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Summary: The stability of the contact algorithm using the penalty method is signif-
icantly affected by choosing of the penalty function. The penalty function is usually
defined like a magnitude of the penetration vector multiplied by the users-defined
constant - the penalty parameter. The penetration vector is obtained by solution of
the minimum distance problem between the node/Gaussian integration point and the
segment of the element. For a general quadrilateral contact segment this task leads
to the system of two nonlinear equations. It is shown that the popular Newton-
Raphson method is inadvisable for this problem. In this paper, alternative meth-
ods like quasi-Newton methods, gradient methods and the simplex method are pre-
sented. Especial attention is put on the line-search method that is crucial for a
general success of quasi-Newton methods as well as gradient methods. All men-
tioned methods are tested by means of numerical example, which involves bending
of two rectangular plates over a cylinder.

1. Introduction

The essential part of the solution of a contact problem in the finite element method is to locate
probable contact areas reliably and efficiently. Most contact searching algorithms are based on
the definition of master and slave contact surfaces, when the slave nodes or integration points
are checked on against master segments for penetration. The local search, which consists in
the determination of the exact position of the slave node or integration point with respect to a
given master segment, is a challenging and time consuming task. Unfortunately, the analytical
solution for finding the distance between the node/point and the segment does not exist for a
general quadrilateral contact segment. Furthermore, a lack of uniqueness in the computation of
the shortest distance to the master surface is manifested in the areas with high or discontinuous
curvature. The Newton-Raphson iteration scheme is often used for the solution of this mini-
mization problem (Benson and Hallquist, 1990). However, the method is expensive and can
even diverge unless the initial guess is quite accurate. Therefore, various numerical methods
are tested in this paper.
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2. Local Contact Search

Let us consider the contact searching algorithm has already found contact pairs containing
the slave Gaussian integration points and their corresponding master segments (for detail see
Gabriel, Pleek and Ulbin (2004)). The aim of the local contact search is to compute the exact
position of the point r∗ on the master segment γ (see Fig. 1). The normal n constructed in the
point r∗ have to direct toward the given slave Gaussian integration point rIG. Then the point r∗

is assumed to come in contact with the Gauss point rIG and the normal vector n is used for the
evaluation of the penetration d by the contact searching algorithm.
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Figure 1: The formulation of the minimum distance problem.

Thus, let us consider the slave Gaussian integration point rIG ∈ E3 and the isoparametric master
segment γ (r, s) ∈ E3 for which r, s ∈ [−1, 1]. Then the point r∗ has to satisfy

‖rIG − r∗‖ ≤ ‖rIG − r‖ , for∀r ∈ γ. (1)

For this purpose, the so-called square-distance function is defined as

f (r, s) = [xIG − x (r, s)]2 + [yIG − y (r, s)]2 − [zIG − z (r, s)]2 . (2)

Apparently, the desired point r∗ (r, s) has to satisfy the necessary conditions for local extremum
of (2)

∂x
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· (zIG − z) = 0,

∂x

∂s
· (xIG − x) +

∂y

∂s
· (yIG − y) +

∂z

∂s
· (zIG − z) = 0.

(3)

The minimization of the square-distance function (2) leads to the problem of unconstrained
optimization.

3. Numerical Example

For testing of the stability of the local contact search algorithm, the problem of bending two rect-
angular plates over a cylinder was considered (Gabriel, Pleek and Ulbin, 2004). Two rectangular
plates are being bent over a cylinder (see Fig. 2). The plates are loaded by uniformly distributed



surface traction q = 22.5MPa. Material properties are: Young modules E = 2.1 × 105 MPa,
Poisson’s ratio ν = 0.36 and dimensions: r = 0.4m, l = 2m, h = 0.08m, b = 0.6m. The
value of the penalty parameter was set to ξ = 1013 N · m−3. Due to triple symmetry, only one
eighth was modelled using 1168 twenty-node brick elements. The FE mesh is plotted in Fig. 2.
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Figure 2: Bending two rectangular plates over a cylinder.

