


Influence of mass lumping techniques on contact
pressure oscillations in explicit finite element
contact-impact algorithm based on isogeometric
analysis with NURBS

J. Kopačka, D. Gabriel, J. Plešek and R. Kolman

Abstract Artificial oscillations in the contact pressure due to non-smooth contact
surface are treated by the isogeometric analysis (IGA). After a brief overview of
the B-splines and NURBS representations, an explicit finite element (FE) contact-
impact algorithm is presented in a small deformation context. Contact constraints
are regularized by the penalty method. The contact-impact algorithm is tested by
means of dynamic Hertz problem. The classic FEA solution is compared with the
IGA solution while different mass lumping techniques are considered.

1 Introduction

The main difficulty in the contact analysis is non-smoothness. It arises from unilat-
eral contact constraints as well as geometric discontinuities inducted by the spatial
discretization. The contact analysis based on traditional finite elements utilizes ele-
ment facets to describe contact surfaces. The facets are C0 continuous so that surface
normal vectors can experience jump across facet boundaries leading to artificial os-
cillations in contact forces.

There were attempts to treat geometric discontinuities by smoothing contact sur-
faces using a splines interpolation. These remedies introduce an additional geometry
on the top of the existing finite element mesh. It also adds an additional layer of data
management and increases computational overhead. Details and further references
can be found in [17].

Another remedy to overcome this geometric discontinuity may provides isogeo-
metric analysis (IGA) [7]. In this approach, known geometry is accurately described
by Non-Uniform Rational B-Splines (NURBS) basis functions which serve at the
same time as element shape functions. The isogeometric analysis provides some
additional advantage, which is especially attractive to the contact analysis, namely,
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preserving geometric continuity, facilitating patch-wise contact search, supporting a
variationally consistent formulation, and having a uniform data structure for contact
surfaces and underlying volumes.

Sharp corners or C0 edges that can exist on the interface of two patches present
a challenge to contact detection. A strategy to seamlessly deal with sharp corners
was proposed in [11]. Here, unilateral contact constraints were regularized by the
penalty method and the contact virtual work was discretized by the finite strain
surface-to-surface contact element. Both one-pass and two-pass contact algorithms
were tested.

In Reference [15], finite deformation frictionless quasi-static thermomechanical
contact problems were considered. In this work, two penalty-based contact algo-
rithms were studied. The former one was called knot-to-surface (KTS) algorithm.
It is the straightforward extension of the classic node-to-surface (NTS) algorithm.
Since the NURBS control points are not interpolatory, contact constraints were en-
forced directly at the quadrature points. It was shown that this approach is over-
constrained and therefore not acceptable if a robust formulation with accurate trac-
tions is desired. The latter one was called mortar-KTS algorithm. In this algorithm
a mortar projection to control point pressures was employed to obtain the correct
number of constraints.

The penalty-based mortar-KTS algorithm was extended to frictional contact in
References [9] and [16]. The mortar-KTS algorithm was also studied in conjuga-
tion with augmented Lagrangian method in [10]. Isogeometric frictionless contact
analysis using non-conforming mortar method in two-dimensional linear elasticity
regime was presented in [8].

This paper is devoted to application of the NURBS based isogeometric analysis
to contact-impact problems. After a brief overview of the B-Splines and NURBS
representation in Section 2, the linear elastodynamics contact initial/boundary value
problem is formulated in Section 3. The variational formulation in Section 4 serves
as the base of finite element discretization, which is described in Section 5. Then, an
explicit time integration scheme and several mass lumping techniques are described
in Section 6 and 7, respectively. The presented IGA contact-impact algorithm is
demonstrated on dynamic Hertz problem in Section 8. The conclusions are drawn
in Section 9.

2 B-splines and NURBS

This section gives a brief overview of the main principle of the B-spline and NURBS
representation. For more detailed description as well as efficient algorithms see, e.g.
[13]. Throughout this paper we use p to indicate the polynomial degree, n to indicate
the number of basis functions, dp to indicate the number of parametric dimensions,
and ds to indicate the number of spatial dimensions.

