϑ) − (̺ − ̺)∂̺Hϑ(̺, ϑ) − Hϑ(̺, ϑ)

≤ C2

(
|̺ − ̺|2 + |ϑ − ϑ|2

)
, (5.8)

for all (̺, ϑ) ∈ O1,
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2.
C3|Tr − T r|

2 ≤ Hr,ϑ(Tr) − Hr,ϑ(T r) ≤ C4|Tr − T r|
2, (5.9)

for all Tr ∈ O2.

Proof:

1. Point 1 is proved in [12] and we only sketch the proof for convenience.

According to the decomposition

̺ → Hϑ(̺, ϑ) − (̺ − ̺)∂̺Hϑ(̺, ϑ) − Hϑ(̺, ϑ) = F(̺) + G(̺),

where F(̺) = Hϑ(̺, ϑ) − (̺ − ̺)∂̺Hϑ(̺, ϑ) − Hϑ(̺, ϑ) and G(̺) = Hϑ(̺, ϑ) − Hϑ(̺, ϑ), one
checks that F is strictly convex and reaches a zero minimum at ̺, while G is strictly decreasing
for ϑ < ϑ and strictly increasing for ϑ > ϑ, after thermodynamic stability properties (2.2)
and (2.3). Computing the derivatives of Hϑ leads directly to the estimate (5.8).

2. Point 2 follows immediately from the properties of the function x → Hr,ϑ(x) − Hr,ϑ(Tr) =

ax3(x − 4
3ϑ) + a

3ϑ
4
.

�

From this simple result, we can obtain an identity leading to energy estimates. In fact, sub-
tracting (5.5) from (5.1) and using the conservation of mass, we get

∂t

(
1

2
̺ |~u|

2
+ Hϑ(̺, ϑ) − (̺ − ̺)∂̺Hϑ(̺, ϑ) − Hϑ(̺, ϑ) + Hr,ϑ(Tr)

)

= divx

(
(̺E + Er)~u + (p + pr)~u + ϑ(̺s + Sr)~u

)

+divx

(
κ∇xϑ +

1

3σs
∇xEr

)
+ ϑdivx

(
κ∇xϑ

ϑ
+

1

3σsTr
∇xEr

)

−ϑ
κ|∇xϑ|2

ϑ2
− ϑ

4a

3σs
Tr|∇xEr|

2 − ϑ
aσa

ϑTr
(ϑ − Tr)

2
(ϑ + Tr)

(
ϑ2 + T 2

r

)
−

ν

ϑ
|~u|

2
. (5.10)

In the sequel, we define V = (ρ, ~u, ϑ, Er)
T
, V =

(
ρ, 0, ϑ, Er

)T
, and

N(t)2 = sup
0≤s≤t

∥∥V (s) − V
∥∥2

Hd

�
R

3
�

+

∫ t

0

(
‖∇xV (s)‖2

Hd−1

�
R

3
� + ‖∇xϑ(s)‖2

Hd

�
R

3
� + ‖∇xEr(s)‖

2

Hd

�
R

3
�) ds

+

∫ t

0

(
‖ϑ(s) − Tr(s)‖Hd−1

�
R

3
� + ‖~u‖

Hd−1

�
R

3
�) ds. (5.11)

Recall that Tr = E
1/4
r a−1/4.

5.1 L
∞(Hd) estimates

Using these entropy properties, we are going to prove the following result:
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Proposition 5.1. Let the assumptions of Theorem 3.2 be satisfied. Consider a solution (̺, ~u, ϑ, Er)
of system (1.4)-(1.5)-(1.6) on [0, t], for some t > 0. Then, the energy defined by (5.11) satisfies

∥∥V (t) − V
∥∥2

L2

�
R

3
� +

∫ t

0

(
‖∇xϑ(s)‖

2

L2

�
R

3
� + ‖∇xEr(s)‖

2

L2

�
R

3
� + ‖ϑ − Tr‖

2

L2

�
R

3
�) ds

≤ C(N(t))N(0)2, (5.12)

where the function C is non-decreasing.

