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Introduction

Forced oscillations of elastoplastic constructions are classical examples of systems with mem-
ory far away from equilibrium. In addition to the space and time variables, memory is
quantified in terms of a new variable, and the state space has to be extended by a metric
space of functions of this memory variable. The thermodynamic quantities then involve also
the dependence on the instantaneous memory state. It turns out that in this setting, thermoe-
lastoplasticity ([24]), material fatigue ([11]), phase transitions ([26]), ferromagnetism ([21]),
magnetostriction ([25]), and also specific problems in porous media flows ([23]) and mag-
netohydrodynamics ([10]), can be treated mathematically as systems of partial differential

1Supported by GA ČR Grant P201/10/2315 and by RVO: 67985840.
2Institute of Mathematics, Czech Academy of Sciences, Žitná 25, CZ-11567 Praha 1, Czech Republic,
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equations with hysteresis operators. This text, prepared for the Summer School “Nonlinear
Analysis and Extremal Problems 2012” in Irkutsk, is assumed to be an introduction into hys-
teresis methods of solving nonequilibrium problems in systems with memory. Emphasis will
be put on model problems related to energy dissipation and fatigue in oscillating elastoplastic
beams and plates.

1 Oscillating lower-dimensional elastoplastic structures

Dynamic problems of multidimensional elastoplasticity lead to quasilinear second order hy-
perbolic equations, which are difficult from both analytic and computational viewpoints.
Apart from the classical results in [9], where the small strain dynamic problem of Prandtl-
Reuss plasticity was solved via the method of variational inequalities, the author is not aware
of any substantial progress in this direction. Indeed, an abundant literature is devoted to
quasistatic problems (see e. g. an overview in [18]), but a satisfactory mathematical theory
of oscillating elastoplastic structures still seems to be missing.

In the first two sections, we summarize the results of [16, 28] on derivation of 1D/2D
models for oscillations of elastoplastic beams/plates from the general dynamic 3D von Mises
plasticity model. Indeed, the dimensional reduction is not an equivalent operation, so that
the existence theorem from [9] says nothing about the solvability of the reduced equations,
and proofs given in [16, 28] are part of the a posteriori justification of the model.

The dimensional reduction is carried out by the variational method of [6, 30], using scaling
hypotheses analogous to the ones in the theory of elastic plates in [6, 8]. As main result,
we show that the classical von Mises plasticity criterion with a single-yield condition leads
after dimensional reduction to a multi-yield model of Prandtl [37] and Ishlinskii [19] type.
This can be explained by the fact that in the 1D/2D model only deformations of longitudinal
layers parameterized by the transversal coordinate are taken into account, and the individual
longitudinal fibers do not switch from the elastic to the plastic regime at the same time. More
precisely, the “eccentric” fibers look as if they had higher elasticity modulus and lower yield
point than the central ones. Hence, the effect of the existence of plasticized zones (see Fig. 1)
is translated into the mathematical language by means of the Prandtl-Ishlinskii combination
of elastic-perfectly plastic elements with different yield limits that are not all simultaneously
activated, see also Fig. 2 below.
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Figure 1. Deformed plate with grey plasticized zone.
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This emerging multiyield character of the elastoplastic beam or plate bending problem does
not seem to have been taken into consideration in older literature. The multiyield quasistatic
model in [1] does not directly refer to plates. In [3, 29, 35], only the quasistatic case is inves-
tigated as well, and after dimensional reduction, the yield condition is still described by one
sharp surface of plasticity. The relation between dynamic and quasistatic problems in single
yield plasticity is studied in [33]. Methods based on Γ-convergence of energy minimizers
([14, 15, 36]) are indeed more rigorous than a simple scaling analysis. More recent appli-
cations of Γ-convergence to dimensional reduction in quasistatic elastoplasticity in [31, 32]
lead to the multiyield Prandtl-Ishlinskii construction in the Γ-limit as well. The question
whether the method can be applied to oscillating systems seems to be open.

1.1 Elastoplastic beam

We consider first the 3D → 1D transition, and focus on the question how the multi-yield
behavior results from the single-yield von Mises model and from the dimensional reduction.
This is why we do not look for maximal generality and keep the assumptions as simple as
possible. We restrict ourselves to rectangular beams, that is, to sets Ω ⊂ R3 of the form
Ω = (0, L) × ω , where L > 0 is the length of the beam, and where, with some h > 0 and
b > 0 , the set ω = (−b, b) × (−h, h) represents its (rectangular) cross section. We denote
by x ∈ (0, L) the longitudinal coordinate, by (y, z) ∈ ω the transversal coordinates, and by
t ∈ [0, T ] the time, where T > 0 is given.

In order to compare the resulting equations, we start with the linear elastic isotropic
case (Subsection 1.2), and then pass to the elastoplastic model under further simplifying
assumptions (Subsection 1.3). We follow the scaling technique of [6, Part A] and [8, Sect. 5.4]
in terms of a small parameter α > 0 with the intention to keep only lowest order terms in α
in the resulting equations. In particular, we assume that

h, b = O(α), L = O(1).

Let us consider smooth displacements u : Ω × (0, T ) → R3 , decomposed into

u =




u1

u2

u3


 =




uL
1

uL
2

uL
3


 +




uH
1

uH
2

uH
3


 = uL + uH , (1.1)

where the superscripts L and H stand for low-order and high-order components with respect
to α , respectively. We make the following assumptions:

(B1) The low-order displacement of the midsurface C = {(x, y) ∈ R2; (x, y, 0) ∈ Ω} is
independent of y , that is,

uL(x, y, 0, t) =




v(x, t)

0

w(x, t)


 ∀ (x, y) ∈ C , ∀ t ∈ (0, T ) , (1.2)

with given functions v, w : (0, L)× (0, T ) → R .
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(B2) The low-order deformation

FL(x, y, z, t) =




x

y

z


 + uL(x, y, z, t) (1.3)

leaves the plane cross sections {x} × ω perpendicular to the midsurface and straight,
that is,

FL(x, y, z, t) = FL(x, y, 0, t) + z n(x, y, t) ∀ (x, y, z, t) ∈ Ω × (0, T ) , (1.4)

where n(x, y, t) is the unit “upward” normal to the deformed midsurface C(t) = C +
FL(C, 0, t) at time t .

(B3) vx = O(α2) , wxx = O(α) .

Under the hypothesis (B3), we can linearize the problem by replacing

n(x, y, t) =
1√

(1 + vx(x, t))2 + w2
x(x, t)




−wx(x, t)

0

1 + vx(x, t)




with

ñ(x, y, t) :=



−wx(x, t)

0

1


 . (1.5)

This is justified, since an elementary computation yields that

| ñ(x, y, t)− n(x, y, t)| < (|vx(x, t)|+ |wx(x, t)|)2 ,

whenever |vx(x, t)| < 1 , |wx(x, t)| < 1 . This enables us to write for every (x, y, z, t) ∈
Ω × (0, T ) the low-order displacement uL(x, y, z, t) as

uL(x, y, z, t) =




v(x, t)− z wx(x, t)

0

w(x, t)


 . (1.6)

The smallness assumptions ensure in particular that the deformation (1.3) is a local homeo-
morphism. We further compute

∇uL(x, y, z, t) =




vx(x, t)− z wxx(x, t) 0 −wx(x, t)

0 0 0

wx(x, t) 0 0


 , (1.7)

and the low-order strain tensor εL = (∇uL + (∇uL)T )/2 becomes

εL(x, y, z, t) =




vx(x, t)− z wxx(x, t) 0 0

0 0 0

0 0 0


 . (1.8)
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1.2 Small elastic deformations

We denote by “ : ” the canonical scalar product in the space T3×3
sym of symmetric (3 × 3) -

tensors, i. e.,

ξ : η =
3∑

i,j=1

ξij ηij , ∀ ξ = (ξij) , η = (ηij) , i, j = 1, 2, 3 . (1.9)

Moreover, we define for any given ξ ∈ T3×3
sym its (trace-free) deviator D(ξ) by

D(ξ) = ξ − 1

3
(ξ : 1)1 , (1.10)

where 1 = (δij) denotes the Kronecker tensor.

To motivate the elastoplastic case treated below, we first study the case of linear isotropic
elasticity, in which the strain tensor ε and the stress tensor σ are related to each other
through the formula

σ = 2µ ε + λ (ε : 1)1 , (1.11)

where µ, λ are the Lamé constants. The main issue is to choose a proper scaling of σ . The
component σ11 is of the lowest order, which is O(α2) due to (1.8) and (1.11). In general,
linear scaling cannot be automatically used in nonlinear problems, see [14]. Here, as we
only deal with symmetric small strain tensors, the linear scaling hypothesis does not seem
to be too controversial, cf. [14, Section 4]. Assuming that the motion is “sufficiently slow”
and no volume forces act on the body, we may for scaling purposes refer to the elastostatic
equilibrium conditions divσ = 0 which, according to the natural scaling of the variables
y, z = O(α) , x = O(1) and due to the symmetry of σ , justify the scaling hypothesis

(B4) σ12, σ13 = O(α3) , σ22, σ33, σ23 = O(α4) .

According to (1.11) and Hypothesis (B4), the high-order strain tensor εH is scaled as

(B5) εH
12, ε

H
13 = O(α3) , εH

22, ε
H
33 = O(α2) , εH

11, ε
H
23 = O(α4) .

In terms of the high-order displacements uH , this corresponds to the scaling uH
1 = O(α4) ,

uH
2 , uH

3 = O(α3) , with a vanishing O(α2) component of εH
23 .

Let σ̄ , ε̄ denote the stress and strain components of the order O(α2) at most. Then

σ̄ : 1 = σ11 = (2µ + 3λ) ε̄ : 1 = (2µ + 3λ)(εL
11 + εH

22 + εH
33) ,

hence, by (1.11), σ11 = 2µεL
11 + λ/(2µ + 3λ)σ11 . In terms of the Young modulus E =

µ(2µ + 3λ)/(µ + λ) and the Poisson ratio ν = λ/(2(µ + λ)) , we thus obtain

σ11 = EεL
11 , ε̄11 = εL

11 = vx − zwxx ,
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and

ū = uL , σ̄ =




EεL
11 0 0

0 0 0

0 0 0


 , ε̄ =




εL
11 0 0

0 −νεL
11 0

0 0 −νεL
11


 . (1.12)

On the upper boundary, we prescribe the boundary condition σ(x, y, h, t)·ν3 = f(x, t) , where
ν3 = (0, 0, 1)T is the upward normal vector, and f = (f1, 0, f3)

T is a given external surface
load. In component form, this boundary condition reads σ13 = f1 , σ23 = 0, σ33 = f3 . In
agreement with the scaling hypothesis (B4), we require f1 = O(α3), f3 = O(α4) . On the
rest of the boundary, we assume the vanishing normal stress boundary conditions σ ·ν = 0,
where ν is the unit outward normal vector. On {0} × ω , this means in particular

wxx(0, t) = vx(0, t) = 0 , w(0, t) = 0 , (1.13)

where the latter boundary condition is added in order to eliminate possible transversal rigid
body displacements and corresponds to a simply supported beam. An analogous choice of
the boundary conditions is made at the right surface {L} × ω . In accordance with these
boundary conditions, we consider the Sobolev space

V =
{
(v, w) ∈ H1(0, L)×H2(0, L); w(0) = w(L) = 0

}
. (1.14)

Finally, suppose that the initial conditions

v(x, 0) = v0(x) , vt(x, 0) = v1(x) , w(x, 0) = w0(x) , wt(x, 0) = w1(x) , (1.15)

are given. As in [30], we write the momentum balance equation in variational form

