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ITERATED HARDY-TYPE INEQUALITIES INVOLVING SUPREMA

AMIRAN GOGATISHVILI AND RZA MUSTAFAYEV

Abstract. In this paper the complete solution of the restricted inequalities for supremal operators are
given. The boundedness of the composition of supremal operators with the Hardy and Copson operators in
weighted Lebesgue spaces are characterized.

1. Introduction

Throughout the paper we assume that I := (a, b) ⊆ (0,∞). ByM(I) we denote the set of all measurable
functions on I. The symbol M+(I) stands for the collection of all f ∈ M(I) which are non-negative on
I, whileM+(I; ↓) andM+(I; ↑) are used to denote the subset of those functions which are non-increasing
and non-decreasing on I, respectively. When I = (0,∞), we write simplyM↓ andM↑ instead ofM+(I; ↓)
and M+(I; ↑), accordingly. The family of all weight functions (also called just weights) on I, that is,
locally integrable non-negative functions on (0,∞), is given byW(I).

For p ∈ (0,∞] and w ∈ M+(I), we define the functional ‖ · ‖p,w,I onM(I) by

‖ f ‖p,w,I :=


(∫

I
| f (x)|pw(x) dx

)1/p
if p < ∞

ess supI | f (x)|w(x) if p = ∞.

If, in addition, w ∈ W(I), then the weighted Lebesgue space Lp(w, I) is given by

Lp(w, I) = { f ∈ M(I) : ‖ f ‖p,w,I < ∞}

and it is equipped with the quasi-norm ‖ · ‖p,w,I .
When w ≡ 1 on I, we write simply Lp(I) and ‖ · ‖p,I instead of Lp(w, I) and ‖ · ‖p,w,I , respectively.
Given a operator T : M+ → M+, for 0 < p < ∞ and u ∈ M+, denote by

Tu(g) := T (gu), g ∈ M+.

Suppose f be a measurable a.e. finite function on Rn. Then its non-increasing rearrangement f ∗ is
given by

f ∗(t) = inf{λ > 0 : |{x ∈ Rn : | f (x)| > λ}| ≤ t}, t ∈ (0,∞),
and let f ∗∗ denotes the Hardy-Littlewood maximal function of f , i.e.

f ∗∗(t) :=
1
t

∫ t

0
f ∗(τ) dτ, t > 0.

Quite many familiar function spaces can be defined using the non-increasing rearrangement of a function.
One of the most important classes of such spaces are the so-called classical Lorentz spaces.

Let p ∈ (0,∞) and w ∈ W. Then the classical Lorentz spaces Λp(w) and Γp(w) consist of all functions
f ∈ M for which ‖ f ‖Λp(w) < ∞ and ‖ f ‖Γp(w) < ∞, respectively. Here it is

‖ f ‖Λp(w) := ‖ f ∗‖p,w,(0,∞) and ‖ f ‖Γp(w) := ‖ f ∗∗‖p,w,(0,∞).

For more information about the Lorentz Λ and Γ see e.g. [4] and the references therein.
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2 A. GOGATISHVILI AND R.CH.MUSTAFAYEV

The Hardy and Copson operators are defined by

Hg(t) :=
∫ t

0
g(s) ds, g ∈ M+,

and

H∗g(t) :=
∫ ∞

t
g(s) ds, g ∈ M+,

respectively. The operators H and H∗ play a prominent role. There are other operators that are also of
interest. For example, certain specific problems such as the description of the behaviour of the fractional
maximal operator on classical Lorentz spaces [6] or the optimal pairing problem for Sobolev imbeddings
[17] or various questions arising in the interpolation theory can be handles in an elegant way with the
help of the supremal operators

S g(t) := ess sup
0<τ≤t

g(τ), g ∈ M+,

and
S ∗g(t) := ess sup

t≤τ<∞
g(τ), g ∈ M+.

In this paper, we give complete characterization of restricted inequalities

(1.1) ‖S u( f )‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↓,

(1.2) ‖S u( f )‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0.∞), f ∈ M↑

and

(1.3) ‖S ∗u( f )‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↑,

(1.4) ‖S ∗u( f )‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↓.

Note that inequality (1.1) was characterized in [14]. It should be mentioned here that it was done under
some additional condition on weight function u, when q < p (cf. [14, Theorem 3.4]).

In particular, we characterize the validity of the iterated Hardy-type inequalities involving suprema

(1.5)
∥∥∥∥∥S u

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c ‖h‖p,v,(0,∞),

and

(1.6)
∥∥∥∥∥S u

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c ‖h‖p,v,(0,∞),

where 0 < q < ∞, 1 ≤ p < ∞, u, w and v are weight functions on (0,∞).
It is worth to mentoin that the characterizations of ”dual” inequalities

(1.7)
∥∥∥∥∥S ∗u

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c ‖h‖p,v,(0,∞),

and

(1.8)
∥∥∥∥∥S ∗u

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c ‖h‖p,v,(0,∞),

can be easily obtained from the solutions of inequalities (1.5) - (1.6), respectively, by change of variables.
Note that inequality (1.8) has been characterized in [14] in the case 0 < q < ∞, 1 ≤ p < ∞.

We pronounce that the characterizations of inequalities (1.5) - (1.8) are important because many in-
equalities for classical operators can be reduced to them (for illustrations of this important fact, see, for
instance, [12]). These inequalities play an important role in the theory of Morrey spaces and other topics
(see [1], [2] and [3]).
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The fractional maximal operator, Mγ, γ ∈ (0, n), is defined at f ∈ L1
loc(R

n) by

(Mγ f )(x) = sup
Q3x
|Q|γ/n−1

∫
Q
| f (y)| dy, x ∈ Rn,

where the supremum is extended over all cubes Q ⊂ Rn with sides parallel to the coordinate axes. It was
shown in [6, Theorem 1.1] that

(1.9) (Mγ f )∗(t) . sup
t≤τ<∞

τγ/n−1
∫ τ

0
f ∗(y) dy . (Mγ f̃ )∗(t),

for every f ∈ L1
loc(R

n) and t ∈ (0,∞), where f̃ (x) = f ∗(ωn|x|n) and ωn is the volume of S n−1. Thus,
in order to characterize boundedness of the fractional maximal operator Mγ between classical Lorentz
spaces it is necessary and sufficient to characterize the validity of the weighted inequality( ∫ ∞

0

[
sup

t≤τ<∞
τγ/n−1

∫ τ

0
ϕ(y) dy

]q

w(t) dt
)1/q

.
( ∫ ∞

0
[ϕ(t)]pv(t) dt

)1/p

for all ϕ ∈ M↓. This last estimate can be interpreted as a restricted weighted inequality for the operator
Tγ, defined by

(1.10) (Tγg)(t) = sup
t≤τ<∞

τγ/n−1
∫ τ

0
g(y) dy, g ∈ M+(0,∞), t ∈ (0,∞).

Such a characterization was obtained in [6] for the particular case when 1 < p ≤ q < ∞ and in [18,
Theorem 2.10] in the case of more general operators and for extended range of p and q. Full proofs and
some further extensions and applications can be found in [9], [10].

The operator Tγ is a typical example of what is called a Hardy-operator involving suprema

(Tug)(t) := sup
t≤s<∞

u(s)
s

∫ s

0
g(y) dy,

which combines both the operations (integration and taking the supremum).
In the above-mentioned applications, it is required to characterize a restricted weighted inequality for

Tu. This amounts to finding a necessary and sufficient condition on a triple of weights (u, v, w) such that
the inequality

(1.11)
( ∫ ∞

0

(
sup

t≤s<∞
u(s) f ∗∗(s)

)q

w(t) dt
)1/q

.
( ∫ ∞

0
f ∗(t)pv(t) dt

)1/p

holds. Particular examples of such inequalities were studied in [6] and, in a more systematic way, in [14].
Inequality (1.11) was investigated in [15] in the case when 0 < p ≤ 1. The approach used in this paper
was based on a new type reduction theorem which showed connection between three types of restricted
weighted inequalities.