Proof: We follow the proof of [24, Lemma 3.1]: we define

η(t, x) = Hϑ(̺, ϑ) − (̺ − ̺) ∂̺Hϑ

(
̺, ϑ
)
− Hϑ

(
̺, ϑ
)

+ Hr,ϑ (Tr) . (5.13)

We multiply (5.5) by ϑ, and subtract the result to (5.1). Integrating over [0, t] × R
3, we find

∫

R
3

(
1

2
̺(t) |~u|

2
(t) + η(t, x)

)
dx +

∫ t

0

∫

R
3

κ
ϑ

ϑ2
|∇xϑ|2 +

4a

3σs
Tr|∇xEr|

2ϑ

+

∫ t

0

∫

R
3

ϑ
aσa

ϑTr
(ϑ + Tr) (ϑ − Tr)

2 (
ϑ2 + T 2

r

)
+

∫ t

0

∫

R
3

ϑ

ϑ
ν |~u|

2
≤

∫

R
3

η(0, x)dx.

Defining

M(t) = sup
0≤s≤t

sup
x∈R

3

(
max

(
|̺(s, x) − ̺|, |~u(s, x)|, |ϑ(s, x) − ϑ|, |Er(s, x) − Er

))
, (5.14)

and applying Lemma 2, we find that

∥∥V (t) − V
∥∥2

L2

�
R

3
�+∫ t

0

(
|∇xϑ(s)‖

2

L2

�
R

3
� + ‖∇xEr(s)‖

2

L2

�
R

3
� + ‖ϑ − Tr‖

2

L2

�
R

3
� +

νϑ

ϑ
|~u|

2

)
ds

≤ C(M(t))N(0),

where C : R
+ → R

+ is non-decreasing. Finally, we point out that, since d > 7/2 > 3/2, due to
Sobolev embeddings, there exists a universal constante C0 such that M(t) ≤ C0N(t). Since C is
non-decreasing, this proves (5.12). �

Proposition 5.2. Under the same assumptions as in Theorem 3.2, we have the following estimate:
(here, we set V = (̺, ~u, ϑ, Er)

T )

‖∂tV (t)‖
Hd−1

�
R

3
� ≤ C(N(t))

(
‖∇xV ‖

Hd−1

�
R

3
� + ‖∇xϑ‖

Hd

�
R

3
�

+ ‖∇xEr‖Hd

�
R

3
� + ‖ϑ − Tr‖Hd−1

�
R

3
�) (5.15)

Proof: The system satisfied by V may be written formally

A0(V )∂tV +
3∑

j=1

Aj(V )∂xj
V = D(V )∆V − B(V )V.

Therefore,

∂tV = −

3∑

j=1

[
Ãj(V ) − Ãj(V )

]
∂xj

V −

n∑

j=1

Ãj(V )∂xj
V +

[
D̃(V ) − D̃(V )

]
∆V + D̃(V )∆V

−
[
B̃(V ) − B̃(V )

]
V − B̃(V )V,
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where Ãj(V ) = (A0(V ))
−1

Aj(V ), B̃(V ) = (A0(V ))
−1

B(V ), and D̃(V ) = (A0(V ))
−1

D(V ). We
point out two important facts: First, these matrices are Lipschitz continuous with respect to V ,
away from ̺ = 0 and ϑ = 0. Second, the matrices B̃ and D̃ have, respectively, the same structure
as those defined in (4.15). Note also that, since d− 1 > 5/2 = 3/2 + 1, Sobolev embeddings imply
that Hd−1

(
R

3
)

is an algebra. Therefore, we, have

‖∂tV ‖
Hd−1

�
R

3
� ≤ C0



1 +

3∑

j=1

∥∥∥Ãj(V ) − Ãj(V )
∥∥∥

Hd−1

�
R

3
� ‖∇xV ‖

Hd−1

�
R

3
�

+ C0

(
1 +

∥∥∥D̃(V ) − D̃(V )
∥∥∥

Hd−1

�
R

3
�)(‖∆ϑ‖

Hd−1

�
R

3
� + ‖∆Er‖Hd−1

�
R

3
�)

+ C0

(
1 +

∥∥∥B̃(V ) − B̃(V )
∥∥∥

Hd−1

�
R

3
�) ‖ϑ − Tr‖Hd−1

�
R

3
�,

whence,

‖∂tV ‖
Hd−1

�
R

3
� ≤ C0

(
1 +

∥∥V − V
∥∥

Hd−1

�
R

3
�)

