
IN
ST
IT
U
TE

of
MA

THEMATICS

A
ca
d
em

y
o
f
Sc
ie
n
ce
s

C
ze
ch

R
ep
u
b
lic INSTITUTE of MATHEMATICS

A
CA

D
EM

Y
of

SC
IE
N
CE

S
of

th
e
CZ
EC

H
RE

PU
BL
IC Weak-type estimates inMorrey spaces

formaximal commutator
and commutator of maximal function

Amiran Gogatishvili

RzaMustafayev

Müjdat Aǧcayazi
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WEAK-TYPE ESTIMATES IN MORREY SPACES FOR MAXIMAL COMMUTATOR AND
COMMUTATOR OF MAXIMAL FUNCTION

AMIRAN GOGATISHVILI, RZA MUSTAFAYEV, AND MÜJDAT AǦCAYAZI

Abstract. In this paper it is shown that the Hardy-Littlewood maximal operator M is not bounded on
Zygmund-Morrey space ML(log L),λ, but M is still bounded on ML(log L),λ for radially decreasing functions.
The boundedness of the iterated maximal operator M2 from ML(log L),λ to weak Zygmund-Morrey space
WML(log L),λ is proved. The class of functions for which the maximal commutator Cb is bounded from
ML(log L),λ to WML(log L),λ are characterized. It is proved that the commutator of the Hardy-Littlewood
maximal operator M with function b ∈ BMO(Rn) such that b− ∈ L∞(Rn) is bounded from ML(log L),λ to
WML(log L),λ. New pointwise characterizations of MαM by means of norm of Hardy-Littlewood maximal
function in classical Morrey spaces are given.

1. Introduction

Given a locally integrable function f on Rn and 0 ≤ α < n, the fractional maximal function Mα f of f
is defined by

Mα f (x) := sup
Q3x
|Q|

α−n
n

∫
Q
| f (y)| dy, (x ∈ Rn),

where the supremum is taken over all cubes Q containing x. The operator Mα : f → Mα f is called the
fractional maximal operator. M := M0 is the classical Hardy-Littlewood maximal operator.

The study of maximal operators is one of the most important topics in harmonic analysis. These sig-
nificant non-linear operators, whose behavior are very informative in particular in differentiation theory,
provided the understanding and the inspiration for the development of the general class of singular and
potential operators (see, for instance, [8, 12–14, 30–32]).

Let f ∈ Lloc
1 (Rn). Then f is said to be in BMO(Rn) if the seminorm given by

‖ f ‖∗ := sup
Q

1
|Q|

∫
Q
| f (y) − fQ|dy

is finite.

Definition 1.1. Given a measurable function b the maximal commutator is defined by

Cb( f )(x) := sup
Q3x

1
|Q|

∫
Q
|b(x) − b(y)|| f (y)|dy

for all x ∈ Rn.
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This operator plays an important role in the study of commutators of singular integral operators with
BMO symbols (see, for instance, [9, 21, 27, 28]). The maximal operator Cb has been studied intensively
and there exist plenty of results about it. Garcia-Cuerva et al. [9] proved the following statement.

Theorem 1.2. Let 1 < p < ∞. Cb is bounded on Lp(Rn) if and only if b ∈ BMO(Rn).

Definition 1.3. Given a measurable function b the commutator of the Hardy-Littlewood maximal operator
M and b is defined by

[M, b] f (x) := M(b f )(x) − b(x)M f (x)

for all x ∈ Rn.

The operator [M, b] was studied by Milman et al. in [22] and [2]. This operator arises, for example,
when one tries to give a meaning to the product of a function in H1 and a function in BMO (which may
not be a locally integrable function, see, for instance, [5]). Using real interpolation techniques, in [22],
Milman and Schonbek proved the Lp-boundedness of the operator [M, b]. Bastero, Milman and Ruiz [2]
proved the next theorem.

Theorem 1.4. Let 1 < p < ∞. Then the following assertions are equivalent:
(i) [M, b] is bounded on Lp(Rn).
(ii) b ∈ BMO(Rn) and b− ∈ L∞(Rn). 1

The opertors Cb and [M, b] enjoy weak-type L(1 + log+ L) estimate.

Theorem 1.5 ([1, Theorem 1.5], see also [15] and [16]). The following assertions are equivalent:
(i) There exists a positive constant c such that for each λ > 0, inequality

(1.1) |{x ∈ Rn : Cb( f )(x) > λ}| ≤ c
∫
Rn

| f (x)|
λ

(
1 + log+

(
| f (x)|
λ

))
dx.

holds for all f ∈ L(1 + log+ L)(Rn).
(ii) b ∈ BMO(Rn).

Theorem 1.6. [1, Theorem 1.6] Let b ∈ BMO(Rn) such that b− ∈ L∞(Rn). Then there exists a positive
constant c such that

|{x ∈ Rn : |[M, b] f (x)| > λ}| ≤ cc0
(
1 + log+ c0

) ∫
Rn

| f (x)|
λ

(
1 + log+

(
| f (x)|
λ

))
dx,(1.2)

for all f ∈ L
(
1 + log+ L

)
and λ > 0, where c0 = ‖b+‖∗ + ‖b−‖∞.

Operators Cb and [M, b] essentially differ from each other. For example, Cb is a positive and sublinear
operator, but [M, b] is neither positive nor sublinear. However, if b satisfies some additional conditions,
then operator Cb controls [M, b].

Lemma 1.7. [1, Lemma 3.1 and 3.2] Let b be any non-negative locally integrable function. Then

(1.3) |[M, b] f (x)| ≤ Cb( f )(x) (x ∈ Rn)

holds for all f ∈ Lloc
1 (Rn).

If b is any locally integrable function on Rn, then

(1.4) |[M, b] f |(x) ≤ Cb( f )(x) + 2b−(x)M f (x) (x ∈ Rn)
1Denote by b+(x) = max{b(x), 0} and b−(x) = −min{b(x), 0}, consequently b = b+ − b− and |b| = b+ + b−.
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holds for all f ∈ Lloc
1 (Rn).

We recall the following statement from [1].

Theorem 1.8. [1, Theorem 1.13] Let b ∈ BMO(Rn). Suppose that X is a Banach space of measurable
functions defined on Rn. Moreover, assume that X satisfies the lattice property, that is,

0 ≤ g ≤ f ⇒ ‖g‖X . ‖ f ‖X.

Assume that M is bounded on X. Then the operator Cb is bounded on X, and the inequality

‖Cb f ‖X ≤ c‖b‖∗‖ f ‖X

holds with constant c independent of f .
Moreover, if b− ∈ L∞(Rn), then the operator [M, b] is bounded on X, and the inequality

‖[M, b] f ‖X ≤ c(‖b+‖∗ + ‖b−‖∞)‖ f ‖X

holds with constant c independent of f .

