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Abstract— The interest in smart alloys as active materials
to design new devices is constantly increasing. This brings the
necessity to develop robust and accurate models for the underly-
ing complex physical phenomena in order to improve the device
performance. Special attention has to be paid to understanding
the coupling of mechanical and electromagnetic characteristics
in dynamical processes. In particular, rate independent memory
effects are commonly seen as a serious drawback in the design
of the controller. In the manuscript we aim to present a clear
and unified view of the basic points to be faced with, when
the analysis and design of control algorithms for smart devices
are concerned. So, the focus is pointed out on the basic issues
of hysteresis modeling, based on the Preisach operator, and its
ability to describe a dissipation process, which opens the way
to an affordable and reliable design of control algorithms for
smart devices.

I. INTRODUCTION

In nature it is quite common to observe phenomena where
the response lags behind an input field, independently of its
rate of change. The most known is the magnetization process
of any ferromagnetic material, where Magnetization (M)
lags behind the applied magnetic field (H). The description
of magnetization phenomena, at a macroscopic scale of
observation (i.e. phenomenological modeling), starts with
the seminal papers, [1]-[2] while, in 1935, F. Preisach in
[3] proposed the model bearing his name. Only in the *70s
this model has been reformulated by Krasnosel’skii, [4],
who is considered the founder of the mathematical theory
of hysteresis that experienced a great growth in later years,
[SI-[7].

More recent contributions focused on Piezoelectric or
Magnetostrictive phenomena, [8], [9] refined the available
tools for handling these phenomena in the field of con-
trol systems and technology and, in particular, the idea of
inverse hysteresis operator, [10]-[15]. When observing the
behavior of ferromagnetic material, a lag of the measured
magnetization M with respect to the applied magnetic field
H is evident. The basic mechanism relating input and output
fields in hysteresis processes was originally described by
Madelung, with a set of rules, bearing its name and listed as
follows [1]:

o The shape of a monotone magnetization curve does not
depend on the rate of change.
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o The local shape of a curve starting from a turning point
does not depend on the previous history.

o After second turn the curve returns back to its starting
point.

e As soon as the minor loop is closed, the process
continues as if no turn had taken place.

These properties allows one to identify the fingerprints of
hysteresis. This helps to select or define those operators
with proper memory properties and therefore able to describe
hysteresis phenomena.

The first property, in other words, tells us that this delay,
or lag is in reality completely independent on the rate of
input variation. Formally, let us define the admissible time
transformation function

@10l = o) €[0,7], (1)

with: ¢(0) =0 and ¢@(f) =7. The operator # is defined as
rate independent if and only if the following condition holds,
[6]:

Wxop]=Wxloo, (2)

for any admissible time transformation ¢. Here o denotes
the composition operator. Rate independence is therefore
an intrinsic property of any operator with hysteresis which
implies the impossibility to describe the process by the aid
of a trivial dynamical system, where the lag is, conversely,
strictly dependent on the input rate. The remaining properties
define which local input extrema are stored.

A specific and well known hysteresis operator fulfill-
ing Madelung’s rules is the Preisach operator. It shows
rate independence and fulfills wiping out and congruency
properties. While the former is quite general, the latter,
conversely, represents a too restrictive constraint, limiting
the applicability of the Preisach operator in hysteresis process
modeling. For this reason, an important attempt to relax such
a property, has been carried out in [6], where a wider class
of operators based on Preisach memory updating rules was
proposed.

The tools of hysteresis modeling spread out from the field of
magnetics and mechanics and were rapidly adopted in several
other fields of physics and engineering. In particular, the
availability of new materials, universally referred to as smart,
opened the chance to develop new and promising devices.
So, new systems exploiting, among others, piezoelectric
or magnetostrictive materials were proposed, even if the
presence of hysteresis limited their performances. For this
reason, the need to model and compensate memory effects
was a mandatory task for the design of a reliable and effective
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control of such smart devices.