Rather interestingly, such operators have been recently encountered in various research projects. They
have been found indispensable in the search for optimal pairs of rearrangement-invariant norms for wich
a Sobolev-type inequality holds (cf. [17]). They constitute a very useful tool for characterization of the
assocaiate norm of an operator-induced norm, which naturally appears as an optimal domain norm in a
Sobolev embedding (cf. [19], [20]). Supremum operators are also very useful in limitimg interpolation
theory as can be seen from their appearance for example in [11], [8], [7], [21].

Definition 1.1. Let u ∈ W(0,∞) ∩ C(0,∞), b ∈ W(0,∞) and B(t) :=
∫ t

0
b(s) ds. Assume that b be such

that 0 < B(t) < ∞ for every t ∈ (0,∞). The operator Tu,b is defined at g ∈ M+(0,∞) by

(Tu,bg)(t) := sup
t≤τ<∞

u(τ)
B(τ)

∫ τ

0
g(s)b(s) ds, t ∈ (0,∞).
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The operator Tγ, defined in (1.10), is a particular example of operators Tu,b. These operators are
investigated in [14] and [15].

In this paper we give complete characterization for the inequality

(1.12) ‖Tu,b f ‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↓(0,∞)

for 0 < q ≤ ∞, 0 < p < ∞ (see Theorems 5.1 and 5.5).
Inequality (1.12) was characterized in [14, Theorem 3.5] under additional condition

sup
0<t<∞

u(t)
B(t)

∫ t

0

b(τ)
u(τ)

dτ < ∞.

Note that the case when 0 < p ≤ 1 < q < ∞ was not considered in [14]. It is also worse to mention
that in the case when 1 < p < ∞, 0 < q < p < ∞, q , 1 [14, Theorem 3.5] contains only discrete
condition. In [15] the new reduction theorem was obtained when 0 < p ≤ 1, and this technique allowed
to characterize inequality (1.12) when b ≡ 1, and in the case when 0 < q < p ≤ 1 this paper contains
only discrete condition.

The paper is organized as follows. Section 2 contains some preliminaries along with the standard
ingredients used in the proofs. Full characterization of inequalities (1.1) - (1.4) and (1.5) - (1.7) are given
in Sections 3 and 4. Finally, solution of inequality (1.12) are obtained in Section 5.

2. Notations and Preliminaries

Throughout the paper, we always denote by c or C a positive constant, which is independent of main
parameters but it may vary from line to line. However a constant with subscript such as c1 does not
change in different occurrences. By a . b, (b & a) we mean that a ≤ λb, where λ > 0 depends on
inessential parameters. If a . b and b . a, we write a ≈ b and say that a and b are equivalent. We will
denote by 1 the function 1(x) = 1, x ∈ (0,∞). Unless a special remark is made, the differential element
dx is omitted when the integrals under consideration are the Lebesgue integrals. Everywhere in the paper,
u, v and w are weights.

We need the following notations:

V(t) :=
∫ t

0
v, V∗(t) :=

∫ ∞
t

v,

W(t) :=
∫ t

0
w, W∗(t) :=

∫ ∞
t

w.

Convention 2.1. We adopt the following conventions:
(i) Throughout the paper we put 0 · ∞ = 0,∞/∞ = 0 and 0/0 = 0.
(ii) If p ∈ [1,+∞], we define p′ by 1/p + 1/p′ = 1.
(iii) If 0 < q < p < ∞, we define r by 1/r = 1/q − 1/p.
(iv) If I = (a, b) ⊆ R and g is monotone function on I, then by g(a) and g(b) we mean the limits

limx→a+ g(x) and limx→b− g(x), respectively.

We recall some reduction theorems for positive monotone operators from [16] and [13]. The following
conditions will be used below:

(i) T (λ f ) = λT f for all λ ≥ 0 and f ∈ M+;
(ii) T f (x) ≤ cTg(x) for almost all x ∈ R+ if f (x) ≤ g(x) for almost all x ∈ R+, with constant c > 0

independent of f and g;
(iii) T ( f + λ1) ≤ c(T f + λT1) for all f ∈ M+ and λ ≥ 0, with a constant c > 0 independent of f and λ.

Theorem 2.2 ([16], Theorem 3.1). Let 0 < q ≤ ∞ and 1 ≤ p < ∞, and let T : M+ → M+ be an operator.
Then the inequality

(2.1) ‖T f ‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↓(0,∞)

implies the inequality

(2.2)
∥∥∥∥∥T

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖p,V pv1−p,(0,∞), h ∈ M+(0,∞).
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If V(∞) = ∞ and if T is an operator satisfying conditions (i)-(ii), then the condition (2.2) is sufficient for
inequality (2.1) to hold on the coneM↓. Further, if 0 < V(∞) < ∞, then a sufficient condition for (2.1) to
hold onM↓ is that both (2.2) and

(2.3) ‖T1‖q,w,(0,∞) ≤ c‖1‖p,v,(0,∞)

hold in the case when T satisfies the conditions (i)-(iii).

Theorem 2.3 ([16], Theorem 3.2). Let 0 < q ≤ ∞ and 1 ≤ p < ∞, and let T : M+ → M+ satisfies
conditions (i) and (ii). Then a sufficient condition for inequality (2.1) to hold is that

(2.4)
∥∥∥∥∥T

( 1
V2(x)

∫ x

0
hV

)∥∥∥∥∥
q,w,(0,∞)

≤ c‖h‖p,v1−p,(0,∞), h ∈ M+(0,∞).

Moreover, (2.1) is necessary for (2.4) to hold if conditions (i)-(iii) are all satisfied.

Theorem 2.4 ([16], Theorem 3.3). Let 0 < q ≤ ∞ and 1 ≤ p < ∞, and let T : M+ → M+ be an operator.
Then the inequality

(2.5) ‖T f ‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↑(0,∞)

implies the inequality

(2.6)
∥∥∥∥∥T

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖p,V p

∗ v1−p,(0,∞), h ∈ M+(0,∞).

If V∗(0) = ∞ and if T is an operator satisfying the conditions (i)-(ii), then the condition (2.6) is sufficient
for inequality (2.5) to hold. If 0 < V∗(0) < ∞ and T is an operator satisfying the conditions (i)-(iii), then
(2.5) follows from (2.6) and (2.3).

Theorem 2.5 ([16], Theorem 3.4). Let 0 < q ≤ ∞ and 1 ≤ p < ∞, and let T : M+ → M+ satisfies
conditions (i) and (ii). Then a sufficient condition for inequality (2.5) to hold is that

(2.7)
∥∥∥∥∥T

( 1
V2
∗ (x)

∫ ∞

x
hV∗

)∥∥∥∥∥
q,w,(0,∞)

≤ c‖h‖p,v1−p,(0,∞), h ∈ M+(0,∞).

Moreover, (2.5) is necessary for (2.7) to hold if conditions (i)-(iii) are all satisfied.

Theorem 2.6. [13, Theorem 3.1] Let 0 < q ≤ ∞, 1 < p < ∞, and let T : M+ → M+ satisfies conditions
(i)-(iii). Assume that u, w ∈ W(0,∞) and v ∈ W(0,∞) be such that

(2.8)
∫ x

0
v1−p′(t) dt < ∞ for all x > 0.

Then inequality

(2.9)
∥∥∥∥∥T

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c ‖h‖p,v,(0,∞), h ∈ M+,

holds iff

(2.10) ‖TΦ2 f ‖q,w,(0,∞) ≤ c‖ f ‖p,φ,(0,∞), f ∈ M↓,

holds, where

φ(x) ≡ φ
[
v; p

]
(x) :=

( ∫ x

0
v1−p′(t) dt

)−p′/(p′+1)

v1−p′(x)

and

Φ(x) ≡ Φ
[
v; p

]
(x) =

∫ x

0
φ(t) dt =

( ∫ x

0
v1−p′(t) dt

)1/(p′+1)

.
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Theorem 2.7. [13, Theorem 3.11] Let 0 < q ≤ ∞, and let T : M+ → M+ satisfies conditions (i)-(iii).
Assume that u, w ∈ W(0,∞) and v ∈ W(0,∞) be such that V(x) < ∞ for all x > 0. Then inequality

(2.11)
∥∥∥∥∥T

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c ‖h‖1,V−1,(0,∞), h ∈ M+,

holds iff

(2.12) ‖TV2 f ‖q,w,(0,∞) ≤ c‖ f ‖1,v,(0,∞), f ∈ M↓.

3. Supremal operators on the cone of monotone functions

In this section, we give complete characterization of inequalities (1.1) - (1.4).
To state the next statements we need the following notations:

u(t) := sup
0<τ≤t

u(τ), u(t) := sup
t≤τ<∞

u(τ), (t > 0).

For a given weight v, 0 ≤ a < b ≤ ∞ and 1 ≤ p < ∞, we denote

σp(a, b) =


( b∫

a
[v(t)]1−p′dt

)1/p′

when 1 < p < ∞

ess sup
a<t<b

[v(t)]−1 when p = 1.

Recall the following theorem.

Theorem 3.1. [14, Theorems 4.1 and 4.4] Let 1 ≤ p < ∞, 0 < q < ∞ and let u ∈ W(0,∞) ∩ C(0,∞).
Assume that v, w ∈ W(0,∞) be such that

0 < V(x) < ∞ and 0 < W(x) < ∞ for all x > 0.

Then inequality (1.8) is satisfied with the best constant c if and only if:
(i) p ≤ q, and in this case c ≈ A1, where

A1 := sup
x>0

(
[u]q(x)W(x) +

∫ ∞

x
[u]q(t)w(t) dt

)1/q

σp(0, x);

(ii) q < p, and in this case c ≈ B1 + B2, where

B1 : =

( ∫ ∞

0

( ∫ ∞

x
[u]q(t)w(t) dt

)r/p

[u]q(x)
[
σp(0, x)

]r

w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0
Wr/p(x)

[
sup

x≤τ<∞
u(τ)σp(0, τ)

]r

w(x) dx
)1/r

.

Using change of variables x = 1/t, we can easily obtain the following statement.

Theorem 3.2. Let 1 ≤ p < ∞, 0 < q < ∞ and let u ∈ W(0,∞) ∩ C(0,∞). Assume that v, w ∈ W(0,∞)
be such that

0 < V∗(x) < ∞ and 0 < W∗(x) < ∞ for all x > 0.
Then inequality (1.6) is satisfied with the best constant c if and only if:

(i) p ≤ q, and in this case c ≈ A1, where

A1 := sup
x>0

(
[u]q(x)W∗(x) +

∫ x

0
[u]q(t)w(t) dt

)1/q

σp(x,∞);

(ii) q < p, and in this case c ≈ B1 + B2, where

B1 : =

( ∫ ∞

0

( ∫ x

0
[u]q(t)w(t) dt

)r/p

[u]q(x)
[
σp(x,∞)

]r

w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0
Wr/p
∗ (x)

[
sup

0<τ≤x
u(τ)σp(τ,∞)

]r

w(x) dx
)1/r

.
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Proof. Obviously, inequality (1.6) is satisfied with the best constant c if and only if

(3.1)
∥∥∥∥∥S ∗ũ

( ∫ x

0
h
)∥∥∥∥∥

q,w̃,(0,∞)
≤ c ‖h‖p,ṽ,(0,∞), h ∈ M+

holds, where

ũ(t) = u
(1

t

)
, w̃(t) = w

(1
t

) 1
t2 , ṽ(t) = v

(1
t

)( 1
t2

)1−p

, t > 0.

Using Theorem 3.1, and then applying substitution of variables mentioned above three times, we get the
statement. �

Theorem 3.3. Let 0 < p, q < ∞ and let u ∈ W(0,∞) ∩ C(0,∞). Assume that v, w ∈ W(0,∞) be such
that 0 < V∗(x) < ∞ and 0 < W∗(x) < ∞ for all x > 0. Then inequality (1.1) is satisfied with the best
constant c if and only if:

(i) p ≤ q, and in this case c ≈ A1 + ‖S u(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞), where

A1 := sup
x>0

(
[u]q(x)W∗(x) +

∫ x

0
[u]q(t)w(t) dt

)1/q

V−1/p(x);

(ii) q < p, and in this case c ≈ B1 + B2 + ‖S u(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞), where

B1 : =

( ∫ ∞

0

( ∫ x

0
[u]q(t)w(t) dt

)r/p

[u]q(x)V−r/p(x)w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0
Wr/p
∗ (x)

[
sup

0<τ≤x
u(τ)V−1/p(τ)

]r

w(x) dx
)1/r

.

Proof. It is easy to see that inequality (1.1) holds if and only if

(3.2) ‖S up( f )‖q/p,w,(0,∞) ≤ cp‖ f ‖1,v,(0,∞), f ∈ M↓

holds. By Theorem 2.2, (3.2) holds iff both

(3.3)
∥∥∥∥∥S up

( ∫ ∞

x
h
)∥∥∥∥∥

q/p,w,(0,∞)
≤ cp‖h‖1,V,(0,∞), h ∈ M+,

and

(3.4) ‖S u(1)‖q,w,(0,∞) ≤ c‖1‖s,v,(0,∞)

hold. In order to complete the proof, it remains to apply Theorem 3.2. �

Using change of variables x = 1/t, we can easily obtain the following ”dual” statement.

Theorem 3.4. Let 0 < p, q < ∞ and let u ∈ W(0,∞) ∩ C(0,∞). Assume that v, w ∈ W(0,∞) be such
that 0 < V(x) < ∞ and 0 < W(x) < ∞ for all x > 0. Then (1.3) is satisfied with the best constant c if and
only if:

(i) p ≤ q, and in this case c ≈ A1 + ‖S ∗u(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞), where

A1 := sup
x>0

(
[u]q(x)W(x) +

∫ ∞

x
[u]q(t)w(t) dt

)1/q

V−1/p
∗ (x);

(ii) q < p, and in this case c ≈ B1 + B2 + ‖S ∗u(1)‖q,w,(0,∞)/‖1‖s,v,(0,∞), where

B1 : =

( ∫ ∞

0

( ∫ ∞

x
[u]q(t)w(t) dt

)r/p

[u]q(x)V−r/p
∗ (x)w(x) dx

)1/r

,

B2 : =

( ∫ ∞

0
Wr/p(x)

[
sup

x≤τ<∞
u(τ)V−1/p

∗ (τ)
]r

w(x) dx
)1/r

.
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Proof. It is easy to see that inequality (1.3) is satisfied with the best constant c if and only if

(3.5) ‖S ũ f ‖q,w̃,(0,∞) ≤ c ‖ f ‖p,ṽ,(0,∞), f ∈ M↓

holds, where

ũ(t) = u
(1

t

)
, w̃(t) = w

(1
t

) 1
t2 , ṽ(t) = v

(1
t

) 1
t2 , t > 0.

