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Abstract For a given polyconvex function W, among all associated convex functions g of
minors there exists the largest one; this function inherits all symmetry properties of W. For a
given associated (not necessarily the largest) function g, one can still find an associated (possibly
not the largest) function with the symmetry of W. This function is constructed by averaging of
symmetry conjugated functions over the symmetry group of W using Haar’s measure. It follows
that if a symmetric polyconvex function W has class k = 0, ..., 0 associated function, then the
averaging produces a symmetric associated function that is class k as well.

Keywords Polyconvexity; symmetry; convexity; elasticity

Mathematics Subject Classification (2010) 74B20

1 Introduction

Let Lin be the set of all linear transformations F' from R” to R” or the corresponding
matrices, n = 2,3. Let Lin™ be the set of all F € Lin with detF > 0. A function
W :Lin* — R := RU{oo} is said to be polyconvex if there exists a convex function
g such that

" ) g:Linx(O,oo)al_l and
if n=2:
W(F) =g(F,detF) forevery F € Lin™,
(1.1)
, g:LinxLinx (0,0) = R and
if n=3:
W(F) = g(F,cof F,detF) forevery F € Lin™;

here cof F = (det F)F~Tif F e Lin™.

The notion is due to Morrey [5; Theorem 4.4.10], but the terminology is due
to Ball [1], who applied the polyconvexity to the stored energy W of a nonlinear
elastic body and proved the existence theorems in nonlinear elasticity under realistic
assumptions. In particular, he showed that polyconvexity is consistent with the prin-
ciple of objectivity, the optional isotropy of the body, and the injectivity requirement,
i.e., respectively,

W(QF) = W(F), FelLin', Qe S0(n),
W(FR") = W(F), F elLin™, ReSO(n), (1.2)
W(F) > o if detF — 0.



Fora given W, the convex function g occurring in (1.1), which is called the associated
convex function in this note, is highly nonunique.

The purpose of this note is to show that if the material satisfies any of the two
symmetry requirements (1.2),, then the associated convex function g can be chosen
to satisfy, respectively,

g(QF,0) = g(F,6)
" ). or, optionally, for an isotropic body,
BT etrg.0) = g(F.0)
for every (F,0) € Linx (0,0), Q € SO(2), 3
g(QF,0G,0) =g(F,H,0) (-
" 3 or, optionally, for an isotropic body,
BT er0,G0.6) = g(F,H,0)
for every (F,G,0) € LinxLinx (0,0), Q € SO(3).

In fact, in the treatment below, we replace SO(n) by arbitrary subgroups §,;, and
G Of Lin™, defined by

righ
Gor = {L e Lin* : W(LF) = W(F) forall FeLin"},
Gright = {M eLin®: W(FM™) = W(F) forall F e Lin*}.
To verify that §.;, and &, are groups, one uses the multiplicativity of cof, i.e.,
cof (AB) = cof Acof B, cof(A47') = (cof 4) ' =:cof 47! (1.4)

A, B € Lin™, formulas to be frequently employed below.

It will be shown that the associated convex functions g can be chosen to satisfy the
symmetry requirements governed by &, and ... Two elementary constructions of
g will be given. The first one is based on the existence of the largest associated convex
function, a consequence of the fact that the pointwise supremum of any family of
convex functions is convex. The second construction holds only if §,.; and G, are
compact, and uses the averaging of symmetry conjugated associated convex functions
with respect to Haar’s measures on §,.¢, and/or §,,,,,, a procedure frequently used in
the group theory to construct invariant objects.

2 Dimensions 2 and 3

Throughout this section, let » = 2 or n = 3. The following fact, although elementary,
forms the crux of the polyconvexity notion.