A B-spline or NURBS object is called patch. The patch is parametrized by the
linear combination of control points PA ∈ ℜds and basis functions NA(ξ ) : ℜdp 7→
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[0,1]. A particular B-splines/NURBS basis function is defined with the aid of the so
called knot vector

Ξ
i =

ξ
i
1, . . . ,ξ

i
pi+1︸ ︷︷ ︸

pi+1 equal terms

,ξ i
pi+2, . . . ,ξ

i
ni
,ξ i

ni+1, . . . ,ξ
i
ni+pi+1︸ ︷︷ ︸

pi+1 equal terms

 , i = 1, . . .dp (1)

The knot vector is a non-decreasing sequence of parametric coordinates. The knot
vector is said to be uniform if the knots are unequally spaced in the parametric space.
If the first and the last knot value appears pi + 1 times, the knot vector is called
open. The B-spline/NURBS object with open knot vectors are interpolatory at the
corner of a patch. It means that the boundary of a B-spline/NURBS object, with dp
parametric dimensions, is itself a B-spline/NURBS object with dp−1 dimensions.

The B-spline basis functions are defined by the Cox-de Boor recursion formula.
It holds for p = 0

N j,0(ξ ) =

{
1 ξ ∈

[
ξ j,ξ j+1

)
, j = 1 . . .n

0 otherwise
(2)

and for p > 0

N j,p(ξ ) =
ξ −ξ j

ξ j+p−ξ j
N j,p−1(ξ )+

ξ j+1+p−ξ

ξ j+1+p−ξ j+1
N j+1,p−1(ξ ) (3)

The B-splines are known to be unable to exactly describe some curves. NURBS
was developed to extend interpolatory capability of the B-splines. The extension
originates from projection geometry of conic sections. More details can be found in
[13]. The pth degree NURBS basis function is defined by

Rp
j (ξ ) =

N j,p(ξ )w j

∑
n
ĵ=1 N ĵ,p(ξ )w ĵ

(4)

where w j is referred to as the jth weight.
Multivariate NURBS objects can be constructed simply by tensor product of uni-

variate NURBS basis functions (4). For dp = 2

Rp1,p2
j1, j2

(ξ 1,ξ 2)=Rp1
j1
(ξ 1)⊗Rp2

j2
(ξ 2)=

N j1,p1(ξ
1)N j2,p2(ξ

2)w j1, j2

∑
n1
ĵ1=1 ∑

n2
ĵ2=1

N ĵ1,p1
(ξ 1)N ĵ2,p2

(ξ 2)w ĵ1, ĵ2

(5)

and similarly for higher parametric dimensions.
With NURBS basis functions at hand we can introduce surface discretization by

x(ξ 1,ξ 2) =
n1

∑
j1=1

n2

∑
j2=1

Rp1,p2
j1, j2

(ξ 1,ξ 2)P j1, j2 (6)
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where P j1, j2 ∈ ℜds is the control net, i.e., array of coordinates of control points.
Adopting the isogeometric concept, an analogous interpolation is used for unknown
displacement field and its variation. Utilizing proper connectivity arrays according
to [4], one can write

x(ξ ) =
ncp

∑
A=1

RA(ξ )xA u(ξ ) =
ncp

∑
A=1

RA(ξ )uA δu(ξ ) =
ncp

∑
A=1

RA(ξ )δuA (7)

where ξ ∈ ℜdp is the vector of isoparametric coordinates, A is the index of global
basis function, which is related to indices of univariate basis function by the con-
nectivity array A = INC( j1, j2, . . . , jdp) , and ncp is the number of control points.

