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nalty function. The inadvisability of the Newton-Raphson method to minimize a
non-convex functions is showed on numerical example. Furthermore, the so-called
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the mentioned methods is compared in the conclusion.

Anotace V p°edkládané práci jsou studovány algoritmy pro lokální vyhledávání kon-
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veny tzv. kvazi-newtonské medoty a simplexová metoda. V záv¥ru porovnáváme
efektivitu studovaných metod.
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NOTATION

a length of simplex edge

a,b real vectors

A polynomial coe�cient

b width

d penetration vector

D slope of function

D secant matrix

E Young modulus

E Euclidean space

f square-distance function/general function

f body force vector

F internal force vector

h height/shape function

H matrix of shape functions/Hessian matrix

IG Gauss point counter

i, j summation counters

I identity matrix

JS surface Jacobian

k iteration counter

l length/linear function

L quadratic form

m simplex criterion number
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Notation

n normal vector

p search direction

q surface traction/quadratic function

r radius

r radius vector

r, s isoparametric coordinates

R prescribed vector of external forces

Rc equivalent force vector of contact forces

R real-number space

t step-length

t surface traction

tr, ts tangent vectors

u displacement vector/unite vector

w weighing coe�cients

x, y, z global coordinates

x vector of unknown variables

α, β, δ real numbers

γc contact surface of an element

Γ boundary of domain

Γc contact surface

ν Poisson's ratio

ξ penalty parameter

ψ strain energy function

ϕ one-dimensional restriction of a function f

Ω open domain
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CHAPTER

ONE

INTRODUCTION

The essential part of the solution of a contact problem in the �nite element method is to

locate probable contact areas reliably and e�ciently. Most contact searching algorithms

are based on the de�nition of master and slave contact surfaces, when the slave nodes

or integration points are checked on against master segments for penetration. The

local search, which consists in the determination of the exact position of the slave

node or integration point with respect to a given master segment, is a challenging and

time consuming task. Unfortunately, the analytical solution for �nding the distance

between the node/point and the segment does not exist for a general quadrilateral

contact segment. Furthermore, a lack of uniqueness in the computation of the shortest

distance to the master surface is manifested in the areas with high or discontinous

curvature. The Newton-Raphson iteration scheme is often used for the solution of this

minimization problem [3]. However, the method is expensive and can even diverge unless

the initial guess is quite accurate.

In this work, various methods for �nding the local and global minimizers of this

problem was tested. First, the least-square projection constructed as the linearized

Newton-Raphson scheme [3] and the method of steepest descent [9] were applied. Des-

pite of the simplicity both methods the rate of convergence was very low. Next, an alter-

native approach to the Newton-Raphson method, known as quasi-Newton methods, was

discussed. We considered the Broyden's method, the DFP (Davidon-Fletcher-Powell)

method [9] and the most popular quasi-Newton solver for �nite element applications, the
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Motivation

BFGS (Broyden-Fletcher-Goldfarb-Shanno) method [9, 8]. Finally, the simplex method

was used. The e�ectiveness of di�erent methods was tested in contact analysis using

the Gauss point search algorithm [5] implemented in the FE code PMD [1].

1.1 Motivation

For testing of the stability of the local contact search algorithm, the problem of bending

two rectangular plates over a cylinder was considered [5]. Two rectangular plates are

being bent over a cylinder (see Fig. 1.1). The plates are loaded by uniformly distributed

surface traction q = 22.5MPa. Material properties are: Young modules E = 2.1 ×

105 MPa, Poisson's ratio ν = 0.36 and dimensions: r = 0.4m, l = 2m, h = 0.08m,

b = 0.6m. The value of the penalty parameter was set to ξ = 1013 N·m-3. Due to triple

symmetry, only one eighth was modelled using 1168 twenty-node brick elements. The

FE mesh is plotted in Fig. 1.1.

r

l

b

h

q

Figure 1.1: Bending two rectangular plates over a cylinder.

As already mentioned, the Newton-Raphson method has been implemented in the

current version of the local contact search algorithm. In some cases, the instability of the

calculation of the normal contact vector occurred. The topology of this distorted contact

segment was used as the benchmark con�guration for numerical tests of considered

methods.
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Outlines of Master Thesis

1.2 Outlines of Master Thesis

The master thesis is based on the previous work and papers. In the seminar work

The Algorithm for Computing of The Normal Contact Vector (in Czech) the analysis of

the current local contact algorithm was made (summer term 2009/2010). Some of the

further work have been published in the following papers:

• J. Kopa£ka, D. Gabriel and J. Ple²ek. Review of Methods For Local Contact

Search. 3 rd GACM Colloquium on Computational Mechanics for Young Scientists

from Academia and Industry, Leinbiz Universität Hannover, 2009.

• J. Kopa£ka, D. Gabriel and J. Ple²ek. Review of Methods For Local Contact

Search. 14 th Colloquium - Computing of Constructions by Finite Element Method,

FME Brno University of Technology, 2009, (in Czech).

The master thesis is divided into �ve chapters. After the introduction in Chapter 1, the

brief overview of the contact algorithm is presented in Chapter 2. Special attention is

dedicated to the local contact search procedure in Section 2.2.

Chapter 3 is concerned with the applied methods essential for the local contact search.

The objective at Section 3.1 is to establish the parametrisation of the contact surfaces.

Then, the line-search technique is introduced in Section 3.3. Finally, the numerical

methods for unconstrained optimization are presented in Section 3.4

The obtained results are summarised in Chapter 4. The numerical test based on

the motivation example is formulated in Section 4.1. Then, achieved results by the

optimisation methods are discussed.

In the closing Chapter 5, the most important results are summarized and completed

by the discussion of some open questions related to further development of the present

methods.
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CHAPTER

TWO

OVERVIEW

2.1 Contact Algorithm

The contact algorithm for large displacement frictionless contact, designed in reference

[5], was implemented into the FE code PMD [1]. It is based on the pre-discretization

contact formulation which enables to perform the contact search on the element faces ra-

ther then nodes, preferably at the external Gaussian integration points. The variational

formulation with the contact constraint was derived in the form

∫
Ω0

δψ (u) dΩ =

∫
Ω0

f · δudΩ +

∫
Γ0
S

t · δudΓ +

∫
Γk
c1

ξdk
21 · δudΓ +

∫
Γk
c2

ξdk
12 · δudΓ, (2.1)

where Ω0 denotes the initial con�guration with the boundary Γ0, ψ(u) is the strain

energy function, u is the displacement �eld, f is the body force vector, t are the surface

tractions prescribed on Γ0
S ⊂ Γ0 and ξ is the penalty parameter. The iteration counter

is denoted by the index k. The penetrations d21, d12 prescribed on contact boundaries

Γk
c1, Γk

c2 will be discussed further.

Applying the �nite element method to the variational formulation (2.1), the discrete

problem in the form of nonlinear equilibrium equations was obtained as

F
(
uk
)

= R
(
uk
)

+ Rc1

(
uk
)

+ Rc2

(
uk
)
, (2.2)
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Local Contact Search

where F is the vector of internal forces, R is the vector of externally applied equivalent

nodal point forces and

Rc1 '
NIG∑
IG=1

ξIGH
T
IG

[
dk

21

]
IG
wIG detJS

IG,

Rc2 '
NIG∑
IG=1

ξIGH
T
IG

[
dk

12

]
IG
wIG detJS

IG,

(2.3)

are the vectors of contact forces imposing the contact constraint on Γk
c1, Γk

c2, respectively.

In this terms HT
IG denotes the matrix of shape functions, that will be discussed in

Section 3.1. The subscript IG denotes the Gaussian integration point of evaluation.

Further, wIG is the weighing coe�cient and JS
IG is the Jacobian matrix of the contact

surface.

The system of nonlinear equations (2.2) is solved by the customised BFGS algorithm

also proposed in [5]. Since contact boundaries are a priory unknown, they have to be

determined as a part of the solution. Therefore, a contact searching procedure has to

be employed to the algorithm. The purpose of this procedure is the evaluation of the

vectors Rc1, Rc2 (2.3), speci�cally the values of penetrations d12, d21 determined at

the Gaussian integration points. The scheme of the proposed searching algorithm is

possible to �nd in [4]. In the consequent section we will turn attention to the local

contact search, which is part of this procedure.