∫

Ω

ρutt · û dx dy dz +

∫

Ω

σ : ε̂ dx dy dz =

∫

∂Ω

(σ · ν) · û ds , (1.16)

with the unknown vector u and tensor σ , for all admissible displacements û and strains ε̂
of the form (1.12); i. e., we have

û(x, y, z) =




v̂(x)− z ŵx(x)

0

ŵ(x)


 , ε̂(x, y, z) =




ε̂11(x) 0 0

0 −νε̂11(x) 0

0 0 −νε̂11(x)


 , (1.17)

with ε̂11 = v̂x(x)−z ŵxx(x) , where (v̂, ŵ) varies over the space V . It follows from the choice
of the boundary conditions that

∫

∂Ω

(σ · ν) · û ds = 2b

∫ L

0

(f1 (v̂ − h ŵx) + f3 ŵ) dx

= 2b

(∫ L

0

f1 v̂ dx +

∫ L

0

(h(f1)x + f3) ŵ dx

)
.
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Keeping on the left-hand side of (1.16) only terms of the lowest order in α , we may replace
(u,σ) by (ū, σ̄) from (1.12). The test functions v̂, ŵ are independent of each other, and a
straightforward calculation shows that (1.16) decouples into the system

ρ

∫ L

0

vtt(x, t) v̂(x) dx + E

∫ L

0

vx(x, t) v̂x(x) dx =

∫ L

0

g1(x, t) v̂(x) dx , (1.18)

ρ

∫ L

0

(
wtt(x, t) ŵ(x) +

h2

3
wxtt(x, t) ŵx(x)

)
dx +

E h2

3

∫ L

0

wxx(x, t) ŵxx(x) dx

=

∫ L

0

g2(x, t) ŵ(x) dx , (1.19)

where we have set

g1(x, t) =
1

2h
f1(x, t) , g2(x, t) =

1

2h
(f3(x, t) + h (f1)x(x, t)) . (1.20)

The variational system (2.17), (2.18) leads formally to the partial differential equations

ρ vtt − E vxx = g1 , (1.21)

ρwtt − ρ h2

3
wxxtt +

E h2

3
wxxxx = g2 , (1.22)

which describe the longitudinal (Eq. (1.21)) and transversal (Eq. (1.22)) vibrations of a
straight elastic beam.

1.3 Transversal elastoplastic oscillations

We now turn our interest to elastoplasticity. Following [9, 18], we make further hypotheses.

(M1) The strain tensor ε is decomposed in elastic and plastic components ε = εe + εp .

(M2) The elastic constitutive law is as in (1.11), that is,

σ = 2µεe + λ(εe : 1)1 . (1.23)

As in (1.12), we have

σ =




E εe
11 0 0

0 0 0

0 0 0


 , εe =




εe
11 0 0

0 −νεe
11 0

0 0 −νεe
11


 . (1.24)

(M3) The plastic deformations are volume preserving in the sense that

εp : 1 = 0 . (1.25)
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The von Mises plastic yield condition is stated in terms of the stress deviator (1.10) in the
form

(M4) D(σ) : D(σ) ≤ 2
3
R2 , where R > 0 is a given yield limit.

Note that D(σ) = σ11η , where

η =




2
3

0 0

0 −1
3

0

0 0 −1
3


 ,

hence (M4) reads
|σ11| ≤ R . (1.26)

For the plastic strain, we prescribe the normality flow rule

(M5) εp
t : (σ − σ̃) ≥ 0 ∀ σ̃ ∈ T3×3

sym : D(σ̃) : D(σ̃) ≤ 2
3
R2 ,

where the subscript t denotes the time derivative, and we assume for simplicity that

(M6) the motion is only transversal,

that is, the component f1 of the external surface load vanishes, and

uL(x, y, z, t) =



−z wx(x, t)

0

w(x, t)


 , ε11(x, y, z, t) = εL

11(x, y, z, t) = −z wxx(x, t) . (1.27)

The reason for neglecting the longitudinal displacements here is that the resulting system for
w and v would not decouple as in (1.21)–(1.22), and a more complex model would have to
be considered.

Introducing the set

K =

{
σ̃ ∈ T3×3

sym ; D(σ̃) : D(σ̃) ≤ 2

3
R2

}

of admissible stresses and using the convex analysis formalism of e. g. [38], we can rewrite
(M4)+(M5) in subdifferential form as

εp
t ∈ ∂IK(σ) , (1.28)

where IK is the indicator function of K and ∂IK its subdifferential. For the sake of com-
pleteness, we recall other equivalent formulations of the von Mises criterion, cf. also [34].

Proposition 1.1. Each of the following two conditions is equivalent to (M4)+(M5).

(i) (multiplier formulation) Condition (M4) holds, and there exists a multiplier `t ≥ 0
such that `t = 0 if D(σ) : D(σ) < 2

3
R2 , and

εp
t = `t D(σ) ; (1.29)
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(ii) (dissipation formulation) Let

Ψ(ξ) =

{ √
2
3
R
√

ξ : ξ if ξ : 1 = 0 ,

+∞ if ξ : 1 6= 0 ,

be the pseudopotential of dissipation. Then

σ ∈ ∂Ψ(εp
t ) , (1.30)

that is,
σ : (εp

t − ξ) ≥ Ψ(εp
t )−Ψ(ξ) ∀ξ ∈ T3×3

sym . (1.31)

Sketch of the proof. Typically for rate independent systems, Ψ is homogeneous of degree
1 , that is, Ψ(cξ) = |c|Ψ(ξ) for all ξ ∈ T3×3

sym and c ∈ R . Choosing in (1.31) consecutively
ξ = 2εp

t and ξ = 0, we see that (1.30) is equivalent to the system

σ : εp
t −Ψ(εp

t ) = 0 , (1.32)

σ : ξ −Ψ(ξ) ≤ 0 ∀ξ ∈ T3×3
sym . (1.33)

The implication (i)⇒ (M4)+(M5) is straightforward. Assume now that (M4)+(M5) holds.
We obtain (1.33) from (M4) and the Cauchy-Schwarz inequality. Putting in (M5) σ̃ = σ±1 ,
we see that εp

t : 1 = 0. Identity (1.32) holds automatically if εp
t = 0, otherwise we set in

(M5) σ̃ = 2
3
R2εp

t /Ψ(εp
t ) , and (1.32) follows again from the Cauchy-Schwarz inequality, hence

(ii) holds.

It remains to check the implication (ii)⇒ (i). To this end, we choose ξ = D(σ) in (1.33),
and obtain (M4). This and (1.32) imply in turn that

D(σ) : εp
t =

√
2

3
R

√
εp

t : εp
t ≥

√
D(σ) : D(σ)

√
εp

t : εp
t ,

and (1.29) follows from the reverse Cauchy-Schwarz inequality. ¥

Note that both (1.28) and (1.30) can be interpreted as a kind of maximal dissipation
principle. In (1.28), for a given stress σ , the strain rate εp

t is chosen so as to maximize the
dissipation rate σ : εp

t among all stress values σ̃ ∈ K ; in (1.31), for a given strain rate εp
t ,

the stress σ is required to maximize the reduced dissipation rate σ : εp
t −Ψ(εp

t ) over the set
of all values ξ of the strain rate.

It follows from (M1)–(M4) and (1.29), using the special form of η , that

εp
t (x, y, z, t) =

3

2
(εp

11)t(x, y, z, t) η (1.34)

for all admissible values of the arguments, and

(εp
11)t η =

2

3
`tE (ε11 − εp

11) η (1.35)
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under the constraint |ε11−εp
11| ≤ R/E . This is equivalent to the scalar variational inequality

(εp
11)t (E (ε11 − εp

11)− σ̃) ≥ 0 ∀ σ̃ ∈ [−R,R] . (1.36)

We fix for εp
11 the initial condition corresponding to the unperturbed state with no previous

loading history, which reads

εp
11(x, y, z, 0) = min

{
ε11(x, y, z, 0) +

R

E
, max

{
0, ε11(x, y, z, 0)− R

E

}}
. (1.37)

This can be justified by assuming that the process begins at time t = −1 , with

ε11(x, y, z,−1) = εp
11(x, y, z,−1) = 0 , ε11(x, y, z, t) = (1 + t) ε11(x, y, z, 0) for t ∈ [−1, 0] .

Then εp
11(x, y, z, t) = 0 as long as (1 + t) |ε11(x, y, z, 0)| ≤ R/E , and |(1 + t) ε11(x, y, z, 0)−

εp
11(x, y, z, t)| = R/E otherwise, whence (1.37) follows.

At this point, the notion of hysteresis operators comes into play. Given a function ε ∈
W 1,1(0, T ) , the variational inequality





σ(t) = Eχ(t) ,
|σ(t)| ≤ R ,
(εt(t)− χt(t)) (σ(t)− y) ≥ 0 ∀ y ∈ [−R, R] ,
σ(0) = min {R, max {ε(0),−R}}

(1.38)

for t ∈ [0, T ] defines a mapping SR,E : W 1,1(0, T ) → W 1,1(0, T ) : ε 7→ σ , which has been
introduced in [20] and is called the stop with slope E and threshold R , see Fig. 2. Its
mathematical properties will be investigated below in Proposition 3.2.

0

R1

R2

R1 + R2

−R1

−R2

−R1 − R2

σ

σ = SR1,E1
[ε]

σ = SR2,E2
[ε]

σ = SR1,E1
[ε] + SR2,E2

[ε]

ε

Figure 2. A diagram of the stops.

Each individual stop represents a single elastoplastic element with a sharp transition be-
tween the elastic and the plastic regimes. The stops have the following elementary scaling
property:

SR,E[ε] = −SR,E[−ε] = cSR
c

, E
c
[ε] = SR, E

c
[cε] (1.39)
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for every R, E, c > 0 and every ε ∈ W 1,1(0, T ) . This enables us to take into account
one-parametric stops with unit slope only, and to define

sq[ε] = Sq,1[ε] for q > 0 . (1.40)

Then
SR,E[ε] = sR[Eε] = EsR

E
[ε] = −sR[−Eε] (1.41)

for all admissible arguments. In order to model gradual transitions from pure elasticity to pure
plasticity, Prandtl ([37]) and Ishlinskii ([19]) proposed to consider additive superpositions of
stops, see Fig. 2 for the case of two stops. The transition becomes smooth, if sums are
generalized into a weighted integral

σ = P [ε] :=

∫ ∞

0

ϕ(q) sq[ε] dq (1.42)

of a continuous family of stops over the whole interval R ∈ (0,∞) of admissible thresholds,
with a given weight function ϕ , see Fig. 3. The operator P is called the Prandtl-Ishlinskii
operator . We now show that such a superposition of a continuous system of stops with
different thresholds and different slopes is precisely what arises spontaneously in our model.

The variational inequality (1.36)–(1.37) is of the form (1.38) with ε = ε11(x, y, z, ·) , χ =
εe
11(x, y, z, ·) , σ = σ11(x, y, z, ·) . We thus have by (1.27) that

σ11(x, y, z, t) = SR,E[−z wxx(x, ·)](t) , (1.43)

and identities (1.39)–(1.41) yield

σ11(x, y, z, t) =

{ − z
|z| SR,E|z|[wxx(x, ·)](t) = −Ez s R

E|z|
[wxx(x, ·)](t) for z 6= 0 ,

0 for z = 0 .
(1.44)

This is the behavior we mentioned in the introduction in connection with Fig. 1. The fibers
at distance |z| from the midsurface respond to bending as an elastoplastic element with
yield point R

E|z| and slope E|z| , that is, the eccentric fibers behave “harder” in elasticity and
“softer” in plasticity than the central ones.

