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Abstract:   In current research project supported by a TAČR grant, author is developing a facility for 
generation of small, sub-millimetre air sized bubbles in water. This is not easy, the usual bubble size 
being several millimetres. The most promising and economically viable method, based on author's earlier 
experience, is fragmentation of bubbles while they are still at the aerator exit locations by a no-moving-
part fluidic oscillator. The project involves two major problems discussed separately: (a) developing a 
suitable no-moving-part oscillator and (b) obtaining a deeper understanding of the effect of oscillation on 
bubble formation as a pre-requisite to new aerator design. This paper discusses the second problem. 

 
1.  Introduction  
  Bubbles of gas (most often, of course, air) in liquids play essential role in a wide spectrum of 
various technological processes. Usual aim is to enhance diffusion transport of the gas into the liquid 
across the interface. Distributing the given gas volume into the very large number of bubbles increases the 
total interface area, Fig. 1, a key factor in the diffusion transport. The area is larger if the bubbles are 
smaller; the demand is therefore to make bubbles as small as possible. Recent literature discusses even 
sub-micron size nanobubbles [3]. These, in theory, can stay suspended in the liquid, agitated by Brownian 
motion,  for time scales as long as days — until they disappear due to the diffusion of all the gas content. 
Some aspects of nanobubbles are quite controversial (after all, they are not visible by naked eye and even 
seeing them by a microscope is problematic) and their generation requires a considerable energetic 
demand. Thus the current goal is a less ambitious one:  to produce sub-millimetre sized microbubbles. 
 Apart from the direct advantage of the large overall diffusion transfer surface, the small bubbles 
also rise to the surface at a much slower velocity, Fig. 2 - so that also the diffusion time aspect leads to an 
enhanced transport. Bubbles rising to the surface tend to grow by mutual agglomeration. The smaller is 
the initial size, the longer are even the resultant agglomerate bubbles small and this is another reason for 
the effort concentrated on the generation of bubbles as small as possible.  
 The straightforward method how to get the gas into liquid - where it can form the bubbles - is to 
blow it, under pressure, through orifices in a component called aerator. It is essentially a system of  
 
 

      
Fig. 1 (Left)  Dividing a given volume of gas into a large number of small bubbles increases substantially the 
overall total surface area across which the gas diffuses into the liquid. This makes more efficient technological 
processes based on the diffusion.   
Fig. 2 (Right)   The other effect obtained by making the bubbles smaller is reduction of the velocity with which 
they rise to the surface [1, 2]. The resultant longer available time for the gas/liquid contact also enhances the diffusion 
transport. 
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Fig. 3 (Top)  A typical aerator as they are currently in use for waste-water treatment. Material: HDPE (High-density 
polyethylene). The porous top exit surface is made by sintering from very small, sub-millimetre HDPE  spheres.  
Fig. 4 (Bottom)   Author’s tests with the aerator from Fig. 3. It is immediately obvious that bubbles are 
incomparably larger than the membrane pore size: here the average bubble diameter is  5.7 mm  (which is  47-times 
larger than the equivalent pore diameter) in the exit surface. 
 
 
parallel small orifices leading into the liquid from some larger central inlet space. In an attempt to make 
the bubbles smaller, it is common to make the aerator exits very small. Unfortunately, this in itself, does 
not solve the problem. It is a fact, though not generally known, that common aerators produce bubbles an 
order (and sometimes even two orders) of magnitude larger than the size of exit orifices. A typical 
example of inadequacy of current aerators in spite of the very small pores is demonstrated in Figs. 3 and 
4. The extremely small pores, in this example made by sintering sub-millimetre plastic spheres, obviously 
do not prevent the bubbles from growing quite large – and only at certain locations on the surface. This is 
caused by instability of bubble formation, difficult to eliminate since it is a consequence of the very basic 
law of surface tension. 
 It is, obviously, desirable to develop new approaches. They do exist, but for one reason or other 
they are mostly not suitable for the application in industrial processes.  On one hand, the method has to be 
economical. An example of a known but unsuitable solution is generating the micro bubbles by focused 
laser light. Another method is based on an ultrasound vibrator. The effectiveness of ultrasound 
transducers is low, making the method applicable to only small scale applications. Another unsuitable 
approach is use of cavitation in a fast flowing liquid. This can generate very small bubbles, but is 
associated with large dissipated power levels. Also the surfaces of active components can deteriorate by 
erosion. A suitable approach is fragmentation of larger bubbles produced by a classical aerator. One 
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possibility is bubble breakup by shear stresses in turbulent flows. Theory of this approach was set up by 
Kolmogorov already in 1949, actually for liquid droplets in a gas flow — closely related to the case of 
bubbles in liquid. In fact some aspects of the fragmentation in the case of bubbles were discussed already 
in the classical Minnaert’s paper on the sound of loquacious water streams [12]. More recently, numerical 
flowfield computations of the phenomenon were demonstrated in [17]. Nevertheless, setting up of a liquid 
flow in which the bubbles would disintegrate is rather complicated and also may be quite expensive (from 
points of views of both energy and finance). Moving components are necessary for moving the water flow 
and they are inherently susceptible to problems with wear, material fatigue, screws getting lose and so on 
- so that they generally require maintenance (oiling of bearings, tightening the seals etc.).  
 A more promising approach was recently introduced in the Patent [7] (also discussed by this 
author in ref. [18]). It is this case that is the subject of discussion in the present paper. Essentially, it is a 
fragmentation of sessile bubbles while they still sit at the aerator exits, in the process of their formation. 
The breakup is to be achieved by oscillation of the air inflow. The mass of liquid does not need to be put 
into motion; the oscillation is applied in the air inlet, using no-moving-part fluidic oscillators. The applied 
power is to be relatively very low and there are the advantages of low price, high reliability, long lifetime, 
and robustness with respect to adverse conditions. 
  