2.2 Local Contact Search

Let us consider the contact searching algorithm has already found contact pairs contai-

ning the slave Gaussian integration points and their corresponding master segments (for

detail see [4]). The aim of the local contact search is to compute the exact position of

the point r∗ on the master segment γ (see Fig. 2.1). The normal n constructed in the

point r∗ have to direct toward the given slave Gaussian integration point rIG. Then the

point r∗ is assumed to come in contact with the Gauss point rIG and the normal vector

n is used for the evaluation of the penetration d by the contact searching algorithm.

5
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t t

d

r s

r

r s

γ(r, s)

rIG

*

n

x

y

z

Figure 2.1: The formulation of the minimum distance problem.

Thus, let us consider the slave Gaussian integration point rIG ∈ E3 and the isopara-

metric master segment γ (r, s) ∈ E3 for which r, s ∈ [−1, 1]. Then the point r∗ has to

satisfy

‖rIG − r∗‖ ≤ ‖rIG − r‖ , for∀r ∈ γ. (2.4)

For this purpose, the so-called square-distance function is de�ned as

f (r, s) = [xIG − x (r, s)]2 + [yIG − y (r, s)]2 − [zIG − z (r, s)]2 . (2.5)

Apparently, the desired point r∗ (r, s) has to satisfy the necessary conditions for local

extremum of (2.5)

∂f

∂r
= 0,

∂f

∂s
= 0, (2.6)

that is

∂x

∂r
· (xIG − x) +

∂y

∂r
· (yIG − y) +

∂z

∂r
· (zIG − z) = 0,

∂x

∂s
· (xIG − x) +

∂y

∂s
· (yIG − y) +

∂z

∂s
· (zIG − z) = 0.

(2.7)

Although the function (2.5) is non-convex, and more local extrema may exist, the only

local minimum is assumed in the closed domain de�ned by r, s ∈ [−1; 1]. The mini-

mization of the square-distance function (2.5) leads to the problem of unconstrained

optimization. Therefore, several methods will be presented in Section 3.4.
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CHAPTER

THREE

APPLIED METHODS

3.1 Three-dimensional Quadrilateral Element

The geometry of contact surfaces is interpolated by the three-dimensional quadrilateral

eight-node element. The coordinate interpolations are

x (r, s) =
8∑

i=1

hi (r, s)xi y (r, s) =
8∑

i=1

hi (r, s) yi z (r, s) =
8∑

i=1

hi (r, s) zi, (3.1)

where hi (r, s) , i = 1, . . . , 8 for r, s ∈ [−1; 1] are the shape functions and xi, yi, zi are the

coordinates of element nodes. The shape functions of eight-node quadrilateral element

shown in Fig. 3.1 are expressed in the form [2]

h1 = 0.25(1− r)(1− s)− 0.5h5 − 0.5h8,

h2 = 0.25(1 + r)(1− s)− 0.5h5 − 0.5h6,

h3 = 0.25(1 + r)(1 + s)− 0.5h6 − 0.5h7,

h4 = 0.25(1− r)(1 + s)− 0.5h7 − 0.5h8,

h5 = 0.5(1− r2)(1− s),

h6 = 0.5(1− s2)(1 + r),

h7 = 0.5(1− r2)(1 + s),

h8 = 0.5(1− s2)(1− r).

(3.2)

7



Quadratic Approximation

The fundamental property of a shape function hi is that its value in the natural

coordinate system is unity at node i and zero at all other nodes.

1

2

3

4

5

6
7

8

(-1, -1)

(0, -1)

(1, -1)

(1, 0)

(1, 1)
(0, 1)

(-1, 1)

(-1, 0)

rs

x
y

z

Figure 3.1: A quadrilateral element with eight nodes.

3.2 Quadratic Approximation

In this work, the approach of an approximation of a minimized function by a quadratic

function is used. Therefore, in this section we will explain the basic point of this concept.

To a general function f (x) : Rn → Rn with continuous second partial derivatives can

be assigned a symmetric matrix

H (x) =


∂f (x)

∂x1∂x1
· · · ∂f (x)

∂x1∂xn
...

. . .
...

∂f (x)

∂xn∂x1
· · · ∂f (x)

∂xn∂xn

 . (3.3)

This matrix is known as the Hessian matrix. The function f (x) can be approximated

in a point xk by quadratic form. It is simply a scalar, quadratic function of a vector

with the form

L (x) =
1

2

(
x− xk

)T
Hk
(
x− xk

)
−
(
∇fk

)T (
x− xk

)
+ fk, (3.4)

where Hk ∈ Rn,n is the Hessian matrix, ∇fk ∈ Rn and fk ∈ R. The stationary point of

such a quadratic function has to satisfy the necessary condition for the local extremum

∇L (x) = Hk
(
x− xk

)
−∇fk = 0, (3.5)

8



Quadratic Approximation

resulting the simple system of n linear equations is

Hk
(
x− xk

)
= ∇fk. (3.6)

The su�cient condition for a local extremum is apparent from Fig. 3.2. If Hk is

positive de�nite, then the quadratic function L (x) has the global minimum in the

stationary point. If Hk is negative de�nite, then L (x) has the global maximum in the

stationary point. If Hk is inde�nite, there is a saddle point in the stationary point.

And �nally, if Hk is singular, the system (3.6) has in�nitely solutions. The positive

de�niteness, the negative de�niteness and the inde�niteness of the matrix Hk is directed

by the principal minors. For detail see for example [9]. The principal minors for Hk ∈

R2,2 are Hk
11 and detHk. According to their sign, it is possible to recognize the type of

a local extremum (see Tab. 3.1).

x
2 x

1

f(
x
)

f(
x
)

x
2 x

1

a) Hk is positive de�nite b) Hk is negative de�nite

f(
x
)

x
2 x

1

x
2 x

1

f(
x
)

c)Hk is inde�nite d)Hk is singular

Figure 3.2: The geometrical interpretation of a two-dimensional quadratic form.
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Quadratic Approximation

detHk > 0 detHk < 0 detHk = 0
Hk

11 > 0 Hk
11 < 0 Hk

11 ∈ R Hk
11 ∈ R

positive de�nite negative de�nite inde�nite singular
minimum maximum saddle point �

Table 3.1: The positive de�niteness, the negative de�niteness, the inde�niteness
and the singularity of the matrix Hk ∈ R2,2.

Apparently, unlike the quadratic form (3.2), if the Hessian matrix is evaluated in the

stationary point of a general function f (x), no global extremum, but only local one can

be determined.

x
1

x
2

−0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6

−1.5

−1.4

−1.3

−1.2

−1.1

−1

−0.9

−0.8

−0.7

−0.6

Figure 3.3: Minimization of a quadratic form by the Newton-Raphson method
and the steepest descent method.

For illustration, Fig. 3.3 shows minimization of a quadratic form using the Newton-

Raphson method and the steepest descent method, which will be discussed in Section 3.4.

Since the steepest descent method works only with �rst derivatives, it has no information

10



Line-search Technique

about curvature of a function. Note the zigzag path of the steepest descent, which

appears because each gradient is orthogonal to the previous gradient [9, p. 101]. In

comparison with this method, the Newton-Raphson method minimizes a quadratic form

in one step (see the dash line in Fig. 3.3) because it directly solves the linear system

(3.6).