×

(
‖∇xV ‖

Hd−1

�
R

3
� + ‖∆ϑ‖

Hd−1

�
R

3
� + ‖∆Er‖Hd−1

�
R

3
� + ‖ϑ − Tr‖Hd−1

�
R

3
�) ,

which proves (5.15). �

Next, we bound the spatial derivatives as follows:

Proposition 5.3. Assume that the hypotheses of Theorem 3.2 are satisfied. Let k ∈ N
3 be such

that 1 ≤ |k| ≤ d, where d > 7/2. Then, we have

∥∥∂k
xV (t)

∥∥
L2

�
R

3
� +

∫ t

0

(
‖∂k

x∇xϑ(s)‖2

L2

�
R

3
� + ‖∂k

x∇xEr(s)‖
2

L2

�
R

3
� +

∥∥∂k
x (ϑ − Tr)

∥∥
L2

�
R

3
�) ds

≤ C0N(0)2

+C0N(t)

∫ t

0

(
‖∇xV (s)‖

2

Hd−1

�
R

3
� + ‖∇xϑ(s)‖

Hd

�
R

3
� + ‖∇xEr‖Hd

�
R

3
� + ‖ϑ − Tr‖Hd−1

�
R

3
�) ds

(5.16)

Proof: We write the system (1.4)-(1.5)-(1.6) as

A0(V )∂tV +

3∑

j=1

Aj(V )∂xj
V = D∆V − B(V )V.

We apply ∂k
x to this system, then take the scalar product with the vector ∂k

xV , and integrate over
[0, t]× R

3. We find

1

2

∫

R
3

[(
A0∂

k
xV
)
· ∂k

xV
]t
0

+

∫ t

0

∫

R
3

(
D∇x

(
∂k

xV
))

· ∇x

(
∂k

xV
)

+

∫ t

0

∫

R
3

(
B
(
∂k

xV
))

·
(
∂k

xV
)

=

∫ t

0

∫

R
3

(
1

2
(I1 + I2) − I3 − I4 + I5

)
,
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where

I1 = ∂t (A0(v)) ∂k
xV · ∂k

xV, I2 =
3∑

j=1

∂xj
(Aj(V )) ∂k

xV · ∂k
xV, I3 =

[
∂k

x , A0(V )
]
∂tV · ∂k

xV,

I4 =

3∑

j=1

[
∂k

x , Aj(V )
]
∂xj

V · ∂k
xV, I5 = ∂k

x (B(V ))V · ∂k
xV.

We estimate separately each term of the right-hand side. First, we have

∫ t

0

∫

R
3

|I1| ≤ C

∫ t

0

∫

R
3

∣∣∂k
xV
∣∣2 |∂tV |

≤ C

∫ t

0

∫

R
3

∣∣∂k
xV
∣∣2 (|∇xV | + |B(V )V | + |D∆V |)

≤ CN(t)

∫ t

0

∥∥∂k
xV (s)

∥∥2

L2

�
R

3
� ds,

where we have used Sobolev embeddings and the fact that d > 7/2. A similar computation gives

∫ t

0

∫

R
3

|I2| ≤ CN(t)

∫ t

0

∥∥∂k
xV (s)

∥∥2

L2

�
R

3
� ds.

We estimate I3 by applying Cauchy-Schwarz inequality:

∫ t

0

∫

R
3

|I3| ≤

∫ t

0

∥∥∂k
xV
∥∥

L2

�
R

3
� ∥∥[∂k

x , A0(V )]∂tV
∥∥

L2

�
R

3
� .

Then, we apply same estimate for commutators and composition of functions (see [26, Proposition
2.1]), and |k| ≤ d:

∥∥[∂k
x , A0(V )]∂tV

∥∥
L2

�
R

3
� =

∥∥[∂k
x , A0(V ) − A0(V )]∂tV

∥∥
L2

�
R

3
�

≤ C

(
‖∂tV ‖

L∞

�
R

3
� ‖∇xA0(V )‖

Hd−1

�
R

3
� + ‖∂tV ‖

Hd−1

�
R

3
� ‖∇xA0(V )‖

L∞

�
R

3
�) .