Using Theorem 3.3, and then applying substitution of variables mentioned above three times, we get the
statement. �

Theorem 3.5. Let 0 < p, q < ∞ and let u ∈ W(0,∞) ∩ C(0,∞). Assume that v, w ∈ W(0,∞) be such
that 0 < V∗(x) < ∞ and 0 < W∗(x) < ∞ for all x > 0. Then (1.2) is satisfied with the best constant c if
and only if:

(i) p ≤ q, and in this case c ≈ A1 + ‖S u(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞), where

A1 := sup
x>0

([
sup

0<τ≤x

u(τ)p

V∗(τ)2

]q/p

W∗(x) +

∫ x

0

[
sup
0<τ≤t

u(τ)p

V∗(τ)2

]q/p

w(t) dt
)1/q

[V∗]1/p(x);

(ii) 0 < q < p < ∞, and in this case c ≈ A2 + ‖S u(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞), where

B1 : =

( ∫ ∞

0

( ∫ x

0

[
sup
0<τ≤t

u(τ)p

V∗(τ)2

]q/p

w(t) dt
)r/p

[V∗]−r/p(x)
[

sup
0<τ≤x

u(τ)p

V∗(τ)2

]q/p

w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0
Wr/p
∗ (x)

[
sup

0<τ≤x

[
sup
0<τ≤t

u(τ)p

V∗(τ)2

]
V∗(τ)

]r/p

w(x) dx
)1/r

.

Proof. It is easy to see that inequality (1.2) holds if and only if

(3.6) ‖S up( f )‖q/p,w,(0,∞) ≤ cp‖ f ‖1,v,(0,∞), f ∈ M↑

holds. By Theorem 2.5 applied to the operator S up , inequality (3.6) is satisfied with the best constant c if
and only if both ∥∥∥∥∥S up/V2

∗

( ∫ ∞

x
h
)∥∥∥∥∥

q/p,w,(0,∞)
≤ c‖h‖1,1/V∗,(0,∞), h ∈ M+,

and
‖S u(1)‖q,w,(0,∞) ≤ c‖1‖p,v,(0.∞)

hold. It remains to apply Theorem 3.2. �

The following ”dual” statement holds true.

Theorem 3.6. Let 0 < p, q < ∞ and let u ∈ W(0,∞) ∩ C(0,∞). Assume that v, w ∈ W(0,∞) be such
that 0 < V(x) < ∞ and 0 < W(x) < ∞ for all x > 0. Then (1.4) is satisfied with the best constant c if and
only if:

(i) p ≤ q, and in this case c ≈ A1 + ‖S ∗u(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞), where

A1 := sup
x>0

([
sup

x≤τ<∞

u(τ)p

V(τ)2

]q/p

W(x) +

∫ ∞

x

[
sup

t≤τ<∞

u(τ)p

V(τ)2

]q/p

w(t) dt
)1/q

V1/p(x);

(ii) q < p, and in this case c ≈ B1 + B2 + ‖S ∗u(1)‖q,w,(0,∞)/‖1‖p,v,(0.∞), where

B1 : =

( ∫ ∞

0

( ∫ ∞

x

[
sup

t≤τ<∞

u(τ)p

V(τ)2

]q/p

w(t) dt
)r/p

V−r/p(x)
[

sup
x≤τ<∞

u(τ)p

V(τ)2

]q/p

w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0
Wr/p(x)

[
sup

x≤τ<∞

[
sup

t≤τ<∞

u(τ)p

V(τ)2

]
V(τ)

]r/p

w(x) dx
)1/r

.
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Proof. Obviously, (1.4) is satisfied with the best constant c if and only if

‖S ũ f ‖q,w̃,(0,∞) ≤ c ‖ f ‖p,ṽ,(0,∞), f ∈ M↑

holds, where

ũ(t) = u
(1

t

)
, w̃(t) = w

(1
t

) 1
t2 , ṽ(t) = v

(1
t

) 1
t2 , t > 0.

Using Theorem 3.5, and then applying substitution of variables mentioned above three times, we get the
statement. �

4. Iterated inequalities with supremal operators

In this section we characterize inequalities (1.5) and (1.7).
The following theorem is true.

Theorem 4.1. Let 1 < p < ∞, 0 < q < ∞ and let u ∈ W(0,∞) ∩ C(0,∞). Assume that v, w ∈ W(0,∞)
be such that

0 <
∫ x

0
v1−p′(t) dt < ∞ and 0 < W∗(x) < ∞ for all x > 0.

Recall that

Φ
[
v; p

]
(x) =

( ∫ x

0
v1−p′(t) dt

)1/(p′+1)

, x > 0.

Denote by
Φ1(x) := sup

0<τ≤x
u(τ)Φ2[v; p](τ), x > 0.

Then (1.5) is satisfied with the best constant c if and only if:
(i) p ≤ q, and in this case c ≈ A1 + ‖S uΦ2[v;p](1)‖q,w,(0,∞)/‖1‖p,φ[v;p],(0,∞), where

A1 := sup
x>0

(
[Φ1]q(x)W∗(x) +

∫ x

0
[Φ1]q(t)w(t) dt

)1/q

Φ[v; p]−1/p(x);

(ii) q < p, and in this case c ≈ B1 + B2 + ‖S uΦ2[v;p](1)‖q,w,(0,∞)/‖1‖p,φ[v;p],(0,∞), where

B1 : =

( ∫ ∞

0

( ∫ x

0
[Φ1]q(t)w(t) dt

)r/p

[Φ1]q(x)Φ[v; p]−r/p(x)w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0
Wr/p
∗ (x)

[
sup

0<τ≤x
Φ1(τ)Φ[v; p]−1/p(τ)

]r

w(x) dx
)1/r

.

Proof. By Theorem 2.6 applied to the operator S u, inequality (1.5) with the best constant c holds if and
only if the inequality

(4.1)
∥∥∥S uΦ2[v;p]( f )

∥∥∥
q,w,(0,∞)

≤ C ‖ f ‖p,φ[v;p],(0,∞), f ∈ M↓

holds. Moreover, c ≈ C. Now the statement follows by Theorem 3.3. �

Theorem 4.2. Let 0 < q < ∞ and let u ∈ W(0,∞) ∩C(0,∞). Assume that v, w ∈ W(0,∞) be such that
0 < V(x) < ∞ and 0 < W∗(x) < ∞ for all x > 0. Denote by

V1(x) := sup
0<τ≤x

u(τ)V2(τ), x > 0.

Then

(4.2)
∥∥∥∥∥S u

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c ‖h‖1,V−1,(0,∞),

is satisfied with the best constant c if and only if:
(i) p ≤ q, and in this case c ≈ A1 + ‖S uV2(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞), where

A1 := sup
x>0

(
[V1]q(x)

∫ ∞

x
w(t) dt +

∫ x

0
[V1]q(t)w(t) dt

)1/q

V−1/p(x);
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(ii) q < p, and in this case c ≈ B1 + B2 + ‖S uV2(1)‖q,w,(0,∞)/‖1‖p,v,(0,∞), where

B1 : =

( ∫ ∞

0

( ∫ x

0
[V1]q(t)w(t) dt

)r/p

[V1]q(x)V−r/p(x)w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0

( ∫ ∞

x
w(t) dt

)r/p[
sup

0<τ≤x
[V1](τ)V−1/p(τ)

]r

w(x) dx
)1/r

.