3 Contact initial/boundary value problem

The problem of linear elastodynamics is governed by the balance of linear momen-
tum

∇ ·σ(u)+b = ρü(x, t) in Ω × I (8)

where Ω =
⋃

i Ωi, i = 1,2 is the set of spatial points, x∈ℜds , defining the contacting
bodies, I = (0,T ) is the time domain, u is the displacement field, b are the body
forces and σ is the stress field, see Fig. 1. The superimposed dots denote the time
derivatives. In linear elasticity the stress field can be computed from the engineering
strain field

ε =
1
2

(
(∇u)T +∇u

)
(9)

via Hooke’s law
σ = c : ε (10)

where c is the tensor of elastic constants given as

c = λ I⊗ I+2µI (11)

where I is the second-order identity tensor and λ ,µ are the Lamé constants. The
problem is in general subject to certain initial and boundary conditions as well. The
initial conditions

u(x,0) = u0 in Ω̄ (12)
u̇(x,0) = v0 in Ω̄ (13)

are prescribed in the closure of domain Ω̄ . The displacement and traction boundary
conditions

u = ū on Γu (14)
σ ·n = t̄ on Γσ (15)
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are prescribed on the Γu ⊂ Γ and Γσ ⊂ Γ , respectively; Γ denotes the boundary of
the domain Ω ; ū and t̄ are the prescribed displacements and tractions, respectively;
the vector n stands for the outward normal vector to Γ .

Further, the contact constraints are described on the contact boundary Γc ⊂ Γ by
the Signorini-Hertz-Moreau conditions

gN ≤ 0, tN = σ ·n≤ 0, gNtN = 0, on Γc (16)

also known as the Karush-Kuhn-Tucker (KKT) conditions. Here, the normal gap
function gN has been introduced as

gN =−(x2− x̄1) · n̄1 (17)

This definition is apparent from Fig. 1, where x̄1 is the closest point projection of
the point x2, lying on the contact boundary of body Ω2, onto the contact boundary
of body Ω1. Note that the projected quantities are denoted by (•̄).

gN
x̄1

n̄1x2

Γc

Γc

Γu

ΓuΓσ

Γσ

Ω2
Ω1

Fig. 1 Definition of the normal gap function.

The first inequality (16)1 is called the impenetrability condition. The second con-
dition (16)2 asserts the negative traction vector, i.e. pressure, on the active contact
boundary. It should be noted that the active contact boundary is considered such
boundary, where the impenetrability condition is violated. Finally the third equality
(16)3, which is called the complementarity condition, ensures the complementarity
between the gap function and the contact traction vector.

4 Variational formulation

In order to perform the finite element discretization, it is necessary to reformulate the
strong form of the contact initial/boundary value problem in a weak sense. Hamil-
ton’s principle is a simple yet powerful tool that can be employed to derive the
discretized system of equations. It states that of all admissible time histories of dis-
placement field, the solution is one which minimizes the action functional
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u = argmin
(∫ T

0
L (u, u̇) dt

)
subjected to gN ≥ 0 on Γc (18)

where the Lagrangian functional, L (u, u̇), is defined as

L (u, u̇) = T (u̇)− (U (u)−W (u)) (19)

where
T (u̇) =

∫
Ω

1
2

ρu̇ · u̇dV (20)

U (u) =
∫

Ω

1
2

σ : ε dV (21)

W (u) =
∫

Ω

u ·bdV +
∫

Γσ

u · t̄dS (22)

are the kinetic energy, the strain energy, and the work done by external forces, re-
spectively.

4.1 Penalty method

The penalty method is the simplest manner how to enforce unilateral contact con-
straints (16). The principle of the method is as follow. An extra term is added to the
strain energy (21)

Up (u) =
∫

Ω

1
2

σ : ε dV +
∫

Γc

1
2

εN 〈gN〉2 dS (23)

where 〈•〉 stands for the Macaulay brackets which returns zero if the argument is
negative (i.e. gap is open), otherwise it returns the argument itself. Now, the def-
inition of the normal gap function (17) should be apparent. Further, the penalized
Lagrangian functional is defined as

Lp(u, u̇) = T (u̇)− (Up(u)−W (u)) (24)

The unknown displacement field is sought as one which renders the penalized action
functional stationary

δ

∫ T

0
Lp (u, u̇) dt = 0 (25)

where δ denotes the first Gateaux variation in the direction of virtual displacement
δu. Using the standard procedures one arrives to the principle of virtual displace-
ments∫

Ω

ρδu · üdV +
∫

Ω

δε : σ dV +
∫

Γc
δgNεN 〈gN〉 dS =

∫
Ω

δu ·bdV +
∫

Γσ

δu · tdS

(26)
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which serves the base for the finite element discretization. The integrals in Equa-
tion (26) represent the virtual work of the inertia forces, internal forces, contact
forces, body forces, and traction forces, respectively.