 
2.  Basic law – and instability of bubble formation  
 Let us first consider the reasons why the aerators currently used, like the one shown in Fig. 4, do 
not simply distribute the supplied air flow into all small aerator passages and do not produce a large 
number of very small bubbles. The explanation necessitates considering the basic facts about the interface 
between gas (air) and liquid (water). Contrary to gases, with their almost independently moving 
molecules, the liquid molecules ale held closely together by attractive forces (of electrostatic character) 
acting between them. The forces act on a liquid molecule in a statistically isotropic manner – i.e. the 
particular molecule is exposed to them from all spatial directions. Forces in every direction are mutually 
compensated, the molecule is in force equilibrium. This ceases to be the case at the gas/liquid interface.  
Outside of the interface the molecules are missing. The absent cohesion forces generates results on a force 
pulling the remaining liquid molecules in the direction away from the interface. The resultant 
macroscopic effect is a trend to minimise the gas/liquid interface area.  
 In a bubble this cohesion pull is compensated by pressure difference forces. The pressure inside 
a bubble is higher than outside to oppose the surface layer force trend to make the bubble smaller. This is 
represented in Fig. 6. Introduced in this illustration is the coefficient of surface tension σ [N/m]. Its 
numerical values for various liquids on one side and air on the other side of the interface are presented in 
Fig. 8. An important fact is that the Young-Laplace law [20] shown in Fig. 6 is equally valid in the case 
of liquid drops in a gas as it is for gaseous bubbles (Fig. 7) in a liquid. The difference between the two 
cases is only the fact that bubbles are compressible: their volume may diminish under the action of 
external pressure applied in the liquid. It should be said that in the processes that are of interest in this 
paper this compressibility effect may be neglected – the pressure levels are not large enough to deform 
significantly. 
 This paper focuses its attention on bubbles in the process of their formation, while they are still 
attached to the solid wall – surface of the aerator -  in which is located the channel bringing into the 
bubble the supplied air. Relations of a bubble to the solid horizontal surface is characterised according to 
Fig. 7. It is obvious that the names used there were introduced for the case of drops. They may be pendant 
(hanging from the ceiling surface above them) or sessile (sitting on the floor surface). This designation 
will be, as is usual, retained here also for bubbles, although a pendant bubble rather than hanging down is 
pressed up from below, against the ceiling, because of the inverted (upwards)  direction of the acting 
force (hydrostatic lift rather than gravity). On the other hand, while a sessile drop is stably held by gravity 
on its supporting wall below, a sessile bubble actually tends to lift off.  Computations of bubble or drop 
shape – as will be shown below in Section 4  – is nevertheless performed using identical equations (and 
hence identical solution algorithm). The difference is only in the sign of one term in the equations.  
Nevertheless the tendency of the sessile bubble to move away from its aerator exit at which it was formed 
is important. Introducing the air through the aerator openings from above into a stable pendant bubble is 
hardly ever used for aeration. The air bubbles would accumulate under the aerator and would tend to 
agglomerate there. Thus the desirable goal of producing small bubbles would be practically out of 
question. Air is usually brought into the aerator (as it is in Fig. 4) from below and the bubbles that are 
formed are therefore usually of the sessile character. This means the oscillator action on them – the  
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Fig. 5 (Left)   Molecules in liquid are mutually attracted by cohesion forces. For a particular molecule these forces 
are balanced – they act evenly from all spatial directions so that the molecule is in equilibrium. This balance, is not 
valid for the molecule at the liquid surface: there is a net resultant force pulling these molecules towards the liquid 
half-space where there is a higher pressure than in the gas outside.      
Fig. 6 (Right)   The liquid/gas interface is governed by the Young-Laplace law [20] for the pressure that 
compensates the pulling action of the surface. The law says the curvature radius of the interface is inversely 
proportional to the pressure difference. The proportionality factor is a property of the particular combination of gas 
and liquid and is characterised by the value of the surface tension σ. 
   

     
Fig. 7 (Left)    Equivalence of the surface effects acting on gas bubbles and on liquid drops. These objects at a solid 
wall may be pendant (hanging from top, although in the case of a bubble it is actually pressed against the ceiling 
surface) or sessile - sitting on the bottom.  
Fig. 8  (Right)  Numerical values of the surface tension σ  as the proportionality factor in the Young-Laplace law: 
the case of air bubbles in various liquids.  
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Fig. 9   Two stages of formation of an air bubble at the exit from an aerator orifice are shown at left. In the initial 
stage, as shown on top, the increase in the bubble volume decreases the curvature radius r and this is associated with 
increase of pressure difference. This stable stage is represented by the upwards sloping part of the diagram, which 
shows two computed examples (for different aerator exit diameters d) of the pressure dependence on the volume of 
growing bubble. In the second stage, shown at left bottom, the situation changes dramatically:  the bubble growth 
becomes unstable as is represented in the diagram by the downwards sloping part of the dependence. 
 