Proof. By Theorem 2.7 applied to the operator S u, inequality (4.2) with the best constant c51 holds if and
only if the inequality

(4.3)
∥∥∥S uV2( f )

∥∥∥
q,w,(0,∞)

≤ C ‖ f ‖1,v,(0,∞), f ∈ M↓

holds. Moreover, c ≈ C. Now the statement follows by Theorem 3.3. �

The following ”dual” statements also hold true.

Theorem 4.3. Let 1 < p < ∞, 0 < q < ∞ and let u ∈ W(0,∞) ∩ C(0,∞). Assume that v, w ∈ W(0,∞)
be such that

0 <
∫ ∞

x
v1−p′(t) dt < ∞ and 0 < W(x) < ∞ for all x > 0.

Recall that

Ψ
[
v; p

]
(x) =

( ∫ ∞

x
v1−p′(t) dt

)1/(p′+1)

, x > 0.

Denote by
Ψ1(x) := sup

x≤τ<∞
u(τ)Ψ2[v; p](τ), x > 0.

Then (1.7) is satisfied with the best constant c if and only if:
(i) p ≤ q, and in this case c ≈ A1 + ‖S uΨ2[v;p](1)‖q,w,(0,∞)/‖1‖p,ψ[v;p],(0,∞), where

A1 := sup
x>0

(
[Ψ1]q(x)W(x) +

∫ ∞

x
[Ψ1]q(t)w(t) dt

)1/q

Ψ[v; p]−1/p(x);

(ii) q < p, and in this case c ≈ B1 + B2 + ‖S uΨ2[v;p](1)‖q,w,(0,∞)/‖1‖p,ψ[v;p],(0,∞), where

B1 : =

( ∫ ∞

0

( ∫ ∞

x
[Ψ1]q(t)w(t) dt

)r/p

[Ψ1]q(x)Ψ[v; p]−r/p(x)w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0
Wr/p(x)

[
sup

x≤τ<∞
Ψ1(τ)Ψ[v; p]−1/p(τ)

]r

w(x) dx
)1/r

.

Proof. Obviously, (1.7) is satisfied with the best constant c if and only if∥∥∥∥∥S ũ

( ∫ x

0
h
)∥∥∥∥∥

q,w̃,(0,∞)
≤ c ‖h‖p,ṽ,(0,∞), h ∈ M+

holds, where

ũ(t) = u
(1

t

)
, w̃(t) = w

(1
t

) 1
t2 , ṽ(t) = v

(1
t

) 1
t2 , t > 0.

Using Theorem 4.1, and then applying substitution of variables mentioned above three times, we get the
statement. �

Theorem 4.4. Let 0 < q < ∞ and let u ∈ W(0,∞) ∩C(0,∞). Assume that v, w ∈ W(0,∞) be such that
0 < V∗(x) < ∞ and 0 < W∗(x) < ∞ for all x > 0. Denote by

V∗1(x) := sup
x≤τ<∞

u(τ)V2
∗ (τ), x > 0.

Then

(4.4)
∥∥∥∥∥S ∗u

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c ‖h‖1,V−1

∗ ,(0,∞),
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is satisfied with the best constant c if and only if:
(i) p ≤ q, and in this case c ≈ A1 +

∥∥∥S ∗
uV2
∗

(1)
∥∥∥

q,w,(0,∞)
/‖1‖p,v,(0,∞), where

A1 := sup
x>0

(
[V∗1]q(x)W∗(x) +

∫ x

0
[V∗1]q(t)w(t) dt

)1/q

V−1/p(x);

(ii) q < p, and in this case c ≈ B1 + B2 +
∥∥∥S ∗

uV2
∗

(1)
∥∥∥

q,w,(0,∞)
/‖1‖p,v,(0,∞), where

B1 : =

( ∫ ∞

0

( ∫ ∞

x
[V∗1]q(t)w(t) dt

)r/p

[V∗1]q(x)V−r/p
∗ (x)w(x) dx

)1/r

,

B2 : =

( ∫ ∞

0
Wr/p
∗ (x)

[
sup

x≤τ<∞
[V∗1](τ)V−1/p(τ)

]r

w(x) dx
)1/r

.

Proof. By change of variables x = 1/t, it is easy to see that inequality (4.4) holds if and only if

(4.5)
∥∥∥∥∥S ũ

( ∫ x

0
h
)∥∥∥∥∥

q,w̃,(0,∞)
≤ c ‖h‖1,Ṽ−1,(0,∞), h ∈ M+

holds, where

ũ(t) = u
(1

t

)
, w̃(t) = w

(1
t

) 1
t2 , Ṽ(t) =

∫ t

0
v
(1
y

) 1
y2 dy, t > 0.

Applying Theorem 4.2, and then using substitution of variables mentioned above three times, we get the
statement. �

5. Hardy-operator involving suprema - Tu,b

In this section we give complete characterization of inequality (1.12).

5.1. The case 1 ≤ p < ∞. The following theorem is true.

Theorem 5.1. Let 0 < q ≤ ∞, 1 ≤ p < ∞ and let u ∈ W(0,∞)∩C(0,∞). Assume that b, v, w ∈ W(0,∞)
be such that

0 < B(t) < ∞, 0 < V(x) < ∞ and 0 < W(x) < ∞ for all x > 0.
Then inequality (1.12) is satisfied with the best constant c if and only if:

(i) 1 < p ≤ q, and in this case c ≈ A1 + A2, where

A1 : = sup
x>0

([
sup

x≤τ<∞

u(τ)
B(τ)

]q

W(x) +

∫ ∞

x

[
sup

t≤τ<∞

u(τ)
B(τ)

]q

w(t) dt
)1/q( ∫ x

0

( B(y)
V(y)

)p′

v(y) dy
)1/p′

,

A2 : = sup
x>0

([
sup

x≤τ<∞

u(τ)
V2(τ)

]q

W(x) +

∫ ∞

x

[
sup

t≤τ<∞

u(τ)
V2(τ)

]q

w(t) dt
)1/q( ∫ x

0
V p′(y)v(y) dy

)1/p′

;

(ii) 1 = p ≤ q, and in this case c ≈ A1 + A2, where

A1 : = sup
x>0

([
sup

x≤τ<∞

u(τ)
B(τ)

]q

W(x) +

∫ ∞

x

[
sup

t≤τ<∞

u(τ)
B(τ)

]q

w(t) dt
)1/q(

sup
0<y≤x

B(y)
V(y)

)
,

A2 : = sup
x>0

([
sup

x≤τ<∞

u(τ)
V2(τ)

]q

W(x) +

∫ ∞

x

[
sup

t≤τ<∞

u(τ)
V2(τ)

]q

w(t) dt
)1/q

V(x);

(iii) 1 < p and q < p, and in this case c ≈ B1 + B2 + B3 + B4, where

B1 : =

( ∫ ∞

0

( ∫ ∞

x

[
sup

t≤τ<∞

u(τ)
B(τ)

]q

w(t) dt
)r/p[

sup
x≤τ<∞

u(τ)
B(τ)

]q( ∫ x

0

( B(y)
V(y)

)p′

v(y) dy
)r/p′

w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0
Wr/p(x)

[
sup

x≤τ<∞

[
sup
τ≤y<∞

u(y)
B(y)

]( ∫ x

0

( B(y)
V(y)

)p′

v(y) dy
)1/p′]r

w(x) dx
)1/r

,

B3 : =

( ∫ ∞

0

( ∫ ∞

x

[
sup

t≤τ<∞

u(τ)
V2(τ)

]q

w(t) dt
)r/p[

sup
x≤τ<∞

u(τ)
V2(τ)

]q( ∫ x

0
V p′(y)v(y) dy

)r/p′

w(x) dx
)1/r

,
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B4 : =

( ∫ ∞

0
Wr/p(x)

[
sup

x≤τ<∞

[
sup
τ≤y<∞

u(y)
V2(y)

]( ∫ x

0
V p′(y)v(y) dy

)1/p′]r

w(x) dx
)1/r

.