We now aim to derive the momentum balance in the same way as in (1.16) to (1.22). To
this end, we again make the test functions independent of v̂ , so that

σ : ε̂ = E z2 sR/(E|z|) [wxx] ŵxx .

Integrating over ω , we obtain

∫

ω

z2 sR/(E|z|) [wxx] dy dz = 2b

∫ h

−h

z2 sR/(E|z|) [wxx] dz

= 4b

∫ h

0

z2 sR/(Ez) [wxx] dz = 4b

(
R

E

)3 ∫ ∞

R/(Eh)

q−4 sq [wxx] dq .
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For each admissible input function ε , we now put

P [ε] :=
R3

E2 h

∫ ∞

R/(Eh)

q−4 sq[ε] dq . (1.45)

This is a Prandtl-Ishlinskii operator of the form (1.42) with the weight function

ϕ(q) =

{
0 , if 0 ≤ q ≤ R

Eh
,

R3

E2 h
q−4 , if q > R

Eh
.

(1.46)

The counterpart of (1.22) then reads formally

ρwtt − ρ h2

3
wxxtt + P [wxx]xx = g2 . (1.47)

Here, we have used the abbreviation

P [wxx]xx(x, t) =
∂2

∂x2
P [wxx(x, ·)](t) . (1.48)

Remark 1.2. Note that the Prandtl-Ishlinskii initial loading curve σ = Φ(ε) for the operator
(1.45) is bounded and saturation occurs. Indeed, Φ is given by the formula (see [5], [22])

Φ(ε) =
R3

E2 h

∫ ∞

R/(Eh)

q−4 min {q, ε} dq , for ε ≥ 0 , (1.49)

so that

Φ(ε) =





E h2

3
ε , if ε ≤ R

Eh
,

Rh
2

(
1 − R2

3 E2h2ε2

)
, if ε > R

Eh
.

(1.50)

Hence, σ1 = Rh/3 is the elasticity limit and σ2 = Rh/2 is the saturation bound. The
interval between σ1 and σ2 is the transition zone from linear elasticity to perfect plasticity,
see Fig. 3. More general Prandtl-Ishlinskii initial loading curves describe the cases that the
shape of ω is no longer a rectangle, but a domain of the form

ω = {(y, z) ∈ R2 ; −h < z < h , −b(z) < y < b(z)}
with a positive measurable function b . The same equation with a different Prandtl-Ishlinskii
operator also results if we let the Young modulus E depend on z as a model for a layered
beam.

0

Rh/3

Rh/2

σ

σ = Φ(ε)

ε

Figure 3. The Prandtl-Ishlinskii operator (1.45).
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Remark 1.3. Note that (1.47) reduces to (1.22) if we replace sq[ε] by ε in the expression
(1.45) for P [ε] (no plasticity). Also, if we pass to the elastic limit as R → ∞ in (1.47), we
recover (1.22) in agreement with natural expectations.

We now formulate the main mathematical result related to the problem of transversal
oscillations of an elastoplastic beam. To this end, we normalize all physical constants in
(1.47) to unity, which has no bearing on the mathematical analysis. We thus study the
following initial-boundary value problem in QT , where Qt := (0, 1)× (0, t) for any t > 0 :

wtt − wxxtt + P [wxx]xx = g in QT , (1.51)

w(0, t) = P [wxx](0, t) = w(1, t) = P [wxx](1, t) = 0 , 0 ≤ t ≤ T , (1.52)

w(x, 0) = z0(x) , wt(x, 0) = z1(x) , 0 ≤ x ≤ 1 . (1.53)

We make the following general assumptions on the data of the system:

(H1) g ∈ L2(QT ) .

(H2) z0 ∈ H3(0, 1), z1 ∈ H2(0, 1) , and the following compatibility conditions are satisfied:

z0(0) = z0,xx(0) = z0(1) = z0,xx(1) = 0 , z1(0) = z1(1) = 0 . (1.54)

(H3) The weight function ϕ : (0,∞) → [0,∞) of the Prandtl-Ishlinskii operator (1.42) is
measurable and satisfies the growth condition

∫ ∞

0

(
1 + q2

)
ϕ(q) dq < +∞ . (1.55)

Remark 1.4. Under condition (1.55) the so-called clockwise admissible potential of P , given
by the hysteresis operator

Q[ε] =
1

2

∫ ∞

0

ϕ(q) s2
q[ε] dq , (1.56)

is well defined. It then follows from the variational inequality (1.38) with χ = σ = sq[ε] that
for any input function ε ∈ W 1,1(0, T ) , the dissipation rate

D[ε] := P [ε](t) εt(t)− (Q[ε])t (t) =

∫ ∞

0

ϕ(q) sq[ε](t) (ε− sq[ε])t (t) dq (1.57)

is nonnegative for a. e. t ∈ (0, T ) in agreement with the second principle of thermodynamics.

A crucial difficulty of (1.51) is due to the non-differentiability of hysteresis operators. We
therefore replace (1.51)–(1.53) with the following system of initial-boundary value problems

ut = P [wxx] in QT , (1.58)

wt − wxxt = −uxx + f(x, t) in QT , (1.59)

u(0, t) = u(1, t) = 0 , 0 ≤ t ≤ T , (1.60)

w(0, t) = w(1, t) = 0 , 0 ≤ t ≤ T , (1.61)

u(x, 0) = z1(x) , 0 ≤ x ≤ 1 , (1.62)

w(x, 0) = z0(x) , 0 ≤ x ≤ 1 , (1.63)
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which arises from (1.51)–(1.53) if we put

u(x, t) = z1(x) +

∫ t

0

P [wxx] (x, s) ds , f(x, t) = z1(x) +

∫ t

0

g(x, s) ds . (1.64)

The main result, proved as Theorem 3.2 in [28], reads as follows. The proof is based on
the monotonicity (3.11) and second order energy inequality (3.13) of the Prandtl-Ishlinskii
operator.

Theorem 1.5. Suppose that the conditions (H1)–(H3) are satisfied. Then the system (1.58)–
(1.63) has a unique solution pair (u,w) having the following properties:

(i) u ∈ W 2,∞(0, T ; L2(0, 1)) ∩ L∞(0, T ; H2(0, 1)) ∩H1(0, T ; H1(0, 1)) .

(ii) w ∈ W 1,∞(0, T ; H2(0, 1)) ∩H2(0, T ; H1(0, 1)) .

(iii) Eq. (1.58) is fulfilled pointwise in QT , and Eq. (1.59) holds almost everywhere in QT .

(iv) The initial and boundary conditions (1.60)–(1.63) are satisfied pointwise, and it holds

P [wxx](0, t) = P [wxx](1, t) = 0 ∀ t ∈ [0, T ] .

Remark 1.6. We call (u, w) a strong solution to (1.58)–(1.63), and w a weak solution to
(1.51)–(1.53). The meaning of conditions (i), (ii) in Theorem 1.5 is that

utt, uxx, wxxt ∈ L∞(0, T ; L2(0, 1)) ,

uxt, wxtt ∈ L2(QT ) .

}
(1.65)

By virtue of the boundary conditions and embedding theorems, we then have

u, ux, ut, w, wx, wt, wxt ∈ C(QT ) . (1.66)

2 Plates

We restrict ourselves to plates of constant thickness, that is, to sets Ω ⊂ R3 of the form
Ω = Ω0 × (−h, h) , where Ω0 ⊂ R2 describes the shape of the plate and 2h is its thickness.
We denote by (x, y) ∈ Ω0 the longitudinal coordinates, by z ∈ (−h, h) the transversal
coordinate, and by t ∈ [0, T ] the time, where T > 0 is given.

We start again with the linear elastic isotropic case, and then pass to the elastoplastic
model. The scaling technique of [6, Part A] and [8, Sect. 5.4] in terms of a small parameter
α > 0 is now adapted in such a way that

h = O(α), Ω0 = O(1).

Let us consider smooth displacements u : Ω × (0, T ) → R3 , decomposed as in (1.1). The 2D
counterpart of Assumptions (B1)–(B5) now reads:
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(P1) The low order displacement of the midsurface C = {(x, y, 0) ∈ Ω : (x, y) ∈ Ω0} is only
transversal, that is,

uL(x, y, 0, t) =




0

0

w(x, y, t)


 ∀ (x, y) ∈ Ω0 , ∀ t ∈ (0, T ) , (2.1)

with some function w : Ω0 × (0, T ) → R .

(P2) The low order deformation (1.3) leaves the straight fibers {(x, y)} × (−h, h) perpen-
dicular to the midsurface and straight, that is, (1.4) holds, see Fig. 1.

(P3) wxx, wxy, wyy = O(α) .

Under the hypothesis (P3), we can linearize the problem by replacing

n(x, y, t) =
1√

1 + w2
x(x, y, t) + w2

y(x, y, t)



−wx(x, y, t)

−wy(x, y, t)

1




with

ñ(x, y, t) :=



−wx(x, y, t)

−wy(x, y, t)

1


 . (2.2)

Here again, we have

| ñ(x, y, t)− n(x, y, t)| < |wx(x, y, t)|2 + |wy(x, y, t)|2 = O(α2) .

This enables us to write for every (x, y, z, t) ∈ Ω × (0, T ) the low order displacement
uL(x, y, z, t) as

uL(x, y, z, t) =



−z wx(x, y, t)

−z wy(x, y, t)

w(x, y, t)


 . (2.3)

We further compute

∇uL(x, y, z, t) =



−z wxx(x, y, t) −z wxy(x, y, t) −wx(x, y, t)

−z wxy(x, y, t) −z wyy(x, y, t) −wy(x, y, t)

wx(x, y, t) wy(x, y, t) 0


 , (2.4)

and the low order infinitesimal strain tensor εL = (∇uL + (∇uL)T )/2 becomes

εL(x, y, z, t) =



−z wxx(x, y, t) −z wxy(x, y, t) 0

−z wxy(x, y, t) −z wyy(x, y, t) 0

0 0 0


 . (2.5)
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2.1 Small elastic deformations

With the notation of Subsection 1.2, we consider the components σ11, σ22, σ12 to be of the
lowest order, which is O(α2) due to (P3), (2.5), and (1.11). Arguing as in Subsection 1.2,
we assume

(P4) σ13, σ23 = O(α3) , σ33 = O(α4) .

According to (1.11) and Hypothesis (P4), the high order strain tensor εH is scaled as

(P5) εH
13, ε

H
23 = O(α3) , εH

33 = O(α2) , εH
11, ε

H
22, ε

H
12 = O(α4) .

In terms of the high order displacements uH , (P5) corresponds to the scaling uH
1 , uH

2 =
O(α4) , uH

3 = O(α3) .

Let σ̄ , ε̄ denote the stress and strain components of the order O(α2) at most. Then

σ̄ =




σ11 σ12 0

σ12 σ22 0

0 0 0


 , ε̄ =




εL
11 εL

12 0

εL
12 εL

22 0

0 0 εH
33


 . (2.6)

We compute εH
33 from the relation

0 = σ33 = 2µεH
33 + λ(εL

11 + εL
22 + εH

33) ,

that is,

εH
33 = − λ

2µ + λ
(εL

11 + εL
22) .

Hence,

ε̄ : 1 =
2µ

2µ + λ
(εL

11 + εL
22) .