Fig. 3 shows the deformed shape of the FE mesh at the moment the instability of the calcula-
tion of the normal vector by the Newton-Raphson method occurred. Due to the regularity of
the stiffness matrix, the plate and the cylinder are connected in the centre of symmetry. This
connection causes considerable deformation.
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Figure 3: Deformed shape of the plate at that moment the instability of the calculation of the
normal vector occurred.

Furthermore, the detail of distorted master segment is plotted in Fig. 3, where contours of
the square-distance function (2) are depicted for the isoparametric coordinates r, s ∈ [−1, 1].
The topology of this master segment was used as the benchmark configuration for numerical
test. The red abscissa denotes the penetration vector dk between the Gaussian integration point
rkIG and the point rk which is located on the master segment.

Fig. 4 depicts the contours of the square-distance function (2) for the isoparametric coordi-
nates r, s ∈ [−5, 5].
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Figure 4: The isoparametric interpolation of the master segment for r, s ∈ [−5, 5] including the
contours of square-distance function.

It is clear that the contact area beyond the domain r, s ∈ [−1, 1] is not approximated well.
Therefore we are interested only in local minima which both coordinate belong to interval
[−1, 1]. Fig. 4 shows three possible solutions rk, r′k, r′′k of the nonlinear system (3) plotted in
the three dimensional space. Although the square-distance function (2) has the global minimum
in the point r′k , we are interested only in local minimum rk, which lies in the domain r × s,
r, s ∈ [−1, 1]. Note that there are two saddle points, which also fulfils the necessary condition
for local extremum (3).

The important part of the assessment of methods for local contact search is a good choice
of the initial guess. For the purpose of numerical tests seven initial guesses, depicted in Fig. 5,
were considered. Their coordinates are showed in Tab. 1. The first one is the estimation used
in the current version of the local contact search algorithm in the FE code PMD. Its coordinates
are obtained by one iteration of least-square projection method according to reference Benson
and Hallquist (1990). Another four initial guesses were chosen in the corners of the master



segment and the sixth one in the origin of the isoparametric coordinates. The position of the
last guess was selected beyond boundaries of the master segment near the local minimum r′′k.
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Figure 5: The square-distance function and chosen initial guesses.

Table 1: Isoparametric coordinates of chosen initial guesses.

n 1 2 3 4 5 6 7

Coor. (0.83,−0.62) (−1,−1) (1,−1) (1, 1) (−1, 1) (0, 0) (−2.8, 3)

4. Newton-Raphson method

The Newton-Raphson method is implemented in the current version of the local contact search
algorithm in the FE code PMD. The numerical scheme of this method is based on the first-
order Taylor’s series expansion of (3) about xk. The numerical scheme of the Newton-Raphson
method can be written in the form

xk+1 = xk −
(
Hk
)−1∇fk, (4)



where Hk ∈ Rn,n is the Hessian matrix, xk and xk+1 ∈ Rn are vectors of unknown variables
and ∇fk ∈ Rn is the gradient of the minimized function.

The iteration process for the initial guess 1 form Tab. 1 is depicted in Fig. 6. The Newton-
Raphson method computes an exact Hessian matrix Hk in a point xk. Since the Hessian matrix
H0 and H10 are indefinite, the approximations of solution x1 and x11 jump far from the pre-
vious iterations randomly (see Fig. 7). The Newton-Raphson converges to the stationary point
(0.241,−0.926) in 28 iterations. (The criterion of convergence is

∥∥xk − xk−1
∥∥ ≤ 1e−10.)
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Figure 6: Iterations of the Newton-Raphson methods for the initial guess (0.83,−0.62).

Tab. 2 shows results for all tested initial guesses. For each of them there are the coordinates
of solution, the number of iterations (NI), the CPU time and the value of principal minors of the
Hessian matrix for the determination of the type of stationary point. Since both principal minors
of the Hessian matrix are positive in the point (0.241,−0.926), the square-distance function (2)
has the local minimum here.

If the initial guess lies in a sub-domain where the square-distance function is convex, as the
starting point 6, the solution converges quadratically. However, the convergence of the Newton-
Raphson method is generally difficult to achieve since the Hessian matrix of the function to be
minimized (2) is not positive definite. We can conclude that the Newton-Raphson method is
not suitable method for the local contact search algorithms.
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Figure 7: Dependence of
∥∥xk − x∗∥∥ on the number of iterations for the Newton-Raphson

method.

Table 2: Results of the Newton-Raphson method for all tested initial guesses.

n x∗ NI CPU time detH (x∗) H11 (x
∗)

1 (0.241,−0.926) 28 0.0366 1.24e-06 2.82e-03
2 (0.241,−0.926) 12 0.0163 1.24e-06 2.82e-03
3 (0.923, 0.810) 17 0.0223 -1.76e-06 7.46e-04
4 (0.923, 0.810) 5 0.0073 -1.76e-06 7.46e-04
5 (−2.167, 2.133) 12 0.0162 -2.68e-06 -2.29e-04
6 (0.241,−0.926) 5 0.0074 1.24e-06 2.82e-03
7 (0.923, 0.810) 9 0.0130 -1.76e-06 7.46e-04

5. Line-search Technique

Each iteration of a line-search method computes a search direction pk ∈ Rn and then decides
how far to move along that direction. The iteration is given by

xk+1 = xk + tkpk, (5)

where the positive scalar tk ∈ R is called the step-length. The success of a line-search method
depends on the effective choices of both the direction pk and the step-length parameter tk. Most
line-search algorithms require pk to be a descent direction for which pk · ∇fk < 0. The search
direction often has the form

pk = −Dk∇fk, (6)

where Dk ∈ Rn,n is a suitable matrix. Let us consider that Dk is positive definite. From
multiplication of (6) by ∇fk arise

pk · ∇fk = −
(
Dk∇fk

)
· ∇fk < 0. (7)

Thus, the positive definiteness of Dk guarantee a descent direction of pk. How to compute the
matrix Dk will be discussed in consequence sections. We now give attention to the choice of the



step-length parameter tk. Its computation is based on the restriction of the minimized function
f (x) to the ray from a point xk in the search direction pk

ϕ (t) = f
(
xk + tpk

)
, t > 0. (8)

Apparently, the exact minimization of this function is computationally expensive. To find even
a local minimizer of ϕ (t) generally requires too many evaluations of the minimized function
f (x). In the reference Nocedal and Wright (1999), more sophisticated strategies are mentioned
to perform an inexact line-search to identify a step-length that achieves reductions in f (x).

5.1. Strong Wolfe Conditions

A suitable step-length tk should first of all give sufficient decrease in the minimized function
f (x). Therefore, we insist that the value of ϕ (t) in the candidate for tk is less than the value
of a linear function l (t). Such an inequality is known as Armijo condition or the sufficient
decrease condition that has a form

f
(
xk + tkpk

)
≤ f

(
xk
)
+ c1t

k∇fk · pk, c1 ∈ (0, 1) . (9)

The parameter c1 sets the slope of the linear function l (t) (see Fig. 8). In practise, c1 is
chosen to be quite small. According to Nocedal and Wright (1999), c1 = 10−4. In Fig. 8, there
are two intervals, denoted by AC, which fulfill the Armijo condition (9).
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Figure 8: The Wolfe condition (AC - Armijo condition, CC - curvature condition).

The sufficient decrease condition is not enough to ensure that the algorithm makes reasonable
progress. It is satisfied for all sufficiently small values of t as can be seen from Fig. 8. Therefore,
a second requirement, that is called the curvature condition, is introduced∣∣∇f (xk + tkpk

)
· pk
∣∣ ≤ c2

∣∣∇fk · pk
∣∣ , c2 ∈ (c1, 1) . (10)

It is based on the fact, that the gradient of function is close to zero in a neighborhood of
a local extremum. Thus, the curvature condition enforces only a slight slope of ϕ (t) in the
candidate for tk. The acceptable slope is set by the parameter c2. According to Nocedal and



Wright (1999), typical values are 0.9 when the search direction pk is computed by the Newton
or the quasi-Newton method, and 0.1 when pk is obtained from the gradient methods.

In Fig. 8, the intervals denoted by CC fulfill the curvature condition (10). The Armijo
condition (9) and the curvature condition (10) are known as the strong Wolfe conditions.