 
 
subject of the current research project -  is more difficult, since the oscillation applied to cause 
fragmentation may tend to cause separation of the bubbles from the sessile attachment surface and 
moving them away.  
 Let us now consider the case of growing bubble in the exit of an aerator channel as it is shown in 
the left-hand side of Fig. 9.  There are two stages of the bubble growth. In both the gas is supplied under 
pressure and this causes the volume of the bubble to increase. At the beginning of bubble formation, the 
curvature radius of the gas/liquid interface  is infinite ( the interface is a flat plane). With the progressing 
gas supply the curvature radius gradually decreases. This is the first stage. Obeying the Young-Laplace 
law, the pressure difference across the interface (inversely proportional to the radius) must increase. This 
is a stable situation. Let us assume the gas inflow stops for a moment and consider the stability of the 
ensuing equilibrium. If the pressure inside the half-bubble decreases - due to some disturbance - the 
consequent decreased volume means an increase of the radius r and according to the Young-Laplace law 
the pressure difference across the interface would increase. The pressure force would return the bubble 
into its equilibrium state. The law acts against any change, the bubble is stable. Graphically is this 
dependence presented in the diagram (results of author's computations for two examples with different 
inlet channel diameter d)  on the right-hand side of fig. 9. The positive slope, valid for the radius r larger 
than one half of the diameter  d  represents a stable equilibrium.  
 This is, however, valid only as long as the growing half-bubble does not reach the hemispherical 
shape. In the subsequent second stage of the bubble growth,  shown in Fig. 9 in the bottom part at left, the 
bubble radius increases with increasing bubble volume. This is associated with diminishing pressure 
difference ∆P. The lower pressure inside the bubble makes possible inflow of additional gas. This means 
an increase of the curvature radius r and further decrease of the pressure difference ∆P. There is no 
mechanism that would restrict the growth – apart, perhaps, from the hydraulic loss in the channel 
supplying the compressed air.  The slope in the diagram shown at right in Fig. 9 becomes in this second 
stage negative. The bubble growth is unstable. 
 Consider now the case of a simple but typical aerator presented in Fig. 10, with the usual several 
parallel exits. These form a row of identical passages between the water-filled space and the common 
horizontal manifold, into which is pushed the supply air flow. The planar top surface of the aerator body  
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Fig. 10    Parallel formation of bubbles supplied from a common air inlet manifold. Initially all bubbles have 
curvature radius larger than d/2 and they all grow.  As soon as one of the bubbles transgresses the hemi-spherical 
shape limit, the Young-Laplace law causes fast growth in this bubble (r increasing). This, however, happens at the 
expense of its neighbours, which may reverse their initial growth. Their curvature radius r are then also increasing, 
but in a different context of return to the planar shape of the interface.  
 
 
 
represents the bottom floor to which are attached the formed bubbles. As we shall see, the distribution of 
air flow into the bubbles growing in parallel is initially stable – but later enters the unstable stage. 
 Initially, the surface curvature radius r  , in a similar manner as in the top left part of the previous 
Fig. 9, is larger than one half of the passage exit diameter d. As in Fig, 9, the bubble growth is steady, the 
air flow is distributed evenly from the manifold into all vertical passages. Of course, not all passages can 
be made absolutely identical and one of them is bound to reach earlier the hemispherical critical regime. 
This gives to this bubble instantaneously a strong advantage over its neighbour bubbles. Once this first 
bubble enters the unstable region  its radius of surface curvature becomes larger and consequently 
(according to Fig. 6) the pressure inside this bubble decreases. This decrease make possible 
uncontrollable additional growth - with increasing large radius of the preferential bubble while curvature 
radii of other bubbles are smaller. They may not only stop growing but the higher pressure acting on the 
interface can even cause retreat of the air back into the exit passage. The result corresponds to what is 
demonstrated in the example in Fig. 4. Though not visible in the photograph, there are in the aerator exit 
surface in Fig. 4  many extremely small passages – membrane pores. Most of them are visibly passive – 
not engaged in bubble formation, even though they provide also an open way for the air into the liquid. 
The supplied air passes through the few preferential pores and due to the instability of parallel bubble 
formation the bubbles in these preferential positions grow out of all proportion to the pore size. 
 
3.  Surface energy point of view  
 It is also possible to view and interpret the behaviour of the bubbles in a different context. This is 
presented in Fig. 11. It is an approach based upon the idea of surface energy. Energy is a capability to 
perform some work and the work in this case is the one that has to be to be done when a new liquid/gas 
interface is created, as is shown in Fig. 12. A liquid column there is imagined to be cut in half and the two 
halves are then separated form one another. This cutting and separation is inevitably associated with 
disrupting some of the cohesion forces between the molecules inside the liquid, according to Fig. 5.  If the 
 
   

 
Fig. 11  There is another viewpoint on the behaviour of the gas/liquid interface. It expresses the phenomena in terms 
of the surface energy. The surface tension σ   (same as in Figs., 5 and 7) in this case specifies the amount of the 
energy per unit area of the surface.  
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Fig. 12 (Left)   The idea of surface energy is based upon the notion of work that is to be done when a new interface 
is created, which is associated with disrupting the cohesion forces between the molecules of the liquid.    
Fig. 13 (Right)  The concept of surface energy applied to formation of a bubble. Even though there is not the 
cutting and separation operation form Fig. 12, the very increase in size of the growing bubble is associated with 
increasing number of the liquid molecules near the boundary whose  cohesion forces are not balanced because there 
are no neighbour molecules outside the interface. 
 