In terms of the Young modulus E and the Poisson ratio ν , we have

σ̄ =
E

1− ν2




εL
11 + νεL

22 (1− ν)εL
12 0

(1− ν)εL
12 νεL

11 + εL
22 0

0 0 0


 , ε̄ =




εL
11 εL

12 0

εL
12 εL

22 0

0 0 − ν
1−ν

(εL
11 + εL

22)


 , (2.7)

with εL given by (2.5). On the upper boundary, we prescribe the boundary condition
σ(x, y, h, t) · ν3 = f(x, y, t) , where ν3 = (0, 0, 1)T is the upward normal vector, and f =
(f1, f2, f3)

T is a given external surface load. In component form, this boundary condition
reads σ13 = f1 , σ23 = f2 , σ33 = f3 . In agreement with the scaling hypothesis (P4), we
require f1, f2 = O(α3), f3 = O(α4) . On the rest of the boundary, we assume the vanishing
normal stress boundary conditions σ · ν = 0, where ν is the unit outward normal vector.
On ∂Ω0 × (−h, h) , we add the boundary condition for w

w(x, y, t) = 0 for (x, y) ∈ ∂Ω0 , (2.8)
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in order to eliminate possible transversal, rigid body displacements. This corresponds to
a simply supported plate. In accordance with these boundary conditions, we consider the
Sobolev space

V =
{

w ∈ H2(Ω0) : w
∣∣
∂Ω0

= 0
}

. (2.9)

Finally, suppose that the initial conditions

w(x, y, 0) = w0(x, y) , wt(x, y, 0) = w1(x, y) , (2.10)

are given. We now evaluate the momentum balance (1.16) for all admissible displacements
û and strains ε̂ of the form (2.3), (2.5), and (2.7), that is,

û(x, y, z) =



−z ŵx(x, y)

−z ŵy(x, y)

ŵ(x, y)


 , ε̂(x, y, z) =



−zŵxx −zŵxy 0

−zŵxy −zŵyy 0

0 0 ν
1−ν

z∆ŵ


 , (2.11)

where ŵ varies over the space V . It follows from the choice of the boundary conditions that
∫

∂Ω

(σ · ν) · û ds =

∫

Ω0

(−h f1 ŵx − h f2 ŵy + f3 ŵ) dx dy

=

∫

Ω0

(h(f1)x + h(f2)y + f3) ŵ dx dy .

Keeping on the left hand side of (1.16) only terms of the lowest order in α , we may replace
(u,σ) by (ū, σ̄) from (2.3), (2.5), and (2.7), and obtain

ρ

∫

Ω0

(
wtt ŵ +

h2

3
(wxtt ŵx + wytt ŵy)

)
dx dy

+
E h2

3(1 + ν)

∫

Ω0

(
wxx ŵxx + 2wxy ŵxy + wyy ŵyy +

ν

1− ν
∆w ∆ŵ

)
dx dy

=

∫

Ω0

g ŵ dx dy , (2.12)

where we have set

g(x, y, t) =
1

2h
f3(x, y, t) +

1

2
((f1)x + (f2)y)(x, y, t) . (2.13)

The variational equation (2.12) leads formally, on smooth domains, to the partial differential
equation describing transversal vibrations of a thin elastic plate

ρwtt − ρ h2

3
∆wtt +

E h2

3(1− ν2)
∆2w = g , (2.14)

with boundary conditions

w = 0

(∆νw)n · n = 0

}
on ∂Ω0 , (2.15)
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where ∆νw is the matrix

∆νw =

(
wxx + ν

1−ν
∆w wxy

wxy wyy + ν
1−ν

∆w

)
, (2.16)

and n is the outward normal to Ω0 .

2.2 Elastoplastic oscillations

We still consider here ū = uL , σ̄ , and ε̄ as in (2.3) and (2.6), with εL given by (2.5). We
assume the hypotheses (M1)–(M5) from Subsection 1.3 to hold. Here, (M4) reads

σ2
11 + σ2

22 − σ11σ22 + 3σ2
12 ≤ R2 . (2.17)

Similarly as in (2.7), we obtain

σ̄ =
E

1− ν2




εe
11 + νεe

22 (1− ν)εe
12 0

(1− ν)εe
12 νεe

11 + εe
22 0

0 0 0


 , εe =




εe
11 εe

12 0

εe
12 εe

22 0

0 0 − ν
1−ν

(εe
11 + εe

22)


 . (2.18)

Assume that εp
13 = εp

23 = 0 at initial time t = 0. Then we have by (M3) and (1.29) that

εp =




εp
11 εp

12 0

εp
12 εp

22 0

0 0 −(εp
11 + εp

22)


 . (2.19)

It is convenient to consider σ̄ , εe , and εp as vectors with three components. To this end,
we introduce the notation

σ̄∗ =




σ11

σ22

σ12


 , εe

∗ =




εe
11

εe
22

εe
12


 , εp

∗ =




εp
11

εp
22

εp
12


 , ε̄∗ =



−zwxx

−zwyy

−zwxy


 . (2.20)

According to (M1) and (2.18), we have

ε̄∗ = εp
∗ + εe

∗ , σ̄∗ = Cεe
∗ , (2.21)

where C is the positive definite matrix

C =
E

1− ν2




1 ν 0

ν 1 0

0 0 1− ν


 . (2.22)

Let D∗,J be the matrices

D∗ =




1 −1
2

0

−1
2

1 0

0 0 3


 , J =




1 0 0

0 1 0

0 0 2


 . (2.23)
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In view of (2.17), condition (M4) can be restated as

σ̄∗ ·D∗σ̄∗ ≤ R2 ,

and (M5) reads
J(εp

∗)t · (σ̄∗ − θ∗) ≥ 0 ∀θ∗ ∈ K∗ , (2.24)

where
K∗ = {θ∗ ∈ R3 : θ∗ ·D∗θ∗ ≤ R2}. (2.25)

Alternatively, we can write this variational inequality in the form

εe
∗ ∈ C−1(K∗) ,

JC(ε̄∗ − εe
∗)t · (εe

∗ − η∗) ≥ 0 ∀η∗ ∈ C−1(K∗) .
(2.26)

Let us choose in R3 the scalar product

〈ξ∗,η∗〉 = JCξ∗ · η∗ . (2.27)

This is meaningful, since JC = CJ is a symmetric positive definite matrix. We then prescribe
the canonical initial condition

εe
∗(0) = QC−1(K∗)(ε̄∗(0)) , (2.28)

where QC−1(K∗) is the orthogonal projection onto C−1(K∗) with respect to the scalar product
(2.27). For every ε̄∗ ∈ W 1,1(0, T ;R3) , Problem (2.26)–(2.28) has the same structure as (1.38),
and the solution mapping

SC−1(K∗) : W 1,1(0, T ;R3) → W 1,1(0, T ;C−1(K∗)) : ε̄∗ 7→ εe
∗ (2.29)

is called the vectorial stop with characteristic C−1(K∗) , see Section 3. This concept enables
us to rewrite (2.26) as

εe
∗ = SC−1(K∗)[ε̄∗] ,

or, equivalently,
σ̄∗ = CSC−1(K∗)[ε̄∗] . (2.30)

The stop SZ with any symmetric convex closed characteristic Z has the following elementary
scaling property:

SZ [ε∗] = −SZ [−ε∗] =
1

c
ScZ [cε∗] (2.31)

for every c > 0 and every ε∗ ∈ W 1,1(0, T ;R3) , where cZ = {θ∗ ∈ R3 : 1
c
θ∗ ∈ Z} .

Notice first that we obtain from (2.30), (2.20), and (2.31) that

σ̄∗ = −zCS 1
|z|C

−1(K∗)




wxx

wyy

wxy


 . (2.32)
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Here again, at distance |z| from the midsurface, the virtual elasticity modulus is |z|E and
the virtual yield limit is R/|z| . This produces the multiyield effect when integrating over
the thickness of the plate.

To derive a counterpart of the partial differential equation (2.14), we consider test functions
û and ε̂ as in (2.11), and set in agreement with (2.20)

ε̂∗ =



−zŵxx

−zŵyy

−zŵxy


 . (2.33)

The first and the third integral in (1.16) are evaluated in the same way as in (2.12). The
remaining one has to be treated more carefully. Using (2.31), we obtain

∫

Ω

σ̄ : ε̂ dx dy dz =

∫

Ω

Jσ̄∗ · ε̂∗ dx dy dz

=

∫ h

−h

∫

Ω0

JCSC−1(K∗)



−zwxx

−zwyy

−zwxy


 ·



−zŵxx

−zŵyy

−zŵxy


 dx dy dz

= 2

∫ h

0

∫

Ω0

z2JCS 1
z
C−1(K∗)




wxx

wyy

wxy


 ·




ŵxx

ŵyy

ŵxy


 dx dy dz

=

∫

Ω0

JC




∫ ∞

1/h

2q−4SqC−1(K∗)




wxx

wyy

wxy


 dq


 ·




ŵxx

ŵyy

ŵxy


 dx dy .

The mapping

P :




wxx

wyy

wxy


 7→

∫ ∞

1/h

2q−4SqC−1(K∗)




wxx

wyy

wxy


 dq (2.34)

is called the vectorial Prandtl-Ishlinskii operator , and will be investigated in Section 3. The
equation for oscillations of an elastoplastic plate can thus be written in the form

ρ

∫

Ω0

(
wttŵ +

h2

3
(wxtt ŵx + wytt ŵy)

)
dx dy

+

∫

Ω0

JCP




wxx

wyy

wxy


 ·




ŵxx

ŵyy

ŵxy


 dx dy =

∫

Ω0

g ŵ dx dy ∀ŵ ∈ V , (2.35)

with g as in (2.12)–(2.13).
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2.3 Kinematic hardening

In order to model kinematic hardening, we assume that the stress σ̄ of the form (2.6) is
decomposed into the sum σ̄ = σep + σb of a purely elastoplastic stress tensor σep satisfying
hypotheses (M1)–(M6), and the so-called backstress σb , which, in the three dimensional
representation (2.20), is assumed to obey an elastic constitutive law

σb
∗ = JBε̄∗ , (2.36)

where B is a constant symmetric (3× 3) -matrix such that JB = BJ , and the inequality

JBξ∗ · ξ∗ ≥ β(ξ2
11 + ξ2

22) ∀ξ∗ =




ξ11

ξ22

ξ12


 (2.37)

holds with some γ > 0 . Repeating the computation from the previous subsection, we obtain,
as a counterpart of (2.35), the equation for w in the form

ρ

∫

Ω0

(
wttŵ +

h2

3
(wxtt ŵx + wytt ŵy + σ ·D2ŵ)

)
dx dy =

∫

Ω0

g ŵ dx dy ∀ŵ ∈ V ,

(2.38)
with constitutive equation

σ = JBε + JCP [ε] (2.39)

where

ε = D2w =




wxx

wyy

wxy


 , (2.40)

and P is the Prandtl-Ishlinskii operator (2.34). In order to state the existence and uniqueness
result, we first fix the hypotheses and notation. We assume that Ω0 ⊂ R2 is a Lipschitzian
domain, and denote in agreement with Section 2.1

H = L2(Ω0) ,

W = H1
0 (Ω0) := {w ∈ H1(Ω0) : w

∣∣
∂Ω0

= 0} ,

V = H2(Ω0) ∩H1
0 (Ω0) .