3.3 Line-search Technique

Each iteration of a line-search method computes a search direction pk ∈ Rn and then

decides how far to move along that direction. The iteration is given by

xk+1 = xk + tkpk, (3.7)

where the positive scalar tk ∈ R is called the step-length. The success of a line-search

method depends on the e�ective choices of both the direction pk and the step-length

parameter tk. Most line-search algorithms require pk to be a descent direction for which

pk · ∇fk < 0. The search direction often has the form

pk = −Dk∇fk, (3.8)

where Dk ∈ Rn,n is a suitable matrix. Let us consider that Dk is positive de�nite. From

multiplication of (3.8) by ∇fk arise

pk · ∇fk = −
(
Dk∇fk

)
· ∇fk < 0. (3.9)

Thus, the positive de�niteness of Dk guarantee a descent direction of pk. How to

compute the matrix Dk will be discussed in Section 3.4. We now give attention to the

choice of the step-length parameter tk. Its computation is based on the restriction of a

minimized function f (x) to the ray from a point xk in the search direction pk

ϕ (t) = f
(
xk + tpk

)
, t > 0. (3.10)

Apparently, the exact minimization of this function is computationally expensive. To

�nd even a local minimizer of ϕ (t) generally requires too many evaluations of the mini-

mized function f (x). In the reference [8], more sophisticated strategies are mentioned

11



Numerical Methods for Unconstrained Optimization

to perform an inexact line-search to identify a step-length that achieves reductions in

f (x).

We assume that pk is a descent direction, that is, ϕ′ (0) < 0. Then, the square-

distance function (2.5) can be approximated by the quadratic form (3.4). Then, the step-

length can be computed analytically by the one-dimensional minimizer of the quadratic

function along the ray xk + tpk

tk = −
(
∇fk

)T
pk

(pk)
T
Hkpk

. (3.11)

Note that for a general nonlinear function f (x) : Rn → Rn, especially of higher dimen-

sion n, this approach could be expensive, because the exact Hessian matrix is required in

the relation (3.11). However, since the square-distance function (2.5) is the polynomial

(see Section 4.1.1), the Hessian matrix is easily evaluated.

t

φ(t) = f (x  + t p )kk

q(t) = L(x  + t p )kk

kt

Figure 3.4: The quadratic interpolation of ϕ (t).

3.4 Numerical Methods for Unconstrained

Optimization

3.4.1 Newton-Raphson Method

This method has been implemented in the current version of the local contact searching

algorithm [5]. The numerical scheme of this method is based on the �rst-order Taylor's

series expansion of (2.6) about xk

12
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∂f (r, s)

∂r
' ∂f

∂r

∣∣∣∣
xk

+
∂2f

∂r2

∣∣∣∣
xk

(
rk+1 − rk

)
+

∂2f

∂r∂s

∣∣∣∣
xk

(
sk+1 − sk

)
= 0,

∂f (r, s)

∂s
' ∂f

∂s

∣∣∣∣
xk

+
∂2f

∂r∂s

∣∣∣∣
xk

(
rk+1 − rk

)
+
∂2f

∂s2

∣∣∣∣
xk

(
sk+1 − sk

)
= 0.

(3.12)

Written in matrix form, this becomes


∂2f

(
rk, sk

)
∂r2

∂2f
(
rk, sk

)
∂r∂s

∂2f
(
rk, sk

)
∂r∂s

∂2f
(
rk, sk

)
∂s2

 ·
 rk+1 − rk

sk+1 − sk

 = −


∂f
(
rk, sk

)
∂r

∂f
(
rk, sk

)
∂s

 . (3.13)

Denote the Hessian matrix

Hk =


∂2f

(
rk, sk

)
∂r2

∂2f
(
rk, sk

)
∂r∂s

∂2f
(
rk, sk

)
∂r∂s

∂2f
(
rk, sk

)
∂s2

 , (3.14)

the vector of isoparametric coordinates

xk =

 rk

sk

 , xk+1 =

 rk+1

sk+1

 (3.15)

and the gradient

∇fk =


∂f
(
rk, sk

)
∂r

∂f
(
rk, sk

)
∂s

 . (3.16)

Finally, the numerical scheme of the Newton-Raphson method can be written in the

form

xk+1 = xk −
(
Hk
)−1
∇fk. (3.17)

13
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A Hessian matrix Hk could be substituted into the quadratic form (3.4). The

consequent iteration xk+1 lies in the computation of stationary point of this quadra-

tic form. In fact, the scheme of the Newton-Raphson method is also possible to obtain

by di�erentiation of the relation (3.4).

3.4.2 Least-square Projection

Whereas the Newton-Raphson method is based on the linear approximation of equations

(2.7), the least-square projection (LSP) method constructs the tangent plane τ in the

point xk (see Fig. 3.5), i.e. linear approximation of equations (3.1)

x (r, s) ' x|xk +
∂x

∂r

∣∣∣∣
xk

(
rk+1 − rk

)
+
∂x

∂s

∣∣∣∣
xk

(
sk+1 − sk

)
,

y (r, s) ' y|xk +
∂y

∂r

∣∣∣∣
xk

(
rk+1 − rk

)
+
∂y

∂s

∣∣∣∣
xk

(
sk+1 − sk

)
,

z (r, s) ' z|xk +
∂z

∂r

∣∣∣∣
xk

(
rk+1 − rk

)
+
∂z

∂s

∣∣∣∣
xk

(
sk+1 − sk

)
.

(3.18)

r

 

t t

d

r
s

r s

τ

Γ

IG

[r    ,s    ]k+1 k+1

[r ,s  ]k k 

Figure 3.5: The principle of the LSP method.

The minimum distance problem between the Gaussian integration point rIG and the

tangent plane τ leads to the same equations like (2.7). Since equations (3.18) are linear,

its partial derivations are constants and equations (2.7) are linear now as well. Let us

introduce vectors

14
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dk = {xIG − x, yIG − y, zIG − z}|xk ,

tkr =

{
∂x

∂r
,
∂y

∂r
,
∂z

∂r

}∣∣∣∣
xk

,

tks =

{
∂x

∂s
,
∂y

∂s
,
∂z

∂s

}∣∣∣∣
xk

.

(3.19)

Substituting relations (3.18) into (2.7) and using vectors (3.19) we obtain the numerical

scheme

 tkr · tkr tkr · tks

tkr · tks tks · tks

 ·
 rk+1

sk+1

 = −

 tkr · dk

tks · dk

 . (3.20)

3.4.3 Method of Steepest Descent

The principle of this method is a simple consequence of the chain rule [10, p. 105]. Let

us restrict the function f (x) : Rn → Rn to the ray from a given point x0 ∈ Rn in a

given direction of unit vector u ∈ Rn

f (t) = f
(
x0 + tu

)
, t ≥ 0. (3.21)

By the chain rule

df (t)

dt
= ∇f

(
x0 + tu

)
· u, (3.22)

so that

df (0)

dt
= ∇f

(
x0
)
· u (3.23)

measures the rate of change of f (x) at x0 in the direction of u. For this reason, df(0)
dt is

usually called the directional derivative of f (x) at x0 in the direction u and is denoted

by

∇uf
(
x0
)
. (3.24)

It is apparent from the name of the method, that the steepest descent of f (x) in the
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direction u is demanded. By the Cauchy-Schwartz Inequality [9, p. 98]

−
∥∥∇f (x0

)∥∥ = −
∥∥∇f (x0

)∥∥ · ‖u‖ ≤ ∇f (x0
)
· u = ∇fu

(
x0
)
· u

≤
∥∥∇f (x0

)∥∥ · ‖u‖ =
∥∥∇f (x0

)∥∥ . (3.25)

Consequently, the directional derivative ∇uf
(
x0
)
is as negative as possible when there

is equality in the leftmost inequality in (3.25). This happens when u is the unit vector

u = −
∇f

(
x0
)

‖∇f (x0)‖
. (3.26)

Thus, the vector u is identical with the normalized negative gradient ∇f (x). Now,

the method of steepest descent can be formulated as follows. Suppose that f (x) is a

function with continuous �rst partial derivatives on Rn and that x0 ∈ Rn. Then the

steepest descent sequence
{
xk
}
with the initial point x0 for minimizing f (x) is de�ned

by the recurrence formula

xk+1 = xk − tk∇fk, (3.27)

where the step-length tk is computed by the line-search procedure (see Section 3.3). In

the context of the relations (3.7) and (3.8), the steepest descent method is the easiest

line-search method for which Dk is the identity matrix and the search direction pk is

the negative gradient.