 
 
liquid is given a suitable opportunity, it will tend to unite again into a single body of liquid and renew the 
severed cohesion action. On doing this re-union, the liquid is prepared to perform some mechanical work. 
This means that in the separated state it possessed some energy – capability to work. This energy is 
directly proportional to the size of the interface and as shown in Fig. 11, the coefficient of proportionality 
is  the surface tension σ of the Young-Laplace law (note the identity of dimensions: N/m2 = J/m2). 
 The surface energy approach may be also usefully applied, with the starting point as shown in 
Fig. 13, to the problem of instability in the bubble formation discussed above in terms of the forces rather 
than energy. The really strong point of the energy approach, however, is the evaluation of the problems 
associated with disintegration of bubbles and the fragmentation. It may directly lead to answering the 
questions of the necessary power needed for the bubble breakup.  Let us here consider simple situations – 
like the one in which a bubble or drop of radius r  is forced to  break in two daughter objects. Each of 
them has radius r2 
                                                                r2  = 2-1/3 r       
 
This increases the total surface area to       F2 =  2 * 4 π (2-1/3) 2  r2   = 27/3 π  r2   
 
and the total surface energy increase is easily evaluated as       E2 = 27/3 π  r2  σ   
 
This is an important fact: splitting a larger bubble into two smaller ones is associated with an increase of 
total energy. The increase is the difference    
 
 

  
Fig. 14   Consider a  bubble divided into two daughter bubbles, the smaller satellite drop containing the n-th part of 
the original volume. The diagram at right shows the ratio of the daughter bubbles radii for various n. The pictorial 
representation at left is drawn to scale for the case n = 3, i.e. the satellite containing one third of the original volume.  
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 Of course this increase in energy must be supplied from some source. In the investigated case of 
fluidic fragmentation this energy must come from the fluidic oscillator.  It may be useful to consider the 
energetic effect in an context of  a moving drop that is suddenly stopped 
The original drop had volume    
     V = 4 π  r3 / 3  and mass  M = 4 π  r3 / (3 v).   
The change of energy  ∆E  represents the deceleration to still-stand from a motion with kinetic energy 
                      
      ∆E = 0.5 M w2 

 

i.e. from the original velocity   w = (2 ∆E / M)1/2 =  (2* 21/3 * 3 v σ / (4 r)) ½  =  ( 2-2/3 * 3 v σ /  r) ½ 

This may be compared with the velocity of the applied fragmentation oscillation 
 It is a general fact that bubbles (or liquid drops, for that matter) are rarely split into two bubbles of 
equal volume. Much more often encountered situation is separation from a larger bubble of a smaller one. 
This is described as satellite. Satellites are cause of problems in several technological processes, because 
they may be formed with rather small applied work.  Typical significant problems are encountered in 
producing metallic spheres for sintering [21]. Another situation in which spontaneously generated satellite 
droplets are a cause of troubles are inkjet printers. Because of their different aerodynamic and ballistic 
properties, satellites cause degradation of printing quality [19].  
 Let us assume a drop of  volume   V = 4 π  r3 / 3  divided onto the daughter drop (a) and its 
satellite (b), the latter containing the  n-th part of the original volume.. Their volumes after the split are 
                                       Va = 4 π  r3 / (3 n)      and   Vb = 4 π  r3  (n -1) / (3 n) 
 
The corresponding radii are         ra =   3√(3Va/(4 π )) =  r 3√( 1/ n ) 
and                     rb =  3√(3Vb/(4 π )) = r 3√ ((n -1) / n) 
 
Diagram in Fig. 14 presents the ratio      ra /  rb = 3√( (1/ n ) / ((n -1) / n))  = 3√( 1 / (n -1)) 
 
Surfaces of the two drops are       Fa =  4 π ra

2   =  4 π r2  ∗  3√(1/n2)        
    and       Fb =  4 π rb

2=  4 π r2 ∗ 3√((n-1)2/n2) 
 
 

            
Fig. 15 (Left)    The daughter bubbles (the satellite as well as the rest) after the division in Fig. 15 have larger total 
surface than the original single bubble. Thus the split into two is associated with increase in total surface energy and 
this (roughly) represents the work that has to be done to achieve the division.  
Fig. 16 (Right)    A different case: energy increase by fragmentation of a large original bubble (according to Fig. 1) 
into m smaller bubbles, all of them of equal size.  
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Total surface  of the drops after the satellite is formed is 
      Ftotal = 4 π r2  ∗ [ 3√((n-1)2/n2) + 3√(1/n2)]  = 4 π r2   n-2/3 ∗ [ 1 + 3√(n-1)] 
 
The original surface was, of course,  Foriginal =  4 π r2  
This means the formation of the satellite increases the surface area by ∆F = Ftotal - Foriginal  
                                                                                  =  4 π r2  (n2/3 ∗ ([ 1 + 3√(n-1)2] )− 1) 
 
Ratio of surfaces is         Ftotal / Foriginal =  n-2/3 ∗ [ 1 + 3√(n-1)2] 
- and this is also equal to the ratio of total and original surface energy magnitudes in Fig. 15. Obviously, 
the energetically most demanding is the split into two halves, n = 2. The smaller is the satellite (i.e. the 
higher is the vale n ) the less energy is required for the satellite formation – which explains the above 
already mentioned frequent occurrence of small satellites. 
 Of particular importance in the context of the bubble fragmentation project is the energy increase 
evaluation in the case of a single original bubble disintegrated into m  daughter bubbles of equal 
curvature radii rd  of their surface. The ratio of the resultant larger total surface energy  
                                                                        Etotal = m  4 π rd

2 σ 
 

to the surface energy of the single bubble  Eoriginal = 4 π r2 σ     is 
 
     Etotal / Eoriginal =  m (rd / r)2 
Because of the condition of equal volumes  
     4 π  r3 / 3 = m 4 π  rd

3 / 3 
 
      (rd / r)2 = m2/3 
 

the energy ratio is          . As may be seen from the presentation of this result in 
Fig. 16, a disintegration of each bubble at an aerator exit into, e.g.,  20 small bubbles requires in an ideal 
case an amount of work roughly 150-times larger than the formation of the larger bubbles. Of course, 
this is the least estimate of the power to be applied. The effectiveness of the fragmentation device being 
less than 100 %, the actual power will be considerably higher.     
 