The proof of previous theorem is based on the following inequalities.

Theorem 1.9. [1, Corollary 1.11 and 1.12] Let b ∈ BMO(Rn). Then, there exists a positive constant c
such that

(1.5) Cb( f )(x) ≤ c‖b‖∗M2 f (x) (x ∈ Rn)

for all f ∈ Lloc
1 (Rn).

Moreover, if b− ∈ L∞(Rn), then, there exists a positive constant c such that

(1.6) |[M, b] f (x)| ≤ c
(
‖b+‖∗ + ‖b−‖∞

)
M2 f (x)

for all f ∈ Lloc
1 (Rn).

The classical Morrey spacesMp,λ ≡ Mp,λ(Rn), were introduced by C. Morrey in [23] in order to study
regularity questions which appear in the Calculus of Variations, and defined as follows: for 0 ≤ λ ≤ n
and 1 ≤ p ≤ ∞,

Mp,λ :=
{

f ∈ Lloc
p (Rn) : ‖ f ‖Mp,λ

:= sup
x∈Rn, r>0

r
λ−n

p ‖ f ‖Lp(B(x,r)) < ∞

}
,

where B(x, r) is the open ball centered at x of radius r.
Note thatMp,0(Rn) = L∞(Rn) andMp,n(Rn) = Lp(Rn).
These spaces describe local regularity more precisely than Lebesgue spaces and appeared to be quite

useful in the study of the local behavior of solutions to partial differential equations, a priori estimates
and other topics in PDE (cf. [10]).

The boundedness of the Hardy-Littlewood maximal operator M in Morrey spacesMp,λ was proved by
F. Chiarenza and M. Frasca in [7]: It was shown that M f is a.e. finite if f ∈ Mp,λ and an estimate

(1.7) ‖M f ‖Mp,λ ≤ c‖ f ‖Mp,λ

holds if 1 < p < ∞ and 0 < λ < n, and a weak type estimate (1.7) replaces for p = 1, that is, the
inequality

(1.8) t|{M f > t} ∩ B(x, r)| ≤ crn−λ‖ f ‖M1,λ
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holds with constant c independent of x, r, t and f .
In [11], it is proved that the Hardy-Littlewood maximal operator M is bounded onM1,λ, 0 ≤ λ < n,

for radially decreasing functions, that is, the inequality

(1.9) ‖M f ‖M1,λ . ‖ f ‖M1,λ , f ∈ Mrad,↓

holds with constant independent of f , and an example which shows that M is not bounded on M1,λ,
0 < λ < n is given.

Combining Theorem 1.9 with inequalities (1.7) and (1.9), it is easy to generalize Theorems 1.2 and 1.4
to Morrey spaces (see Theorems 3.1 and 3.3).

In this paper the Zygmund-Morrey and the weak Zygmund-Morrey spaces are defined. In order to
investigate the boundedness of the maximal commutator Cb and the commutator of maximal function
[M, b] on Zygmund-Morrey spaces we start to study the boundedness properties of the Hardy-Littlewood
maximal operator on these spaces. It is shown that the Hardy-Littlewood maximal operator M is not
bounded on Zygmund-Morrey spacesML(log L),λ, but M is still bounded onML(log L),λ for radially decreas-
ing functions. The boundedness of the iterated maximal operator M2 from Zygmund-Morrey spaces
ML(log L),λ to weak Zygmund-Morrey spaces WML(log L),λ is proved. The class of functions for which
the maximal commutator Cb is bounded from ML(log L),λ to WML(log L),λ are characterized. It is proved
that the commutator [M, b] is bounded from ML(log L),λ to WML(log L),λ, when b ∈ BMO(Rn) such that
b− ∈ L∞(Rn). New pointwise characterizations of MαM by means of norm of Hardy-Littlewood maximal
function in Morrey space are given.

The paper is organized as follows. In Section 2 notations and preliminary results are given. Bound-
edness of maximal commutator and commutator of maximal function in Morrey spaces are investigated
in Section 3. New characterizations of MαM are obtained in section 4. In Section 5 it is shown that the
Hardy-Littlewood maximal operator M is not bounded on Zygmund-Morrey spacesML(log L),λ, but M is
still bounded on ML(log L),λ for radially decreasing functions. The boundedness of the iterated maximal
operator from ML(log L),λ to WML(log L),λ is proved in Section 6. In Section 7 weak-type estimates for
maximal commutator and commutator of maximal function in Zygmund-Morrey spaces are proved.

2. Notations and Preliminaries

Now we make some conventions. Throughout the paper, we always denote by c a positive constant,
which is independent of main parameters, but it may vary from line to line. However a constant with
subscript such as c1 does not change in different occurrences. By a . b we mean that a ≤ cb with
some positive constant c independent of appropriate quantities. If a . b and b . a, we write a ≈ b
and say that a and b are equivalent. For a measurable set E, χE denotes the characteristic function of E.
Throughout this paper cubes will be assumed to have their sides parallel to the coordinate axes. Given
λ > 0 and a cube Q, λQ denotes the cube with the same center as Q and whose side is λ times that of
Q. For a fixed p with p ∈ [1,∞), p′ denotes the dual exponent of p, namely, p′ = p/(p − 1). For any
measurable set E and any integrable function f on E, we denote by fE the mean value of f over E, that
is, fE = (1/|E|)

∫
E

f (x)dx. Unless a special remark is made, the differential element dx is omitted when
the integrals under consideration are the Lebesgue integrals.

For the sake of completeness we recall the definitions and some properties of the spaces we are going
to use.
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Let Ω be any measurable subset of Rn, n ≥ 1. LetM(Ω) denote the set of all measurable functions on
Ω andM0(Ω) the class of functions inM(Ω) that are finite a.e.

For p ∈ (0,∞], we define the functional ‖ · ‖p,Ω onM(Ω) by

‖ f ‖p,Ω :=

(
∫

Ω
| f (x)|p dx)1/p if p < ∞,

ess supΩ | f (x)| if p = ∞.

The Lebesgue space Lp(Ω) is given by

Lp(Ω) := { f ∈ M(Ω) : ‖ f ‖p,Ω < ∞}

and it is equipped with the quasi-norm ‖ · ‖p,Ω.
Denote byMrad,↓ = Mrad,↓(Rn) the set of all measurable, radially decreasing functions on Rn, that is,

M
rad,↓ := { f ∈ M(Rn) : f (x) = ϕ(|x|), x ∈ Rn withϕ ∈ M↓(0,∞)}.

