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Motivation of the problem

Reynolds & Armitage 2003
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Formulation of the problem

• Spot/flare with decaying emissivity on circular orbit.

• Each single spot/flare is described by
⋄ "time and place of birth": tj & rj , φj

⋄ Other shape determining parameters: ~ξ, lifetime,
emitted energy

• Observed signal is modulated by relativistic effects:
(redshift, gravitational lensing, time delay)
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Power spectrum of a random process

Process without relativistic effects (F (t, r) = 1):

S(ω) = m1 E[|F [I](ω)|2] + SP(ω) |E[F [I](ω)]|2

For stationary processes: SP(ω) = m2
1F [ċ(|t|)](ω),

• I(t, .) Signal of individual flare

• c(t): Pair correlation function of flares

Relativistic effects:

F [I](ω) →
∞
∑

k=−∞

ck(r)F [I](ω − kΩ(r)),

where F (t, r) =
∞
∑

k=−∞

ck(r)e
ikΩ(r)t
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Poisson and Hawkes process + relativistic effects
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The problem of the broken power-spectra

The power-spectrum of a random process consisting of independent exponentials has the
form,
S(ω) = λ

R

τ
2

1+ω2τ2
I2
0 (τ)p(τ)dτ.

A minimal non-trivial example,

Sr(ω) =
α

1 + ω2
+

1 − α

1 + K2ω2
.
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Internal structure of the PSD:

• Extrema of ωS(ω).

• Inflection point of ωS(ω).

• Inflection point of S(ω).

• Inflection point of the local
power-law index, d ln(S(ω))

d ln(ω)
.
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PSDs of exponential processes

I(t, τ) = I0 exp(−t/τ)θ(t). Local maximum
of ωS(ω):

d

dω
[ωS(ω)] =

Z

1 − ω2τ2

(1 + ω2τ2)2
p̃(τ)dτ

= E

"

1 − ω2τ2

(1 + ω2τ2)2

#

.

Linearity of the averaging operator:

E
h

`

1 + ω2
Mτ2

´

−2
i

= ω2
ME

h

τ2
`

1 + ω2
Mτ2

´

−2
i

.

We substitute x = ω2
M and define function

g(x) as

g(x) =
E

h

`

1 + τ2x
´

−2
i

E
h

τ2 (1 + τ2x)−2
i .

• Local extremes of the spectra are given
by g(x) = x.

• g(x) is non-decreasing and
constrained by

(E[τ2])−1 = g(0) ≤ g(x) ≤ g(∞) =
E[τ−4]

E[τ−2]

• Iterations of g(x): g(1)(x) = g(x),
g(n)(x) = g(g(n−1)(x)).

• (Almost)contracting map:
g(n)(0) ≥ g(n−1)(0),
g(n)(∞) ≤ g(n−1)(∞)

• Iff g′(x) < 1 for all x, the local extreme
is unique.
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The spectra of exponential processes

• It works for an arbitrary distribution p(τ).

• Analogical calculation can be done for position of inflection point.

• Less straightforward but possible for profiles of the form I(t, τ) = P (t) exp(−t/τ)θ(t).

• Similar analysis for the relativistic modulation with arbitrary distribution p(τ, r).

Applications in modeling (Starting from the distribution p(τ)):

• The position of PSD break is constrained by g(0) and g(∞)

• Let CM be the set of all spectra with more than one break. We can find its boundaries
CS
M ⊆ CM ⊆ CN

M at the cost of calculation a few mean values E[τk].
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The spectra of exponential processes

Applications in modeling (Starting from the distribution p(τ)):

• The position of PSD break is constrained by g(0) and g(∞)

• Let CM be the set of all spectra with more than one break. We can find its boundaries
CS
M ⊆ CM ⊆ CN

M at the cost of calculation a few mean values E[τk].
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The spectra of exponential processes

Applications in adaptation of the model (Starting from a measured break frequency ωM):

ω0 =
√

g(0) ≤ ωM ≤
√

g(∞) = ω∞
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The spectra of exponential processes

Applications in adaptation of the model (Starting from a measured break frequency ωM):

ω0 =
√

g(0) ≤

√

g(2)(0) ≤ ωM ≤

√

g(2)(∞) ≤
√

g(∞) = ω∞

 1

 10

 1  10

ω
∞

ω0

ωM

ωM
 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1

α

K

The theory of power spectrum break frequency in multi-flare accretion disc variability models – p.11



Conclusions

• Given a physical model, it is easy to calculate S(ω).

• Due to overwhelming degeneracy of the problem it is
difficult to use to data interpretation.

• General robust constrains on the shape of S(ω) are
good tool for ruling out of models.

• Evaluation of g(x) is less complex than calculation of
PSD S(ω).
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Questions & Answers
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Appendix
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Different Processes:
a) Gaussian noise

b) Mutually independent exponential

“flares”

c) & d) Continuous time Markov

chains with discrete states.

Identical PSD,
S(ω) = 1/(1 + ω2).
The PSD is related to
variance. Break fre-
quency constrains only
moments of p(τ).
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Questions & Answers
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