By n =

(
n1

n2

)
we denote the outward normal vector to Ω0 . For functions v : Ω0 → R3

with components (v1, v2, v3) , we define the differential operator

D1v =

(
v1

x + v3
y

v3
x + v2

y

)
. (2.41)

For ŵ ∈ V and v ∈ L2(Ω0;R3) such that D1v ∈ L2(Ω0;R3) , we have the following
Green/Gauss-type formula

∫

Ω0

(Jv ·D2ŵ + D1v · ∇ŵ) dx dy =

∫

∂Ω0

(v • n) · ∇ŵ ds , (2.42)
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where we denote

v • n = n1

(
v1

v3

)
+ n2

(
v3

v2

)
. (2.43)

Note also the formal identity

D1D2ŵ = ∇∆ŵ ∀ŵ ∈ H3(Ω0) . (2.44)

We now restate Equation (2.38) in a slightly more general form. Removing the positive
constants that have no influence on the existence and uniqueness statement, and keeping the
matrices J,C,B , we consider the variational problem

∫

Ω0

(
wtt(ŵ −∆ŵ) + J (CP [D2w] + BD2w) ·D2ŵ

)
dx dy

=

∫

Ω0

(
g ŵ +∇G · ∇ŵ

)
dx dy ∀ŵ ∈ V , (2.45)

where g and G are given functions, and P is a Prandtl-Ishlinskii operator as in (3.10)
associated with a convex constraint Z ⊂ R3 satisfying (3.9). We prescribe initial conditions

w(x, y, 0) = w0(x, y) , wt(x, y, 0) = w1(x, y) for (x, y) ∈ Ω0, (2.46)

and boundary condition
w(x, y, t) = 0 for (x, y) ∈ ∂Ω0 . (2.47)

Indeed, smooth solutions of the variational equation (2.45) satisfy a second (“no stress”)
boundary condition (cf. (2.42), (2.15))

((CP [D2w] + BD2w) • n) · n = 0 on ∂Ω0 . (2.48)

Hypothesis 2.1. The data of Problem (2.45)–(2.47) fulfill the following conditions.

(i) w0, w1 ∈ H3(Ω0) ∩ V , and the compatibility conditions

((
CAP(D2w

0) + BD2w
0
) • n

) · n = 0 ,
(
D2w

1 • n
) · n = 0 ,

hold a. e. on ∂Ω0 , where AP is the initial value mapping (3.15) of the operator P ;

(ii) g ∈ L2(0, T ; H) and G ∈ L2(0, T ; H1(Ω0)) are such that gt ∈ L2(0, T ; H) and Gt ∈
L2(0, T ; H1(Ω0))

The main result of this section reads as follows. A detailed proof can be found in [16,
Theorem 4.2].

Theorem 2.2. Let Hypothesis 2.1 hold. Then Problem (2.45)–(2.47) admits a unique solu-
tion w ∈ L2(0, T ; V ) such that

wt ∈ L2(0, T ; V ) ∩ C([0, T ]; W ) , wtt ∈ L2(0, T ; W ) , (2.49)

and Eq. (2.45) holds for a. e. t ∈ (0, T ) .
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3 Prandtl-Ishlinskii operator

The original Prandtl-Ishlinskii construction ([19, 37]) is one-dimensional as in Subsection 1.3.
A vector Prandtl-Ishlinskii model in connection with phase transitions was considered in [27],
and we recall it here in an abstract framework. Consider a real, separable Hilbert space X
endowed with a scalar product 〈·, ·〉 and norm | · | =

√
〈·, ·〉 , and assume that a convex closed

set Z ⊂ X containing the origin is given. For each function v ∈ W 1,1(0, T ; X) , we define
χ ∈ W 1,1(0, T ; X) as the unique solution of the variational inequality

χ(t) ∈ Z ∀t ∈ [0, T ] ,

χ(0) = QZ(v(0)) ,

〈v̇(t)− χ̇(t), χ(t)− y〉 ≥ 0 a. e. ∀y ∈ Z ,





(3.1)

where QZ : X → Z is the orthogonal projection onto Z , and the dot denotes differentiation
with respect to t . The solution mapping

SZ : W 1,1(0, T ; X) → W 1,1(0, T ; X) : v 7→ χ (3.2)

is called the vectorial stop with characteristic Z as an abstract counterpart of (2.29). It was
introduced in [20] and its analytical properties were studied in detail in [7]. We list here some
properties of the stop that are needed in the sequel.

Proposition 3.1. The mapping SZ defined by (3.1)–(3.2) has the following properties.

(i) SZ is continuous in the strong topology of W 1,1(0, T ; X) ;

(ii) If the boundary of Z is of class W 2,∞ (that is, the outward normal mapping is Lipschitz
continuous), then SZ is locally Lipschitz continuous in W 1,1(0, T ; X) ;

(iii) If Z has a nonempty interior, then SZ can be extended to a continuous mapping
C([0, T ]; X) → C([0, T ]; X) ;

(iv) If Z is uniformly strictly convex, then SZ : C([0, T ]; X) → C([0, T ]; X) is 1/2 -Hölder
continuous;

(v) The mapping SZ is monotone in the sense that

〈SZ [v1](t)− SZ [v2](t), v̇1(t)− v̇2(t)〉 ≥ 1

2

d

dt
|SZ [v1](t)− SZ [v2](t)|2 a. e. (3.3)

for every v1, v2 ∈ W 1,1(0, T ; X) ;

(vi) The mapping SZ is locally monotone, i. e.

〈
d

dt
SZ [v](t), v̇(t)

〉
=

∣∣∣∣
d

dt
SZ [v](t)

∣∣∣∣
2

a. e. (3.4)

for every v ∈ W 1,1(0, T ; X) ;
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(vii) The “second order energy inequality”
〈

d

dt
SZ [v](t), v̈(t)

〉
≥ 1

2

d

dt

〈
d

dt
SZ [v](t), v̇(t)

〉
(3.5)

holds in the sense of distributions for every v ∈ W 2,1(0, T ; X) .

Detailed proofs of the above statements are given in [7, Chapter 2] except for the inequality
(3.5) which is derived in [22, pp. 37–38]. Notice a certain similarity of (3.5) with the “real”
physical energy inequality

〈SZ [v](t), v̇(t)〉 ≥ 1

2

d

dt
|SZ [v](t)|2 , a. e. (3.6)

which follows immediately from (3.3) by choosing v2 = 0. In (3.6), the right hand side is
the time derivative of the potential energy associated with the stop, and the (nonnegative)
difference between the left hand and the right hand sides is the dissipation rate. If dimX = 1,
then it can be identified with the area of the corresponding hysteresis loops. Instead, the
“dissipation” in (3.5) is related to the curvature of the hysteresis branches. A detailed
discussion on this subject can be found in [22, Section II. 4].

As another consequence of Proposition 3.1 (v) we have

d

dt
|SZ [v1](t)− SZ [v2](t)| ≤ |v̇1(t)− v̇2(t)| a. e., (3.7)

hence

|SZ [v1](t)− SZ [v2](t)| ≤ |SZ [v1](0)− SZ [v2](0)|+
∫ t

0

|v̇1(τ)− v̇2(τ)| dτ (3.8)

for all t ∈ [0, T ] .

We now assume additionally that Z is a bounded, convex, closed set containing 0 in its
interior, that is, there exist C > c > 0 such that

Bc(0) ⊂ Z ⊂ BC(0) , (3.9)

where Bρ(x) for ρ > 0 and x ∈ X denotes the open ball centered at x with radius ρ .
Given a nonnegative function ϕ ∈ L1(0,∞) , we define the Prandtl-Ishlinskii operator P
with characteristic Z and density ϕ by the formula similar to (2.34)

P [v](t) =

∫ ∞

0

SqZ [v](t) ϕ(q) dq (3.10)

for v ∈ W 1,1(0, T ; X) . The definition is meaningful due to the fact that, setting v∞ =
max{|v(t)| : t ∈ [0, T ]} , we have SqZ [v](t) = v(t) for all q > v∞/c and all t ∈ [0, T ] , so
that, using the elementary estimate |SqZ [v](t)| ≤ qC , we have

|P [v](t)| ≤ v∞

(
1 +

C

c

) ∫ ∞

0

ϕ(q) dq

for all t ∈ [0, T ] . As a direct consequence of Proposition 3.1, the mapping P has the following
properties.
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Proposition 3.2. Let (3.9) hold, let ϕ ∈ L1(0,∞) be given, ϕ(q) ≥ 0 a. e., not identically
zero, and let P be defined by (3.10). Then we have:

(i) Both P : W 1,1(0, T ; X) → W 1,1(0, T ; X) and P : C([0, T ]; X) → C([0, T ]; X) are
continuous with respect to the strong topologies;

(ii) The mapping P is monotone in the sense that

〈P [v1](t)− P [v2](t), v̇1(t)− v̇2(t)〉 ≥ 1

2

d

dt

∫ ∞

0

|SZ [v1](t)− SZ [v2](t)|2 ϕ(q) dq a. e.

(3.11)
for every v1, v2 ∈ W 1,1(0, T ; X) ;

(iii) The mapping P is locally monotone, i. e.

|v̇(t)|2
∫ ∞

0

ϕ(q) dq ≥
〈

d

dt
P [v](t), v̇(t)

〉
≥

∣∣∣∣
d

dt
P [v](t)

∣∣∣∣
2 (∫ ∞

0

ϕ(q) dq

)−1

a. e.

(3.12)
for every v ∈ W 1,1(0, T ; X) ;

(iv) The “second order energy inequality”
〈

d

dt
P [v](t), v̈(t)

〉
≥ 1

2

d

dt

〈
d

dt
P [v](t), v̇(t)

〉
(3.13)

holds in the sense of distributions for every v ∈ W 2,1(0, T ; X) .

The canonical choice of initial conditions in (3.1) makes it possible to evaluate explicitly
P [v](0) at time t = 0. We have

P [v](0) =

∫ ∞

0

QqZ(v(0)) ϕ(q) dq . (3.14)

We thus can define the initial value mapping

AP(v) : X → X : v 7→
∫ ∞

0

QqZ(v) ϕ(q) dq . (3.15)

Since QqZ is nonexpansive, we see that AP is Lipschitz continuous in X .

We need another important property of the Prandtl-Ishlinskii operator established in [13]
and stated below in Proposition 3.3. Let us introduce first some necessary concepts.

With the convex closed set Z satisfying (3.9), we associate the Minkowski functional
MZ : X → R+ defined by the formula

MZ(χ) = inf

{
s > 0 :

1

s
χ ∈ Z

}
, (3.16)

and the polar set Z∗ to Z

Z∗ = {η ∈ X : 〈χ, η〉 ≤ 1 ∀χ ∈ Z}. (3.17)
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We then obviously have
B 1

C
(0) ⊂ Z∗ ⊂ B 1

c
(0),

and the inequalities

|χ|
C
≤ MZ(χ) ≤ |χ|

c
, c|η| ≤ MZ∗(η) ≤ C|η| (3.18)

hold for every χ, η ∈ X .