When a smart material is of concern, in order to provide an
adequate modeling of its behavior, the following preliminary
assumptions can be made:

1) The magnetization/polarization, z, drives the deforma-
tion (€).

2) The field x drives z through a hysteresis process which
evidences the dissipative phenomena (ferroelectric or
ferromagnetic) taking place in the material;

3) Deformation at a first approximation is linked to z with
no memory, i.e.

€= f(z);
4) The link strain/field shows therefore hysteresis:
e=¥(x).

Such a relationship allowed to employ classical hystere-
sis models to describe the behavior of these materials.
These models were able to naturally describe dissipation
and guaranteed a ‘thermodynamic’ compatibility. Such a
modeling strategy perfectly fitted the needs of smart actuators
control in guasi-static working conditions, where the stress
experienced by the material could be considered as constant.

For faster dynamics, i.e. high input rates, the stress could
not be considered anymore as a constant and required to
be considered as a further independent variable. In this case,
therefore, a new structure of the model should be considered,

i = Z1(x1,x2),
3
y2 = Fo(x1,x2), ©)

and the thermodynamic compatibility cannot be trivially
assumed. In other words a specific thermodynamic constraint
is needed. To better illustrate this specific point, let us
choose x; and x, as state variables, while y; and y, are
state functions. It is implicit that their physical meaning
is related to the specific physical process. So, when a
magnetostrictive process is of concern, x; and x; can be
interpreted as the magnetic field and applied stress, while
y1 and y, represent magnetization and strain, respectively.
Similar interpretation could be provided, for example, when
a piezo-electric material should be modeled. When hysteresis
is taken into account, the memory state will constitute an
additional state variable. Consider a process (x;(t),x2(2))
in a time interval ¢ € [0,7]. The work W(¢#,7) done by
the magnetic and mechanical forces in an arbitrary interval
[t1,22) C [0,T] is given by the integral

W(t1,0) :/tzz)"k(t)xk(t)dt, 4)
n 7

where the dot denotes time derivative. The process is said
to be reversible, if there exists another state function F =
F(x1,x2) (the free energy) such that the work W(t),5,) is
completely transformed into the energy increase with no
energy losses, that is

W(t,n) = F(xi(t2),x2(t2)) = F(x1(t1),x2(t1)).  (5)

If losses are present, part of the work is dissipated into heat.
In isothermal processes, the dissipation

D(t,1) = W(t1,12) — (F(x1(t2),x2(t2)) — F(x1(t1),x2(t1)))

(6)
is nonnegative in agreement with the second principle of
thermodynamics. Losses make the process irreversible. In
differential form, the energy balance relations for irreversible
processes reads

y (59k(x1,x2)(z)xk(t)> > YEmn@). @)
z t dr
A constitutive law, such as (3), is said to be thermodynami-
cally admissible, if (7) holds for every process (x(z),xa2(t)).
In what follows a discussion of some operators, able to fulfill
the above fundamental constraint will be provided.

II. MODELING OF RATE-INDEPENDENT
MEMORY EFFECTS

A. Preisach operator

The original form of the Preisach operator, [3] can be
represented as a linear superposition of non-ideal relays R,
with parameters v € R (interaction field) and r > 0 (critical
field of coercivity), sketched in Fig. 1. More formally,
the relay operator R, associates to each continuous input
function u : [0,7] — R and each initial state RY, = %1 the
output R, [u](¢) : [0,7] — {—1, 1} according to the following
rule: For ¢ € [0,T], let Ay (¢) be the sets

Ar(t) ={rel0,f]:u(t)>v+r},
A_(t) ={r€0,f]:u(t) <v—r}.