(iv) q < 1 = p, and in this case c ≈ B1 + B2 + B3 + B4, where

B1 : =

( ∫ ∞

0

( ∫ ∞

x

[
sup

t≤τ<∞

u(τ)
B(τ)

]q

w(t) dt
)r/p[

sup
x≤τ<∞

u(τ)
B(τ)

]q(
sup

0<y≤x

B(y)
V(y)

)r

w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0
Wr/p(x)

[
sup

x≤τ<∞

[
sup
τ≤y<∞

u(y)
B(y)

](
sup

0<y≤x

B(y)
V(y)

)]r

w(x) dx
)1/r

,

B3 : =

( ∫ ∞

0

( ∫ ∞

x

[
sup

t≤τ<∞

u(τ)
V2(τ)

]q

w(t) dt
)r/p[

sup
x≤τ<∞

u(τ)
V2(τ)

]q

Vr(x)w(x) dx
)1/r

,

B4 : =

( ∫ ∞

0
Wr/p(x)

[
sup

x≤τ<∞

[
sup
τ≤y<∞

u(y)
V2(y)

]
V(x)

]r

w(x) dx
)1/r

.

Proof. By Theorem 2.2, (1.12) holds iff both

(5.1)
∥∥∥∥∥Tu,b

( ∫ ∞

x
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖p,V pv1−p,(0,∞), h ∈ M+(0,∞).

and

(5.2) ‖Tu,b1‖q,w,(0,∞) ≤ c‖1‖p,v,(0,∞)

hold.
Note that

Tu,b

( ∫ ∞

t
h
)
(x) = sup

x≤τ<∞

u(τ)
B(τ)

∫ τ

0

( ∫ ∞

s
h(y) dy

)
b(s) ds

≈ sup
x≤τ<∞

u(τ)
B(τ)

∫ τ

0
h(y)B(y) dy + sup

x≤τ<∞
u(τ)

∫ ∞

τ

h(s) ds

= S ∗u/B

( ∫ τ

0
hB

)
+ S ∗u

( ∫ ∞

τ

h
)
.

Hence, inequality (1.12) holds iff inequalities

(5.3)
∥∥∥∥∥S ∗u/B

( ∫ τ

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖p,B−pV pv1−p,(0,∞), h ∈ M+(0,∞),

(5.4)
∥∥∥∥∥S ∗u

( ∫ ∞

τ

h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖p,V pv1−p,(0,∞), h ∈ M+(0,∞).

and (5.2) hold.
Again by Theorem 2.2, (5.4) with (5.2) is equivalent to

(5.5) ‖S ∗u f ‖q,w,(0,∞) ≤ c‖ f ‖p,v,(0,∞), f ∈ M↓(0,∞).

Now by Theorem 2.3, (5.5) is equivalent to

(5.6)
∥∥∥∥∥S ∗u/V2

( ∫ x

0
h
)∥∥∥∥∥

q,w,(0,∞)
≤ c‖h‖p,V−pv1−p,(0,∞), h ∈ M+(0,∞).

Consequently, (1.12) holds iff inequalities (5.3) and (5.6) hold.
(i) p ≤ q. By Theorem 3.1, (5.3) and (5.6) hold if and only if both A1 < ∞ and A2 < ∞ hold,

respectively.
(ii) q < p. By Theorem 3.1, (5.3) and (5.6) hold if and only if Bi < ∞, i = 1, 2, 3, 4 hold, respectively.

�
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5.2. The case 0 < p < 1. We start with a simple observation. If 0 < p ≤ 1 and t ∈ (0,∞), then

(5.7) sup
0<τ≤t

f (τ)B(τ) ≤
∫ t

0
f (y)b(y) dy .

( ∫ t

0
f (y)pB(y)p−1b(y) dy

)1/p

, f ∈ M↓.

Since f is non-increasing, the first inequality in (5.7) is obvious. The second one follows, for instance,
from the fact that (see, for instance, [5, Theorem 3.2], cf. also [22])

sup
f∈M↓: f/0

∫ ∞
0

f (x)g(x) dx( ∫ ∞
0

f (x)pv(x) dx
)1/p ≈ sup

t>0

( ∫ t

0
g(x) dx

( ∫ t

0
v(x) dx

)−1/p)
.

Our first aim is to prove a reduction theorem for the operator Tu,b. We first note that, using the mono-
tonicity of

∫ t

0
f b and interchanging the suprema, we get

(Tu,bg)(t) = sup
t≤τ<∞

u(τ)
B(τ)

∫ τ

0
g(y)b(y) dy = sup

t≤τ<∞

(
sup
τ≤x<∞

u(x)
B(x)

) ∫ τ

0
g(y)b(y) dy, t ∈ (0,∞).

As a consequence, we can safely assume that u(x)/B(x) is non-increasing on (0,∞), since otherwise we
would just replace u(x)/B(x) by supτ≤x<∞ u(x)/B(x).

Theorem 5.2. Let 0 < p ≤ 1, 0 < q < ∞. Assume that u ∈ W(0,∞) ∩ C(0,∞) and b, v, w ∈ W(0,∞)
be such that 0 < B(t) < ∞ for all x > 0. Then the following three statements are equivalent:

( ∫ ∞

0

(
sup

t≤τ<∞

u(τ)
B(τ)

∫ τ

0
f (y)b(y) dy

)q

w(t) dt
)1/q

.
( ∫ ∞

0
f (τ)pv(τ) dτ

)1/p

, f ∈ M↓;(5.8) ( ∫ ∞

0

(
sup

t≤τ<∞

( u(τ)
B(τ)

)p ∫ τ

0
f (y)B(y)p−1b(y) dy

)q/p

w(t) dt
)1/q

.
( ∫ ∞

0
f (τ)v(τ) dτ

)1/p

, f ∈ M↓;(5.9) ( ∫ ∞

0

(
sup

t≤τ<∞

u(τ)
B(τ)

sup
0<y≤τ

f (y)B(y)
)q

w(t) dt
)1/q

.
( ∫ ∞

0
f (τ)pv(τ) dτ

)1/p

, f ∈ M↓.(5.10)

Proof. Again, in view of (5.7), the implications (5.9) ⇒ (5.8) ⇒ (5.10) are obvious, and it just remains
to show that (5.10) implies (5.9).

Suppose, thus, that (5.10) holds. Since u(x)/B(x) is non-increasing, we have

sup
t≤τ<∞

u(τ)
B(τ)

sup
0<y≤τ

f (y)B(y) = max
{

sup
t≤τ<∞

u(τ)
B(τ)

sup
0<y≤t

f (y)B(y), sup
t≤τ<∞

u(τ)
B(τ)

sup
t<y≤τ

f (y)B(y)
}

= max
{ u(t)

B(t)
sup
0<y≤t

f (y)B(y), sup
t≤y<∞

f (y)B(y) sup
y≤τ<∞

u(τ)
B(τ)

}
= max

{ u(t)
B(t)

sup
0<y≤t

f (y)B(y), sup
t≤y<∞

f (y)u(y)
}
.