5.2. Step-length Selection Algorithm

For one-dimensional minimizer of general nonlinear functions is necessary to use an iterative
procedure. Our step-length procedure is based on the interpolation of known function ϕ (t) and
their derivations. The procedure generates a decreasing sequence of values ti. The superscript i
denotes the iteration counter of the step-length procedure. The initial guess t0 is simply set to 1.
Then the strong Wolfe conditions (9), (10) are checked. If the conditions are satisfied for this
step-length, the procedure is terminated. Otherwise, we know that the interval [0, t0] contains
acceptable step-lengths (see Fig. 8). A quadratic approximation ϕq (t) to function ϕ (t) can be
formed as

ϕq (t) =

(
ϕ (t0)− t0ϕ′ (0)− ϕ (0)

(t0)2

)
t2 + ϕ′ (0) t+ ϕ (0) . (11)

The value of t1 is defined as the minimizer of this quadratic function, that is

t1 = − ϕ′ (0) (t0)
2

2 [ϕ (t0)− ϕ (0)− t0ϕ′ (0)]
. (12)

If the strong Wolfe conditions (9), (10) are satisfied for t1, the step-length procedure is
terminated. Otherwise, a cubic function is used to interpolate ϕ (ti−1), ϕ′ (ti−1), ϕ (ti), ϕ′ (ti).
In the reference Nocedal and Wright (1999) the minimizer of the cubic function is given by

ti+1 = ti −
(
ti − ti−1

) [ ϕ′ (ti) + d2 − d1
ϕ′ (ti)− ϕ′ (ti−1) + 2d2

]
, (13)

with

d1 = ϕ′
(
ti−1
)
+ ϕ′

(
ti
)
− 3

ϕ (ti−1)− ϕ (ti)

ti−1 − ti
,

d2 =
√
d21 − ϕ′ (ti−1)ϕ′ (ti).

If the strong Wolfe conditions (9), (10) are satisfied at ti+1, the step-length procedure is
terminated. Otherwise, the interpolation process is repeated by discarding the data at one of the
step-length and replacing it by ϕ (ti+1) and ϕ′ (ti+1). Then, the repetition of the interpolation
process continues until the strong Wolfe conditions are fulfilled.

6. Method of Steepest Descent

The steepest descent method is the easiest line-search method for which Dk is the identity
matrix and so the search direction pk is the negative gradient. Thus, the iteration scheme is

xk+1 = xk − tk∇fk. (14)



Significant feature of the steepest descent is insensibility to the saddle points. It is verify
in Tab. 3, where only the positive values of principal minors occur. This is due to the Hessian
matrix is not employed in the computation. Initial guess 4 was intended to test each method’s
behaviour in the vicinity of such a point.

Table 3: Results of the method of steepest descent for all tested initial guesses.

n x∗ NI CPU time detH (x∗) H11 (x
∗)

1 (0.241,−0.926) 51 0.1647 1.24e-06 2.82e-03
2 (0.241,−0.926) 28 0.0923 1.24e-06 2.82e-03
3 (0.241,−0.926) 14 0.04451 1.24e-06 2.82e-03
4 (3.648, 3.624) 29 0.0951 7.66e-06 6.33e-03
5 (3.648, 3.624) 1543 5.2326 7.66e-06 6.33e-03
6 (0.241,−0.926) 71 0.2231 1.24e-06 2.82e-03
7 (−3.804, 3.111) 13 0.0414 6.76e-06 2.53e-03

7. BFGS Method

The very effective minimization method is the Broyden-Fletcher-Goldfarb-Shenno (BFGS)
method. This method requires no evaluation of the Hessian matrix. Moreover, the BFGS
method was developed so that the search direction pk is always a descent direction because
there is guarantee that matrix Dk is positive definite.

The BFGS iteration scheme is defined by the recurrence formula (Peressini, Sulliven and
Uhl, 1988)

xk+1 = xk − tk
(
Dk
)−1∇fk. (15)

The update of Dk is computed by

Dk+1 = Dk +
yk ⊗ yk

dk · yk
− Dkdk ⊗Dkdk

dk ·Dkdk
, (16)

where dk = xk+1 − xk and yk = ∇fk+1 −∇fk.
The best rate of convergence was reached by this method. For the initial guess 1 there are

only eight iteration steps necessary to achieve the solution. Low numbers of iterations imply
low CPU times in Tab. 4. It should be noted that the residual norm

∥∥xk − x∗
∥∥ for all initial

points except initial guess 5 is practically zero within four iterations. (see Fig. 9).
The BFGS is one of the most popular methods to solve unconstrained nonlinear optimization

problems. Low CPU times for all tested points confirm the effectiveness of this method (see
Tab. 4). It is a very good candidate for the local contact search algorithm.