We then define

®)

RY, if Ay(t)=A_(1)=0,
Reyul(r) =14 1 if maxA4(f) > maxA_(t), 9
—1 if maxA(r) <maxA_(z),

with the convention max () = —oo. The half-plane with coor-
dinates (r,v), r >0, v € R, is called the Preisach half-plane.
At each time ¢, the Preisach half-plane is divided into two

Ar

rv

+1

Fig. 1. A diagram of the relay with thresholds v+r, v—r.

regions corresponding to the values &1 of the relays at time ¢.
The Preisach operator is then defined as follows:

Pl (1) = /0 B [ ZR,,V[M](z) w(rv)dvdr,  (10)
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where y(r,v) >0 is the density of relay distribution in the
Preisach half-plane. The special class of Prandtl-Ishlinskii
operators is obtained if y = y/(r) is independent of v.

Formula (10) can be re-arranged by introducing a one
parameter family of operators known as play operator,
formally defined as follows. Given a function u: [0,7] — R
which is monotone in each interval [t;_;,7;] of a partition
O=ty<t <---<t, =T, the play operator with parameter
r > 0 is recursively defined by the formula

b, 12, ) (1) = max {u(e) — r,min{u(e) + ., o2, (551}
(11)
for t € (tj_1,tj], j=1,...,m, and with initial condition

P u)(t0) = u(0) —x°, where x € [r,r] is given. The
definition can be extended to the space C[0,T] of continuous
functions u : [0,7] — R, see [4]. We restrict the initial

A
px.%,ul(t)

/ >
P

Fig. 2. A diagram of the play operator &, = p,[x?, u](¢) for a fixed threshold
r.

conditions for the play and for the relay by choosing the
unperturbed initial state

1 if v <u(0) -2,
—1 if v>u(0)—x0.

(12)
In [16], it was shown that for every ¢, the relay (9) is related
to the play by the following formula:

x? =max{—r,min{r,u(0)}}, Rgv = {

Lif v <p[x,ul(r),

=1 if v>p, 0 (). (13)

Rolil) = {

Formula (10) then can be written as

o0 pr[x0.u)(r) o0
2= [ ( [ -/ y(rv)dvdr, (14)
0 \J= el 1)

or, alternatively, putting

g(rw) = (/ -/ ) y(rv)dv, (15)
as a single integral over the memory variable r,
Plul(1) = /0 g(rpe [, ) (1)) dr. (16)

The advantage of this representation is that the Preisach
energy balance can be stated in explicit form by using the

energy balance for each individual play

) S0, 1) = 55 (o)) 47

d
vdtpr[xi’,u](r)L.
a7
The thermodynamic interpretation of (17) is clear: the left
hand side is the energy supplied to the system, which is
partly used for the potential increase (left term on the right
hand side), and the rest is dissipated. Formula (17) suggests

to choose the Preisach energy potential as

Vo) = [ G lda@ar,  as)
with

Glrw) = </_1—/°°> VW (rv)dv, (19)
and the dissipation operator as

Vo) = [ rplal@)ar. Qo)

The energy balance for the Preisach operator that can be
written in the form

() Pl = Sl (0)+

dr
see [16]. In the terminology of [6], Z[u](t) is a counter-
clockwise operator.

vLowol, ey

dr

B. Prandtl-Ishlinskii operator

Prandtl-Ishlinskii operators represent an important class of
Preisach operators that can be characterized in terms of the
Preisach density y/(r,v) by the condition that y = y/(r) is a
function of » only and does not depend on v. Its popularity
in the control community is due to the fact that the Prandtl-
Ishlinskii operators are based on the superposition of plays
or backlash operators, widely applied in this field.

C. Example: magnetoelastic coupling

The operator Z[u](z) is able to ‘mimic’ irreversible and
dissipative phenomena such as the typical magnetization
process. In that case, as well-known, the operator describes
in the M-H plane hysteresis loops, where the area represents
the total loss. This important interpretation can be drawn
whenever x; and y; can be assumed as conjugate variables,
i.e. their product is the work done in the process involv-
ing those variables. The idea of passivity for the Preisach
operator has been exploited for stability analysis in [17],
[18]. However, when a model that describes the full coupling
between all involved variables is of concern, a completely
new approach is necessary to guarantee a thermodynamic
consistency of the operator, as sketched in the previous
section. In order to describe a specific case of physical
interest a full coupled magneto elastic process is discussed.
To this aim, the constitutive relations of a magnetostrictive
alloy:

e =¢(o,H),
B =B(0,H)

are considered between the state variables o (stress) and
H (magnetic field) on the one hand, and € (strain) and B

(22)
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(magnetic induction) on the other hand. It is well known (and
easily be checked by the chain rule) that if no hysteresis is
present, the constitutive law (22) is thermodynamically well
posed if the potentiality condition

de JB

oH Jdo
holds. This is equivalent to the existence of an energy
potential. If hysteresis is taken into account, the chain rule is
not available any more. Instead, we assume that all hysteresis
phenomena in the system (22) are due to a single Preisach
operator acting on one aggregated quantity u = u(o,H). A
more detailed discussion on the subject will be carried out
in the forthcoming paper [19]. Here, we only mention that a
particularly good agreement with experiments is obtained if
the hysteresis counterpart of (22) is considered in the form

e =to—f(o)¥V[u],
B = puH+ P[ul,
u =H/f(0),
where E is the elasticity modulus, y is the permeability, &7 is
a Preisach operator, ¥ is its potential, and f is a positive self-

similarity function. If we choose the Helmholtz free energy
F as

(23)

(24)

F=F(o.H) = 50"+ S 1 (f(0) ~ o (0)) ¥ [d],

we easily check, using (21), that the energy dissipation
D=¢0+BH—F = f(0)(uP[u] — ¥[u])

is nonnegative in agreement with the second principle of
thermodynamics.

III. COMPENSATION OF RATE-INDEPENDENT
MEMORY EFFECTS

The inversion of a hysteresis operator requires some care
due to the existence of an internal state. To this aim the
inverse can be defined as follows:

Definition: A hysteresis operator &2 with initial state p,

is called a compensator (or inverse) of the operator 2, with
initial state ¢ if, for any state p, there is a state ¢, such that
2,0 Ppx(t) = Pp02,x(t) = x(t), for every input function
x(t).
The availability of the inverse is strictly linked to the math-
ematical properties of the operator and should be specified
case by case. Referring to the Preisach operator, Brokate in
[20] specified its invertibility conditions, while in [21] the
invertibility conditions of a Prandtl-Ishilinskii operator were
drawn. In the latter case, assuming the Prandtl-Ishilinskii
operator:

w0 = [ up e, e
0
with u(r) > 0, the inverse, can be put in the form
7 (1) = /va(r) (u—p, b)) ()dr,  (26)

with a suitable choice of y and v functions, [21]. The
latter represents a further reason of the popularity of these

operators, where the availability of compensator in closed
form is advisable. However, the above operator is unable
to describe saturation and this limits its applicability to
Piezo- actuators or magnetostrictives for low driving fields.
This pushed to define a restricted class of operators, with
Preisach memory updating rules, [6] admitting the inverse
and showing saturation phenomena, [10], [22]:

y=Gomo f(x),

with suitable functions G and f. General Preisach operators
admit inverse operators, too, but no decomposition formula is
known, and the inverse has to be constructed numerically. A
fast algorithm, updating the Preisach state by the sequence
of output field has been proposed in [23] where it is also
shown that its computational weight is equivalent to the
direct Preisach algorithm.

The general approach to smart materials, as mentioned in
section II, is taking into account state variables x; and x
and state functions y; and y, simultaneously. This implies
a modification of compensation algorithms described so far.
Specifically, the approach is based on the introduction of a
modified ‘direct’ operator where x; and x, are assumed as
independent variables, [25]:

y=Wol(x1,%)+q(x),

where y = €, is the measured strain, x; = o, is the ap-
plied stress and x; is electric or magnetic field depending
on weather a Piezo-electric or magnetostrictive material is
considered. Finally, g(x;) is a pure elastic response to be
identified with almost trivial mechanical measurements at
zero field. The latter assumption is not strictly necessary,
but convenient during the identification procedure. There, by
exploiting the invertibility of the Preisach operator %, the
model can be re-arranged as:

2= y—qx)] = {(x1,x%).

Finally, by exploiting the monotonicity of magnetostrictive or
piezo-electric characteristics,which reflects on the properties
of the function &, it can be shown that the mapping

27

(28)

(29)

P:x EXCR— (x2,2) €S, (30)

admits the inverse and then the input field x; can be deter-
mined according to the following equation:

x =0 (7 y—q(x)],x).
The issue is discussed in detail in [26], [27].

€29

IV. MODEL-BASED CONTROL STRATEGIES IN
SMART DEVICES

A. Controller design through a compensator algorithm - one
variable case

If a compensator algorithm is employed within a control
system, either in open or closed loop, then, within the
identification limit, the chain of the compensator and the
smart actuator acts as a linear system. Therefore, even a clas-
sical Proportional-Integral (PI) controller can be employed

3602



Y controlier

Dl C(s) | Wl

Fig. 3. Control scheme with a compensator.

in a closed loop. This approach has been widely used in
actuation tasks where smart materials like Piezo, SMAs or
magnetostrictives were employed, [11], [12], [13], [24], [28].

The Fig.3 shows one example of application of the com-
pensator algorithm in a control scheme. There, the blocks
W and W~ represent, respectively, the rate-independent
hysteresis of the smart actuator and its compensator, while
D(s) represents the actuator dynamic behavior that can be
taken into account by properly designing the controller
C(s). This control scheme is used in quasi-static micro-
positioning applications where the mechanical stress over
the smart actuator is much lower than its internal pre-stress.

Applications and results of this technique can be found in
[27].

B. Controller design through a compensator algorithm - two
variable case

There are applications where the mechanical stress cannot
be considered constant anymore. For example, if a plant
must be positioned with a settling time comparable with the
internal time constants of the actuator. In this case, it can
happen that the stress variations over the smart material are
not negligible anymore and have to be considered into the
modeling and the control strategy.

The control scheme in Fig.4 shows a first attempt to
consider such a case. The x, variable is the mechanical stress
acting on the smart actuator and it is measured by a load cell
sensor (represented by the block A). The variable x| is the
magnetic field supplying the device which returns a displace-
ment represented by y. The block g implements the non-
linear function of eq. (28). The compensator is composed
by the series of two blocks, implementing the formula (31).
The block G(s) can take into account, at first, the transfer
function of the stress sensor but, it should include another
controller because the stress represents another feedback loop
within the control scheme. This controller can be simply an
integrator, limiting the bandwidth of the stress variable in
the feedback.

The control schemes presented above can be used in real-
time applications and implemented in micro-controllers. In
Fig. 5 shows the performances of the feedback system,
sketched in Fig. 4, in tracking a triangular waveform, with
period of 55, and with variable stress. Here the relative error
lies below 3% and so evidencing the effectiveness of the
approach.

Fig. 4. Control scheme with a two-variable compensator.

V. CONCLUSIONS AND PERSPECTIVES

Smart materials employed in actuation or sensing devices
need further effort in their modeling in order to exploit all the
possibilities and performances related to their ‘smartness’.
The development of more accurate compensation and control
techniques, such as the 2DoF control, [29], also in connection
to the new modeling approach proposed so far, is still an open
problem and requires further effort. The evolution of devices
with embedded control, able to exploit all potentialities
of smart materials (most of them of recent invention), is
strongly linked not only to the materials themselves or to the
computational power of the employed hardware, but chiefly
to the ability to design new control systems able to fully take
into account the actual characteristic of the material. Such
task cannot be successful without a multidisciplinary effort
involving researchers of different areas.

°
&

Time [s]

Time [s]

- n
T

|Relative Error| [%]

L I
15 20 25

04
ol

Time [s]

Fig. 5. Tracking performances of a PI control system with 2 variables
compensation. The desired output has a period 7' = 5s
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