Recall that M f ≈ H f , f ∈ Mrad,↓, where

H f (x) :=
1

|B(0, |x|)|

∫
B(0,|x|)

| f (y)| dy

is n-dimensional Hardy operator. Obviously, H f ∈ Mrad,↓, when f ∈ Mrad,↓.
The non-increasing rearrangement (see, e.g., [4, p. 39]) of a function f ∈ M0(Rn) is defined by

f ∗(t) := inf {λ > 0 : |{x ∈ Rn : | f (x)| > λ}| ≤ t} (0 < t < ∞).

Then f ∗∗ will denote the maximal function of f ∗ defined by

f ∗∗(t) :=
1
t

∫ t

0
f ∗(s) ds, (t > 0).

The Zygmund class L(log+ L)(Ω) is the set of all f ∈ M(Ω) such that∫
Ω

| f (x)|(log+
| f (x)|) dx < ∞,

where log+ t = max{log t, 0}, t > 0. Generally, this is not a linear set. Nevertheless, considering the class

L(1 + log+ L)(Ω) =

{
f ∈ M(Ω) : ‖ f ‖L(1+log+ L)(Ω) :=

∫
Ω

| f (x)| (1 + log+
| f (x)|) dx < ∞

}
,

we obtain a linear set, the Zygmund space.
The size of M2 is given by the following inequality.

Lemma 2.1. [24, Lemma 1.6] There exists a positive constant c such that for any function f and for all
λ > 0,

(2.1) |{x ∈ Rn : M2 f (x) > λ}| ≤ c
∫
Rn

| f (x)|
λ

(
1 + log+

(
| f (x)|
λ

))
dx.

The following important result regarding BMO is true.

Lemma 2.2 ([17] and [3]). For p ∈ (0,∞), BMO(p)(Rn) = BMO(Rn), with equivalent norms, where

‖ f ‖BMO(p)(Rn) := sup
Q

(
1
|Q|

∫
Q
| f (y) − fQ|

pdy
) 1

p

.
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A continuously increasing function on [0,∞], say Ψ : [0,∞] → [0,∞] such that Ψ(0) = 0, Ψ(1) = 1
and Ψ(∞) = ∞, will be referred to as an Orlicz function. If Ψ is an Orlicz function, then

Φ(t) = sup{ts − Ψ(s); s ∈ [0,∞]}

is the complementary Orlicz function to Ψ.
The Orlicz space denoted by LΨ = LΨ(Rn) consists of all measurable functions g : Rn → R such that∫

Rn
Ψ

(
|g(x)|
α

)
dx < ∞

for some α > 0.
Let us define the Ψ-average of g over a cube Q of Rn by

‖g‖Ψ,Q = inf
{
α > 0 :

1
|Q|

∫
Q

Ψ

(
|g(x)|
α

)
dx ≤ 1

}
.

When Ψ is a Young function, i.e. a convex Orlicz function, the quantity

‖ f ‖Ψ = inf
{
α > 0 :

∫
Rn

Ψ

(
| f (y)|
α

)
dy ≤ 1

}
is well known Luxemburg norm in the space LΨ (see [25]).

A Young function Ψ is said to satisfy the ∇2-condition, denoted Ψ ∈ ∇2, if for some K > 1

Ψ(t) ≤
1

2K
Ψ(Kt) for all t > 0.

It should be noted that Ψ(t) ≡ t fails the ∇2-condition.

Theorem 2.3. [18] The Hardy-Littlewood maximal operator is bounded on LΨ, provided that Ψ ∈ ∇2.

Combining Theorem 2.3 and 1.8, we obtain the following statement.

Theorem 2.4. Let b ∈ BMO(Rn) and Ψ ∈ ∇2.
Then the operator Cb is bounded on LΨ, and the inequality

‖Cb f ‖LΨ ≤ c‖b‖∗‖ f ‖LΨ

holds with constant c independent of f .
Moreover, if b− ∈ L∞(Rn), then the operator [M, b] is bounded on LΨ, and the inequality

‖[M, b] f ‖LΨ ≤ c(‖b+‖∗ + ‖b−‖∞)‖ f ‖LΨ

holds with constant c independent of f .

If f ∈ LΨ(Rn), the Orlicz maximal function of f with respect to Ψ is defined by setting

MΨ f (x) = sup
x∈Q
‖ f ‖Ψ,Q,

where the supremum is taken over all cubes Q of Rn containing x.
The generalized Hölder’s inequality

(2.2)
1
|Q|

∫
Q
| f (y)g(y)|dy ≤ ‖ f ‖Φ,Q‖g‖Ψ,Q,

where Ψ is the complementary Young function associated to Φ, holds.
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The main example that we are going to be using is Φ(t) = t(1 + log+ t) with maximal function defined
by ML(1+log+ L). The complementary Young function is given by Ψ(t) ≈ et with the corresponding maximal
function denoted by Mexp L.

We define the weak L(1 + log+ L)-average of g over a cube Q of Rn analogously by

‖g‖WL(1+log+ L),Q = inf

α > 0 : sup
t>0

1
|Q|
|{x ∈ Q : |g(x)| > αt}|

1
t

(
1 + log+ 1

t

) ≤ 1

 .
Let 0 < λ < n. The Zygmund-Morrey spaces ML(log L),λ(Rn) ≡ ML(1+log+ L),λ(Rn) and the weak

Zygmund-Morrey spacesWML(log L),λ(Rn) ≡ WML(1+log+ L),λ(Rn) are defined as follows:

ML(1+log+ L),λ(Rn) :={ f ∈ M(Rn) : ‖ f ‖ML(1+log+ L),λ
:= sup

Q
|Q|

λ
n ‖ f ‖L(1+log+ L),Q < ∞},

WML(1+log+ L),λ(Rn) :={ f ∈ M(Rn) : ‖ f ‖WML(1+log+ L),λ
:= sup

Q
|Q|

λ
n ‖ f ‖WL(1+log+ L),Q < ∞},

respectively. Note that ML(1+log+ L),λ is a special case of Orlicz-Morrey spaces LΦ,φ (with Φ(t) = t(1 +

log+ t) and φ(t) = tλ, t > 0) defined in [26, Definitions 2.3]. As we know, a weak version has not been
defined yet in such form.

3. Boundedness of maximal commutator and commutator of maximal function inMorrey spaces

In this section we investigate boundedness of maximal commutator and commutator of maximal func-
tion in Morrey spaces.

The following theorem is true.

Theorem 3.1. Let 1 < p < ∞, 0 ≤ λ ≤ n. The following assertions are equivalent:
(i) b ∈ BMO(Rn).
(ii) The operator Cb is bounded onMp,λ.