3.4.4 Broyden’s Method

Broyden's method is a generalization of the secant method to multiple dimensions as

well as the Newton-Raphson is a generalization of Newton's tangent method. Therefore,

let us begin with the secant method. The principle is depicted in Fig. 3.6.
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x
xk-1xkxk+1

∇f
k-1

∇f

∇f
k l    (x)

k+1

l (x)
k

Figure 3.6: The geometrical interpretation of the secant method.

The slope Dk of the secant in the kth iteration can be computed with the aid of the

1D secant condition

Dk
(
xk − xk−1

)
= ∇fk −∇fk−1. (3.28)

Then, the linear approximation

lk (x) = ∇fk +Dk
(
x− xk

)
(3.29)

passes through
(
xk−1,∇fk−1

)
and

(
xk,∇fk

)
, and the new point xk+1 is obtained from

the solution of lk (x) = 0. Next, we construct new secant Dk+1 and the process is

repeated. This basic feature of the secant method in one dimension is retained for

Broyden's method in multiple dimensions. We insist that the matrix Dk+1 is selected

so that the nD secant condition

Dk+1
(
xk+1 − xk

)
= ∇fk+1 −∇fk (3.30)

is satis�ed. Note that this equation is under determined in more than one dimension,

since it prescribes only one image vector for the matrix transformation Dk+1 on Rn.

The intention of Broyden's method is to make the matrix Dk+1 as simple to compute

as possible. One way to achieve the desired simplicity is to de�ne this matrix in such a

way that it is completely de�ned by prescribing two vectors in Rn. The update of Dk

was chosen to be rank-one matrix of the form
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Dk+1 = Dk + ak ⊗ bk, (3.31)

where the symbol ⊗ denotes the outer product or the tensor product. Before the deter-

mination of the vectors ak and bk let us recall the identity [9, p. 115]

(
ak ⊗ bk

)
xk =

(
bk · xk

)
ak, (3.32)

where ak, bk and xk are column vectors. The substitution of (3.31) into the secant

condition (3.30) yields

(
Dk + ak ⊗ bk

)(
xk+1 − xk

)
= ∇fk+1 −∇fk. (3.33)

Rewrite this equation with the aid of (3.32) as

[
bk ·

(
xk+1 − xk

)]
ak = ∇fk+1 −∇fk −Dk

(
xk+1 − xk

)
. (3.34)

It follows that once bk has been chosen, then ak is determined by the equation

ak =
∇fk+1 −∇fk −Dk

(
xk+1 − xk

)
bk · (xk+1 − xk)

. (3.35)

In the reference [9, p. 116], it can be found the relation which presents the di�erence

between the linear approximations (3.29)

lk+1 (x)− lk (x) =
[
bk ·

(
x− xk

)]
ak. (3.36)

Broyden designed that whenever the vector x− xk is orthogonal to xk+1 − xk, then

lk+1 (x)− lk (x) = 0. (3.37)

It can be veri�ed by direct substitution into (3.36) that if

bk = xk+1 − xk, (3.38)

then the condition (3.37) is satis�ed. Finally, the terms (3.35), (3.38) for ak , bk

respectively determine the update (3.31) of Dk.

Suppose that f (x) is a function with continuous second partial derivatives on Rn,
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that x0 ∈ Rn and D0 ∈ Rn,n. Then the Broyden's method sequence
{
xk
}
is de�ned by

the recurrence formula

xk+1 = xk − tk
(
Dk
)−1
∇fk, (3.39)

where the update of Dk is computed by

Dk+1 = Dk +

(
∇fk+1 −∇fk

)
−Dk

(
xk+1 − xk

)
(xk+1 − xk) · (xk+1 − xk)

⊗
(
xk+1 − xk

)
. (3.40)

3.4.5 BFGS Method

In this section we will present very e�ective minimization method, the Broyden-Fletcher-

Goldfarb-Shanno (BFGS) method. This method requires no evaluation of the Hessian

matrix and retains the secant feature of Broyden's method. Moreover, the BFGS method

was developed so that the search direction −
(
Dk
)−1∇fk at xk is always a descent

direction because there is guarantee that Dk is positive de�nite.

The rank-one update ak ⊗ bk is not symmetric unless ak, bk are positive multiples

of one another, and ak ⊗ bk is inde�nite unless ak, bk are positive multiples of one

another [9, p. 124]. Thus, if the positive de�niteness of Dk is insisted, then ak = αkbk

for αk > 0, αk ∈ R must be valid. But now there is no enough �exibility to obtain the

secant condition. This di�culty is overcome by rank-two update

Dk+1 = Dk + αk
(
ak ⊗ ak

)
+ βk

(
bk ⊗ bk

)
, (3.41)

where αk, βk ∈ R and ak, bk ∈ Rn. The secant condition (3.30) forces

[
Dk + αk

(
ak ⊗ ak

)
+ βk

(
bk ⊗ bk

)](
xk+1 − xk

)
= ∇fk+1 −∇fk. (3.42)

Let us impose the vectors dk = xk+1−xk, yk = ∇fk+1−∇fk and rewrite the last term

with the aid of the identity (3.32) as

Dkdk + αk
(
ak · dk

)
ak + βk

(
bk · dk

)
bk = yk. (3.43)

If we set ak = yk and bk = Dkdk, then the preceding equation yields
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Dkdk + αk
(
yk · dk

)
yk + βk

(
Dkdk · dk

)
Dkdk = yk. (3.44)

Apparently, this equation is satis�ed if we set

αk
(
yk · dk

)
= 1,

βk
(
Dkdk · dk

)
= −1,

(3.45)

that is,

αk =
1

yk · dk
,

βk = − 1

Dkdk · dk
.

(3.46)

The update (3.41) is completely de�ned now. Suppose that f (x) is a function with

continuous second partial derivatives on Rn. To minimize f (x), select an initial point

x0 ∈ Rn and an initial positive de�nite matrix D0 ∈ Rn,n. Then the BFGS method

sequence
{
xk
}
is de�ned by the recurrence formula

xk+1 = xk − tk
(
Dk
)−1
∇fk. (3.47)

The update of Dk is computed by

Dk+1 = Dk +
yk ⊗ yk

dk · yk
− Dkdk ⊗Dkdk

dk ·Dkdk
, (3.48)

where dk = xk+1− xk and yk = ∇fk+1−∇fk. Since the inversion of Dk is required in

the recurrence formula (3.47), the update (3.48) is usually rewritten by the Sherman-

Morrison-Woodbury formula [8] in form

(
Dk+1

)−1
=

yk ⊗ yk

dk · yk
+

(
I − dk ⊗ yk

dk · yk

)(
Dk
)−1

(
I − dk ⊗ yk

dk · yk

)
. (3.49)

However, there is no problem with the inversion of Dk in the local contact search, since

Dk ∈ R2,2. The initial matrix D0 is often set to some multiple βI of the identity matrix,

but there is no good general strategy for choosing β [8]. If βis too large, then �rst step

p0 = −β∇f0 is too long. Some software asks the user to prescribe a value δ for the

norm of the �rst step, and then set D0 = δ
∥∥∇f0

∥∥ · I. We will use this concept with

δ = 1 for all quasi-Newton methods.
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3.4.6 DFP Method

Another famous method is the Davidon-Fletche-Powell (DFP) method. Instead of up-

dating the matrices Dk in

xk+1 = xk − tk
(
Dk
)−1
∇fk (3.50)

as in the BFGS method, the DFP method updates their inverses and yet retains the

features of a secant method. The inverse secant condition is

xk+1 − xk = Dk+1
(
∇fk+1 −∇fk

)
. (3.51)

The update of Dk is currently performed by

Dk+1 = Dk + αk
(
ak ⊗ ak

)
+ βk

(
bk ⊗ bk

)
, (3.52)

where αk, βk ∈ R and ak, bk ∈ Rn will be determined by the substitution of the last

term into the inverse secant condition (3.51)

dk = Dkyk + αk
(
ak · yk

)
ak + βk

(
bk · yk

)
bk, (3.53)

where dk = xk+1−xk and yk = ∇fk+1−∇fk. If we set ak = dk and bk = Dkyk, then

the equation (3.53) is satis�ed for

αk =
1

dk · yk
,

βk = − 1

yk ·Dkyk
.

