Věda a výzkum

Na čem pracujeme

Na čem pracujeme: Drakonidy 2011 z letadla

Předpovědi meteorického roje Drakonid vypadaly na 8. října 2011 velmi slibně s příslibem dvou výrazných maxim. Vzhledem k tomu, že Drakonidy jsou poněkud tajemným rojem, bylo nutné tuto jedinečnou příležitost využít beze zbytku. Pracovníci Oddělení meziplanetární hmoty AsÚ spoluorganizovali pozorování Drakonid 2011 z letadel letících nad oblačností. Experiment byl vyhodnocen jako velký úspěch.

Na čem pracujeme: Simulace chování astrofyzikálního plazmatu v extrémních podmínkách

Chování látky při takových podmínkách, jaké panují v nitrech hvězd, je nemožné studovat v pozemských laboratořích. Hvězdná látka je horká, hustá, místy vysoce turbulentní, navíc v sobě často obsahuje magnetické pole, jež má na chování takové látky také vliv. Pozorování tak lze interpretovat jedině s pomocí výsledků numerických simulací. Jan Skála představil nový vysoce výkonný program pro popis takto extrémních stavů hmoty.

Na čem pracujeme: Rekonstrukce vzhledu aktivního galaktického jádra

Aktivní galaxie jsou vynikajícími vzdálenými laboratořemi pro studium nejrůznějších procesů probíhajících ve vysokoenergetickém spektru. Podle současného paradigmatu jsou různé typy aktivních galaxií důsledkem různého úhlu pohledu na jeden typ objektů. Jeden takový exemplář, galaxie Fairall 51, klasifikovaný jako Seyfertova galaxie typu 1, se stal cílem studie vedené Jiřím Svobodou z AsÚ. Fairall 51 je totiž i zdrojem polarizovaného záření, které se u Seyfertových galaxií typu I neočekává. Polarizované záření je naopak typickým znakem Seyfertových galaxií typu II. Tento nesoulad se pokusil J. Svoboda ozřejmit.

Na čem pracujeme: Nové dvojhvězdy s horkou podtrpasličí hvězdou a vlastnosti této populace hvězd

Hvězdy jsou v diagramu efektivní teplota—svítivost (tzv. Hertzsprungově-Russelově diagramu) rozloženy nerovnoměrně. Nejvíce jich najdeme na hlavní posloupnosti, méně pak v oblasti rudých obrů a nemalý počet zástupců i úplně vlevo dole mezi bílými trpaslíky. Na H-R diagramu jsou však přítomny i nejrůznější exotičtější typy hvězd, mezi něž patří i modří podtrpaslíci. Ti se stali cílem přehledové studie A. Kawky, S. Vennese a jejích kolegů z AsÚ i jiných astronomických institucí ve světě.

Na čem pracujeme: Mateřské těleso meteoritu Čeljabinsk opět neznámé

Průnik a následný dopad meteoritu Čeljabinsk 15. února 2013 byl nepochybně astronomickou událostí roku. Stovky záznamů z palubních kamer umožnily velmi přesné určení dráhy tohoto přibližně 20metrového tělesa jak v atmosféře, tak v meziplanetárním prostoru. J. Borovička z AsÚ a jeho kolegové si již v článku vydaném v roce 2013 v prestižním časopise Nature všimli, že trajektorie meteoroidu Čeljabinsk je nápadně podobná trajektorii planetky (89039) 1999 NC43 a usoudili, že Čeljabinsk by mohl být odštěpkem tohoto tělesa. Široký mezinárodní tým, jehož součástí byli i pracovníci AsÚ, tuto hypotézu podrobně otestoval a s vysokou statistickou věrohodností vyvrátil.

Na čem pracujeme: Oblak G2 přežil průlet kolem centra Galaxie a je zřejmě mladou hvězdou

V jednom z předchozích dílů tohoto nekončícího seriálu jsme psali o podílu pracovníků AsÚ na výzkumu jedné z astronomických událostí těchto let, jíž je průlet tajemného oblaku s označením G2 kolem černé veledíry v centru naší Galaxie. K průchodu pericentrem (tedy nejbližším bodem dráhy) již došlo za nejvyšší pozornosti řady přístrojů včetně dalekohledů VLT provozovaných ESO. Na analýze výsledků se opět podíleli i vědci z AsÚ, mezi nimi i Michal Zajaček, bývalý student Vladimíra Karase a dnes doktorand International Max-Planck Research School v Bonnu. Zdá se, že oblak průlet kolem centra Galaxie přežil a tento průlet poodhalil odpovědi na otázku, co je tento útvar vlastně zač.

Na čem pracujeme: Možnosti měření magnetických polí ve sluneční chromosféře, přechodové oblasti a koróně

Slunce je prostoupeno magnetickými poli, jež nejspíše vznikají na samotném dně konvektivní zóny v hloubkách 200 Mm pod povrchem Slunce, procházejí celou konvektivní zónou, kde se zesilují a mění do komplikovanější formy, až se vypínají do všech vrstev sluneční atmosféry. Zatímco ve fotosféře lze intenzitu magnetických polí měřit, ve vyšších vrstvách atmosféry je to zatím značně problematické. Jiří Štěpán ve své práci přijaté k publikaci v Astrophysical Journal ukazuje na způsob, jak přesto informaci o intenzitě magnetických polí v chromosféře, přechodové vrstvě a koróně získat.

Na čem pracujeme: Upřesnění základních parametrů planetky Apophis

Planetce Apophis je věnována náležitá pozornost odborné veřejnosti, neboť se jedná o blízkozemní planetku s potenciálním rizikem impaktu na Zemi v budoucnosti. Dnes je již jistě vyloučena srážka v roce 2029, kdy proletí tato planetka těsně kolem Země (blíže, než obíhají geostacionární družice), avšak předpovědi dalších přiblížení jsou zatíženy větší chybou. Tyto chyby mají původ i v tom, že nejsou dostatečně přesně známy základní popisné parametry této planetky. Petr Scheirich a Petr Pravec z AsÚ se podíleli na studii, která měla za cíl tyto parametry zpřesnit.

Na čem pracujeme: Dlouhodobé změny aktivity kataklyzmické proměnné V1223 Sgr

Kataklyzmické proměnné jsou význačnou a zajímavou skupinou proměnných hvězd se společným jmenovatelem, jímž je přítomnost kompaktní komponenty (nejčastěji bílého trpaslíka) v těsném dvojhvězdném systému. Skupina astrofyziky vysokých energií stelárního oddělení AsÚ se kataklyzmickými proměnnými zabývá již delší dobu. Ve svém článku shrnuje Vojtěch Šimon studium jedné z nich – proměnné V1223 Sgr.

Na čem pracujeme: Jak souvisejí astrosféry a astroohony s urychlováním částic kosmického záření

Kde končí Sluneční soustava? Tato otázka nabyla na významu před dvěma roky, kdy média přinesla informaci, že „sonda Voyager 1 opustila Sluneční soustavu“. Toto tvrzení je sice přitažlivé, ale jinak značně nepřesné. Voyager 1 opustil heliosféru, plazmovou bublinu obklopující Slunce, a vydal se do mezihvězdného prostoru. Stále je však gravitačně ovlivňován především Sluncem, Sluneční soustavu tedy neopustil. Plazmové bubliny kolem hvězd jsou však nesmírně zajímavé a staly se předmětem teoretické studie Dietera Nickelera a jeho kolegů, působících ve slunečním a stelárním oddělení AsÚ a také v Max-Planck Institutu pro výzkum Sluneční soustavy.

Na čem pracujeme: Rozšiřování magnetických trubic nad slunečními aktivními oblastmi

Mnohé nezodpovězené otázky fyziky Slunce se týkají koróny, vnější vrstvy sluneční atmosféry, jež se volně rozpíná do meziplanetárního prostoru slunečním větrem. Pozorování prováděná dalekohledy na kosmických družicích v ultrafialové oblasti spektra poskytují až překvapivé detaily koronální struktur. Z nich je zřejmé, že základním stavebním kamenem koróny je smyčka. Smyčka magnetického pole vyplněná horkým plazmatem propojující fotosférické paty s opačnou polaritou magnetického pole. Geometrií koronálních smyček se zabýval v práci publikované v časopise the Astrophysical Journal Jaroslav Dudík (spolupracovník AsