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FACE-TO-FACE PARTITION OF 3D SPACE WITH IDENTICAL

WELL-CENTERED TETRAHEDRA

RADIM HOŠEK

Abstract. The motivation for this paper comes from physical problems de-
fined on bounded smooth domains Ω in 3D. The numerical schemes for these

problems are usually defined on some polyhedral domains Ωh and if there is

some additional compactness result available, then the method may converge
even if Ωh → Ω only in the sense of compacts. Hence we use the idea of

meshing the whole space and defining the approximative domains as a subset

of this partition.
Numerical schemes for which quantities are defined on dual meshes usually

require additional quality of the dual mesh. One of the used approaches is

the concept of well-centeredness, in which the center of circumsphere of any
element lies inside that element. We show that one-parametric family of Som-

merville tetrahedral elements, whose copies and mirror images tile 3D, build

a well-centered face-to-face mesh. Then, shape-optimal value of parameter is
computed. For this value of parameter, Sommerville tetrahedron is invariant

w.r. to reflection, i.e. 3D space is tiled by copies of a single tetrahedron.

1. Introduction

One of the widely accepted full models of a compressible, viscous and heat con-
ducting fluid is the Navier-Stokes-Fourier system. For convergence proof to a nu-
merical method for this system in a smooth bounded domain Ω ⊂ R3, developed
recently in [2], we are looking for a family of approximative polyhedral domains
Ωh, h→ 0, admitting a mesh Th consisting of compact convex tetrahedral elements
that have their diameter of the order h, with the following properties.

(M1) The mesh is face-to-face, i.e. any face of any element K ∈ Th is either a
subset of ∂Ωh or a face of another element L ∈ Th.

(M2) The approximative domains Ωh converge to Ω, in the following sense

(1) Ω ⊂ Ω ⊂ Ωh ⊂
{
x ∈ R3|dist(x,Ω) < h

}
.

(M3) In every element K ∈ Th there exists a point xK ∈ int K such that for K,L
sharing a common face σ we have that xKxL is orthogonal to σ and

(2) dσ := |xK − xL| ≥ ch > 0,

with c > 0 a universal constant independent of K and L.

For method developed in [2] we succeeded to relax the condition (2) to dσ > 0.
Anyway, some works discussed later require the stronger condition (2). Therefore
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Agreement 320078.
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2 RADIM HOŠEK

we will construct approximative domains and mesh satisfying the conditions (M1-
M3) listed above.

Note that the usual convergence ∂Ωh → ∂Ω in W 1,1 is substituted by a weaker
condition (1) thanks to some additional result on compactness obtained.

The property (M3) emanates from the need of dealing with Neumann boundary
condition for the temperature and is introduced by Eymard et al. [1, Definition 3.6].
The easiest way to ensure dσ > 0, is to guarantee that the center of a circumsphere
(also called circumcenter) of any element building the mesh lies strictly inside that
element. This property is called d-well-centeredness, where d denotes the dimension.
A special structure of the mesh will then imply also existence of c > 0 such that
dσ ≥ ch > 0.

The concept of well-centeredness has been extensively studied by VanderZee
et al., see [10] and [11]. However, to our knowledge, there are so far only few
applications, moreover without ambitions on rigorous proof of convergence of the
method.

Hirani, a coauthor of VanderZee in [10] and [11], with his colleagues uses well-
centered elements in [5] for modelling the equations of Darcy’s flow model. It
describes the flow of a viscous incompressible fluid in a porous medium, with pres-
sure being defined in the circumcenters of the elements. They point out that for
good quality Delaunay mesh their method works good, and the use of well-centered
mesh is therefore not necessary.

Sazonov et al. use well-centered elements in [7] for a co-volume method for
the Maxwell’s equations. Electric and magnetic fields are defined on mutually
orthogonal meshes. As the time step has to be proportional to dσ, it is necessary
to keep it as large as possible. Therefore, well-centered mesh is used. See [7] for
details.

In order to satisfy the above requirements for domains Ωh and their meshes Th,
we construct 3-well-centered face-to-face mesh that covers R3, whose elements have
radius comparable to h. Then for any Ω ∈ C0,1 given, we simply define Ωh as a
union of elements having non-empty intersection with Ω.

We will mesh the whole 3-dimensional space with an element of one-type and
its mirror image. This enables us to compute the exact distance of circumcenters
of two neighbouring elements, but it also may reduce both memory demands and
computational time.

Obviously, in 2D it is possible to tile the whole space with regular simplices, which
are equilateral triangles. In 3D it is not that easy any more, regular tetrahedra
cannot tile 3D, see e.g. [8]. However there have been shown many tilings of 3D so
far. Sommerville in 1923 [9, p. 56] introduced a one-parameter family of elements
that can tile an infinite prism with equilateral-triangular base (see also Goldberg
[4]). We will deal with these Sommerville II type elements and show the range of
the parameter for which they build a 3-well-centered mesh. Such mesh will then
fulfil (M1-M3). Moreover, we compute in a sense ideal value of the parameter which
will guarantee that all the tetrahedra in the mesh are identical.

2. Notation

We work in E3, a 3-dimensional space endowed with Euclidean coordinates.
Then for m ≤ 3, σm or τm will denote a simplex, which is a convex hull of m + 1
affinely independent points in E3. We recall that points {P0, P1, . . . , Pm} are affinely
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independent if(
m∑
i=0

ciPi = 0 &

m∑
i=0

ci = 0

)
⇒ ci = 0, ∀i ∈ {0, . . . ,m}.

Analogously, every simplex σm determines an m-dimensional affine space.
We introduce the following list of the used notation.
A,B,C, . . . points in E3

σm, τm or also P0P1 . . . Pm m-dimensional simplex
aff(σm) affine space determined by (vertices of) σm

Sσm circumcenter of σm

Σσm incenter of σm (center of an inscribed sphere of σm)
Rσm radius of circumsphere of σm

%σm radius of inscribed sphere of σm

Note that the above notation can be used independently of the dimension. We will
use also the following dimension-dependent notation.

A = [Ax, Ay, Az] point with its Euclidean coordinates
nABC normal vector of the plane ABC
oAB axial plane of the segment AB
oAB(C) axis of the segment AB in the plane ABC

3. 3-well-centered mesh of 3-dimensional space

3.1. Elements. Following [9], we define tetrahedron τ3(p) depending on a positive
parameter p with the following Euclidean coordinates of its vertices:

x
p

B

E

1

1
3p

D

A

z

1

2p

F

Cy

Figure 1. Element τ3(p) defined in (3).

τ3(p) := (ADEF )(p), p > 0,

A = [0, 0, 0],

D = [0, 0, 3p],

E = [1, 0, p],

F =

[
1

2
,

√
3

2
, 2p

]
,

(3)
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see Figure 1. All the vertices and also further derived quantities depend on p, which
will be often omitted in the notation for the sake of brevity.

E

x

E ′

A

D

z

F

F ′

y

Figure 2. Three copies of element τ3(p) arranged in a prism with
equilateral-triangular base.

3.2. Tiling the space. Consider tetrahedra ADEF (p), DEFE′(p), DE′FF ′(p),
where

E′ = E + 3p · −→e3 ,

F ′ = F + 3p · −→e3 ,

see Figure 2. They are identical and build a skew prism with equilateral triangle
as its base. Repeating the structure periodically in the z direction, we can fill the
whole infinite prism. It is obvious that with copies and reflections of those prisms
we can tile the whole 3-dimensional space, which follows from tiling of 2D with
equilateral triangles. The task is to show that we can tile in such way that the
elements build a face-to-face mesh.

Lemma 1. It is possible to create a face-to-face mesh of 3-dimensional space with
copies of the tetrahedron τ3(p) and its mirror images.

Proof. After previous discussion it suffices to show that infinite prisms build with
elements τ3(p) can be arranged such that the elements’ edges on the prism surfaces
meet. Note that each infinite prism is a convex hull of three vertical lines of three
different types, each of them having vertices of elements in the height 3k+r, k ∈ Z,
for r = 0, 1, 2. Projecting the whole situation into xy-plane, it suffices to show that
an equilateral triangulation of E2 is a 3-vertex-colorable graph. As neighbouring
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triangles in E2 share an edge, its preimages share a strip where the edges (and thus
also the faces) of elements coincide.

−→u1

−→u2

Figure 3. Illustration to the proof of Lemma 1: xy-plane with
the basis u1, u2.

Employing the basis −→u1 = (1, 0),−→u2 = 1
2

(
−1,
√

3
)
, any vertex v of equilateral

triangulation of xy plane has unique coordinates, i.e. −→v = c1
−→u1 + c2

−→u2, with
integer values of c1, c2, see Figure 3. Then for vertex v we define its color ξ(v)
equal to

ξ(v) = c1 + c2 mod 3.

Note that for any neighbouring vertices v, w we have
−→v −−→w = d1

−→u1 + d2
−→u2,

with (d1, d2) ∈ { (1, 0), (1, 1), (0, 1), (−1, 0), (−1,−1), (0, 1) }. Hence, we conclude
that ξ(v) 6= ξ(w), i.e. ξ is indeed a vertex coloring. �

An alternative proof is suggested in [6]. Reflecting the triplet of elements, shown
in Figure 2, with respect to the point P = (D + E)/2, we obtain a parallelepiped.
Its copies tile the 3-dimensional space and it can be checked that the face-to-face
property of the mesh is not violated.

Note that by now, we do not restrict the value of p, i.e. copies and reflections of
τ3(p) tile E3 for any p > 0.

3.3. Well-centeredness. We introduce the concept of well-centeredness by the
definition of VanderZee, see [10, p. 5].

Definition 1. Let 0 ≤ k ≤ n ≤ d. Let σn := {V0V1 . . . Vn} be an n-dimensional
simplex. A k-dimensional face of σn is a simplex σk := {U0U1 . . . Uk} with Ui being
distinct vertices of σn. We say that

(1) σn is n-well-centered if its circumcenter lies in the interior of σn,
(2) for 1 ≤ k < n, σn is k-well-centered if all its k-dimensional faces are k-well

centered,
(3) σn is well-centered if it is k-well centered for all k ∈ {1, . . . , n}.

Note that any simplex is 1-well-centered, as the midpoint of any segment lies
strictly inside the segment. In E2, a triangle is well-centered if and only if it is
acute.

VanderZee et al. in [10] prove the following characterization for n-well-centeredness
of an n-dimensional simplex.
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Theorem 2 (VanderZee). The n-dimensional simplex σn = V0V1 . . . Vn is n-well
centered if and only if for each i = 0, . . . , n the vertex Vi lies outside circumball
Bni := B(V0, V1, . . . , Vi−1, Vi+1, . . . , Vn), which is the smallest ball in En which con-
tains the n− 1 dimensional circumball of the simplex V0V1 . . . Vi−1Vi+1 . . . Vn.

Theorem 2 will be our tool for proving the following Theorem 3.

Theorem 3. Tetrahedron τ3(p) = ADEF (p) defined by (3) is 3-well-centered if
and only if

(4) p <

√
1

2
.

Proof. The proof is a simple but laborious computation based on result of Theorem
2, from which we will get the desired restriction on p. The goal is to determine
such value of p for which

(5) |K − SLMN | > rLMN

is valid for all vertices A,D,E, F alternating in the role of K. We have all necessary
ingredients for the computation since we can compute

(6) SLMN = oLM(N) ∩ oLN(M),

where

oLM(N) = SLM + t · nLMN ×
−−→
LM, t ∈ R,

oLN(M) = SLN + t · nLMN ×
−−→
LN, t ∈ R,

nLMN =
−−→
LM ×−−→LN,

(7)

for given points K,L,M,N .

1. D
Substituting the ordered quadruplet [D,A,E, F ] for [K,L,M,N ] in (5), (6), and
(7), and performing the computations, we get

nAEF =

(
−
√

3

2
p,−3

2
p,

√
3

2

)
,

oAE(F ) =

[
1

2
, 0,

p

2

]
+ u

(
−3

2
p2,

√
3

2
(1 + p2),

3

2
p

)
, u ∈ R,

oAF (E) =

[
1

4
,

√
3

4
, p

]
+ v

(
−3

4
− 3p2,

√
3

4
+
√

3p2, 0

)
, v ∈ R,

(8)

from which we obtain

SAEF =

[
1

2
(1− p2),

√
3

6
(1 + p2), p

]
.

To conclude for which values of p it holds that |D−SAEF | > rAEF = |A−SAEF |,
it is sufficient to compare the third component of both expressions only, since A
and D differ only in that one. We get
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|−→e3 · (SAEF −A)| < |−→e3 · (SAEF −D)|
for any p > 0, i.e. condition (5) holds for K = D,LMN = AEF, p > 0.

2. F
Using elementary analytic geometry in E2 (ADE lies in the xz-plane) we obtain
the parametric equations of the axes,

oAD(E) =

[
0, 0,

3

2
p

]
+ u(1, 0, 0), u ∈ R,

oAE(D) =

[
1

2
, 0,

1

2
p

]
+ v(p, 0,−1), v ∈ R,

and their intersection

(9) SADE =

[
1

2
− p2, 0,

3

2
p

]
.

We want to obtain a bound on p such that

|SADE − F |2 − r2
ADE = |SADE − F |2 − |SADE −A|2 > 0.

Substituting from (3), (9) and simplifying we get

(10) p <

√
1

2
.

3. E
Substituting the quadruplet [E,A,D, F ] for [K,L,M,N ] into the scheme (5),
(6), and (7), one can compute

nADF =

(
−3
√

3

2
p,

3

2
p, 0

)
,

oAD(F ) =

[
0, 0,

3

2
p

]
+ u

(
9

2
p2,

9
√

3

2
p2, 0

)
, u ∈ R,

oAF (D) =

[
1

4
,

√
3

4
, p

]
+ v

(
−3p2, 3

√
3p2,−3p

)
, v ∈ R,

from which we obtain

(11) SADF =

[
1

4
+

1

2
p2,

√
3

4
+

√
3

2
p2,

3

2
p

]
.

Again, we want to get bound on p for which

|SADF − E|2 − r2
ADF = |SADF − E|2 − |SADF −A|2 > 0.

Substituting from (11), we arrive at

p <

√
2

3
,

which is a weaker requirement than already obtained (10) and therefore does
not affect the result.
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4. A
Finally, taking [K,L,M,N ] = [A,D,E, F ] and performing the computations,
we get

nDEF =

(
√

3p, 0,

√
3

2

)
,

oDE(F ) =

[
1

2
, 0, 2p

]
+ u

(
0,

√
3

2
+ 2
√

3p2, 0

)
, u ∈ R,

oDF (E) =

[
1

4
,

√
3

4
,

5

2
p

]
+ v

(
−3

4
,

√
3

4
+
√

3p2,
3

2
p

)
, v ∈ R,

(12)

which gives

SDEF =

[
1

2
,

√
3

6
−
√

3

3
p2, 2p

]
.

By the same token as in the first case, |−→e3 · (SDEF −A)| > |−→e3 · (SDEF −D)| for
any value of p > 0, which implies that |A − SDEF | > rDEF = |D − SDEF | for
any p > 0. �

Corollary 4. Tetrahedron τ3(p) is well-centered if and only if

p ∈
(

0,

√
1

2

)
.

Proof. Using the characterization of an acute triangle (i.e. a2 + b2 > c2, where

c ≤ b ≤ a), one can check that for τ3(p), p ∈ (0,
√

1/2) all faces are 2-well-centered.