 
4.  Basic bubble shapes 
 
 The estimates presented above were based upon the simplifying assumption of the bubbles being 
of spherical shapes. This is the shape of bubbles freely moving in the liquid. However, both sessile and 
pendant bubbles (as well as drops) are of more complex shape. To evaluate their aspherical geometry, it is 
necessary to apply a more general version of the Young-Laplace law, according to Fig. 17 operating with 
the principal radii. There is a point on the bubble surface with both principal radii equal. This is the apex 
point (the point most  distant from the attachment plane) . The two identical principal radii there are equal 
to the apex radius  rA .  In a general point on the drop or bubble surface (Fig. 18 shows the sessile drop 
case) the surface arc is locally osculated by a circle in the meridian plane the radius of which is the first 
principal radius  r1. Fig. 18 also introduces the Cartesian co-ordinates measured from the apex.  The 
second principal radius  r2  is equal to X1 / sin ϕ where X1  is the radial Cartesian co-ordinate, The 
pressure difference in the Young-Laplace law equation may be expressed for a general surface point as 
the sum of the pressure difference in the apex plus the hydrostatic pressure increase between the apex and 
the particular point. 
 For the apex 

                                                                        
In the hydrostatic difference term in the next Fig. 19 the specific volume   va [m3/kg]  is that of  and vw = 
10-3

 m3/kg  is the specific volume of water, while  g [m2/s] is the magnitude of the gravity acceleration. 
The next derivation step is presented in Fig. 20.  Using the expression for the slope 
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Fig. 17 (Left)   Generalised form of the Young-Laplace law for surfaces having more complex (not spherical) shape 
of their surface: the law is expressed by means of the principal radii.    
Fig. 18 (Right)  The concept principal radii applied to computation of shapes of  sessile drops – or to pendant 
bubbles.  As was already shown in Fig. 6, the bubbles and drops at solid surfaces are aspherical. 
 
 
 
and the standard expression for curvature radius, this picture writes the result as two differential equations 
of first order, using as the parameter  the inclination angle ϕ  of the drop surface relative  to the 
horizontal. In the next Fig. 21 the two equations are non-dimensionalised by introducing the useful 
auxiliary variable – capillary length  lcap  
 

                                                             
and the three dimensionless variables  

                                                                    

                                                                   
Because the capillary length depends only on properties of the gas and liquid (and on gravity 
acceleration), it may be useful to evaluate its numerical magnitude for the most important case of ware 
and air. The specific volume of the latter is  va [m3/kg] = r T / P   (where T – temperature, P – pressure,  
 
 

           
Fig. 19 (Left)   The asphericity is due to the differences of hydrostatic pressure along the bubble (or drop) height. 
The expression of the hydrostatic pressure difference is inserted into the law from Fig. 17.     
Fig. 20 (Right)  Further development of the equation from Fig. 19 into two first-order non-linear differential 
equations. 
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Fig. 21 (Left)   By introducing dimension-less variables the two equations from Fig. 20 are given a simpler 
appearance – and universal validity.     
Fig. 22 (Right)  Results of the numerical integration of the equations from Fig. 21 for five different values of the 
pressure parameter p.  
 
 
 
 
and  the gas constant r for humid air  r = 288 J/kgK), specific volume of water  vw = 10-3

 m3/kg  and  g = 
9.81 m2/s, so that for the usual laboratory conditions  the capillary length of water/air interface  is 
 

lcap  = 2.72 mm 
 
The result of the non-dimensionalisation are two nonlinear ordinary differential equations of the first 
order, with parameter p : 

        
                Five examples of the numerical integration of these two equations for the case of pendant air 
bubble in water  and various values of the parameter p are presented in Fig. 22. Author has  compared the 
 
 

             
Fig. 23 (Left)   Author’s photograph of an air bubble formed in a water-filled fish tank at the tip pf a syringe. The 
shape of the bubble was compared with the solutions presented in Fig. 22.  
Fig. 24 (Right)  Dimensions of the syringe tip used in Fig. 23 were evaluated from the microphotograph taken 
together with a caliper rule. 
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Fig. 25 (Left)   Magnified photograph of the air bubble from Fig. 23  with the evaluated dimensions (in pixels).  
Fig. 26 (Right)  The solution of the non-linear differential equations from Fig. 21 for the pressure parameter p 
fitted to the shape of the bubble surface. This makes possible evaluation of the capillary length, defined in Fig. 21, 
and from this – for known specific volumes of water and air – finding the numerical value of surface tension  σ  
which may differ from the value given in Fig. 8 due to the dependence on temperature and, more significantly, due to 
contamination by surface agents. 
 

 
 

the results of this computation with a simple experiment, made during his stay at the University of 
Sheffield,  in the course of which air bubbles were formed and photographed – as shown in Fig. 23 - 
under the water surface in a fish tank (fish were absent) at the tip of a small standard syringe (without the 
hypodermic needle).  The syringe tip is also shown in the photograph Fig. 24, which served for evaluation 
of the exit diameter. The agreement – Figs. 25 and 26 – is so good it were possible to use such simple 
experiment for evaluation of the surface tension σ  (which, mainly because of various contaminations, in 
real experimental conditions may differ from the value presented in Fig. 8 and usually assumed valid 
without checking in aerator tests).  
   

 

         
Fig. 27   Author’s series of numerical solutions of the equations from Fig. 21 resulted in this dependence of the 
parameters of bubble shape factor  - the ratio of maximum bubble diameter to its apex osculation radius – on the 
pressure parameter.  
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Fig. 28 (Left)   Results of numerical computations: the equations from Fig. 21 are integrated with negative values 
of the pressure parameter p.  The shapes correspond to the sessile bubbles (or pendant drops). 
    
Fig. 29 (Right)  An example of sessile bubble made by blowing air into the fish tank by a syringe through the 
sealed hole in the tank bottom. The sessile bubbles are rather unstable and generating shapes like the one shown in 
this illustration is rather tricky (this particular bubble was in fact not really stationary and was photographed just 
before its lift-off separation). 
 

 
The asphericity of bubbles is seen from the solutions in Fig. 22 as the difference between the 

computed meridian shape and osculation circle passing through apex point. The difference is particularly 
well visible in Fig. 26 which shows the geometry fitted to the conditions of the experiment from Figs. 23 
and 25. The value of the pressure parameter there was  p = 2.667.  The difference gradually disappears 
(so that the shape of the bubble becomes practically identical to the apex osculation sphere)  at high 
values of the pressure parameter p. In Fig. 22 the difference may be described as negligible for the value  
p = 8.  A useful measure of this difference is the ratio   D / 2 rA - where D  is the maximum diameter of 
the bubble and  rA  is the radius of the apex osculation circle.  In the experiment  according to Figs. 22, 23, 
and 25 the value of this ration was D / 2 rA  = 0.9177. Evaluated by the author from large number of 
numerical solutions of the equations from Fig. 21 with different pressure parameter values are the data 
plotted in Fig. 27.  In the semi-logarithmic co-ordinates there are two asymptotes: the spherical shape 
asymptote for the very large p > 8 while the other asymptote approach the strongly aspherical cases. 

As was already mentioned, the same two equations from Fig. 21 are used for evaluating the shape 
of sessile bubbles. The example solutions are presented in Fig. 28. Again, with shape approach sphericity 
at large absolute values of the pressure parameter and the numerical data for air/water interface show that 
the microbubbles to be generated in the current project will be practically spherical. 

 
4.  Oscillatory deformations leading to fragmentation   
 In an overwhelming percentage of references in available literature, the bubble oscillation 
processes that have been studied were the pulsation of the bubble radius made possible by air 
compressibility – while the bubbles retained their symmetric shape. The differential equation describing 
these oscillation were derived already in 1917 by Rayleigh [11]: 

                                                                       
- where    is the radius of the bubble,  = dr/dt  is its derivative with respect to time, 2 = d2r/dt2  is 
second derivative with respect to time, v  is density of the liquid, and ∆P is the pressure difference that 
drives the bubble expansion. The form of the inertial terms on the left-hand side is a result of 
transformation of spherical three-dimensional geometry to the single radial variable. An improvement by 
Plesset in 1949 [22] took into consideration liquid viscosity   and surface tension 
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Fig. 30 (Left)   Video images from [8] show the multimode vibration of a pendant bubble exposed to intense 
acoustic excitation. 
    
Fig. 31 (Right)  Amplitudes of the  departures from the quiescent bubble shape decomposed into the five modes of 
increasing complexity (from n = 1 to n = 5) in ref.[8]. The letters A, B and C represent the various intensities, 
corresponding to Fig. 30. 
 
 
 When a polytropic gas law is used to evaluate the liquid pressure at the bubble wall, the 
contributions of surface tension σ, and vapour pressure are included, this equations receives the form in 
which it is still called Rayleigh-Plesset [10] equation. More advanced models are proposed and used, such 
as the Gilmore model incorporating sound radiation into the liquid and van der Waals hard core law 
accounting for incompressible volume inside the bubble. Yet another is the Keller-Miksis model featuring 
retarded time. All these models were developed for investigations of processes involving very high 
pressure changes, such as encountered in, e.g., cavitation in hydraulic machinery. Apart from this 
importance for practical application, these models tend to reflect interesting bubble behaviour form the 
theoretical point of view: the strong non-linearity leads to unusual character of the oscillation – with long 
expansion phase and steep collapse. Under some conditions a series of afterbounces is found after each 
expansion and, even strange attractor behaviour [10].  
 Much less have been studied the oscillatory behaviour with the bubble losing its spherical 
geometry, which is the object of interest in the current project. Of course, this is a much more demanding 
problem, since it is no more described by means of the single spatial variable (as is  r  in the cases 
retaining the sphericity). Also a number of possible spatial modes of the vibration increases. One of the 
few exisiting references is [8] from which is taken the information in Figs. 30 and 31. Object of the study 
there were five basic oscillation modes. Significantly, once the excitation has reached a certain level 
(labelled B in Figs. 30 and 31),  amplitudes of some of these modes began to increase  so much that the 
excrescences on the bubble surface were observed to get the character of jets leaving the bubble (and later 
forming satellites). No reference was found in which this process in bubbles was followed up to that 
stage, but the phenomenon was studied in the closely related case of a drop. As seen in Fig. 32, the object 
of investigations was a very low p case of sessile drop, sitting on tom of a piezoelectric vibrator. As the 
intensity of the vibration was gradually increased, the first effect observed on the drop surface was 
creation of waves distributed along the bubble meridian – at various levels of the surface inclination angle 
ϕ  of the drop. More resisting and therefore requiring more intense excitation exhibited the azimuthal 
waves in the subsequent mode. The superposition of the azimuthal and axisymmetric waves has led to 
appearance of  a number of local excrescence peaks. With the excitation intensity further increased, the 
heights of the peak tips above the basic bubble shape became relatively very large. This process has 
finally led to the complete fragmentation: the surface tension acting on the peaks tended to turn them into 
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small satellites, separated from the original large bubble.  Although there is at this stage no positive 
documentation about it, the author believes that this effect of formation of many satellites is the 
explanation of the previously already observed [5, 6, 7] fragmentation phenomenon achieved by the 
action of a fluidic oscillator in the air supply into the growing sessile bubble.   
 