Proof. (i) ⇒ (ii). Suppose that b ∈ BMO(Rn). By Theorem 1.9 and inequality (1.7) it follows that Cb is
bounded in Morrey spaceMp,λ and the following inequality holds:

‖Cb( f )‖Mp,λ . ‖b‖∗ ‖ f ‖Mp,λ .

(ii)⇒ (i). Assume that there exists c > 0 such that

‖Cb( f )‖Mp,λ ≤ c‖ f ‖Mp,λ

for all f ∈ Mp,λ. Obviously,

‖ f ‖Mp,λ ≈ sup
Q′

(
|Q′|

λ−n
n

∫
Q′
| f (y)|pdy

) 1
p

.

Let Q be a fixed cube. We consider f = χQ. It is easy to compute that

‖χQ‖Mp,λ ≈ sup
Q′

(
|Q′|

λ−n
n

∫
Q′
χQ(y)dy

) 1
p

= sup
Q′

(
|Q′ ∩ Q||Q′|

λ−n
n
) 1

p

= sup
Q′⊆Q

(
|Q′||Q′|

λ−n
n
) 1

p
= |Q|

λ
np .

(3.1)

On the other hand, since

Cb(χQ)(x) &
1
|Q|

∫
Q
|b(y) − bQ|dy for all x ∈ Q.
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then

‖Cb(χQ)‖Mp,λ ≈ sup
Q′

(
|Q′|

λ−n
n

∫
Q′
|Cb(χQ)(y)|pdy

) 1
p

& |Q|
λ

np
1
|Q|

∫
Q
|b(y) − bQ|dy.

(3.2)

Since by assumption

‖Cb(χQ)‖Mp,λ . ‖χQ‖Mp,λ ,

by (3.1) and (3.2), we get that
1
|Q|

∫
Q
|b(y) − bQ|dy . c.

�

Combining Theorem 1.9 with inequality (1.9), we get the following statement.

Theorem 3.2. Let 0 < λ < n. Assume that b ∈ BMO(Rn). Then the operator Cb is bounded onM1,λ for
radially decreasing functions.

The following theorem was proved in [33].

Theorem 3.3. Let 1 < p < ∞, 0 ≤ λ ≤ n. Suppose that b be a real valued, locally integrable function in
Rn. The following assertions are equivalent:

(i) b is in BMO(Rn) such that b− ∈ L∞(Rn).
(ii) The commutator [M, b] is bounded inMp,λ.

Remark 3.4. (i) ⇒ (ii). Assume that b is in BMO(Rn) such that b− ∈ L∞(Rn). By Theorem 1.9 and
inequality (1.7) it follows that [M, b] is bounded in Morrey space Mp,λ and the following inequality
holds:

‖[M, b] f ‖Mp,λ .
(
‖b+‖∗ + ‖b−‖∞

)
‖ f ‖Mp,λ .

Combining Theorem 1.9 with inequality (1.9), we obtain the following statement.

Theorem 3.5. Let 0 < λ < n. Suppose that b is in BMO(Rn) such that b− ∈ L∞(Rn). Then [M, b] is
bounded onM1,λ for radially decreasing functions.

4. Some auxillary results

To prove the theorems in the next sections we need the following results.

Theorem 4.1. Let 0 ≤ α < n. Then

Mα(M f )(x) = sup
Q3x
|Q|

α−n
n

∫
Q

M f ≈ sup
Q3x
|Q|

α
n ‖ f ‖L(1+log+ L),Q

≈ sup
Q3x
|Q|

α−n
n

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
holds for all f ∈ Lloc

1 (Rn).

The statement of Theorem 4.1 follows by the following two lemmas.
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Lemma 4.2. Inequalities ∫
Q

M f ≈
∫

Q
| f |

(
1 + log+ | f |

| f |Q

)
.

holds for all f ∈ Lloc
1 (Rn) with positive constants independent of f and Q.

Proof. Let Q be a cube in Rn. We are going to use weak type estimates (see [29], for instance): there
exist positive constants c1 < 1 and c2 > 1 such that for every f ∈ Lloc

1 (Rn) and for every t > 1/|Q|
∫

Q
| f |

we have

c1

∫
{x∈Q:| f (x)|>t}

| f (x)|
t

dx ≤ |{x ∈ Q : M f (x) > t}| ≤ c2

∫
{x∈Q:| f (x)|>t/2}

| f (x)|
t

dx.

We have that ∫
Q

M f =

∫ ∞

0
|{x ∈ Q : M f (x) > λ}|dλ

=

∫ | f |Q

0
|{x ∈ Q : M f (x) > λ}|dλ

+

∫ ∞

| f |Q
|{x ∈ Q : M f (x) > λ}|dλ

= |Q|| f |Q +

∫ ∞

| f |Q
|{x ∈ Q : M f (x) > λ}|dλ

≥ |Q|| f |Q + c1

∫ ∞

| f |Q

(∫
{x∈Q:| f (x)|>λ}

| f (y)| dy
)

dλ
λ

= |Q|| f |Q + c1

∫
{x∈Q:| f (x)|>| f |Q}

(∫ | f (x)|

| f |Q

dλ
λ

)
| f (x)| dx

= |Q|| f |Q + c1

∫
{x∈Q:| f (x)|>| f |Q}

| f (x)| log
(
| f (x)|
| f |Q

)
dx

≥ c1

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
.

On the other hand, ∫
Q

M f =

∫ ∞

0
|{x ∈ Q : M f (x) > λ}|dλ

≈

∫ ∞

0
|{x ∈ Q : M f (x) > 2λ}|dλ

=

∫ | f |Q

0
|{x ∈ Q : M f (x) > 2λ}|dλ

+

∫ ∞

| f |Q
|{x ∈ Q : M f (x) > 2λ}|dλ

≤ |Q|| f |Q + c2

∫ ∞

| f |Q

(∫
{x∈Q:| f (x)|>λ}

| f (y)| dy
)

dλ
λ

= |Q|| f |Q + c2

∫
{x∈Q:| f (x)|>| f |Q}

| f (x)| log
(
| f (x)|
| f |Q

)
dx

≤ c2

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
.

�
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Lemma 4.3. Inequalities

1
|Q|

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
≈ ‖ f ‖L(1+log+ L),Q

hold for all f ∈ Lloc
1 (Rn) with positive constants independent of f and Q.

Proof. Since

1 ≤
1
|Q|

∫
Q

| f |
| f |Q

(
1 + log+ | f |

| f |Q

)
,

then
| f |Q ≤ ‖ f ‖L(1+log+ L),Q.