The Minkowski functional of a convex closed set containing 0 is proper, convex, and lower
semicontinuous. In addition to (3.9), we assume that the unit outward normal mapping is
Lipschitz continuous on ∂Z . Then, by [4, Lemma 3.1], the subdifferential ∂MZ(χ) for all
χ 6= 0 contains a single vector parallel to the unit outward normal vector nZ(χ/MZ(χ)) taken
at the point χ/MZ(χ) on the boundary of Z . We define the duality mapping JZ : X → X
by the formula

JZ(χ) = MZ(χ)∂MZ(χ) . (3.19)

Still by [4, Lemma 3.1], there exists L > 0 such that

|JZ(χ)− JZ(η)| ≤ L|χ− η|, ∀χ, η ∈ X . (3.20)

The Minkowski functionals MZ and MrZ for r > 0 are related through a simple scaling
formula. Indeed,

MrZ(χ) = inf

{
s > 0 :

1

s
χ ∈ rZ

}
= inf

{
s > 0 :

1

rs
χ ∈ Z

}
=

1

r
MZ(x) , (3.21)

and

ξ ∈ ∂MrZ(χ) ⇐⇒ 〈ξ, χ− η〉 ≥ MrZ(χ)−MrZ(η) ∀η ∈ X

⇐⇒ 〈rξ, χ− η〉 ≥ MZ(χ)−MZ(η) ∀η ∈ X

⇐⇒ rξ ∈ ∂MZ(χ) , (3.22)

hence ∂MrZ = 1
r
∂MZ . We thus conclude that

JrZ =
1

r2
JZ . (3.23)

Formula [7, (3.35)] can be written here in the form

MZ∗(JZ(χ)) = MZ(χ) ∀χ ∈ X , (3.24)

hence, by (3.18),

|χ|
|JZ(χ)| =

|χ|
MZ(χ)

MZ∗(JZ(χ))

|JZ(χ)| ≤ C2 ∀χ ∈ X \ {0} . (3.25)

In terms of the Minkowski functional, putting ξ(t) = v(t) − χ(t) , we can represent the
variational inequality (3.1) by the differential inclusion χ(t) ∈ ∂MZ∗(ξ̇(t)) , or, equivalently,
by the identity

〈v̇(t), χ(t)〉 =
d

dt

(
1

2
|χ(t)|2

)
+ MZ∗(ξ̇(t)) a.e. (3.26)
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This is the so-called energetic formulation, see [34]. The energetic interpretation of (3.26) is
that 〈v̇(t), χ(t)〉 is the power supplied to the system, part of which is used for the potential

increase d
dt

(
1
2
|χ(t)|2) , and the other part

〈
ξ̇(t), χ(t)

〉
= MZ∗(ξ̇(t)) is dissipated.

We now state and prove the result announced above, namely the Lipschitz continuity of
the dissipation functional.

Proposition 3.3. Let v1, v2 ∈ W 1,1(0, T ; X) and r > 0 be given, and let χ
(i)
r = SrZ [vi] ,

i = 1, 2 . Set ξ
(i)
r = vi − χ

(i)
r . Then we have

∣∣
〈
χ(1)

r , ξ̇(1)
r

〉
−

〈
χ(2)

r , ξ̇(2)
r

〉 ∣∣(t) + r2C2 d

dt

∣∣∣∣
1

2
M2

rZ(χ(1)
r (t))− 1

2
M2

rZ(χ(2)
r (t))

∣∣∣∣

≤ r
C2

c
|v̇1 − v̇2|(t) + (1 + 2LC2)|v̇2|(t)

∫ t

0

|v̇1 − v̇1|(τ)dτ a.e., (3.27)

where c, C, L are the constants in (3.9), (3.20).

Proof. Set

N(t) =

∣∣∣∣
1

2
M2

rZ(χ(1)
r (t))− 1

2
M2

rZ(χ(2)
r (t))

∣∣∣∣ . (3.28)

By virtue of [4, Eqs. (47) and (51)], we have

ξ̇i
r(t) 6= 0 (3.29)

⇒
〈
JrZ(χi

r(t)), ξ̇
i
r(t)

〉
> 0, ξ̇i

r(t) =

〈
JrZ(χi

r(t)), ξ̇
i
r(t)

〉

|JrZ(χi
r(t))|2

JrZ(χi
r(t)) a.e.,

∣∣
〈
JrZ(χ(1)

r ), ξ̇(1)
r

〉
−

〈
JrZ(χ(2)

r ), ξ̇(2)
r

〉 ∣∣ +
d

dt
N(t) (3.30)

≤
∣∣〈JrZ(χ(1)

r ), v̇(1)

〉− 〈
JrZ(χ(2)

r ), v̇(2)

〉 ∣∣ a.e.

The substantial step consists in proving that

∣∣∣
〈
χ(1)

r , ξ̇(1)
r

〉
−

〈
χ(2)

r , ξ̇(2)
r

〉∣∣∣ ≤ r2C2
∣∣∣
〈
JrZ(χ(1)

r ), ξ̇(1)
r

〉
−

〈
JrZ(χ(2)

r ), ξ̇(2)
r

〉∣∣∣ (3.31)

+ (1 + LC2)|v̇(2)||χ(1)
r − χ(2)

r | a.e.

This is obvious if ξ̇
(1)
r (t) = ξ̇

(2)
r (t) = 0. If for instance ξ̇

(1)
r (t) 6= 0, ξ̇

(2)
r (t) = 0, then

〈
χ(1)

r , ξ̇(1)
r

〉
=

〈
JrZ(χ(1)

r ), χ(1)
r

〉
〈
JrZ(χ

(1)
r ), ξ̇

(1)
r

〉

|JrZ(χ
(1)
r )|2

≤ r2C2
〈
JrZ(χ(1)

r ), ξ̇(1)
r

〉

by virtue of (3.23), (3.25), and we obtain (3.31) in a straightforward way. It remains to
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consider the case ξ̇
(1)
r (t) 6= 0, ξ̇

(2)
r (t) 6= 0. Then

∣∣∣
〈
χ(1)

r , ξ̇(1)
r

〉
−

〈
χ(2)

r , ξ̇(2)
r

〉∣∣∣

=

∣∣∣∣∣∣
〈
JrZ(χ(1)

r ), χ(1)
r

〉
〈
JrZ(χ

(1)
r ), ξ̇

(1)
r

〉

|JrZ(χ
(1)
r )|2

− 〈
JrZ(χ(2)

r ), χ(2)
r

〉
〈
JrZ(χ

(2)
r ), ξ̇

(2)
r

〉

|JrZ(χ
(2)
r )|2

∣∣∣∣∣∣

≤

〈
JrZ(χ

(1)
r ), χ

(1)
r

〉

|JrZ(χ
(1)
r )|2

∣∣∣
〈
JrZ(χ(1)

r ), ξ̇(1)
r

〉
−

〈
JrZ(χ(2)

r ), ξ̇(2)
r

〉∣∣∣

+
∣∣∣
〈
JrZ(χ(2)

r ), ξ̇(2)
r

〉∣∣∣
∣∣∣∣∣∣

〈
JrZ(χ

(1)
r ), χ

(1)
r

〉

|JrZ(χ
(1)
r )|2

−

〈
JrZ(χ

(2)
r ), χ

(2)
r

〉

|JrZ(χ
(2)
r )|2

∣∣∣∣∣∣

≤ |χ(1)
r |

|JrZ(χ
(1)
r )|

∣∣∣
〈
JrZ(χ(1)

r ), ξ̇(1)
r

〉
−

〈
JrZ(χ(2)

r ), ξ̇(2)
r

〉∣∣∣

+
∣∣∣
〈
JrZ(χ(2)

r ), ξ̇(2)
r

〉∣∣∣
|
〈
JrZ(χ

(2)
r ), χ

(1)
r − χ

(2)
r

〉
|

|JrZ(χ
(2)
r )|2

+
∣∣∣
〈
JrZ(χ(2)

r ), ξ̇(2)
r

〉∣∣∣ |χ(1)
r |

∣∣∣∣∣
JrZ(χ

(1)
r )

|JrZ(χ
(1)
r )|2

− JrZ(χ
(2)
r )

|JrZ(χ
(2)
r )|2

∣∣∣∣∣ . (3.32)

We now estimate the three terms on the right hand side of (3.32) as follows. Notice first

that by Proposition 3.1 (ii), we have |ξ̇(2)
r | ≤ |v̇(2)| a.e. Furthermore, we have the elementary

vector identity ∣∣∣∣
z

|z|2 −
z′

|z′|2
∣∣∣∣ =

1

|z| |z′| |z − z′|, ∀z, z′ ∈ X \ {0} .

Hence,

∣∣∣
〈
JrZ(χ(2)

r ), ξ̇(2)
r

〉∣∣∣
|
〈
JrZ(χ

(2)
r ), χ

(1)
r − χ

(2)
r

〉
|

|JrZ(χ
(2)
r )|2

≤ |v̇(2)||χ(1)
r − χ(2)

r | ,

and

∣∣∣
〈
JrZ(χ(2)

r ), ξ̇(2)
r

〉∣∣∣ |χ(1)
r |

∣∣∣∣∣
JrZ(χ

(1)
r )

|JrZ(χ
(1)
r )|2

− JrZ(χ
(2)
r )

|JrZ(χ
(2)
r )|2

∣∣∣∣∣

≤ |χ(1)
r |

|JrZ(χ
(1)
r )|

|v̇(2)||JrZ(χ(1)
r )− JrZ(χ(2)

r )| .

In view of (3.23) and (3.20), we thus obtain (3.31) from (3.32).

Combining (3.31) with (3.30), we obtain
∣∣∣
〈
χ(1)

r , ξ̇(1)
r

〉
−

〈
χ(2)

r , ξ̇(2)
r

〉∣∣∣ + r2C2 d

dt
N(t)

≤ r2C2|JrZ(χ(1)
r )||v̇(1) − v̇(2)|+ (1 + 2LC2)|v̇(2)||χ(1)

r − χ(2)
r |. (3.33)
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We now refer to (3.24) which yields

rc|JrZ(χ(1)
r )| ≤ M(rZ)∗(JrZ(χ(1)

r )) = MrZ(χ(1)
r ) ≤ 1 ,

and (3.27) follows from (3.33) and (3.8). ¥

4 A model for cyclic fatigue

We now propose a system to model important experimental features of elastoplastic oscil-
lations subject to material fatigue, such as material softening , heat release, and material
failure in finite time. The analysis of the so-called rainflow method of cyclic damage eval-
uation carried out in [2] has shown a qualitative and quantitative correspondence between
the damage accumulation rule and the energy dissipation. On the other hand, experimental
measurements at the point of material failure confirm strong temperature increase, which
manifests an energy dissipation peak. In fact, temperature tests are regularly used in engi-
neering practice for damage analysis in high frequency regimes (e.g. in aircraft industry).
Our substantial modeling hypothesis thus consists in introducing a scalar fatigue parameter
m , assuming that its time derivative (the fatigue rate) is proportional to the dissipation
rate, and that the material parameters depend on m . We believe that this assumption is
realistic. Plastic deformations are driven by moving dislocations and ruptures of interatomic
connections, which at the same time dissipate energy, and reduce the cohesion of the solid.
Note that in the Gurson model for void nucleation and growth in elastoplastic materials, see
[17], the elasticity domain shrinks, being parameterized by the plastic dissipation rate. For
a more detailed discussion about the modeling issues, see [11].

The PDE system of momentum and energy balance equations for transversal oscillations
of an elastoplastic plate under fatigue is derived in Section 4.1. The unknowns of the full
problem are w (the transversal displacement), θ (absolute temperature), and m (fatigue).
We do not prove the well-posedness of the complete system resulting from a thermodynamic
analysis. We only make a first step in this direction and solve the momentum balance equation
coupled with the fatigue accumulation equation, assuming that the temperature history is
known. An existence and uniqueness theory for the full system will be the subject of further
research.

It cannot be expected that solutions of the system with fatigue exist globally in time. The
material failure in finite time is an integral part of the model. We give an efficient lower
bound for the existence time.