5 Finite element discretization

Applying the finite element discretization to the variational formulation (26) intro-
duces the system of nonlinear ordinary differential equations

Mü+Ku+Rc(u, ü) = R (27)

Here, M is the mass matrix, K is the stiffness matrix, Rc is the contact residual
vector, which is the source of nonlinearity, and R is the time-dependent load vector.
Further, u and ü contain nodal displacements and accelerations, respectively. The
element mass and stiffness matrices are given by

Me =
∫

Ωe

ρNTNdV Ke =
∫

Ωe

BTCBdV (28)

where C is the elasticity matrix, B is the strain-displacement matrix, and N is the
matrix which stores shape functions. Note that the integration is carried over the
element domain Ωe. Global matrices are assembled in the usual fashion.

In classic FEA, the shape functions are commonly chosen as Lagrange polyno-
mials, whereas in IGA, the shape functions arise from the restriction of the NURBS
basis function on the knot span, as was described in Section 2. The knot span is IGA
equivalent of the finite element.

Motivated by the desire to preserve the symmetry, we proposed the contact resid-
ual vector in the form [5]

Rc(u) =
∫

Γc1

εNNTgN dS+
∫

Γc2

εNNTgN dS (29)

It should be noted that a similar idea was advocated also in work of Papadopoulos
et al. [12], where the contact problem of two deformable bodies was treated as two
interacting Signorini problems. Recently, this form of the contact residual vector
was revitalized in the work of Sauer and De Lorenzis [14] and was called two-half-
pass contact algorithm.

6 Explicit time integration

We now consider the time integration of the semi-discretized system (27) by the
central difference method (CDM) [2]. First let the time interval I is subdivided to
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n=0 [tn, tn+1] with the time step ∆ t = tn+1−tn. Further, let the displacement vectors

un−1 and un at time instances tn−1 and tn, respectively, are known. Then one can
calculate new displacement vector un+1 at time tn from the system of governing
equations

Man = Rn−Kun−Rn
c (30)

where the acceteration vector an is given by the central difference

an =
vn+ 1

2
−vn− 1

2

∆ t
(31)

and where the velocity vectors are given by differences

vn+ 1
2
=

un+1−un

∆ t
vn− 1

2
=

un−un−1

∆ t
(32)

Due to possible non-smoothness of contact residual vector, Rn
c , in time interval

[tn, tn+1], it is advantageous to recast (30) into a predictor-corrector form [18]. In the
predictor phase, a new displacement vector is computed regardless contact forces

an
pre = M−1(Rn−Kun) (33)

vn+ 1
2

pre = vn− 1
2 +∆ tan

pre (34)

un+1
pre = un +∆ tvn+ 1

2
pre (35)

where an
pre is the predictor of acceleration, v1+ 1

2
pre is the predictor of velocity, and

un+1
pre is the predictor of displacement. The last mentioned is utilized to calculate the

predictor configuration, in which the contact residual vector is evaluated. The final
displacement vector is obtained throught the correction of acceleration and velocity

an
cor = M−1Rn+1

c (36)
an = an

pre +an
cor (37)

vn+ 1
2 = vn+ 1

2
pre +∆ tan

cor (38)

un+1 = un +∆ tvn+ 1
2 (39)

7 Mass lumping techniques

The mass matrix calculated according to (28)1 is called the consistent mass ma-
trix. In general, such a mass matrix is not diagonal. It is obvious that the diagonal
mass matrix entails significant computational savings and storage advantages. In
this section most used techniques that produce diagonally lumped mass matrices
are summarized.
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Generally, the mass matrix must satisfy certain conditions: matrix symmetry,
physical symmetries, conservation and positivity. Therefore, the diagonal compo-
nents of the lumped mass matrix must be positive. Furthermore, the masses corre-
sponding to the corner nodes and the masses corresponding to the midside nodes
coincides for the square quadratic finite element. The condition for the keeping of
the total element mass of the 8-node serendipity square finite element takes on the
simple form