Hence, (5.10) breaks down into the following two inequalities:( ∫ ∞

0

(
sup
0<y≤t

f (y)B(y)
)q

w(t)
( u(t)

B(t)

)q

dt
)1/q

.
( ∫ ∞

0
f (τ)pv(τ) dτ

)1/p

, f ∈ M↓,(5.11) ( ∫ ∞

0

(
sup

t≤y<∞
f (y)u(y)

)q

w(t) dt
)1/q

.
( ∫ ∞

0
f (τ)pv(τ) dτ

)1/p

, f ∈ M↓.(5.12)

Obviously, (5.11) and (5.12) are equivalent to( ∫ ∞

0

(
sup
0<y≤t

f (y)B(y)p
)q/p

w(t)
( u(t)

B(t)

)q

dt
)p/q

.

∫ ∞

0
f (τ)v(τ) dτ, f ∈ M↓,(5.13) ( ∫ ∞

0

(
sup

t≤y<∞
f (y)u(y)p

)q/p

w(t) dt
)p/q

.

∫ ∞

0
f (τ)v(τ) dτ, f ∈ M↓.(5.14)
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(i) Let p ≤ q. By Theorem 3.3, (5.13) holds iff both

(5.15) sup
x>0

( ∫ x

0
u(t)qw(t) dt + B(x)q

∫ ∞

x

[ u(t)
B(t)

]q

w(t) dt
)1/q

V−1/p(x) < ∞

and

(5.16)
( ∫ ∞

0
u(t)qw(t) dt

)1/q

.
( ∫ ∞

0
v(τ) dτ

)1/p

hold.
By Theorem 3.6, (5.14) holds iff both

(5.17) sup
x>0

([
sup

x≤y<∞

u(y)p

V2(y)

]q/p ∫ x

0
w(t) dt +

∫ ∞

x

[
sup

t≤y<∞

u(y)p

V2(y)

]q/p

w(t) dt
)1/q

V1/p(x) < ∞

and

(5.18)
( ∫ ∞

0

(
sup

t≤τ<∞
u(τ)p

)q/p

w(t) dt
)1/q

.
( ∫ ∞

0
v(τ) dτ

)1/p

hold.
On the other hand, by Theorem 5.1, (5.9) holds iff inequalities

sup
x>0

([ u(x)
B(x)

]q ∫ x

0
w(t) dt +

∫ ∞

x

[ u(t)
B(t)

]q

w(t) dt
)1/q

sup
0<τ≤x

B(τ)
V1/p(τ)

< ∞(5.19)

sup
x>0

([
sup

x≤τ<∞

u(τ)p

V2(τ)

]q/p ∫ x

0
w(t) dt +

∫ ∞

x

[
sup

t≤τ<∞

u(τ)p

V2(τ)

]q/p

w(t) dt
)1/q

V1/p(x) < ∞(5.20)

hold.
We will thus be done if we can show that (5.15) together with (5.17) imply (5.19). The latter can be

proved as follows:
Since

sup
x>0

( ∫ ∞

x

[ u(t)
B(t)

]q

w(t) dt
)1/q

sup
0<τ≤x

B(τ)
V1/p(τ)

= sup
x>0

( ∫ ∞

x

[ u(t)
B(t)

]q

w(t) dt
)1/q B(x)

V1/p(x)
,

it remains to show that

sup
x>0

u(x)
B(x)

( ∫ x

0
w(t) dt

)1/q

sup
0<τ≤x

B(τ)
V1/p(τ)

. sup
x>0

u(x)
V1/p(x)

( ∫ x

0
w(t) dt

)1/q

+ sup
x>0

B(x)
V1/p(x)

( ∫ ∞

x

[ u(t)
B(t)

]q

w(t) dt
)1/q

.

Interchanging the suprema, using the monotonicity of u/B, we get that

sup
x>0

u(x)
B(x)

( ∫ x

0
w(t) dt

)1/q

sup
0<τ≤x

B(τ)
V1/p(τ)

= sup
τ>0

B(τ)
V1/p(τ)

sup
τ≤x<∞

u(x)
B(x)

( ∫ x

0
w(t) dt

)1/q

. sup
τ>0

B(τ)
V1/p(τ)

(
sup
τ≤x<∞

u(x)
B(x)

)( ∫ τ

0
w(t) dt

)1/q

+ sup
τ>0

B(τ)
V1/p(τ)

sup
τ≤x<∞

u(x)
B(x)

( ∫ x

τ

w(t) dt
)1/q

. sup
τ>0

u(τ)
V1/p(τ)

( ∫ τ

0
w(t) dt

)1/q

+ sup
τ>0

B(τ)
V1/p(τ)

sup
τ≤x<∞

( ∫ x

τ

[ u(t)
B(t)

]q

w(t) dt
)1/q

= sup
τ>0

u(τ)
V1/p(τ)

( ∫ τ

0
w(t) dt

)1/q

+ sup
τ>0

B(τ)
V1/p(τ)

( ∫ ∞

τ

[ u(t)
B(t)

]q

w(t) dt
)1/q

.
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(ii) Let q < p. By Theorem 3.3, (5.13) holds iff both∫ ∞

0

( ∫ x

0
u(t)qw(t) dt

)r/p

u(x)qV−r/p(x)w(x) dx < ∞,∫ ∞

0

( ∫ ∞

x

( u(t)
B(t)

)q

w(t) dt
)r/p[

sup
0<τ≤x

B(τ)
V1/p(τ)

]r

w(x)
( u(x)

B(x)

)q

dx < ∞.

By Theorem 3.6, (5.14) holds iff inequalities∫ ∞

0

( ∫ ∞

x

[
sup

t≤y<∞

u(y)p

V2(y)

]q/p

w(t) dt
)r/p[

sup
x≤y<∞

u(y)p

V2(y)

]q/p

Vr/p(x)w(x) dx < ∞,∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

[
sup
τ≤y<∞

u(y)p

V2(y)

]
V(τ)

)r/p

w(x) dx < ∞.

On the other hand, by Theorem 5.1, (5.9) holds iff∫ ∞

0

( ∫ ∞

x

[ u(t)
B(t)

]q

w(t) dt
)r/p[

sup
0<t≤τ

B(t)p

V(t)

]r/p

w(x)
[ u(x)
B(x)

]q

dx < ∞,∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

[ u(τ)
B(τ)

]p[
sup
0<t≤τ

B(t)p

V(t)

])r/p

w(x) dx < ∞,∫ ∞

0

( ∫ ∞

x

[
sup

t≤y<∞

u(y)p

V2(y)

]q/p

w(t) dt
)r/p[

sup
x≤y<∞

u(y)p

V2(y)

]q/p

Vr/p(x)w(x) dx < ∞,∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

[
sup
τ≤y<∞

u(y)p

V2(y)

]
V(τ)

)r/p

w(x) dx

=

∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

u(τ)p

V(τ)

)r/p

w(x) dx < ∞.

Obviously, it remains to show that∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

[ u(τ)
B(τ)

]p[
sup
0<t≤τ

B(t)p

V(t)

])r/p

w(x) dx

.

∫ ∞

0

( ∫ ∞

x

( u(t)
B(t)

)q

w(t) dt
)r/p[

sup
0<τ≤x

B(τ)
V1/p(τ)

]r

w(x)
( u(x)

B(x)

)q

dx

+

∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

u(τ)p

V(τ)

)r/p

w(x) dx.

We will prove the assertion only in the case when
∫ ∞

0
w(τ) dτ = ∞. Let {xk} be such that

∫ xk

0
w(τ) dτ = 2k.