4.1 The model

We first simplify the notation and write the constitutive relation (2.39)–(2.40) in the form

σ = Bε +

∫ ∞

0

γ(r)Cχrdr , ε = D2w , (4.1)
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where χr for r > 0 are solutions of the family of variational inequalities

χr(x, t) ∈ rZ for all x ∈ Ω, t ∈ (0, T ), r > 0 ,

∂
∂t

(ε− χr) · C(χr − z) ≥ 0 for all z ∈ rZ a.e.,

χr(x, 0) = QrZ(ε(x, 0)),





(4.2)

with a given closed convex set Z ⊂ R3 containing 0 in its interior. In other words, we
replace JB by B , JC by C , and C−1(K∗) by Z . We include the fatigue and temperature
dependence into the model by introducing a scalar fatigue parameter m(x, t) ≥ 0 , assuming
that both the matrix B and the function γ depend on m , and complement the constitutive
law (4.1) with viscosity and thermal expansion terms to obtain

σ = B(m)ε +

∫ ∞

0

γ(m, r)Cχrdr + Rεt − β(θ − θ0)1 , (4.3)

where θ > 0 is the absolute temperature, θ0 > 0 is a given referential temperature, 1 is
the vector (1, 1, 0) , β is the thermal expansion coefficient, R is the viscosity matrix, and
B(m), γ(m, r) are functions specified below in Hypothesis 4.1. By analogy to [11, 16], we
associate with (4.3) the free energy F defined by the formula

F [ε, θ] = c0θ(1− log(θ/θ0)) +
1

2
B(m)ε · ε +

1

2

∫ ∞

0

γ(m, r)Cχr ·χrdr− β(θ− θ0)ε · 1 , (4.4)

where c0 is the constant specific heat capacity. The internal energy U and the entropy S
thus have the form

U [ε, θ] = c0θ +
1

2
B(m)ε · ε +

1

2

∫ ∞

0

γ(m, r)Cχr · χrdr + βθ0ε · 1 , (4.5)

S[ε, θ] = c0 log(θ/θ0) + βε · 1 . (4.6)

The equations for the state variables θ and m are derived from the first and the second
principles of thermodynamics in the form

∂

∂t
U [ε, θ] + div q = σ · εt , (energy conservation) (4.7)

∂

∂t
S[ε, θ] + div

q

θ
≥ 0 , (Clausius-Duhem inequality) (4.8)

where q is the heat flux vector that we assume in the form

q = −κ∇θ , (4.9)

with a constant heat conductivity coefficient κ > 0 . Then (4.7) reads

c0θt − κ∆θ = Rεt · εt − 1

2
mt

(
B′(m)ε · ε +

∫ ∞

0

γm(m, r)Cχr · χrdr

)

+

∫ ∞

0

γ(m, r)
∂

∂t
(ε− χr) · Cχrdr − βθεt · 1 . (4.10)
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The notation is slightly ambiguous, and we hope that the reader will not get confused.
For simplicity, we denote by t and m partial derivatives with respect to the corresponding
variables. The index r is not a partial derivative. There is no differentiation with respect to
r in the paper.

In view of (4.9), we see that the Clausius-Duhem inequality (4.8) is certainly satisfied if

θ
∂

∂t
S[ε, θ] + σ · εt − ∂

∂t
U [ε, θ] ≥ 0 , (4.11)

that is,

Rεt · εt − 1

2
mt

(
B′(m)ε · ε +

∫ ∞

0

γm(m, r)Cχr · χrdr

)

+

∫ ∞

0

γ(m, r)
∂

∂t
(ε− χr) · Cχrdr ≥ 0 . (4.12)

The last integral term in (4.12) is nonnegative by virtue of (4.2). The assumption that the
fatigue accumulation rate mt is nonnegative (that is, fatigue can only increase in time) is
therefore compatible with the second principle provided

B′(m) is negative semidefinite , γm(m, r) ≤ 0 a.e. (4.13)

In other words, material softening takes place under increasing fatigue in agreement with
experimental evidence similarly as in [17].

We close the system by assuming that the fatigue accumulation rate mt at a point x ∈ Ω
is proportional to the plastic dissipation rate averaged over a neighborhood of the point x ,
that is,

mt(x, t) =

∫

Ω

λ(x− y)

∫ ∞

0

γ(m, r)
∂

∂t
(ε− χr) · Cχr(y, t)dydr (4.14)

− 1

2

∫

Ω

λ(x− y)mt(y, t)

(
B′(m)ε · ε +

∫ ∞

0

γm(m, r)Cχr · χrdr

)
(y, t)dy ,

where λ ∈ L∞(R2) is a given nonnegative function with compact support. The full system
then consists of equations

∫

Ω

(
%wtt(x, t)(ϕ− h2

12
∆ϕ)(x) + σ(x, t) ·D2ϕ(x)

)
dx =

∫

Ω

g(x, t)ϕ(x)dx (4.15)

∀ϕ ∈ W 2,2(Ω) ∩W 1,2
0 (Ω) ,

ε = D2w, (4.16)

coupled with (4.2), (4.3), (4.10), (4.14), and its solutions satisfy the thermodynamic principles
(4.7), (4.8).
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4.2 Statement of the problem

As a first step towards the full system (4.15), (4.16), (4.2), (4.3), (4.10), (4.14), we assume
that a function θ : Ω× (0, T ) → R3 describing a combined action of thermal expansion and
external load is given, set the physical constants to 1 for simplicity, and consider the problem

∫

Ω

(
wtt(x, t)(ϕ−∆ϕ)(x) + RD2wt(x, t) ·D2ϕ(x)

)
dx

=

∫

Ω

(
θ − P [m, ε]

)
(x, t) ·D2ϕ(x)dx ∀ϕ ∈ W 2,2(Ω) ∩W 1,2

0 (Ω) , (4.17)

ε = D2w =




wxx

wyy

wxy


 , (4.18)

P [m, ε] = B(m)ε +

∫ ∞

0

γ(m, r)Cχrdr , (4.19)

mt(x, t) =

∫

Ω

λ(x− y)

∫ ∞

0

γ(m, r)Cχr · (ξr)tdrdy (4.20)

− 1

2

∫

Ω

λ(x− y)mt(y, t)
(
B′(m)ε · ε +

∫ ∞

0

γm(m, r)Cχr · χrdr
)
(y, t)dy

w(x, 0) = wt(x, 0) = m(x, 0) = 0 ∀x ∈ Ω , (4.21)

where we denote ξr = ε− χr . The following hypotheses are assumed to hold.

Hypothesis 4.1. We fix a Lipschitzian domain Ω ⊂ R2 , and denote by | · |p the Lp(Ω)
norm for p ≥ 1 . We assume that there exists a constant ν > 0 such that for all ϕ ∈
W 2,2(Ω) ∩W 1,2

0 (Ω) we have
|D2ϕ|2 ≤ ν|∆ϕ|2 , (4.22)

and for T > 0 we denote ΩT = Ω× (0, T ) . Furthermore,

(i) R, C are symmetric positive definite 3×3 matrices, and there exist constants c∗, c∗ > 0
such that Rε · ε ≥ c∗|ε|2 , Cε · ε ≥ c∗|ε|2 , |Cε| ≤ c∗|ε| for all ε ∈ R3 ;

(ii) λ ∈ L∞(R2) is a given function with compact support, and Λ > 0 is a constant such
that 0 ≤ λ ≤ Λ a.e.;

(iii) B(m) for m ≥ 0 is a symmetric positive semidefinite 3 × 3 matrix, and there exists
b∗ > 0 such that |B(m)ε| ≤ b∗|ε| for all ε ∈ R3 . Moreover, B′(m) is negative
semidefinite and depends Lipschitz continuously on m , B′(0) = 0 ;

(iv) γ : [0,∞) × (0,∞) → [0,∞) is a given C2 -function such that γm(m, r) ≤ 0 a.e.,
γm(0, r) = 0 a.e., and there exists a constant Γ > 0 such that

∫ ∞

0

(γ(m, r) + γm(m, r) + γmm(m, r))(1 + r2)dr ≤ Γ ∀m > 0;



irkutsk1.tex, June 13, 2012 33

(v) θ ∈ L2(ΩT ;R3) is a given function for some T > 0 ;

(vi) Z ⊂ R3 is a bounded convex closed domain with boundary of class W 2,∞ , 0 ∈ Int Z .

We prove in the next sections the following existence and uniqueness results.

Theorem 4.2. Let Hypothesis 4.1 hold and let R > 0 be given. Then there exists TR ∈ (0, T ]
and a unique w such that wtt ∈ L2(ΩT R) , wt ∈ L2(0, TR; W 2,2(Ω) ∩ W 1,2

0 (Ω)) , equations
(4.2), (4.17)–(4.19), and (4.21) are satisfied almost everywhere, and (4.20) is replaced by

mt(x, t) = QR

(∫

Ω

λ(x− y)

∫ ∞

0

γ(m, r)Cχr · (ξr)tdrdy

)
(4.23)

− 1

2

∫

Ω

λ(x− y)mt(y, t)
(
B′(m)ε · ε +

∫ ∞

0

γm(m, r)Cχr · χrdr
)
(y, t)dy,

where QR(z) = min{R, max{z,−R}} is the projection of R onto [−R, R] .

Theorem 4.3. In addition to Hypothesis 4.1, assume that θt ∈ L2(ΩT ;R3) . Then there exists
T ∗ ∈ (0, T ] and a unique solution w to (4.2), (4.17)–(4.21) with the additional regularity
wtt ∈ L2(0, T ∗; W 1,2

0 (Ω)) , wt ∈ L∞(0, T ∗; W 2,2(Ω) ∩ W 1,2
0 (Ω)) . Furthermore, there exists

a constant C > 0 such that if θ(1), θ(2) are two functions satisfying the hypotheses and if
w(1), w(2) are the corresponding solutions, then the differences w̄ = w(1)−w(2), θ̄ = θ(1)− θ(2)

satisfy the inequality

|w̄t|22(t) + |∇w̄t|22 +

∫ t

0

|D2w̄t|22(τ)dτ ≤ C

∫ t

0

|θ̄|22(τ)dτ ∀t ∈ [0, T ∗]. (4.24)

4.3 Oscillating plate

In this section, we investigate first the decoupled problem (4.2), (4.17), (4.19), (4.21), (4.23),
with the goal to obtain (4.18) by means of a fixed point argument.

Here, we assume that ε is known, and εt ∈ L2(ΩT ;R3) . More specifically, under Hypoth-
esis 4.1, we define for t ∈ (0, T ) the functions

p(t) = (|θ(t)|2 + Γ)2 , (4.25)

q(t) =
2

c2∗

∫ t

0

eb2∗(t2−τ2)/c2∗p(τ)dτ , (4.26)

and for T̂ ∈ (0, T ] consider the set

ET̂ =
{

ε ∈ L2(ΩT̂ ;R3) : εt ∈ L2(ΩT̂ ;R3), (4.27)

ε(x, 0) = 0,

∫ t

0

|εt(τ)|22dτ ≤ q(t) for t ∈ (0, T̂ ]
}

.
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The definition is meaningful, as by Hypothesis 4.1, p ∈ L1(0, T ) . We fix the number

A := sup

∣∣∣∣
1

2

∫

Ω

λ(x− y)
(
B′′(m)ε · ε +

∫ ∞

0

γmm(m, r)Cχr · χrdr
)
(y, t)dy

∣∣∣∣ , (4.28)

where the supremum is taken over all ε ∈ ET and m ∈ L∞(ΩT ) (it is indeed finite), and
define µ(t) as the solution of the ODE

µ̇(t) = Aµ(t)µ̇(t) + R , µ(0) = 0 , (4.29)

that is,

µ(t) =
1

A
−

√
1

A2
− 2R

A
t for t ∈ [0, 1/(2AR)] . (4.30)

We see that µ̇(t) blows up to +∞ as t ↗ 1/(2AR) . We choose a small δ ∈ (0, 1) that we
keep fixed throughout the paper, and set

TR = min

{
T,

1− δ2

2AR

}
. (4.31)

Eq. (4.23) cannot be expected to have global solutions for the same reason as in [12]. We
state the intermediate result in the following form.

Proposition 4.4. Let ε ∈ ET R be given. Then system (4.2), (4.17), (4.19), (4.21), (4.23)
has a unique solution with the regularity as in Theorem 4.2, and we have D2w ∈ ET R .

Proof. We first check by a fixed point argument that (4.23) has a unique solution m in
[0, TR] . We define the set

MR = {m ∈ L∞(ΩT R) : mt ∈ L∞(ΩT R),m(x, 0) = 0, 0 ≤ mt(x, t) ≤ µ̇(t) a.e.}, (4.32)

and for m ∈ MR define m̃(x, 0) = 0, and

m̃t(x, t) := QR

(∫

Ω

λ(x− y)

∫ ∞

0

γ(m, r)Cχr · (ξr)tdrdy

)
(4.33)

− 1

2

∫

Ω

λ(x− y)mt(y, t)
(
B′(m)ε · ε +

∫ ∞

0

γm(m, r)Cχr · χrdr
)
(y, t)dy

for t ∈ (0, TR] . Note that B′(0) = 0, γm(0, r) = 0. Hence,

m̃t(x, t) ≤ Aµ(t)µ̇(t) + R = µ̇(t) ,

that is, m̃t ∈ MR . Furthermore, for m(1),m(2) ∈ MR , we have

|m̃(1)
t (t)− m̃

(2)
t (t)|∞ ≤ Aµ(t)|m(1)

t (t)−m
(2)
t (t)|∞ + Aµ̇(t)|m(1)(t)−m(2)(t)|∞ (4.34)

+ C̃|εt(t)|1|m(1)(t)−m(2)(t)|∞ ,
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where C̃ > 0 is a constant which comes out from the following computation:

∣∣∣QR

(∫

Ω

λ(x− y)

∫ ∞

0

γ(m(1), r)Cχr · (ξr)tdrdy

)

−QR

(∫

Ω

λ(x− y)

∫ ∞

0

γ(m(2), r)Cχr · (ξr)tdrdy

) ∣∣∣

≤
∫

Ω

λ(x− y)

∫ ∞

0

|γ(m(1), r)− γ(m(2), r)|Cχr · (ξr)tdrdy

≤
∫

Ω

λ(x− y)

∣∣∣∣∣
∫ m(2)(y,t)

m(1)(y,t)

∫ ∞

0

|γm(m, r)|rCc∗drdm

∣∣∣∣∣ |εt|dy

≤ Γc∗C
∫

Ω

λ(x− y)|m(1) −m(2)||εt|(y, t)dy ≤ ΛΓc∗C|εt(t)|1|m(1)(t)−m(2)(t)|∞,

that is, C̃ = ΛΓc∗C . On [0, TR] , we have Aµ(t) ≤ 1 − δ . Inequality (4.34) is thus of the
form

v̇(t) ≤ (1− δ)u̇(t) + α(t)u(t) , (4.35)

where we set v(t) =
∫ t

0
|m̃(1)

t (τ) − m̃
(2)
t (τ)|∞dτ , u(t) =

∫ t

0
|m(1)

t (τ) − m
(2)
t (τ)|∞dτ , α(t) =

Aµ̇(t) + C̃|εt(t)|1 .

Put

α̂(t) =
1

δ

∫ t

0

α(τ)dτ , (4.36)

and test (4.35) by e−2α̂(t) . This yields

∫ T R

0

e−2α̂(t)v̇(t)dt ≤
(
1− δ

2

) ∫ T R

0

e−2α̂(t)u̇(t)dt , (4.37)

that is,

∫ T R

0

e−2α̂(t)|m̃(1)
t (t)− m̃

(2)
t (t)|∞dt ≤

(
1− δ

2

) ∫ T R

0

e−2α̂(t)|m(1)
t (t)−m

(2)
t (t)|∞dt . (4.38)

We see that the mapping that with m associates m̃ is a contraction on MR , hence Eq. (4.23)
has a unique solution m for every ε ∈ ET R .

Eq. (4.17) with a given ε ∈ ET R is linear in w and the existence and uniqueness of
a solution can be easily proved e.g. by Galerkin approximations. The required regularity
follows by testing (4.17) successively by ϕ = wt and ϕ = (I−∆)−1wtt , using the assumption
(4.22). To complete the proof, it remains to check that D2w ∈ ET R . Choosing again ϕ = wt

in (4.17) and using Hypothesis 4.1, we obtain

1

2

d

dt

(|wt|22 + |∇wt|2
)

+ c∗|D2wt|22 ≤ (|θ|2 + b∗|ε|2 + Γ)|D2wt|2

≤ 1

c∗

(
p(t) + b2

∗|ε|22
)

+
c∗
2
|D2wt|22, (4.39)
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hence ∫ t

0

|D2wt(τ)|22dτ ≤ 2

c2∗

∫ t

0

(
p(τ) + b2

∗|ε(τ)|22
)
dτ. (4.40)

We have |ε(x, t)| ≤ ∫ t

0
|εt(x, τ)|dτ a.e., so that |ε(t)|22 ≤ t

∫ t

0
|εt(τ)|22dτ ≤ tq(t) . From (4.40)

it follows that ∫ t

0

|D2wt(τ)|22dτ ≤ 2

c2∗

∫ t

0

(
p(τ) + b2

∗τq(τ)
)
dτ = q(t), (4.41)

which we wanted to prove. ¥

4.4 The coupled system

This section is devoted to the proof of Theorem 4.2. We start with an auxiliary result on the
solution mapping of (4.2), (4.19), (4.23) which with a given ε ∈ ET R associates m ∈ MR .

Lemma 4.5. There exists a constant C2 depending only on R and on the data of the
problem such that for all ε(1), ε(2) ∈ ET R , the corresponding solutions m(1),m(2) ∈ MR to
(4.19)–(4.23) satisfy the inequality

∫ T R

0

|m(1)
t −m

(2)
t |∞(t)dt ≤ C2

∫ T R

0

|ε(1)
t − ε

(2)
t |2(t)dt . (4.42)

Proof. With the notation of Section 4.3 we have

δ|m(1)
t (t)−m

(2)
t (t)|∞ ≤ Sµ̇(t)

(
|ε(1)(t)− ε(2)(t)|2 +

∫ t

0

|ε(1)
t − ε

(2)
t |2(τ)dτ

)
(4.43)

+ α(t)|m(1)(t)−m(2)(t)|∞ + Λ

∫ ∞

0

γ(0, r)
∣∣∣Cχ(1)

r · (ξ(1)
r

)
t
− Cχ(2)

r · (ξ(2)
r

)
t

∣∣∣
1
(t)dr ,

where S > 0 is a constant, and where we have used the fact that γ(m2, r) ≤ γ(0, r) by
Hypothesis 4.1 (iv). Testing (4.43) by e−α̂(t) , with α̂ from (4.36), yields that

δ
d

dt

(
e−α̂(t)

∫ t

0

|m(1)
t −m

(2)
t |∞(τ)dτ

)
≤ e−α̂(t)

(
Sµ̇(t)

(
|ε(1)(t)− ε(2)(t)|2

+

∫ t

0

|ε(1)
t − ε

(2)
t |2(τ)dτ

)
+ Λ

∫ ∞

0

γ(0, r)
∣∣∣Cχ(1)

r · (ξ(1)
r

)
t
− Cχ(2)

r · (ξ(2)
r

)
t

∣∣∣
1
(t)dr

)
. (4.44)

Integrating from 0 to t and using (3.27) we obtain the assertion. ¥

Lemma 4.6. The mapping defined in Proposition 4.4 that with ε ∈ ET R associates D2w ∈
ET R is a contraction with respect to a suitable norm.

Proof. We test the difference of Eqs. (4.17) written for ε(1), ε(2) and the corresponding

solutions w(1), w(2) by w̄t = w
(1)
t − w

(2)
t , and obtain

d

dt

(|w̄t|22 + |∇w̄t|2
)

+ c∗|D2w̄t|22 ≤
1

c∗

∣∣P [m(1), ε(1)]− P [m(2), ε(2)]
∣∣2
2
. (4.45)
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We have

|P [m(1), ε(1)]−P [m(2), ε(2)]|2(t) ≤ C3

(
|m1−m2|∞(t)+ |ε(1)−ε(2)|2(t)+

∫ t

0

|ε(1)
t −ε

(2)
t |2(τ)dτ

)
,

(4.46)
hence, by Lemma 4.5,

d

dt

(|w̄t|22 + |∇w̄t|2
)

+ |D2w̄t|22 ≤ C4

∫ t

0

|ε̄t|22(τ)dτ (4.47)

with a constant C4 > 0 , and with the notation ε̄ = ε(1)− ε(2) . Testing (4.47) by e−2C4t and
integrating from 0 to TR , we get the inequality

∫ T R

0

e−2C4t|D2w̄t|22dt ≤ 1

2

∫ T R

0

e−2C4t|ε̄t|22(t)dt , (4.48)

which completes the proof. ¥

We are now ready to finish the proof of Theorem 4.2.

Proof of Theorem 4.2. It suffices to combine Proposition 4.4 with Lemma 4.6 and apply the
contraction principle. ¥

4.5 Proof of Theorem 4.3

The main goal of this section is to remove the cut-off function QR in (4.23). This will be
done by establishing additional estimates, where the dependence on R is explicitly taken into
account. The constants C5, . . . , C10 which appear in the formulas below are independent of
R .

We assume here the additional regularity θt ∈ L2(ΩT ) of the right hand side of (4.17).
Testing Eq. (4.17) by wtt (for the Galerkin approximations first, and then passing to the
limit) and integrating by parts we obtain

∫ t

0

(|wtt|22 + |∇wtt|22
)
(τ)dτ + |D2wt(t)|22 (4.49)

≤ C5

(
|θ(t)|22 + |P [m, ε](t)|22 +

( ∫ t

0

(|θt|22 + |P [m, ε]t|22
)
(τ)dτ

)1/2
)

.

Using the inequality
|P [m, ε]t|2 ≤ C6

(|mt|∞ + |εt|2
)
,

we infer from (4.49) that
|D2wt(t)|22 ≤ C7(1 + R) (4.50)

for all t ∈ [0, TR] . On the other hand, we have

∣∣∣
∫

Ω

λ(x− y)

∫ ∞

0

γ(m, r)Cχr · (ξr)tdrdy
∣∣∣ ≤ C8|D2wt(t)|1 ≤ C9

√
1 + R .
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Choosing R = R∗ sufficiently large, we see that the truncation in (4.23) is never active in
the interval [0, TR∗ ] =: [0, T ∗] , and the solution to (4.17)–(4.19), (4.21) (4.23) in fact satisfies
(4.17)–(4.21) as well. The additional regularity follows from (4.49).

To complete the proof of Theorem 4.3, it remains to prove inequality (4.24). As in the
proof of Lemma 4.6, we take the differences of Eqs. (4.17) written for ε(1), ε(2) and the
corresponding solutions w(1), w(2) , this time with possibly different θ(1) and θ(2) . We obtain

d

dt

(|w̄t|22 + |∇w̄t|2
)

+ c∗|D2w̄t|22 ≤
1

c∗

(|θ̄|22 + |P [m(1), ε(1)]− P [m(2), ε(2)]|22
)
.

Exploiting (4.46) and Lemma 4.5, we obtain, for a constant C10 > 0 , that

d

dt

(|w̄t|22 + |∇w̄t|2
)
(t) + c∗|D2w̄t|22(t) ≤ C10

(
|θ̄|22(t) +

∫ t

0

|ε̄t|22(τ)dτ

)

≤ C10

(
|θ̄|22(t) +

∫ t

0

|D2w̄t|22(τ) dτ

)
,

where in the last line we used (4.18). The Gronwall lemma now yields the assertion.
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