Moreover, we have

‖∇xA0(V )‖
Hd−1

�
R

3
� ≤ C

∥∥V − V
∥∥

Hd

�
R

3
� ≤ CN(t),

and
‖∇xA0(V )‖

L∞

�
R

3
� ≤ C ‖∇xV ‖

Hd−1

�
R

3
� ≤ CN(t).

Hence, I3 satisfies ∫ t

0

∫

R
3

|I3| ≤ CN(t)

∫ t

0

(
‖∇xV (s)‖2

Hd

�
R

3
�)ds.

Here, we have used (5.15). The integral of I4 is dealt with using similar computations. Turning
to I5, we use the particular form of ∂k

xB(V ), which has non-zero entries only on its last two lines
and its fifth column. More precisely, we have

∂k
x (B(V )) V =




0
0
0
0

aσa∂k
x

(
ϑ3
)

−aσa∂k
x

(
ϑ3
)




,
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hence
∂k

x (B(V ))V · ∂k
xV = aσa∂k

x

(
ϑ3
)
∂k

x (ϑ − Er) ,

from which we infer ∫ t

0

∫

R
3

|I5| ≤ CN(t)

∫ t

0

∥∥∂k
xV (s)

∥∥2

L2

�
R

3
� ds.

Collecting the estimates on I1, I2, I3, I4 and I5, we prove (5.16). �

The above results allow to derive the following bound:

Proposition 5.4. Assume that the assumptions of Proposition 5.1 are satisfied. Then, there exists
a non-decreasing function C : R

+ → R
+ such that

∥∥V − V
∥∥2

Hd

�
R

3
� +

∫ t

0

(
‖∇xϑ(s)‖2

Hd

�
R

3
� + ‖∇xEr(s)‖

2

Hd

�
R

3
� + ‖ϑ − Tr‖

2

Hd

�
R

3
�) ds

≤ C(N(t))

(
N(0)2 + N(t)

∫ t

0

‖∇xϑ(s)‖
2

Hd−1

�
R

3
� ds

)
. (5.17)

Proof: We sum up estimates (5.16) over all multi-indices k such that |k| ≤ d, and add this to
(5.15). This leads to (5.17). �

5.2 L
2(Hd−1) estimates

In this section, we derive bounds on the right-hand side of (5.17). For this purpose, we adapt
the strategy of [32], which was further developed in [15]. We apply the Fourier transform to the
linearized system and use the compensating matrix K to prove estimates on the space derivatives
of V .

Proposition 5.5. Assume that the assumptions of Proposition 5.1 are satisfied. Then there exists
a non-decreasing function C : R

+ → R
+ such that

∫ t

0

‖∇xV (s)‖
Hd−1

�
R

3
� ds ≤ C(N(t))

(
N(t) +

∥∥V0 − V
∥∥

Hd

�
R

3
�) (5.18)

Proof: As a first step, we apply the symmetrizer of the linearized system (4.13) (which leads to
(4.14)) to the nonlinear system (1.4)-(1.5)-(1.6), which then reads

Ã0(V )∂tV +
3∑

j=1

Ãj(V )∂xj
V = D̃∆V − B̃(V )V.

Of course, this system is not symmetric. However, the corresponding linearized system (4.14) is
symmetric. Next, we rewrite the nonlinear system by setting U = V − V :

Ã0(V )∂tU +

3∑

j=1

Ãj(V )∂xj
U = D̃∆U − B̃(V )U − B̃(V )V .

Therefore, multiplying this system on the left by Ã0(V )
(
Ã0(V )

)−1

, we find

Ã0(V )∂tU +

3∑

j=1

Ãj(V )∂xj
U = H, (5.19)
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where

H = −Ã0(V )

3∑

j=1

[(
Ã0(V )

)−1

Ãj(V ) −
(
Ã0(V )

)−1

Ãj(V )

]
∂xj

V

+ Ã0(V )
(
Ã0(V )

)−1

D̃∆U − Ã0(V )
(
Ã0(V )

)−1

B̃(V )U − Ã0(V )
(
Ã0(V )

)−1

B̃(V )V .