m = 4m1 +4m2 (40)

where m1 denotes the mass of the midside node and m2 is the mass of the corner
node. If the mass corresponding to the midside node m1 is chosen in the proportion
to the total element mass m

m1 = αm (41)

then for the mass of the corner node m2 from the condition (40) holds

m2 = (0.25−α)m (42)

where α is the mass parameter. The value of the mass parameter α should be
choosen in the range [0,0.25] requiring the positive definitness of the mass matrix.
The value α = 8/36 corresponds to the HRZ procedure [6] with 2×2 Gauss quadra-
ture, α = 16/76 the HRZ procedure with 3×3 Gauss quadrature and α = 1/3 to the
row sum method. Note that the limit mass distribution occurs for α = 0 when full
mass is inserted in the corner nodes and α = 0.25 when full mass is concentrated in
the midside nodes.

8 Dynamic Hertz problem

In this section, an example is presented to illustrate the performance of the clas-
sic FEA and IGA contact-impact algorithm described in the previous sections. The
example deals with Hertz dynamic problem, a classical benchmark for which an an-
alytical solution is available [3]. In the example, the effect of mass lumping is inves-
tigated. The analysis is limited to the second order elements. In particular, quadratic
serendipity eight-node finite elements are used in case of FEA, and second order
basis function in case of IGA.

The presented numerical example deals with frictionless impact of the cylinders
of radius R = 4m, see Fig. 2. The material of each of the cylinders is linearly elastic
with Young’s modulus E = 1000MPa, Poisson’s ratio ν = 0.2, and density ρ =
1kg ·m3. The initial velocity of the cylinders is 2m · s−1. In the initial configuration
the cylinders just touches each other in a point. Due to symmetry, only the half
of each cylinder is considered. The penalty parameter is εN = 1×105 N ·m−2. The
explicit time integration by CDM is performed for 0.9s with the time step 5×10−4 s.
It should be noted that only one mesh is considered. The effect of mesh refinement
will be study in the further work.
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R
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dr
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Fc

Fig. 2 Dynamic Hertz problem.
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Fig. 3 Comparison of classic FEA and IGA solution of contact forces (left) and contact pressures
(right) for HRZ mass lumping method.

Fig. 3 shows the contact force and the maximal contact pressure obtained for
both FEA and IGA with HRZ mass lumping technique. The HRZ method was cho-
sen because in case of second order Lagrange elements the row sum method leads
to negative mass on diagonal, which is not admissible. The results show a good
agreement with the analytical solution. One can notice that the FEA solution in
comparison with IGA solution exhibits lower oscillations.

In order to evaluate the effect of mass lumping techniques on the oscillations
of the contact forces and contact pressure distribution in IGA, further analyses are
performed using consistent mass matrix and mass matrix lumped by the row sum
method. Fig. 4 shows that consistent mass matrix delivers a more accurate contact
pressure distribution than row sum and HRZ mass lumping techniques.



Explicit finite element contact-impact algorithm based on IGA with NURBS 11

0

100

200

300

400

500

0 0.2 0.4 0.6 0.8

To
ta

lc
on

ta
ct

fo
rc

e

Time

-50

0

50

100

150

200

250

0 0.4 0.8 1.2 1.6

C
on

ta
ct

pr
es

su
re

Horizontal coordinate x

Hertz solution
Row sum

HRZ
Consistent

Hertz solution
Row sum

HRZ
Consistent

Fig. 4 Influence of mass lumping techniques on contact forces (left) and contact pressures (right)
for IGA.

9 Conclusions

This paper addressed the utilization of the NURBS based isogeometric analysis in
an explicit contact-impact algorithm. Two main conclusions may be drawn:

• For second order elements and mass matrix lumped by the HRZ method, IGA
in comparison with classic FEA leads to a more oscillatory contact force and
consequently also contact pressure.

• The oscillations of the contact forces in IGA are minimal for consistent mass
matrix.

Nevertheless, employing the consistent mass matrix in the explicit integration
causes decrease of efficiency. An interesting alternatives could be the isogeometric
collocation method [1], which is known to lead to diagonal mass matrix. It will be
the object of the further investigations.
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