 
Fig. 32   Video images of an excited sessile drop from ref. [9]: increasing intensity of vibration leads first to 
axisymmetric waves on the drop surface, then to superimposed azimuthal waves with excrescences of growing 
amplitude. In the final stages the drop decomposes. 
 

 
5.  Experimental investigations at the Institute of Thermomechanics  
 In the starting phase of the research project, the aim was to demonstrate the existence of 
microbubbles and, in the case of positive findings,  to obtain some basic data about their formation. The 
experimental facility was built so as to make possible more detailed investigations later. In spite of all  
  

          
 
Fig. 33 (Left)  Fig. 34 (Right)  Author’s experimental facility for studies of microbubble formation at the 
Institute of Thermomechanics. The main component is a  thick-walled glass vessel of ground-plan size 500 mm x 
500 mm and height 1100 mm. The wall thickness is 18 mm. 
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advantages offered by the no-moving-part fluidics, it was decided not to use them in the initial stages and 
to replace them by an electrodynamic acoustic generator. The reasons for this step were as follows:  
 1) Development of a fluidic oscillator at this stage of their development is by no means easy. 
Some authors still speak about fluidics as being a " black art".  
 2) Typical property of many fluidic oscillators (in particular of those with feedback loop 
channels, is the strong dependence of the frequency of generated oscillation on the flow rate.  
 Both aspects would unduly complicate the main aim of the investigations in their initial stages. 
 The core part of the experimental facility, as it is shown in the photographs Fig. 33 and 34   is a 
rectangular water tank with glass walls. An aerator is immersed into the water, being held on a vertical 
rod from above. This makes possible future investigation (not attempted at this stage) of the influence of 
hydrostatic pressure by moving the aerator lower. Since the fluidic oscillator to be used later has its 
output signal usually consisting from two components – a steady flow component and the alternating flow 
-  this character of the signal was also applied here. The steady component uses air from the Institute's 
compressed air system, passing first through the primary pressure regulator (at the entrance into the 
laboratory) and then  finely adjusted by the secondary regulator at the test stand. The alternating flow was 
provided by an acoustic generator, using as the electrodynamic driver a standard mass-produced 
loudspeaker. The loudspeaker is fixed inside a box with the air inflow both in front of as well as behind 
the speaker membrane. This avoids excessive membrane displacement by the steady-flow pressure. The 
box is positioned near the top of the water tank. The loudspeaker is supplied with electric signal of 
adjustable frequency (and also waveshape – again a feature which is not yet tested: the signal in the 
present investigations is simply harmonic). The signal is amplified by a power amplifier.  
 For measurement of the size of the bubbles generated inside the water tank is used optical 
instrument manufactured as "Spraytec" by Malvern Instruments Ltd., U. K. – Fig. 35.  The laser unit of 
the instrument is positioned in front of the water tank. The laser light beam it produces passes through the 
region in the tank containing the measured bubbles. The bubbles cause diffraction of the light and deflect 
a part of it to a diffraction angle dependent on the bubble size. In the receiver unit there is an array of 
photodiodes positioned so that a particular diode is activated only by the light deflected by a bubble of 
corresponding size. The main output from the instrument – apart from various other information it also 
offers – is the spectrum of the type presented in Fig. 36  for one of the test cases. The height of the 
vertical columns in the diagram indicates the percentage of the total number of bubbles which were found 
within the 100 µm width of the bubble size window.  
 Even though the final size of the microbubbles should be obtained by the fragmentation 
phenomenon, it is obvious that there is a distinct advantage obtained if  the fragmentation process begins 
with  smaller-sized bubbles – i.e. with small aerator exits.  As a starting point, author suggested two kinds  
 
 

      
Fig. 35 (Left)   The Spraytec instrument (manufactured by Malvern Instruments Ltd., U. K.) used for measurement 
of bubble size by evaluating diffraction of laser light.     
Fig. 36 (Right)  Typical Spraytec output: spectrum of populations at individual bubble size intervals and the line of 
cumulative  distribution. 
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Fig. 37 (Left)   The aerator model used in the tests. Originally, it contained two glass frit samples of 60 mm 
diameter and 5 mm thickness. Later one of the frits was replaced by a woven stainless steel mesh.     
Fig. 38 (Right)   Results of typical bubble size measurements: diameter of bubbles produced at the pore exits of a 
frit aerator as a function of oscillator frequency. Rather surprisingly, the size was found almost independent on the 
frequency of applied oscillation. 
 