Using the inequality log+(ab) ≤ log+ a + log+ b, a, b ∈ R+, we get

1
|Q|

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
=

1
|Q|

∫
Q
| f |

(
1 + log+

(
| f |

‖ f ‖L(1+log+ L),Q

‖ f ‖L(1+log+ L),Q

| f |Q

))
≤

1
|Q|

∫
Q
| f |

(
1 + log+ | f |

‖ f ‖L(1+log+ L),Q

)
+

1
|Q|

∫
Q
| f | log+

‖ f ‖L(1+log+ L),Q

| f |Q

≤ ‖ f ‖L(1+log+ L),Q + | f |Q log+
‖ f ‖L(1+log+ L),Q

| f |Q
.

Since
‖ f ‖L(1+log+ L),Q

| f |Q
≥ 1 and log t ≤ t when t ≥ 1, we get

1
|Q|

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
≤ 2‖ f ‖L(1+log+ L),Q.

On the other hand, by Lemma 4.2, we have that

1
|Q|

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
≤ c

1
|Q|

∫
Q

M f

with some positive constant c > 1 independent of f . Since

| f |Q ≤ c
1
|Q|

∫
Q

M f ,

then
1
|Q|

∫
Q

| f |
c
|Q|

∫
Q

M f

1 + log+ | f |
c
|Q|

∫
Q

M f

 ≤ 1.

Consequently,

‖ f ‖L(1+log+ L),Q ≤ c
1
|Q|

∫
Q

M f .

Hence, by Lemma 4.2, we get that

‖ f ‖L(1+log+ L),Q .
1
|Q|

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
.

�

The following corollaries follow from Theorem 4.1.
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Corollary 4.4. Inequalities

(4.1) M2 f (x) ≈ ML(1+log+ L) f (x) ≈ sup
x∈Q

1
|Q|

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
holds for all x ∈ Rn and f ∈ Lloc

1 (Rn) with positive constants independent of x and f .

Corollary 4.5. Let 0 < λ < n. The equivalency

‖M f ‖M1,λ ≈ ‖ f ‖ML(1+log+ L),λ
≈ sup

Q
|Q|

λ−n
n

∫
Q
| f |

(
1 + log+ | f |

| f |Q

)
holds with positive constants independent of f .

Note that M2 f ≈ ML(1+log+ L) f was proved in [24] (see, also [13, p. 159]). For the second part of (4.1)
see [6], [19], [20] and [24]. The equivalence ‖M f ‖M1,λ ≈ ‖ f ‖ML(1+log+ L),λ

is a special case of [26, Lemma
3.5].

5. Note on the boundedness of the maximal function on Zygmund-Morrey spaces

In this section we prove that the Hardy-Littlewood maximal operator M is bounded onML(1+log+ L),λ,
0 < λ < n, for radially decreasing functions, and we give an example which shows that M is not bounded
onML(1+log+ L),λ, 0 < λ < n.

In order to prove the main result of this section we need the following auxiliary lemmas.

Lemma 5.1. Assume that 0 < λ < n. Let f ∈ Mrad,↓(Rn) with f (x) = ϕ(|x|). The equivalency

‖ f ‖ML(1+log+ L),λ
≈ sup

x>0
xλ−n

∫ x

0

1
t

∫ t

0
|ϕ(ρ)|ρn−1 dρ dt

holds with positive constants independent of f .

Proof. Recall that

‖ f ‖ML(1+log+ L),λ
≈ sup

B
|B|

λ−n
n

∫
B

M f = ‖Mλ(M f )‖∞, f ∈ M(Rn).

Since Mλ( f )(y) & 1
|B(0,|y|)|1−λ/n

∫
B(0,|y|)

| f (z)| dz, in view of M f ≈ H f , f ∈ Mrad,↓, switching to polar coordi-
nates, we have that

Mλ(M f )(y) &
1

|B(0, |y|)|1−λ/n

∫
B(0,|y|)

|M f (z)| dz

≈
1

|B(0, |y|)|1−λ/n

∫
B(0,|y|)

|H f (z)| dz

=
1

|B(0, |y|)|1−λ/n

∫
B(0,|y|)

1
|B(0, |z|)

∫
B(0,|z|)

| f (w)| dw dz

≈
1

|B(0, |y|)|1−λ/n

∫
B(0,|y|)

|z|−n
∫ |z|

0
|ϕ(ρ)|ρn−1 dρ dz

≈ |y|λ−n
∫ |y|

0

1
t

∫ t

0
|ϕ(ρ)|ρn−1 dρ dt.

Consequently,

‖ f ‖ML(1+log+ L),λ
& ess sup

y∈Rn
|y|λ−n

∫ |y|

0

1
t

∫ t

0
|ϕ(ρ)|ρn−1 dρ dt
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= sup
x>0

xλ−n
∫ x

0

1
t

∫ t

0
|ϕ(ρ)|ρn−1 dρ dt,

where f (·) = ϕ(| · |).
On the other hand,

‖ f ‖ML(1+log+ L),λ
. sup

B
|B|

λ−n
n

∫ |B|

0
(M f )∗(t) dt

≈ sup
B
|B|

λ−n
n

∫ |B|

0
f ∗∗(t) dt

= sup
B
|B|

λ−n
n

∫ |B|

0

1
t

∫ t

0
f ∗(s) ds dt

= sup
B
|B|

λ−n
n

∫ |B|

0

1
t

∫ t

0
|ϕ(s

1
n )| ds dt

≈ sup
B
|B|

λ−n
n

∫ |B|

0

1
t

∫ t
1
n

0
|ϕ(ρ)|ρn−1 dρ dt

≈ sup
B
|B|

λ−n
n

∫ |B|
1
n

0

1
x

∫ x

0
|ϕ(ρ)|ρn−1 dρ dx

= sup
x>0

xλ−n
∫ x

0

1
t

∫ t

0
|ϕ(ρ)|ρn−1 dρ dt,

where f (·) = ϕ(| · |). �

Corollary 5.2. Assume that 0 < λ < n. Let f ∈ Mrad,↓(Rn) with f (x) = ϕ(|x|). The equivalency

‖M f ‖ML(1+log+ L),λ
≈ sup

x>0
xλ−n

∫ x

0

1
y

∫ y

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt dy

holds with positive constants independent of f .

Proof. Let f ∈ Mrad,↓ with f (x) = ϕ(|x|). Since M f ≈ H f and H f ∈ Mrad,↓, by Lemma 5.1, switching to
polar coordinates, we have that

‖M f ‖ML(1+log+ L),λ
≈ sup

x>0
xλ−n

∫ x

0

1
y

∫ y

0

(
1

|B(0, t)|

∫
B(0,t)
| f (y)| dy

)
tn−1 dt dy

≈ sup
x>0

xλ−n
∫ x

0

1
y

∫ y

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt dy.