Remark 2.1 ([1; Section 4] and [2; Theorem 5.6, Part 2]). For a given polyconvex
function W : Lin* — R the set of all associated convex functions h contains the
largest one, g, such that g > h over Lin X (0, 0) or Lin X Lin X (0, 00). This function
is given by

g(F,0) =sup {h(F,5) : h an associated convex function },



g(F,G,0) =sup{h(F,G,5) : h an associated convex function }

throughout their domains. Alternatively, g is constructed as the convexification of the
function g, given by

W(F) if 0 =detF,

if n=2: gO(F,5)={
0 else,

W(F) if (G,0) = fF,detF
£ o3 gO(F,G,5)={ (F) if (G,0) = (co et F)
o0 else.
The convexification is defined by
g=sup{h:h< 80 h convex }. 2.1

To avoid cumbersome formulas, let for each associated convex function g and
eachLe g, Mec¥§ the function g; ,, be defined by

right?
for n=2: g, ,(F,0):=g(LFM™' detLdetM'5) =g(F,J), 2.2)
for n=3: g, ,(F,G,6)=g(LFM™,cof LGcof M~!,det Ldet M '5) '
forevery (F, ¢) orevery (F, G, 6) from the corresponding domains. If §, ., = G,y =

SO(n) and Q, R € SO(n) then

if n=2: gy 4(F.0) = g(QFR", ) = g(F. ).
lf n:3: gQ,R(FaGa 5) :g(QFRT’QGRT’5)7

thus recovering the particular case from the introduction.

Remark 2.2. Assume that W satisfies the injectivity requirement (1.2);. Then

Gt ©SL(n), ¢

ignt © SL(n)
where SL(n) := {L € Lin" : det L = 1}. Equations (2.2) simplify accordingly.

Proof Suppose that G, contains an element L with det L # 1; by passing from L
to L' if necessary, we can assume det L < 1. Picking any F € Lin" and iterating
W(LF) = W(F) we obtain

W(L’F) = W(F) = const (2.3)

for any positive integer p, but det(L”F) — 0 and thus (2.4) contradicts (1.2);. O

Recall that for each compact group § there exists a unique nonnegative regular
Borel measure M on §, called Haar’s measure, such that m(§) =1 and m is left and
right invariant, i.e.,

[fAM™T)ydm(L) = [ f(ML)dm(L) = [ f(L) dm(L)
g g g

for every m integrable function f : ¥ — R and every M € §, [6; Theorem 5.14].



Proposition 2.3.
(1) The largest convex function g associated with a polyconvex function W is invari-
ant, i.e.,
g&m =8 (2.4)
forevery L € &\, M € Gy, throughout the domain of g.

(i) 1f G\, and Gy, are compact with Haar’s measures myc, and m,,, respectively,
if his any convex function associated with W and if g is defined by [7]

for n=2: g(F,0) = Iy (F,0) dmyge (L)dm g, (M)
gleftxgright
(2.5)
for n=3: g(F,G,0)= [  hy(F,G0)dm (L)dmg, (M)
gleftxgright

throughout the domain of g, then g is an associated convex function that satisfies
(2.5). If his of class k = 0, ..., then g is of class k also.

We assume that the integrand in (2.6) is measurable in L, M with respect to m,,¢ ®m ..,
for every fixed (F,d) or (F,G, d) (for example, let /4 be finite valued and hence
continuous).

Proof Only the case n = 3 will be proved; n = 2 is similar.
(i): Clearly, for any L € G, M € G, and any associated convex function (not
necessarily the largest one), also g; ,, is an associated convex function. Thus if g is

the largest associated convex function, we have g; ,, < g, 1.e.,
g(LFM ™, cof LGcof M~!,det Ldet M ') < g(F,G,J)

for all arguments occurring there. Replacing L — L™, M~ — M, F — LFM™,
G — cof LGecof M™!, § — det Ldet M !5, we obtain the opposite inequality and
hence (2.5).

(i1): Clearly, g, being essentially a convex combination of convex functions #; ,,,
is convex. Further, the invariant character of m,, and m,,,,, implies that g satisfies
(2.5). Finally, if F € Lin* then

hy i (F,cof F,det F) = h(LFM ™', cof (LFM ™), det(LFM ™))
=W(LFM™) = W(F)

righ

and thus integrating over §,.¢, X §;,;,, we obtain
g(F,cof F,detF) = W(F).

Hence g is an associated convex function. The differentiability follows from the

theorem on the differentiation under the integral sign. O
Remarks 2.4.
(i) One can replace G, and &, by arbitrary subgroups of G, and G, ..

(i) Let Q < R" be the reference region of the body and suppose that W de-
pends parametrically on x € Q. Fixing x, we can apply Proposition 3 to each W (x, -)
to obtain g(x,-) on Linx (0,00) or Linx Linx (0, ). However, the measurabil-
ity/continuity character of W apparently does not reproduce. Suppose, for example,
that W is a Carathéodory function [3; Section IV.1.2], i.e., for almost every x € Q,



W (x,-) is continuous and for every F € Lin, W (-, F) is measurable. There seems to
be no guarantee the largest associated convex function g is a Carathéodory function,
since the supremum in (2.1) generally does not preserve continuity and measurabil-
ity. On the positive side, [4; Proposition 6.43] shows that g is a normal integrand, a
property weaker than the Carathéodory property of the integrand, but still with many
virtues.

3 The general case

This section considers the general case, i.e., a function W of an argument F that is a
rectangular matrix of arbitrary dimension, defined on a domain E.

Thus let m, n be positive integers and let Lin(n, m) denote the set of all linear
transformations from R” to R™ or the corresponding matrices. Let Lin*(n,n) be
the set of all elements of Lin(n, n) of positive determinant. Let 1”7 be the set of all
multiindices of order r, 0 < r < n, consisting of all r-tuples I = (i,...,i,) with
1<i<ip<..<i,<nIf1<r<g:=min{m,n},let Lin(I7,17) be the set of all
17" x I matrices, i.e., collections ¢ = [é‘”],eprn,kl,r, of real numbers ¢, ;. For each
F e Lin(n,m), let F” € Lin(I”,1") be the I x 1" matrix of minors of F of order

r. Thus if I = (i,...,i,) € 17, J = (j,...,j,) € I are two multiindices then
(F(r))u = det[F}ajﬂ]Ka,ﬁSr’

where F;; are the matrix elements of F. The matrices F (" can be interpreted as

exterior powers of F and the notation has been chosen to emphasize this fact. The

multiplicativity (1.4) of cof now generalizes as follows: If 4 € Lin*(m,m), F €

Lin(n,m) and B € Lin" (n, n) then

(AFB) (r) :A(r)F(r)B(r) (A—l) (r _ (A(r))—l = A(r)_l.
Let .
M(n,m) =@ Lin(17,1");
r=1

r>-r

the elements 7 of M(n, m) are g-tuples

n=(n,....,n,) where n, eLin(I},I), 1<r<gq.

r>-r

Let E < Lin(n,m). A function W : E — R can be extended to Lin(n, m) by
setting W = o on Lin(n,m) ~ E. In this way it suffices to consider only functions
W : Lin(n,m) — R. Such a function W is said to be polyconvex if there exists a
convex function g : M(n, m) — R such that

W(F)=g(FV ... F¥),
F € Lin(n, m). We put
G = {L € Lin* : W(LF) = W(F) forall F e Lin*(m,m)},
Goigne =AM € Lin* : W(FM™) = W(F) forall FeLin*(n,n)}.

We have the following general version of Proposition 3, with identical proof.



Proposition 3.1.
(1) The largest convex function g associated with a polyconvex function W is invari-
ant, i.e.,
g(L(l)iylM(l)_l,L(q)iqu(q)_l) =g0np,.omy) (3.1)

forevery (n,,...,n,) € M(n,m) and L € G5\, M € Gy,
ii) If §,;, and § .., are compact with Haar’s measures m, ¢, and m_..., respectively,
left right P left right ~

if his any convex function associated with W and if g : M(n,m) — R is defined
by

gnoon) = [ RLOy MO LDy MO dmyye (L) dm,ggy (M)
gleftxgright
(1y5...>1m,) € M(n,m), then g is an associated convex function that satisfies (3.1).

We again assume that the integrand is measurable in L, M with respect to m, ., ® m
for every fixed (,,...,1,).

right
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