(3.54)

Finally, suppose that f (x) is a function with continuous second partial derivatives

on Rn. To minimize f (x), select an initial point x0 ∈ Rn and an initial positive de�nite

matrix D0 ∈ Rn,n. Then the DFP method sequence
{
xk
}
is de�ned by the recurrence

formula

xk+1 = xk − tkDk∇fk. (3.55)

The update of Dk is computed by
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Dk+1 = Dk +
dk ⊗ dk

yk · dk
− Dkyk ⊗Dkyk

yk ·Dkyk
, (3.56)

where dk = xk+1 − xk, yk = ∇fk+1 −∇fk.

3.4.7 Simplex Method

In geometry, a simplex is a generalization of the motion of a triangle or tetrahedron

to arbitrary dimension. Speci�cally, an n-simplex is an n-dimensional polytope with

n+ 1 vertices whereas the distance between each of them is equal. Examples of such a

simplex is depicted in Fig. 3.7.

n = 1 n = 2 n = 3 

Figure 3.7: Examples of simplexes.

The algorithm of the simplex method consists of three rules [6]. The minimized

function is evaluated in all vertices. The �rst rule says that the vertex with the maximal

function value is released. Instead, it is replaced by the new one according to Fig. 3.8

>f
1

k
f
2

k

>f
1

k
f
3

k

f
1

k

f
1

k+1

f
2

k+1
f   =
2

k

f
3

k+1
f   =
3

k

Figure 3.8: First rule of the simplex method.

In case the function value in the new vertex is maximal again, there is the second

rule (see Fig. 3.9). Due to the in�nite loop, it is not allowed to return the vertex back

in the consequential iteration. Instead, the vertex with second highest function value is

released.
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f
i

k+1
f     =
i

k-1

f
i

k

Figure 3.9: Second rule of the simplex method.

And, at last, the third rule treats the case when one of the vertices is still on the

same place. This situation indicates that the simplex rotates above a local extremum.

Therefore, the simplex edge length a is halved after m iterations. According to [6] the

number m is recommended to select

m = 1.65n+ 0.05n2, (3.57)

where n is the dimension. Fig. 3.10 shows such a case for n = 2.

1
2

3

4

5

6

Figure 3.10: Third rule of the simplex method.

In this place, we would like to mention the Nelder-Mead method [7]. The authors

proposed several improvement of the simplex method. Whereas in the classic simplex

method the distance between each vertices is identical, the Nelder-Mead method per-

forms expansion or contraction of the simplex. It allows an increase of the convergence

rate.
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CHAPTER

FOUR

RESULTS

4.1 Numerical Example

The e�ectiveness of the methods, discussed in previous chapter, was tested by means

of a numerical test, which involves example introduced in Section 1.1. Fig. 4.1 shows

the deformed shape of the FE mesh at the moment the instability of the calculation of

the normal vector by the Newton-Raphson method occurred. Due to the regularity of

the sti�ness matrix, the plate and the cylinder are connected in the centre of symmetry.

This connection causes considerable deformation.

d
k

r
k

IG

r
k

Figure 4.1: Deformed shape of the plate at that moment the instability of the
calculation of the normal vector occurred.
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Furthermore, the detail of distorted master segment is plotted in Fig. 4.1, where

contours of the square-distance function (2.5) are depicted for the isoparametric coor-

dinates r, s ∈ [−1, 1]. The topology of this master segment was used as the benchmark

con�guration for numerical test. The red abscissa denotes the penetration vector dk

between the Gaussian integration point rkIG and the point rk which is located on the

master segment.

Fig. 4.2 depicts the contours of the square-distance function (2.5) for the isoparametric

coordinates r, s ∈ [−5, 5].

d
k

r
k

IG

r''
k

r
k

r'
k

d'
k d''

k

Figure 4.2: The isoparametric interpolation of the master segment for r, s ∈
[−5, 5] including the contours of square-distance function.
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The parametrization (3.1) interpolates the contact surface just on closed domain de-

�ned by r, s ∈ [−1, 1]. It is clear that the contact area beyond the domain r, s ∈ [−1, 1]

is not approximated well by the parametrization (3.1) . Therefore we are interested

only in local minima which both coordinate belong to interval [−1, 1]. Fig. 4.3 shows

three possible solutions rk, r′k, r′′k of the nonlinear system (2.7) plotted in the three

dimensional space. Although the square-distance function (2.5) has the global minimum

in the point r′k , we are interested only in local minimum rk, which lies in the domain

r, s ∈ [−1, 1]. Note that there are two saddle points in Fig. 4.3, which also ful�ls the

necessary condition for local extremum (2.7).

r
k
IG

d''k

r''k

r'k

d'k

d
k

r
k

saddle point

saddle point

Figure 4.3: Di�erent point of view on the isoparametric interpolation of the mas-
ter segment for r, s ∈ [−5, 5].
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From above discussion arises these requirements on methods for calculating the nor-

mal contact vector:

• convergence to the nearest local minimum,

• neglect of the saddle points,

• fast rate of convergence.

4.1.1 Square-distance Function

In the optimization theory a function to be minimized is called the objective function.

Although the methods presented in Chapter 3.4 belong to the class of iterative methods

for unconstrained optimization, we will prefer the term square-distance function to the

objective function.

If the coordinate interpolations (3.1), the shape functions (3.2) and the coordinates of

element nodes are substituted into (2.5), the square-distance function has the following

form

f (r, s) =
3∑

i=1

A1,ir
4s2 +A2,ir

3s3 +A3,ir
2s4 +A4,ir

4s+A5,ir
3s2

+ A6,ir
2s3 +A7,irs

4 +A8,ir
4 +A9,ir

3s+A10,ir
2s2 +A11,irs

3

+ A12,is
4 +A13,ir

3 +A14,ir
2s+A15,irs

2 +A16,is
3 +A17,ir

2

+ A18,irs+A19,is
2 +A20,ir +A21,is+A22,i,

(4.1)

where Aj,i (xi, yi, zi), j = 1, . . . , 22 are new polynomial coe�cients. Note that function

(4.1) is a polynomial of sixth order in two variables r, s. Whereas in Figs. 4.2, 4.3 the

3D contours of this function are plotted over a given topology of segment. Fig. 4.4

represents 2D contours of the function (4.1) for the isoparametric coordinates r, s. The

boundaries of the master segment are denoted by the black square in this �gure.

4.1.2 Initial Guess

The important part of the assessment of methods for local contact search is a good choice

of the initial guess. For the purpose of numerical tests seven initial guesses, depicted
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in Fig. 4.4, were considered. Their coordinates are showed in Tab. 4.1. The �rst one is

the estimation used in the current version of the local contact search algorithm in the

FE code PMD. Its coordinates are obtained by one iteration of LSP method discussed

in Section 3.4.2 for r0 = s0 = 0. Another four initial guesses were chosen in the corners

of the master segment and the sixth one in the origin of the isoparametric coordinates.

The position of the last guess was selected beyond boundaries of the master segment

near the local minimum r′′k (see Fig. 4.3). The Hessian matrix is not positive de�nite

in this initial guess.
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m

 ]2
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2 3

45

6

7

Figure 4.4: The objective function and chosen initial guesses.

n 1 2 3 4 5 6 7

Coor. (0.83,−0.62) (−1,−1) (1,−1) (1, 1) (−1, 1) (0, 0) (−2.8, 3)

Table 4.1: Isoparametric coordinates of chosen initial guesses.
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4.1.3 Criterion of Convergence

There are more then one way how to check the convergence. Due to simplicity and

comparability of the tested method, the Euclidean norm of the vector xk − xk−1 was

selected. The calculation is �nished when

∥∥∥xk − xk−1
∥∥∥ ≤ 1e−10. (4.2)

29



Newton-Raphson Method

4.2 Newton-Raphson Method

The Newton-Raphson method is implemented in the current version of the local contact

search algorithm in the FE code PMD. The iteration process for three di�erent initial

guesses is depicted in Figs. 4.5, 4.7, 4.8. First initial guess was computed by one iteration

of the least-square projection method. Its coordinates are (0.83,−0.62). The Newton-

Raphson method computes an exact Hessian matrix Hk in a point xk. Since the Hessian

matrix H0 and H10 are inde�nite (see Fig. 3.2), the approximations of solution x1 and

x11 jump far from the previous iterations randomly (see Fig. 4.6). The Newton-Raphson

converges to the stationary point (0.241,−0.926) in 28 iterations.
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Figure 4.5: Iterations of the Newton-Raphson methods for the initial guess
(0.83,−0.62).