�

Lemma 5.3. Assume that 0 < λ < n. Let f ∈ Mrad,↓ with f (x) = ϕ(|x|). The inequality

‖M f ‖ML(1+log+ L),λ
. ‖ f ‖ML(1+log+ L),λ

, f ∈ Mrad,↓

holds if and only if the inequality

sup
x>0

xλ−n
∫ x

0

1
y

∫ y

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt dy

. sup
x>0

xλ−n
∫ x

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt, ϕ ∈ M+,↓(R+)

holds true.

Proof. The statement immediately follows from Lemma 5.1 and Corollary 5.2. �
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Lemma 5.4. Let 0 < λ < n. Then inequality

(5.1) sup
x>0

xλ−n
∫ x

0

1
y

∫ y

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt dy . sup

x>0
xλ−n

∫ x

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt

holds for all ϕ ∈ M+,↓(R+).

Proof. Indeed:

sup
x>0

xλ−n
∫ x

0

1
y

∫ y

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt dy

= sup
x>0

xλ−n
∫ x

0
yn−λ−1yλ−n

∫ y

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt dy

≤ sup
y>0

yλ−n
∫ y

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt ·

(
sup
x>0

xλ−n
∫ x

0
yn−λ−1dy

)
≈ sup

y>0
yλ−n

∫ y

0

1
t

∫ t

0
ϕ(ρ)ρn−1 dρ dt.

�

Theorem 5.5. Assume that 0 < λ < n. The inequality

‖M f ‖ML(1+log+ L),λ
. ‖ f ‖ML(1+log+ L),λ

holds for all f ∈ Mrad,↓ with constant independent of f .

Proof. The statement follows by Lemmas 5.3 and 5.4. �

Example 5.6. We give an example which shows that M is not bounded onML(1+log+ L),λ, 0 < λ < n. For
simplicity let n = 1 and λ = 1/2. Consider even function f defined as follows:

f (x) =

∞∑
k=0

χ[k2 ln2(k+e),k2 ln2(k+e)+1](x), x ≥ 0.

It is easy to see that M f and M2 f are even functions. Obviously,

M f (x) ≈
∞∑

k=0

χ[k2 ln2(k+e),k2 ln2(k+e)+1](x)

+

∞∑
k=0

1
x − k2 ln2(k + e)

χ[k2 ln2(k+e)+1,k2 ln2(k+e)+1+mk](x)

+

∞∑
k=0

1
(k + 1)2 ln2(k + 1 + e) + 1 − x

χ[k2 ln2(k+e)+1+mk ,(k+1)2 ln2(k+1+e)](x), x ≥ 0,

where

mk =
(k + 1)2 ln2(k + 1 + e) − k2 ln2(k + e) − 1

2
, k = 0, 1, 2, . . . .

Then

‖ f ‖ML(1+log+ L),1/2(R) ≈ ‖M f ‖M1,1/2(R) = sup
I
|I|−1/2

∫
I

M f

≤ sup
I: |I|≤1

|I|−1/2
∫

I
M f + sup

I: |I|>1
|I|−1/2

∫
I

M f .
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It is easy to see that

sup
I: |I|≤1

|I|−1/2
∫

I
M f ≤ sup

I: |I|≤1
|I|1/2 ≤ 1.

Since ∫ ( j+1)2 ln2( j+e+1)

j2 ln2( j+e)
M f (x) dx ≈ (1 + 2 ln(1 + m j)), j = 0, 1, 2, . . . ,

we have that

sup
I: |I|>1

|I|−1/2
∫

I
M f (x) dx = sup

m≥2
sup

I: m−1<|I|≤m
|I|−1/2

∫
I

M f (x) dx

. sup
m≥2

m−1/2
∫ m

0
M f (x) dx

≤ sup
m≥2

m−1/2
∑

i2 ln2( j+e)<m

∫ ( j+1)2 ln2( j+e+1)

j2 ln2( j+e)
M f (x) dx

≈ sup
m≥2

m−1/2
∑

i2 ln2( j+e)<m

(1 + 2 ln(1 + m j))

. sup
m≥2

m−1/2
∑

i2 ln2( j+e)<m

ln( j + e)

. sup
m≥2

m−1/2m1/2 = 1,

we have that

‖ f ‖ML(1+log+ L),1/2(R) . 1 + 1 = 2.

On the other hand, it is easy to see that

M2 f (x) ≥
1

x − (k2 ln2(k + e) + 1)

∫ x

k2 ln2(k+e)+1

dt
t − k2 ln2(k + e)

=
ln(x − k2 ln2(k + e))

x − (k2 ln2(k + e) + 1)

≥
ln(x − k2 ln2(k + e))

x − k2 ln2(k + e)

for any x ∈ [k2 ln2(k + e) + e, k2 ln2(k + e) + mk].
Thus

M2 f (x) ≥
∞∑

k=0

ln(x − k2 ln2(k + e))
x − k2 ln2(k + e)

χ[k2 ln2(k+e)+e,k2 ln2(k+e)+mk](x).

Finally,

‖M f ‖ML(1+log+ L),1/2(R) ≈ ‖M2 f ‖M1,1/2(R)

& sup
k

(k ln(k + e))−1
∫ k2 ln2(k+e)

0
M2 f (x) dx

≥ sup
k

(k ln(k + e))−1
k−1∑
j=1

∫ j2 ln2( j+e)+m j

j2 ln2( j+e)+e
M2 f (x) dx

≥ sup
k

(k ln(k + e))−1
k−1∑
j=1

∫ j2 ln2( j+e)+m j

j2 ln2( j+e)+e

ln(x − k2 ln2(k + e))
x − k2 ln2(k + e)

dx
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= sup
k

(k ln(k + e))−1
k−1∑
j=1

∫ m j

e

ln x
x

dx

& sup
k

(k ln(k + e))−1
k−1∑
j=1

ln2 m j

& sup
k

(k ln(k + e))−1
k−1∑
j=1

ln2( j + e)

& sup
k

(k ln(k + e))−1k ln2(k + e)

= sup
k

ln(k + e) = ∞.

6. Weak-type estimates inMorrey spaces for the iterated maximal function

In this section the boundedness of the iterated maximal operator M2 from Zygmund-Morrey spaces
ML(1+log+ L),λ to weak Zygmund-Morrey spacesWML(1+log+ L),λ is proved.

To obtain weak-type estimates for M2 in Morrey spaces, we need the following lemma.