8. Simplex Method

The algorithm of the simplex method consists of three rules (Lederer, 1988). The minimized
function is evaluated in all vertices. The first rule says that the vertex with the maximal function
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Figure 9: Dependence of
∥∥xk − x∗

∥∥ on the number of iterations for the BFGS method.

Table 4: Results of the BFGS method for all tested initial guesses.

n x∗ NI CPU time detH (x∗) H11 (x
∗)

1 (0.241,−0.926) 8 0.0136 1.24e-06 2.82e-03
2 (0.241,−0.926) 8 0.0149 1.24e-06 2.82e-03
3 (0.241,−0.926) 7 0.0132 1.24e-06 2.82e-03
4 (0.923, 0.810) 9 0.0174 -1.76e-06 7.46e-04
5 (0.923, 0.810) 23 0.0444 -1.76e-06 7.46e-04
6 (0.241,−0.926) 8 0.0154 1.24e-06 2.82e-03
7 (−3.804, 3.111) 8 0.0149 6.76e-06 2.53e-03

value is released. Instead, it is replaced by the new one.
In case the function value in the new vertex is maximal again, there is the second rule. Due

to the infinite loop, it is not allowed to return the vertex back in the consequential iteration.
Instead, the vertex with second highest function value is released.

And, at last, the third rule treats the case when one of the vertices is still on the same place.
This situation indicates that the simplex rotates above a local extremum. Therefore, the simplex
edge length a is halved after m iterations. According to (Lederer, 1988) the number m is
recommended to select

m = 1.65n+ 0.05n2, (17)

where n is the dimension. Fig. 10 shows how the simplex method works.
Although there are no evaluations of derivations in this method, CPU times in Tab. 5 are also

higher in comparison with other tested methods. This is, among other things, because MATLAB
is interpreted programming language. There are many iteration loops and if-else statements in
our code. Nevertheless, the implementation to a compiled language like FORTRAN could be
suitable for the local contact search.
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Figure 10: Iterations of the simplex method for the initial guess (−1, 1).

9. Conclusion

Four numerical methods for unconstrained optimization were tested by means of numerical ex-
ample which involves bending of two rectangular plates over a cylinder. All tested methods
were implemented in MATLAB code allowing colour graphical outputs. The results are sum-
marized in Tabs. 2, 3, 4 and 5. They show the numbers of iterations (NI) and the CPU time for
each tested method and initial guess.

It was shown that Newton-Raphson method is not suitable for local contact search due to the
strong nonlinearity of the square-distance function.

The line-search is crucial for a general success of quasi-Newton and gradient methods. It
significantly increases the effectiveness of methods.

It was shown that a significant increase of stability of the local contact search can be achieved
by the steepest descent method and especially by the BFGS method.

Due to the principle of the simplex method, a greater number of iterations was expected.
Although several good features of this method was showed, higher time consumption handicaps
this algorithm. Nevertheless, the implementation to a compiled language like FORTRAN could
significantly decrease the CPU time.

In conclusion, on the base of this very good results of the BFGS method with proposed



Table 5: Results of the simplex method for all tested initial guesses.

n x∗ NI CPU time detH (x∗) H11 (x
∗)

1 (0.241,−0.926) 190 0.2472 1.24e-06 2.82e-03
2 (0.241,−0.926) 192 0.2472 1.24e-06 2.82e-03
3 (0.241,−0.926) 184 0.2504 1.24e-06 2.82e-03
4 (3.649, 3.624) 210 0.2786 7.66e-06 6.33e-03
5 (0.241,−0.926) 196 0.2530 1.24e-06 2.82e-03
6 (0.241,−0.926) 200 0.2609 1.24e-06 2.82e-03
7 (−3.804, 3.111) 190 0.2381 6.76e-06 2.53e-03

line-search algorithm, we selected this method for the local contact search procedure.
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