Tab. 4.2 shows results for all tested initial guesses. For each of them there are the
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Newton-Raphson Method

coordinates of solution, the number of iterations (NI), the CPU time and the value of

principal minors of the Hessian matrix for the determination of the type of stationary

point (see Tab. 3.1). Since both principal minors of the Hessian matrix are positive

in the point (0.241,−0.926), the square-distance function (4.1) has the local minimum

here.
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Figure 4.6: Dependence of
∥∥xk − x∗

∥∥ on the number of iterations for the Newton-
Raphson method.

Iterations for the initial guess (−2.8, 3) is depicted in Fig. 4.7. This starting point was

chosen intentionally beyond boundaries of the master segment close to other local mi-

nimum. The convergence to this local minimum was being expected. Since the Hessian

matrix in the initial guess is again inde�nite, �rst two iterations carry the solution far

from the expected local minimum. Then the solution converge to the stationary point

(0.923, 0.810) in 9 iterations. Since the determinant of the Hessian matrix is negative in

this point (see Tab. 4.2), the square-distance function (4.1) has the saddle point here.

The last tested initial guess which is being discussed in detail is the origin of the

isoparametric coordinates (see Fig. 4.8). The situation is di�erent at this point, since

the square-distance function is convex in a neighbourhood of the origin. The Hessian

matrix is positive de�nite for a convex function and the convergence rate of the Newton-

Raphson method is quadratic now. The nearest local minimum is reached in 5 iterations.
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Figure 4.7: Iterations of the Newton-Raphson methods for the initial guess
(−2.8, 3).

Finally, we turn attention to the initial approximations lying on the boundary domain

of the isoparametric coordinates r, s. Tab. 4.2 shows that solutions for initial guesses

(1,−1) and (1, 1) converge to the same saddle point like (−2.8, 3) (see Fig. 4.7). Also

the result for the initial guess (−1, 1) is a saddle point. And the last initial guess whose

coordinates are (−1,−1) converges to the local minimum (0.241,−0.926).

If the initial guess lies in a sub-domain where the square-distance function is convex,

as the starting point in Fig. 4.8, the solution converges quadratically. However, the

convergence of the Newton-Raphson method is generally di�cult to achieve since the

Hessian matrix of the function to be minimized (4.1) is not positive de�nite. We can

conclude that the Newton-Raphson method is not suitable method for the local contact

search algorithms.
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Figure 4.8: Iterations of the Newton-Raphson methods for the initial guess (0, 0).

x0 x∗ NI CPU time detH (x∗) H11 (x
∗)

(0.83,−0.62) (0.241,−0.926) 28 0.0366 1.24e-06 2.82e-03
(−1,−1) (0.241,−0.926) 12 0.0163 1.24e-06 2.82e-03
(1;−1) (0.923, 0.810) 17 0.0223 -1.76e-06 7.46e-04
(1, 1) (0.923, 0.810) 5 0.0073 -1.76e-06 7.46e-04
(−1, 1) (−2.167, 2.133) 12 0.0162 -2.68e-06 -2.29e-04
(0, 0) (0.241,−0.926) 5 0.0074 1.24e-06 2.82e-03

(−2.8, 3) (0.923, 0.810) 9 0.0130 -1.76e-06 7.46e-04

Table 4.2: Results of the Newton-Raphson method for all tested initial guesses.
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4.3 Least-square Projection

In this section, the performance of the least-square projection method is investigated.

Despite the excessive number of iterations, which is greater than one hundred for all

initial guesses, the CPU time is relatively low. Tab. 4.3 indicates interesting fact that

this method always converges to the global minimum. Furthermore, Figs. 4.9, 4.11 show

another remarkable property of the method. Although the criterion of convergence is

satis�ed upon one hundred iterations, the solution is close to the global minimum up to

twenty iteration steps. This fact is also con�rmed in Fig. 4.10, where residual vectors∥∥xk − x∗
∥∥ for �rst forty iterations are depicted.
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Figure 4.9: Iterations of the least-square projection method for the initial guess
(0, 0).
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Figure 4.10: Dependence of
∥∥xk − x∗

∥∥ on the number of iterations for the least-
square method.
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Figure 4.11: Iterations of the least-square projection method for the initial guess
(−2.8, 3).
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Method of Steepest Descent

In Fig. 4.3, the radius vector r′k denotes the global minimum of the square-distance

function (4.1) in three-dimensional space. Unfortunately, this point lies in general out

of the master segment domain and the penetration vector d′k is not acceptable. Due

to this reason the least-square projection method is inadvisable for the local contact

search.

x0 x∗ NI CPU time detH (x∗) H11 (x
∗)

(0.83,−0.62) (3.649, 3.624) 133 0.0160 8.03e-03 7.66e-06
(−1,−1) (3.649, 3.624) 137 0.0168 8.03e-03 7.66e-06
(1;−1) (3.649, 3.624) 124 0.0154 8.03e-03 7.66e-06
(1, 1) (3.649, 3.624) 116 0.0143 8.03e-03 7.66e-06
(−1, 1) (3.649, 3.624) 134 0.0167 8.03e-03 7.66e-06
(0, 0) (3.649, 3.624) 134 0.0165 8.03e-03 7.66e-06

(−2.8, 3) (3.649, 3.624) 124 0.0163 8.03e-03 7.66e-06

Table 4.3: Results of the least-square projection method for all tested initial
guesses.

4.4 Method of Steepest Descent

The method of steepest descent belongs to a class of methods known as the line-search

methods. As it was mentioned in Section 3.4.3, the search direction pk is equal to the

negative gradient. The step-length is computed by one dimensional quadratic interpo-

lation for �xed point xk and direction pk. The characteristic feature of this method for

minimization of a quadratic form is a zigzag trajectory toward converged solution.

Fig. 4.12 depicts typical iteration path toward the local minimum (0.241,−0.926) in

51 iterations. Tab. 4.4 shows results for all tested initial guesses.

Fig. 4.14 shows the iteration path for the initial guess (0, 0) pointing to the local mi-

nimum (0.241,−0.926). Comparison of the Newton-Raphson method and the method

of steepest descent for a domain where the square-distance function is convex, follows

from Figs. 4.8, 4.14 for the initial guess (0, 0). In this case, the Newton-Raphson me-

thod converges quadratically. For non-convex functions, the steepest descent guarantees

convergence to the nearest local minimum as is shown in Figs. 4.12, 4.14.
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Figure 4.12: Iterations of the method of steepest descent for the initial guess
(0.83,−0.62).

Another signi�cant feature of the steepest descent is insensibility to the saddle points.

It is verify in Tab. 4.4, where only the positive values of principal minors occur. This

is due to the Hessian matrix is not employed in the computation. Initial guess (1, 1)

was intended to test each method's behaviour in the vicinity of such a point. The cyan

break line in Fig. 4.13 implies certain �uctuation of residual vectors near the saddle

point (0.923, 0.810). However, the steepest descent method �nally converges to the

point (3.648, 3.624), where the square-distance function has its global minimum. Note

that other tested quasi-Newton methods do not share this feature.
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Figure 4.13: Dependence of
∥∥xk − x∗

∥∥ on the number of iterations for the steepest
descent method.
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Figure 4.14: Iterations of the method of steepest descent for the initial guess (0, 0).
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Figure 4.15: Iterations of the steepest descent method for the initial guess (−1, 1).