τ3(p) is 3-well-centered for p ∈ (0,
√

1/2) by virtue of Theorem 3. �

VanderZee et al. introduced also a sufficient condition of n-well-centeredness,
so called Prism Condition, [11, Proposition 8], which applied to τn−1 = AED and
v = F gives the condition p < 1/2. This is more restrictive than the condition (4)
which we get by the equivalence criterion in Theorem 2.

We state the following Corollary.

Corollary 5. Let Ω ⊂ R3 be a smooth (at least Lipschitz) bounded domain. There
exists a family of polyhedral domains {Ωh}h→0, such that any Ωh admits a face-to-
face mesh Th, satisfying the conditions (1) and (2).

Proof. For h > 0 and p ∈ (0,
√

1
2 ) arbitrary take the tetrahedron τ3

h(p) := 1
2h ·τ3(p)

and mesh the whole R3 in the way described in Section 3.2. Denoting the whole
mesh with T̃h and defining the set Th := {K ∈ T̃h;K∩Ω 6= ∅}, then Ωh :=

⋃
K∈Th K.

The face-to-face property follows from Lemma 1. Convergence in the sense of
(1) is guaranteed since for K ∈ Th we have

diam τ3
h(p) ≤ h

2

√
1 + (2p)2 ≤ h

√
3

2
< h.

Finally, the property (2) is satisfied by virtue of Corollary 4 and the fact that
the mesh is build by elements with equal radius of inscribed sphere, i.e. dσ >
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2%(τ3(p))h2 . The value of %(τ3(p)) will be specified in the next section, see Propo-
sition 6. �

4. Shape optimization

Notice that we have a criterion for the well-centeredness of our elements in a
form of an open interval p ∈ (0,

√
1/2). We would like to get some optimal value

from the computational point of view, which we expect to be far enough especially
from the singular value p = 0. One of the criteria used (see [3] or [6]) is the so called
normalized shape ratio. Using the notation introduced in Section 2, we define the
normalized shape ratio of tetrahedron σ3 by

(13) η(σ3) :=
3%(σ3)

R(σ3)
.

The maximal value of (13) is η = 1 for the regular tetrahedron. In what follows
we use shorter notation %(p) := %(τ3(p)), analogously also for R and η. Next we
compute the radii in dependence on p.

Proposition 6. The radius %(p) of the inscribed sphere of tetrahedron τ3(p) equals

(14) %(p) =
3

4
√

3 + 2
√

4 + 1
p2

.

Proof. Note that having tetrahedron τ3(p) placed in Euclidean coordinates, we have
%(p) = Σy where Σ = [Σx,Σy,Σz] are the coordinates of the center of the inscribed
sphere.

y

x

l

A B

C

Σx

Σy P (Σ)

Figure 4. Projection of τ3(p) and its inscribed sphere into xy-plane.

As the faces ADE and ADF are vertical, orthogonal projection of τ3 and its
inscribed sphere into xy-plane is an equilateral triangle ABC and a circle that
touches both segments AB and AC (see Figure 4). The center of the circle P (Σ) =
[Σx,Σy, 0] must lie on a bisector of the 60◦ angle BAC. Hence,



10 RADIM HOŠEK

(15) Σx =
√

3Σy.

Then, the center Σ must lie on α, an axial plane of the dihedral angle of the
planes aff(AEF ) and aff(DEF ). Recalling nAEF and nDEF from (8)1 and (12)1

respectively, and realizing that their lengths are equal, we can compute

(16) α : nα · x + d = 0,

with nα = 1/2(nAEF + nDEF ). Then d is determined by substituting x = E into
(16) and we get

(17) α :

√
3

4
px− 3

4
py +

√
3

2
z − 3

√
3

4
p = 0.

Substituting (Σx,Σy,Σz) into (17) and using (15) leads to conclusion that Σz = 3
2p.