We apply the Fourier transform to (5.19), and then multiply on the left by −i
(
Û
)∗

K
(

ξ
|ξ|

)
,

where ∗ denotes the transpose of the complex conjugate, and K is the compensating matrix (see
Proposition 4.1). Taking the real part of the result, we infer

Im

((
Û
)∗

K

(
ξ

|ξ|

)
A0

(
V
)
∂tÛ

)
+ |ξ|

(
Û
)∗

K

(
ξ

|ξ|

)
A

(
ξ

|ξ|

)
Û

= Im

((
Û
)∗

K

(
ξ

|ξ|

)
Ĥ

)
, (5.20)

where the matrix A
(

ξ
|ξ|

)
is defined by (4.18). According to Proposition 4.1, KA0(V ) is skew-

symmetric, hence

Im

((
Û
)∗

K

(
ξ

|ξ|

)
A0

(
V
)
∂tÛ

)
=

1

2

d

dt
Im

((
Û
)∗

K

(
ξ

|ξ|

)
A0

(
V
)
Û

)
.

Next, we also have

|ξ|
(
Û
)∗

K

(
ξ

|ξ|

)
A

(
ξ

|ξ|

)
Û = |ξ|

(
Û
)∗ [

K

(
ξ

|ξ|

)
A

(
ξ

|ξ|

)
+ B

(
ξ

|ξ|

)]
Û

− |ξ|
(
Û
)∗

B̃Û − |ξ|
(
Û
)∗

D̃Û . (5.21)

Hence, still applying Proposition 4.1, there exists α1 > 0 and α2 > 0 such that

|ξ|
(
Û
)∗

K

(
ξ

|ξ|

)
A

(
ξ

|ξ|

)
Û ≥ α1|ξ|

∣∣∣Û
∣∣∣
2

− α2
1

|ξ|

(∣∣∣∣ξ
(

̂ϑ − ϑ

)∣∣∣∣
2

+
∣∣∣ξ
(

̂Er − Er

)∣∣∣
2

+ |ξ|
2
∣∣∣~̂u
∣∣∣
2
)

. (5.22)

Finally, we estimate the right-hand side of (5.20) using Cauchy-Schwarz inequality and Young
inequality: ∣∣∣∣Im

((
Û
)∗

K

(
ξ

|ξ|

)
Ĥ

)∣∣∣∣ ≤ ε|ξ|
∣∣∣Û
∣∣∣
2

+ Cε
1

|ξ|

∣∣∣Ĥ
∣∣∣
2

, (5.23)

for any ε > 0. We choose ε small enough, insert (5.21)-(5.22)-(5.23) into (5.20), and find

|ξ|
∣∣∣Û
∣∣∣
2

≤ C

[
1

|ξ|

(∣∣∣∣ξ
(

̂ϑ − ϑ

)∣∣∣∣
2

+
∣∣∣ξ
(

̂Er − Er

)∣∣∣
2

+ |ξ|2
∣∣∣~̂u
∣∣∣
2
)

+
1

|ξ|

∣∣∣Ĥ
∣∣∣
2

−
d

dt
Im

((
Û
)∗

K

(
ξ

|ξ|

)
A0

(
V
)
Û

)]
.

We multiply this inequality by |ξ|2l−1, for some 1 ≤ l ≤ d, and get

|ξ|2l
∣∣∣Û
∣∣∣
2

≤ C

[
|ξ|2l−2

(∣∣∣∣ξ
(

̂ϑ − ϑ

)∣∣∣∣
2

+
∣∣∣ξ
(

̂Er − Er

)∣∣∣
2

+ |ξ|2
∣∣∣~̂u
∣∣∣
2
)

+ |ξ|2l−2
∣∣∣Ĥ
∣∣∣
2

−|ξ|2l−1 d

dt
Im

((
Û
)∗

K

(
ξ

|ξ|

)
A0

(
V
)
Û

)]
. (5.24)
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C(N)

N*

φ(Ν), ε=0.01

φ(Ν), ε=0.1

Figure 1: The functions φ and C used in the proof of Theorem 3.2

We integrate this inequality over [0, t] × R
3, and use Plancherel’s theorem:

∫ t

0

∫

R
3

∑

|k|=l

∣∣∂k
x∇xV

∣∣2 ≤ C

∫ t

0

∫

R
3

∑

|k|=l

(∣∣∂k
x∇xϑ

∣∣2 +
∣∣∂k

x∇xEr

∣∣2 +
∣∣∂k

x∇x~u
∣∣2 +

∣∣∂k
xH
∣∣2
)

+ C Im

∫

R
3

|ξ|2l−1

[(
Û
)∗

K

(
ξ

|ξ|

)
A0

(
V
)
Û

]t

0

. (5.25)

The matrix K
(

ξ
|ξ|

)
is uniformly bounded for ξ ∈ R

3 \ {0}, so we have

Im

∫

R
3

|ξ|2l−1

[(
Û
)∗

K

(
ξ

|ξ|

)
A0

(
V
)
Û

]t

0

≤ C

(∫

R
3

(
1 + |ξ|2

)l ∣∣∣Û(t)
∣∣∣
2

+

∫

R
3

(
1 + |ξ|2

)l ∣∣∣Û0

∣∣∣
2
)

≤ C

(∥∥V − V
∥∥

Hl

�
R

3
� +

∥∥V0 − V
∥∥

Hl

�
R

3
�)

We insert this estimate into (5.25), sum the result over 1 ≤ l ≤ d, which leads to

∫ t

0

‖∇xV ‖
Hd−1

�
R

3
� ≤ C

(∥∥V − V
∥∥

Hd

�
R

3
� +

∥∥V0 − V
∥∥

Hd

�
R

3
�

+

∫ t

0

(
‖∇xϑ‖2

Hd−1

�
R

3
� + ‖∇xEr‖

2

Hd−1

�
R

3
� + ‖∇x~u‖2

Hd−1

�
R

3
� + ‖H‖2

Hd−1

�
R

3
�)) . (5.26)

In order to conclude, we need to estimate the perturbation H . For this purpose, we use that
Hd−1

(
R

3
)

is an algebra: for any s ≤ t,

‖H(s)‖
Hd−1

�
R

3
� ≤ CN(t) ‖∇xV ‖

Hd−1

�
R

3
� .

Inserting this into (5.26), we prove (5.18). �

We are now in position to conclude with the

Proof of Theorem 3.2: We first point out that local existence for system (1.4)-(1.5)-(1.6)
may be proved using standard fix-point methods. We refer to [26] for the proof. The existence is
proved in the following functional space:

X(0, T ) =
{
V, V − V ∈ C

(
[0, T ]; Hd

(
R

3
))

, ∇xV ∈ L2
(
[0, T ]; Hd−1

(
R

3
))

,

∇xϑ,∇xEr ∈ L2
(
[0, T ]; Hd

(
R

3
))}

.
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In order to prove global existence, we argue by contradiction, and assume that Tc > 0 is the
maximum time existence. Then, we necessarily have

lim
t→Tc

N(t) = +∞,

where N(t) is defined by (5.11). We are thus reduced to prove that N is bounded. For this purpose,
we use the method of [24], which was also used in [28]. First note that, due to Proposition 5.4 on
the one hand, and to Proposition 5.5 on the other hand, we know that there exists a non-decreasing
continuous function C : R

+ → R
+ such that

∀T ∈ [0, Tc], N(t)2 ≤ C(N(t))
(
N(0)2 + N(t)3

)
. (5.27)

Hence, setting N(0) = ε, we have

N(t)2

ε2 + N(t)3
≤ C(N(t)), (5.28)

Studying the variation of φ(N) = N2/
(
ε2 + N3

)
, we see (figure 1) that φ′(0) = 0, that φ is

increasing on the interval
[
0,
(
2ε2
)1/3

]
and decreasing on the interval

[(
2ε2
)1/3

, +∞
)
. Hence,

max φ = φ
((

2ε2
)1/3

)
=

1

3

(
2

ε

)2/3

.

Hence, the function C being independent of ε, we can choose ε small enough to have φ(N) ≤ C(N)
for all N ∈ [0, N∗], where N∗ > 0. Since C is continuous, (5.28) implies that N ≤ N∗. This is
clearly in contradiction with (5.27). �
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