It is interesting to notice that the method su�ers from poor convergence for the

initial guess (−1, 1). What happened shows Fig. 4.15. The problem is not in the search

direction p0 but in the step-length t0. The square-distance function f (t) restricted

by p0 is depicted in Fig. 4.16. Since the initial guess (−1, 1) (where t = 0) lies close

to an in�ect point, the second derivative of f (t) is nearly zero. Then, the result of

the quadratic interpolation is a parabola with small curvature. As a result, the next

iteration in Fig. 4.15 jumps far from the expected solution. Nevertheless, we consider

this case as a singular perturbation which can be overcome by a reasonable initial guess

in the local contact search algorithm.
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Figure 4.16: The square-distance function restricted in the direction of p0.

x0 x∗ NI CPU time detH (x∗) H11 (x
∗)

(0.83,−0.62) (0.241,−0.926) 51 0.1647 1.24e-06 2.82e-03
(−1,−1) (0.241,−0.926) 28 0.0923 1.24e-06 2.82e-03
(1;−1) (0.241,−0.926) 14 0.04451 1.24e-06 2.82e-03
(1, 1) (3.648, 3.624) 29 0.0951 7.66e-06 6.33e-03
(−1, 1) (3.648, 3.624) 1543 5.2326 7.66e-06 6.33e-03
(0, 0) (0.241,−0.926) 71 0.2231 1.24e-06 2.82e-03

(−2.8, 3) (−3.804, 3.111) 13 0.0414 6.76e-06 2.53e-03

Table 4.4: Results of the method of steepest descent for all tested initial guesses.

Although the initial guess (−1, 1) uncovers an imperfection of the implemented line-

search procedure, the remaining initial guess achieve a good convergence rate. Thus,

with assumption of a reasonable starting point this method is suitable for the local

contact search algorithms. In the next section we turn attention to results obtained by

the quasi-Newton methods.
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4.5 Broyden’s Method

Broyden's method requires the selection of the initial secant matrix D0. It plays a

critical role in computation of the �rst search direction p0. A good idea is to select

some positive de�nite matrix ensuring a descent direction of p0. In Section 4.2 was

shown that an exact Hessian matrix H0 is not always positive de�nite. But if we put

D0 equal to the identity matrix I, or its multiple, the steepest descent direction of p0 is

guaranteed. Therefore we set D0 =
∥∥∇f0

∥∥ · I. Since secant matrices Dk approximate

Hessian matrices in consequent iterations, better rate of convergence than the method

of steepest descent is obtained. The improvement of convergence rate is obvious from

the comparison of Figs. 4.12, 4.17, Figs. 4.14, 4.18 and Tabs. 4.4, 4.5.
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Figure 4.17: Iterations of the Broyden's method for the initial guess (0.83,−0.62).
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Figure 4.18: Iterations of the Broyden's method for the initial guess (0, 0).
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Figure 4.19: Dependence of
∥∥xk − x∗

∥∥ on the number of iterations for the Broy-
den's method.
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Fig. 4.19 shows, that numbers of iterations are at most equal to eleven for each initial

guess with exception of the point (−1, 1). In this case the computation converges in

14900 iterations (see Fig. 4.20). The reason was discussed in Section 4.4.

The solution for initial guess (1, 1) converges to the saddle point (0.923, 0.810) (see

Tab. 4.5). This con�rms the mentioned fact, that quasi-Newton methods are not gene-

rally indi�erent to the saddle points.
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Figure 4.20: Iterations of the Broyden's method for the initial guess (−1, 1).

The Broyden's method was derived to replace the computation of exact Hessian ma-

trices. Since there is no guarantee of positive de�nite secant matrices, a descent direction

is not ensured within the whole computation. In the following section we focus on the

most popular quasi-Newton solver, the BFGS method.
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BFGS Method

x0 x∗ NI CPU time detH (x∗) H11 (x
∗)

(0.83,−0.62) (0.241,−0.926) 9 0.0176 1.24e-06 2.82e-03
(−1,−1) (0.241,−0.926) 10 0.0187 1.24e-06 2.82e-03
(1;−1) (0.241,−0.926) 9 0.0169 1.24e-06 2.82e-03
(1, 1) (0.923, 0.810) 11 0.0203 -1.76e-06 7.46e-04
(−1, 1) (0.241,−0.926) 14900 29.981 1.24e-06 2.82e-03
(0, 0) (0.241,−0.926) 11 0.0212 1.24e-06 2.82e-03

(−2.8, 3) (−3.804, 3.111) 10 0.0193 6.76e-06 2.53e-03

Table 4.5: Results of the Broyden's method for all tested initial guesses.

4.6 BFGS Method
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Figure 4.21: Iterations of the BFGS method for the initial guess (0.83,−0.62).
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The BFGS method requires no evaluation of the Hessian matrix and retains the secant

feature of Broyden's method. Moreover, the descent direction is guaranteed by the

secant matrices, that are all positive de�nite. D0 is initialized by the scaled identity

matrix I to D0 =
∥∥∇f0

∥∥ · I. The best rate of convergence was reached by this method.

For the initial guess (0.83,−0.62) there are only eight iteration steps necessary to achieve

the solution (see Fig. 4.21). Fig. 4.22 shows eight iterations for the initial guess (0, 0).

Low numbers of iterations imply low CPU times in Tab. 4.6.
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Figure 4.22: Iterations of the BFGS method for the initial guess(0, 0).

It should be noted that the residual norm
∥∥xk − x∗

∥∥ for all initial points except

(−1, 1) is practically zero within four iterations. (see Fig. 4.23).
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Figure 4.23: Dependence of
∥∥xk − x∗

∥∥ on the number of iterations for the BFGS
method.
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Figure 4.24: Iterations of the BFGS method for the initial guess (−1, 1).
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DFP Method

Similarly as in Section 4.4 the problem with the step-length t0 arises. As it is obvious

from Fig. 4.24 where the solution for the initial guess (−1, 1) is depicted, the computation

is returned back into the master segment domain within eleven iterations. It converges

to the saddle point (0.923, 0.810). In comparison with Broyden's method, 23 iterations

represent a considerable improvement of the convergence rate.

x0 x∗ NI CPU time detH (x∗) H11 (x
∗)

(0.83,−0.62) (0.241,−0.926) 8 0.0136 1.24e-06 2.82e-03
(−1,−1) (0.241,−0.926) 8 0.0149 1.24e-06 2.82e-03
(1;−1) (0.241,−0.926) 7 0.0132 1.24e-06 2.82e-03
(1, 1) (0.923, 0.810) 9 0.0174 -1.76e-06 7.46e-04
(−1, 1) (0.923, 0.810) 23 0.0444 -1.76e-06 7.46e-04
(0, 0) (0.241,−0.926) 8 0.0154 1.24e-06 2.82e-03

(−2.8, 3) (−3.804, 3.111) 8 0.0149 6.76e-06 2.53e-03

Table 4.6: Results of the BFGS method for all tested initial guesses.

The BFGS is one of the most popular methods to solve unconstrained nonlinear

optimization problems. Low CPU times for all tested points con�rm the e�ectiveness

of this method (see Tab. 4.6). It is a very good candidate for the local contact search

algorithm, especially with the powerful step-length procedure.

4.7 DFP Method

As it was mentioned in Section 3.4.6, one apparent advantage of the DFP method

over the BFGS method is that the BFGS search direction (3.8) for the latter must be

computed by solving the system Dkpk = ∇fk while the DFP search direction can be

computed directly.

As it is adduced in the reference [9], it turns out that this advantage is o�set by some

computational advantages of the BFGS method over the DFP method. For example,

although the secant matrices Dk produced by both methods are positive de�nite in

theory, the DFP method has a tendency to produce Dk that are not positive de�nite

because of computer round-o� error, while the BFGS method does not seem to share

this defect. Similarly to the initialization of D0 in Section 4.6, the initial secant matrix

was set to D0 =
∥∥∇f0

∥∥−1 · I.
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Figure 4.25: Iterations of the DFP method for the initial guess (0.83,−0.62).

Fig. 4.25 and 4.27 denote the DFP iteration paths similar to the BFGS ones. Di�e-

rences are only in numbers of iterations and CPU times as follow from the comparison

of Tabs. 4.6 and 4.7. Since the search direction pk can be computed directly without

the inverse matrix
(
Dk
)−1 calculation, the CPU times of the DFP method are slightly

less then the CPU times of the BFGS method. Nevertheless, the problematic initial

guess (−1, 1) con�rms the computational advantages of the BFGS method mentioned

in the beginning of this section. Comparison of Figs. 4.24, 4.28 shows that both iteration

paths are the same. The increase of the DFP iterations is probably caused by computer

round-o� errors. Fig. 4.26 shows the residual norms
∥∥xk − x∗

∥∥ for all initial guesses

except the point (−1, 1).
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Figure 4.26: Dependence of
∥∥xk − x∗

∥∥ on the number of iterations for the DFP
method.
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Figure 4.27: Iterations of the DFP method for the initial guess(0, 0).
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Figure 4.28: Iterations of the DFP method for the initial guess (−1, 1).

x0 x∗ NI CPU time detH (x∗) H11 (x
∗)

(0.83,−0.62) (0.241,−0.926) 7 0.0127 1.24e-06 2.82e-03
(−1,−1) (0.241,−0.926) 8 0.0148 1.24e-06 2.82e-03
(1;−1) (0.241,−0.926) 7 0.0133 1.24e-06 2.82e-03
(1, 1) (0.923, 0.810) 9 0.0166 -1.76e-06 7.46e-04
(−1, 1) (0.923, 0.810) 26 0.0469 -1.76e-06 7.46e-04
(0, 0) (0.241,−0.926) 8 0.0144 1.24e-06 2.82e-03

(−2.8, 3) (−3.804, 3.111) 8 0.0150 6.76e-06 2.53e-03

Table 4.7: Results of the DFP method for all tested initial guesses.
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4.8 Simplex Method

Although there are no evaluations of derivations in this method, CPU times in Tab. 4.8

are also higher in comparison with other tested methods. This is, among other things,

because MATLAB is interpreted programming language. There are many iteration

loops and if-else statements in our code. The implementation of the code to a compiled

language like FORTRAN could improves performance of our simplex algorithm.
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Figure 4.29: Iterations of the simplex method for the initial guess (0.83,−0.62).

Fig. 4.29 shows simplex sliding into the nearest local minimum. At the starting

procedure, the length of simplex edge has to be set. A numerical experiment was

performed for this purpose. The results are depicted in Fig. 4.30.
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Figure 4.30: Results of the numerical experiment to determine an optimal length
of simplex edge for the initial guess (0.83,−0.62).
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Figure 4.31: Iterations of the simplex method for the initial guess (0; 0).

Since the dependence of number of iterations on the simplex edge length is stochastic,

the value was set to 0.43 for all initial guesses. This value was obtained by the arithmetic
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mean of number of iterations over all simplex edge lengths.

r [−]

s 
[−

]

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

0.0155

0.016

0.0165

0.017

0.0175

0.018

0.0185

0.019

0.0195

0.02

0.0205

f 
(r

, 
s)

 [
m

 ]2

0

1 2

3
4

5
6

7
8

9 10

11
12

13

14
15

16

17

21
22

23

18 19

20

30-196
24

25

26
27

28

29

Figure 4.32: Iterations of the simplex method for the initial guess (−1, 1).

The improvement could be observed in Fig. 4.32 for the problematic initial guess

(−1, 1), because the step-length selection procedure is not employed in the simplex

method. Solutions for all corner and centric starting points (see Fig. 4.4) except point

(1, 1) converge to the nearest local minimum (0.241,−0.926). The computation for the

initial guess (1, 1) directs toward the global minimum (3.649, 3.624), since the initial

position of the simplex is on the opposite sides of the saddle ridge.

The residual norms
∥∥xk − x∗

∥∥ for �rst �fty iterations are depicted in Fig. 4.33. Num-

bers of iterations in Tab. 4.8 are higher than one hundred even though Fig. 4.33 de-

monstrates a considerable decrement of
∥∥xk − x∗

∥∥ within thirty iteration steps.
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Figure 4.33: Dependence of
∥∥xk − x∗

∥∥ on the number of iterations for the simplex
method.

x0 x∗ NI CPU time detH (x∗) H11 (x
∗)

(0.83,−0.62) (0.241,−0.926) 190 0.2472 1.24e-06 2.82e-03
(−1,−1) (0.241,−0.926) 192 0.2472 1.24e-06 2.82e-03
(1;−1) (0.241,−0.926) 184 0.2504 1.24e-06 2.82e-03
(1, 1) (3.649, 3.624) 210 0.2786 7.66e-06 6.33e-03
(−1, 1) (0.241,−0.926) 196 0.2530 1.24e-06 2.82e-03
(0, 0) (0.241,−0.926) 200 0.2609 1.24e-06 2.82e-03

(−2.8, 3) (−3.804, 3.111) 190 0.2381 6.76e-06 2.53e-03

Table 4.8: Results of the simplex method for all tested initial guesses.

Although several good features of the simplex method was showed, higher time

consumption handicaps this method. Nevertheless, the implementation to a compiled

language like FORTRAN could be suitable for the local contact search.
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DISCUSSION, CONCLUSIONS AND FUTURE

WORK

In this study, various numerical methods for the local contact search were investigated.

The geometry of contact segments was interpolated by the three-dimensional quadri-

lateral eight-node element based on the isoparametric �nite element formulation. The

calculation of the normal vector for such a surface leads to the minimization problem

of nonlinear function � the square-distance function. Seven numerical methods for un-

constrained optimization were tested by means of numerical example which involves

bending of two rectangular plates over a cylinder. All tested methods were implemen-

ted in MATLAB code allowing colour graphical outputs. The important part of the

solution is a good choice of the initial guess. For the purpose of numerical tests seven

initial guesses were considered. The results are summarized in Tab. 5.1. It shows the

numbers of iterations (NI) and the CPU time (t [s]) for each tested method and initial

guess.

The Newton-Raphson method is used in the current version of the local contact search

algorithm in the FE code PMD. It was shown that this method is not suitable for local

contact search due to the strong nonlinearity of the square-distance function. However,

if the square-distance function is convex in a neighbourhood of the initial guess and

the Hessian matrix is positive de�nite in this point, then the Newton-Raphson method

converges quadratically. This situation occurs for the initial guess (0, 0), where the

solution converges in �ve iterations. Another disadvantage of the Newton-Raphson
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method as well as the quasi-Newton methods is the convergence to the saddle points.

The solutions, which converged to the saddle points are denoted in Tab. 5.1 by su�x sp

behind the number of iterations.

The main group of the tested methods involves the quasi-Newton methods. It was

shown that a signi�cant increase of stability of the local contact search can be achieved

by these methods. Tab. 5.1 shows that the best results has been achieved by the BFGS

and the DFP methods.

Broyden's method also improves the convergence properties of the Newton-Raphson.

However, there is no guarantee of the positive de�niteness of the Hessian matrix, it was

overcome by more sophisticated quasi-Newton methods like the BFGS and the DFP

methods. Note that well known method of steepest descent was also tested but with

results of average convergence rate.

The line-search is crucial for a general success of quasi-Newton and gradient methods.

It signi�cantly increases the e�ectiveness of methods with one exception of point (−1, 1).

The treatment of this case will be investigated in further work.

Although the CPU times of the least-square projection method are comparable with

the Newton-Raphson, this method is not suitable for the local contact search, since it

converges to the global minimum. This interesting feature of the least-square projection

method was also observed for other contact segment topologies.

Due to the principle of the simplex method, a greater number of iterations was expec-

ted. Although several good features of this method was showed, higher time consump-

tion handicaps this algorithm. Nevertheless, the implementation to a compiled language

like FORTRAN could signi�cantly decrease the CPU time.

In conclusion, on the base of this very good results of the BFGS method with proposed

line-search algorithm, we selected this method for the local contact search procedure.

The implementation of the BFGS method into the FE code PMD will be the objective

of further work.
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Table 5.1: E�ciency assessment of methods for the local contact search.
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