Then ∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

[ u(τ)
B(τ)

]p[
sup
0<t≤τ

B(t)p

V(t)

])r/p

w(x) dx

≈
∑
k∈Z

2kr/q
(

sup
xk≤τ<∞

[ u(τ)
B(τ)

]p[
sup
0<t≤τ

B(t)p

V(t)

])r/p

.

Note that

sup
xk≤τ<∞

[ u(τ)
B(τ)

]p[
sup
0<t≤τ

B(t)p

V(t)

]
≈ sup

xk≤τ<∞

[ u(τ)
B(τ)

]p[
sup

0<t≤xk

B(t)p

V(t)

]
+ sup

xk≤τ<∞

[ u(τ)
B(τ)

]p[
sup

xk≤t≤τ

B(t)p

V(t)

]
=

[ u(xk)
B(xk)

]p[
sup

0<t≤xk

B(t)p

V(t)

]
+ sup

xk≤t<∞

B(t)p

V(t)
sup

t≤τ<∞

[ u(τ)
B(τ)

]p

=

[ u(xk)
B(xk)

]p[
sup

0<t≤xk

B(t)p

V(t)

]
+ sup

xk≤t<∞

u(t)p

V(t)
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≈

[ u(xk)
B(xk)

]p[
sup

0<t≤xk−1

B(t)p

V(t)

]
+

[ u(xk)
B(xk)

]p[
sup

xk−1<t≤xk

B(t)p

V(t)

]
+ sup

xk≤t<∞

u(t)p

V(t)

≤

[ u(xk)
B(xk)

]p[
sup

0<t≤xk−1

B(t)p

V(t)

]
+ sup

xk−1≤t<xk

u(t)p

V(t)
+ sup

xk≤t<∞

u(t)p

V(t)

≤

[ u(xk)
B(xk)

]p[
sup

0<t≤xk−1

B(t)p

V(t)

]
+ sup

xk−1≤t<∞

u(t)p

V(t)
.

Hence, ∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

[ u(τ)
B(τ)

]p[
sup
0<t≤τ

B(t)p

V(t)

])r/p

w(x) dx

.
∑
k∈Z

2kr/q
([ u(xk)

B(xk)

]p[
sup

0<t≤xk−1

B(t)p

V(t)

])r/p

+
∑
k∈Z

2kr/q
(

sup
xk−1≤t<∞

u(t)p

V(t)

)r/p

≈
∑
k∈Z

( ∫ xk

xk−1

( ∫ xk

x
w
)r/p

w(x) dx
)([ u(xk)

B(xk)

]p[
sup

0<t≤xk−1

B(t)p

V(t)

])r/p

+
∑
k∈Z

( ∫ xk−1

xk−2

( ∫ x

xk

w
)r/p

w(x) dx
)(

sup
xk−1≤t<∞

u(t)p

V(t)

)r/p

.
∑
k∈Z

∫ xk

xk−1

( ∫ ∞

x

( u(t)
B(t)

)q

w(t) dt
)r/p[

sup
0<τ≤x

B(τ)
V1/p(τ)

]r[ u(x)
B(x)

]q

w(x) dx

+
∑
k∈Z

∫ xk+1

xk−1

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

u(τ)p

V(τ)

)r/p

w(x) dx

.

∫ ∞

0

( ∫ ∞

x

( u(t)
B(t)

)q

w(t) dt
)r/p[

sup
0<τ≤x

B(τ)
V1/p(τ)

]r

w(x)
( u(x)

B(x)

)q

dx

+

∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

u(τ)p

V(τ)

)r/p

w(x) dx.

�

Remark 5.3. Note that Theorem 5.2, namely the fact that (5.9) ⇔ (5.8) ⇔ (5.10), when b ≡ 1, was
proved in [15].

As a corollary we obtain that for all the three operators mentioned in (5.7), the corresponding weighted
inequalities are equivalent. It is worth noticing that this is not so when p > 1.

Corollary 5.4. Assume that 0 < p ≤ 1, 0 < q < ∞, and v, w ∈ W(0,∞). Let b be a weight on (0,∞)
such that 0 < B(t) < ∞ for every t ∈ (0,∞). Then the following three statements are equivalent:

( ∫ ∞

0

( ∫ t

0
f (τ)b(τ) dτ

)q

w(t) dt
)1/q

.
( ∫ ∞

0
f (τ)pv(τ) dτ

)1/p

, f ∈ M↓;(5.21) ( ∫ ∞

0

( ∫ t

0
f (τ)pB(τ)p−1b(τ) dτ

)q/p

w(t) dt
)1/q

.
( ∫ ∞

0
f (τ)pv(τ) dτ

)1/p

, f ∈ M↓;(5.22) ( ∫ ∞

0

(
sup
0<τ≤t

f (τ)B(τ)
)q

w(t) dt
)1/q

.
( ∫ ∞

0
f (τ)pv(τ) dτ

)1/p

, f ∈ M↓.(5.23)

This fact was proved in [15, Theorem 2.1], when b ≡ 1. Recently, in [16, Theorem 3.9], it was proved
that (5.21) ⇔ (5.23) for more general Volterra operators with continuous Oinarov kernels in the case
when 0 < q < p ≤ 1.

Proof. The proof immediately follows from Theorem 5.2 taking u ≡ 1. �

By the way we have proved the following statement.
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Theorem 5.5. Let 0 < p ≤ 1, 0 < q < ∞. Assume that u ∈ W(0,∞) ∩ C(0,∞) and b, v, w ∈ W(0,∞)
be such that 0 < V(t) < ∞ and 0 < B(t) < ∞ for all x > 0. Then inequality (1.12) is satisfied with the
best constant c if and only if:

(i) p ≤ q, and in this case c ≈ A1 + A2, where

A1 : = sup
x>0

([
sup

x≤τ<∞

u(τ)
B(τ)

]q ∫ x

0
w(t) dt +

∫ ∞

x

[
sup

t≤τ<∞

u(τ)
B(τ)

]q

w(t) dt
)1/q

sup
0<y≤x

B(y)
V1/p(y)

;

A2 : = sup
x>0

([
sup

x≤y<∞

u(y)p

V2(y)

]q/p ∫ x

0
w(t) dt +

∫ ∞

x

[
sup

t≤y<∞

u(y)p

V2(y)

]q/p

w(t) dt
)1/q

V1/p(x);

(ii) q < p, and in this case c ≈ B1 + B2 + B3 + B4, where

B1 : =

( ∫ ∞

0

( ∫ x

0
w(t) dt

)r/p[
sup

x≤τ<∞

[
sup
τ≤y<∞

u(y)
B(y)

]q(
sup

0<y≤x

B(y)
V1/p(y)

)]r

w(x) dx
)1/r

,

B2 : =

( ∫ ∞

0

( ∫ ∞

x

[
sup

t≤τ<∞

u(τ)
B(τ)

]q

w(t) dt
)r/p[

sup
0<τ≤x

B(τ)
V1/p(τ)

]r[
sup

x≤τ<∞

u(τ)
B(τ)

]q

w(x) dx
)1/r

,

B3 : =

( ∫ ∞

0

( ∫ x

0
w(t) dt

)r/p(
sup

x≤τ<∞

[
sup
τ≤y<∞

u(y)p

V2(y)

]
V(τ)

)r/p

w(x) dx
)1/r

,

B4 : =

( ∫ ∞

0

( ∫ ∞

x

[
sup

t≤y<∞

u(y)p

V2(y)

]q/p

w(t) dt
)r/p[

sup
x≤y<∞

u(y)p

V2(y)

]q/p

Vr/p(x)w(x) dx
)1/r

.
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