 
of active surfaces (note that the current standard aerator surface as shown in Figs. 3 and 4 was considered 
out of question). The first aerator model used glass frits – partially sintered glass powder – with the size 
of the pores given by the manufacturer unfortunately within a quite wide range from 40 µm to 100 µm. 
The second model was a woven mesh of stainless-steel wires.   The wire diameter was  40 µm, the size 
of the holes between them  was 62 µm. The obvious advantage of the wire mesh is the higher 
aerodynamic efficiency – lower pressure losses of the air flow through the pores. On the other hand, the 
higher aerodynamic resistance of the 5 mm thick frit may bring a certain trend to suppress the inherent 
instability of parallel bubble formation. Tested surfaces were in the shape of 60 mm diameter disks, fixed 
on a holder as shown in Fig.37. 
 
 

      
Fig. 39 (Left)    Results of typical measurements of the size of  microbubbles generated by the frit aerator at 
different settings of the loudspeaker electric driving power. Again, the size was practically invariant.      
Fig. 40 (Right)   Conditions on the woven steel mesh, drawn to scale. Without the acoustic excitation, the air was 
kept below the mesh and did not pass through. Only after drastic increase of air pressure the bubbles were formed – 
these, however, were then of the millimetre size. With the acoustic driving, submillimetre size microbubbles were 
generated even at low air pressure.  
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Fig. 41 (Left)    Size of the microbubbles generated on the stainless steel mesh at various frequencies of the 
acoustic excitation. The bubbles were actually slightly larger than obtained with the frit – but tended to decrease with 
increasing frequency, which is quite in opposite to the  trend seen in Fig. 38.      
Fig. 42 (Right)   The effect of varied driving power on the microbubble size obtained with the steel mesh. Again 
the bubbles are slightly larger than with the frit, but the difference is hardly significant. 
 
 
 
 The main – in fact critical – result of the tests was the established fact that the oscillation can 
indeed generate the sub-millimetre microbubbles.   
 An example of the microbubble measurements with the frit aerator is presented in Fig. 38. It is a 
diagram of measured average diameters of the microbubbles plotted as a function of the frequency of 
oscillation. What was expected was a dependence with pronounced resonance peaks.  No such features 
were actually found: quite surprisingly there does not seem to be any particular recommendable operating 
frequency. There is a slight increase of the size with increasing frequency so that it may be recommended 
to use rather low frequency, at around 100 Hz. The slope of the dependence is, however small and 
commensurable with the data scatter. 
 What is certainly even more surprising is the diagram Fig. 39. In this case the frequency was 
kept constant and it was the power fed into the electrodynamic driver that was varied. In view of the 
knowledge obtained from previous experiments  in [8], [9] – as presented here in   Figs. 30, 31, and 32 – 
the fragmentation and hence much smaller bubble size was expected to appear at a certain threshold 
intensity magnitude. In Fig. 9, no such thing is visible. The size of the bubbles seems to be constant, 
irrespective of the intensity of the acoustic action.  
 The last illustrations, Figs. 40, 41, and 42 present the analogous results obtained with the wire 
mesh aerator (again in the form of a 60 mm diameter disk). There is again practically no significant 
dependence of the average bubble diameter – neither on frequency not on power. If there were not the 
different values (bubble size at around 600 µm instead of the slightly smaller  500 µm with the frit), 
there would be a suspicion that the Spraytec instrument becoming stuck at a certain value it indicates. 
Also there is a downwards slope of the line fitted to the data in Fig. 41 (while the data in Fig. 38 suggest 
an upwards, positive slope. 
 In addition, the closer observation of the phenomena taking place at the aerator bring an 
interesting fact.  What the acoustic action does not seem to be the expected fragmentation. Without the 
oscillation, the supplies air remains under the mesh. This is visually recognisable as a change in the 
optical properties: initially, the space under the mesh is water filled and this makes the aerator surface 
appearing dark. Bringing in air result in the dark colour exchanged with much lighter grey – but no 
bubble formation (the situation may correspond to the conceptual illustration in Fig. 4).  If the acoustic 
excitation is then switched on, without any other change, the generation of microbubbles immediately 
begins.  This invariably takes place at a particular spot or a few spots on the aerator surface area.    
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6       Interim conclusions 
 Microbubbles of sub-millimetre size are called for in industrial applications and the demand is 
increasing. Making aerator exits smaller has been already recognised as a not successful way towards 
making smaller bubbles, because of the inherent instability of parallel  bubble formation – some bubbles 
grow uncontrollably while formation in other parallel exits stops. Author's experimental evidence 
suggests a suitable and economically viable solution is pulsating the bubbles in the process of their 
formation. Unfortunately a hindrance to the progress is the fact that the mechanisms by which the 
pulsation produces microbubbles is not yet clear. Analysis in this paper evokes as a plausible explanation 
the oscillatory waves that are known to form on the bubble surface and indeed may produce excrescences 
leading to fragmentation. Author's experimental investigations have accumulated surprising evidence of 
the bubble size being essentially not dependent neither on the oscillation frequency, nor on the driving 
power, and even not on the character of the aerator exits. This is a strange contradiction to what was 
expected in the fragmentation mechanism. In view of this enigmatic situation, all conclusions that may be 
now formulated are of only interim character. 
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