Our problem gets reduced to finding a point

(18) Σ = Σ(p) =

[√
3%(p), %(p),

3

2
p

]
,

such that dist(AEF,Σ(p)) = %(p). Such point Σ lies in a plane given by a normal
vector nAEF and point %(p) nAEF

|nAEF | . The general equation of this plane can be

expressed as

nAEF · (x, y, z)T − %(p)
|nAEF |2
|nAEF |

= 0,

which is

(19) −
√

3

2
px− 3

2
py +

√
3

2
z − %(p)

√
3p2 +

3

4
= 0.

Substituting (18) to (19) yields the final result. �

Proposition 7. The radius of the circumsphere to tetrahedron τ3(p) is given by

(20) R(p) =

√
4

3
p4 +

11

12
p2 +

1

3
.

Proof. For the radius we have that R = |S − A| = |S|. Hence only the center
S = [Sx, Sy, Sz] of circumsphere is of our interest. We proceed in two steps. Firstly,
|SD| = |SA| = |SE| suffices to determine both Sx and Sz. The point S must lie
on a line which is a cross-section of axial planes oAE and oDE ,

oAE :

[
1

2
, 0,

p

2

]
+ r(0, 1, 0) + s(−p, 0, 1), r, s ∈ R,

oDE :

[
1

2
, 0, 2p

]
+ r(0, 1, 0) + t(−2p, 0,−1), r, t ∈ R.

From this we easily conclude that

(21) S ∈ (oAE ∩ oDE) = (Sx, 0, Sz) + r(0, 1, 0), r ∈ R,
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where further computation gives Sx = 1
2 − p2 and Sz = 3

2p.
In the second step we determine Sy by computing the appropriate value of pa-

rameter r in (21) from the equality |SA| = |SF |, we get

S =

[
1

2
− p2,

1√
3

(
1

2
− p2

)
,

3

2
p

]
.

We finish the proof with computing R = |S|, which gives (20). �

Theorem 8. Let τ3(p), p ∈ (0,
√

1/2) be a one-parameter family of tetrahedra
defined in (3). Let %(p) be the radius of its inscribed sphere and R(p) radius of its
circumsphere. Then η(p) defined by (13) is maximal for

p = p? =

√
1

8
.

Proof. Both %(p), R(p) being continuously differentiable, one can search for the
optimum as a point of vanishing derivative. If we obtain one critical point in R+,
it has to be maximum since η(p) > 0 and

(22) lim
p→0+

η(p) = lim
p→∞

η(p) = 0.

The relations in (22) are derived using basic algebra of limits from

lim
p→0+

%(p) = 0, lim
p→0+

R(p) =

√
3

3
,

and

%(p) < 1, for all p > 0, lim
p→∞

R(p) =∞.

Solving η′(p) = 0, leads to searching for roots of

32

(
2 +
√

3 ·
√

1

p2
+ 4

)
p6 +

(
30 + 11

√
3 ·
√

1

p2
+ 4

)
p4 − 2 = 0,

which, employing new variable b = p2, can be shown to have unique solution in
positive real half-axis which is b? = 1/8, therefore p? =

√
1/8. �

Note that τ3(p?) is unique in the family of Sommerville II type tetrahedra having
the property that it is identical with its mirror image. Therefore, for p = p?, we get
a mesh that is build by copies of a single element. Moreover, τ3(p?) has all faces

identical—isosceles triangles with the ratio of the leg to the base equal to
√

3/2.
Dihedral angles of τ(p?) are equal to 90◦ at the longer edges and 60◦ at the shorter
ones. Naylor in [6] calls τ(p?) an isotet, or it is called simply the Sommerville
tetrahedron. Substituting p? into (14) and (20) gives

η(p?) =
3%(p?)

R(p?)
=

√
9

10
≈ 0.949.

As for Naylor, (see [6]), this is a maximal value of η for meshing 3-dimensional
space with a single element type.
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Remark 1. Analogously, it can be shown that the value p = p? is ideal also is the
sense of maximizing the ratio of inscribed sphere to the diameter of an element.

Note that diam τ3(p) =
√

1 + 4p2. One can compute that

κ(τ3(p?)) :=
%(p?)

diam τ3(p?)
=

√
3

8√
3
2

=

√
2

8
.
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