Lemma 6.1. The inequality

(6.1)
1
|Q|

∫
Q

M f (y)dy . sup
Q⊂Q′
‖ f ‖L(1+log+ L),Q′

holds for all f ∈ Lloc
1 (Rn) with positive constant independent of f and Q.

Proof. Let Q be a cube in Rn and f = f1 + f2, where f1 = fχ3Q. Then

(6.2)
1
|Q|

∫
Q

M f (y)dy ≤
1
|Q|

∫
Q

M f1(y)dy +
1
|Q|

∫
Q

M f2(y)dy.

We recall simple geometric observation: for a fixed point x ∈ Q, if a cube Q′ satisfies Q′ 3 x and
Q′ ∩ (3Q)c , ∅, then Q ⊂ 3Q′. Hence

M f2(x) = sup
Q′3x

1
|Q′|

∫
Q′
| f2(y)|dy ≤ sup

Q⊂3Q′

1
|Q′|

∫
Q′
| f (y)|dy.

Consequently, we have that

(6.3)
1
|Q|

∫
Q

M f2(y)dy . sup
Q⊂Q′

1
|Q′|

∫
Q′
| f (y)|dy.

Since for any cube Q′
1
|Q′|

∫
Q′
| f (y)|dy ≤ ‖ f ‖L(1+log+ L),Q′ ,

we get

(6.4)
1
|Q|

∫
Q

M f2(y)dy . sup
Q⊂Q′
‖ f ‖L(1+log+ L),Q′ .

On the other hand
1
|Q|

∫
Q

M f (y)dy . ‖ f ‖L(1+log+ L),Q

for all f such that supp f ⊂ Q (see [24, p. 174]). Thus

(6.5)
1
|Q|

∫
Q

M f1(y)dy .
1
|3Q|

∫
3Q

M f1(y)dy . ‖ f ‖L(1+log+ L),3Q.
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From (6.2), (6.4) and (6.5), it follows that

1
|Q|

∫
Q

M f (y)dy . sup
Q⊂Q′
‖ f ‖L(1+log+ L),Q′ + ‖ f ‖L(1+log+ L),3Q . sup

Q⊂Q′
‖ f ‖L(1+log+ L),Q′ .(6.6)

�

The following theorem is true.

Theorem 6.2. Let 0 < λ < n. Then the operator M2 is bounded fromML(1+log+ L),λ toWML(1+log+ L),λ and
the following inequality holds

‖M2 f ‖WML(1+log+ L),λ
≤ c‖ f ‖ML(1+log+ L),λ(6.7)

with positive constant c independent of f .

Proof. Let Q be any cube in Rn and let f = f1 + f2, where f1 = fχ4Q. By subadditivity of M2 we get

M2 f ≤ M2 f1 + M2 f2.

Since for any cube Q′ conditions z ∈ 2Q ∩ Q′ and Q′ ∩ {Rn\4Q} , ∅ imply Q ⊂ 4Q′, we have

(6.8) M f2(z) = M( fχRn\4Q)(z) ≤ sup
Q⊂4Q′

1
|Q′|

∫
Q′
| f |

for any z ∈ 2Q. Thus for any z ∈ Rn

(6.9) M f2(z) ≤ χ2Q(z) sup
Q⊂4Q′

1
|Q′|

∫
Q′
| f | + χRn\2Q(z)M f (z).

Applying to both sides of the inequality (6.9) by operator M for any y ∈ Q we get

(6.10) M2 f2(y) ≤ M(χ2Q)(y) sup
Q⊂4Q′

1
|Q′|

∫
Q′
| f | + M(χRn\2QM f )(y).

Since M(χ2Q)(y) = 1, y ∈ Q, by the inequality (6.8) we arrive at

(6.11) M2 f2(y) ≤ sup
Q⊂4Q′

1
|Q′|

∫
Q′
| f | + sup

Q⊂2Q′

1
|Q′|

∫
Q′

M f . sup
Q⊂Q′

1
|Q′|

∫
Q′

M f .

Consequently, for y ∈ Q

(6.12) M2 f (y) . M2( fχ4Q)(y) + sup
Q⊂Q′

1
|Q′|

∫
Q′

M f .

Since

(6.13) 1 + log+(ab) ≤ (1 + log+ a)(1 + log+ b),

by Lemma 2.1 for any α > 0 and t > 0 we have∣∣∣∣{x ∈ Q : M2( fχ4Q)(x) > αt
}∣∣∣∣

≤

∣∣∣∣{x ∈ Rn : M2( fχ4Q)(x) > αt
}∣∣∣∣

≤ c
∫
Rn

|( fχ4Q)(x)|
αt

(
1 + log+

(
|( fχ4Q)(x)|

αt

))
dx

≤ c
1
α

(
1 + log+ 1

α

) ∫
4Q

| f (x)|
t

(
1 + log+

(
| f (x)|

t

))
dx.
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We get ∣∣∣∣{x ∈ Q : M2( fχ4Q)(x) > αt
}∣∣∣∣

1
α

(
1 + log+ 1

α

) ≤ c
∫

4Q

| f (x)|
t

(
1 + log+

(
| f (x)|

t

))
dx.

Consequently,

sup
α>0

1
|Q|

∣∣∣∣{x ∈ Q : M2( fχ4Q)(x) > αt
}∣∣∣∣

1
α

(
1 + log+ 1

α

) ≤ c
1
|4Q|

∫
4Q

| f (x)|
t

(
1 + log+

(
| f (x)|

t

))
dx.

Thus

inf

t > 0 : sup
α>0

1
|Q|

∣∣∣∣{x ∈ Q : M2( fχ4Q)(x) > αt
}∣∣∣∣

1
α

(
1 + log+ 1

α

) ≤ 1


≤ inf

{
t > 0 :

1
|4Q|

∫
4Q

c| f (x)|
t

(
1 + log+

(
| f (x)|

t

))
dx ≤ 1

}

≤ inf
{

t > 0 :
1
|4Q|

∫
4Q

c| f (x)|
t

(
1 + log+

(
c| f (x)|

t

))
dx ≤ 1

}
that is,

‖M2( fχ4Q)‖WL(1+log+ L),Q ≤ ‖c f ‖L(1+log+ L),4Q = c‖ f ‖L(1+log+ L),4Q.(6.14)

For the second summand in right hand side of the inequality (6.12) applying the inequality (6.6) we obtain∥∥∥∥∥∥ sup
Q⊂Q′

1
|Q′|

∫
Q′

M f

∥∥∥∥∥∥
WL(1+log+ L),Q

. sup
Q⊂Q′

1
|Q′|

∫
Q′

M f . sup
Q⊂Q′
‖ f ‖L(1+log+ L),Q′ .(6.15)

By inequalities (6.12), (6.14) and (6.15) we get

‖M2 f ‖WL(1+log+ L),Q ≤ c sup
Q⊂4Q′

‖ f ‖L(1+log+ L),Q′ .(6.16)

Thus

sup
Q
|Q|

λ
n ‖M2 f ‖WL(1+log+ L),Q ≤ c sup

Q
|Q|

λ
n sup

Q⊂4Q′
‖ f ‖L(1+log+ L),Q′

≤ c
(
sup

Q
|Q|

λ
n sup

Q⊂4Q′
|Q′|−

λ
n

)
sup

Q
|Q|

λ
n ‖ f ‖L(1+log+ L),Q

≈ sup
Q
|Q|

λ
n ‖ f ‖L(1+log+ L),Q,

that is,

‖M2 f ‖WML(1+log+ L),λ
≤ c‖ f ‖ML(1+log+ L),λ

.

�
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7. Weak-type estimates inMorrey spaces for maximal commutator and commutator of maximal
function

In this section the class of functions for which the maximal commutator Cb is bounded fromML(1+log+ L),λ

to WML(1+log+ L),λ are characterized. It is proved that the commutator of the Hardy-Littlewood maxi-
mal operator M with function b ∈ BMO(Rn) such that b− ∈ L∞(Rn) is bounded from ML(1+log+ L),λ to
WML(1+log+ L),λ.

The following theorem is true.

Theorem 7.1. Let 0 < λ < n. The following assertions are equivalent:
(i) b ∈ BMO(Rn).
(ii) The operator Cb is bounded fromML(1+log+ L),λ toWML(1+log+ L),λ.

Proof. (i)⇒ (ii). Assume that b ∈ BMO(Rn). By Theorem 1.9 and Theorem 6.2 operator Cb is bounded
fromML(1+log+ L),λ toWML(1+log+ L),λ and the following inequality holds

‖Cb( f )‖WML(1+log+ L),λ
≤ c‖b‖∗‖ f ‖ML(1+log+ L),λ(7.1)

with positive constant c independent of f .
(ii)⇒ (i). Assume that the inequality

‖Cb( f )‖WML(1+log+ L),λ
≤ c‖ f ‖ML(1+log+ L),λ

.(7.2)

holds with positive constant c independent of f . Let Q0 be any cube in Rn and let f = χQ0 .
By Theorem 4.1,

‖χQ0‖ML(1+log+ L),λ
≈ sup

Q
|Q|

λ−n
n

∫
Q
χQ0

(
1 + log+ χQ0

(χQ0)Q

)
= sup

Q: Q∩Q0,∅

|Q|
λ
n
|Q ∩ Q0|

|Q|

(
1 + log

|Q|
|Q ∩ Q0|

)
.

Obviously,

‖χQ0‖ML(1+log+ L),λ
& |Q0|

λ
n .

Let ε ∈ (0, 1 − λ/n). Since the function (1 + log t)/tε is bounded on the interval [1,∞), we get

‖χQ0‖ML(1+log+ L),λ
. sup

Q: Q∩Q0,∅

|Q|
λ
n
|Q ∩ Q0|

|Q|

(
|Q|

|Q ∩ Q0|

)ε
= sup

Q: Q∩Q0,∅

|Q|
λ
n +ε−1|Q ∩ Q0|

1−ε

= sup
Q⊆Q0

|Q|
λ
n +ε−1|Q ∩ Q0|

1−ε = |Q0|
λ
n .

Thus

(7.3) ‖χQ0‖ML(1+log+ L),λ
≈ |Q0|

λ
n .

On the other hand

‖Cb(χQ0)‖WML(1+log+ L),λ
= sup

Q
|Q|

λ
n ‖Cb(χQ0)‖WL(1+log+ L),Q

≥ |Q0|
λ
n ‖Cb(χQ0)‖WL(1+log+ L),Q0 .
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Note that
‖Cb(χQ0)‖WL(1+log+ L),Q0

= inf

λ > 0 : sup
t>0

1
|Q0|

|{x ∈ Q0 : |Cb(χQ0)(x)| > λt}|
1
t

(
1 + log+ 1

t

) ≤ 1


≥ inf

{
λ > 0 :

2
|Q0|
|{x ∈ Q0 : |Cb(χQ0)(x)| > 2λ}| ≤ 1

}
.

Since for any x ∈ Q0

Cb(χQ0)(x) ≥
1
|Q0|

∫
Q0

|b(x) − b(y)|dy ≥
1

2|Q0|

∫
Q0

|b(y) − bQ0 |dy,

then
2
|Q0|

∣∣∣∣∣∣
{

x ∈ Q0 : |Cb(χQ0)(x)| > 2
1

4|Q0|

∫
Q0

|b(y) − bQ0 |dy
}∣∣∣∣∣∣ = 2.

Thus

‖Cb(χQ0)‖WL(1+log+ L),Q0 ≥
1

4|Q0|

∫
Q0

|b(y) − bQ0 |dy.

Consequently,

‖Cb(χQ0)‖WML(1+log+ L),λ
& |Q0|

λ
n

1
|Q0|

∫
Q0

|b(y) − bQ0 |dy.(7.4)

By (7.2), (7.3) and (7.4) we arrive at
1
|Q0|

∫
Q0

|b(y) − bQ0 |dy . c.

�

Combining Theorems 1.9 and 5.5, we get the following statement.

Theorem 7.2. Let 0 < λ < n. Assume that b ∈ BMO(Rn). Then the operator Cb is bounded on
ML(1+log+ L),λ for radially decreasing functions.

The following theorems hold true.

Theorem 7.3. Let 0 < λ < n and b is in BMO(Rn) such that b− ∈ L∞(Rn). Then the operator [M, b] is
bounded fromML(1+log+ L),λ toWML(1+log+ L),λ and the following inequality holds

‖[M, b] f ‖WML(1+log+ L),λ
≤ c

(
‖b+‖∗ + ‖b−‖L∞

)
‖ f ‖ML(1+log+ L),λ

with positive constant c independent of f .

Proof. The statement follows by Theorem 1.9 and Theorem 6.2. �

Theorem 7.4. Let 0 < λ < n and b is in BMO(Rn) such that b− ∈ L∞(Rn). Then the operator [M, b] is
bounded onML(1+log+ L),λ for radially decreasing functions, and the following inequality holds

‖[M, b] f ‖ML(1+log+ L),λ
≤ c

(
‖b+‖∗ + ‖b−‖L∞

)
‖ f ‖ML(1+log+ L),λ

, f ∈ Mrad,↓,

with positive constant c independent of f .

Proof. The statement follows by Theorems 1.9 and 5.5. �
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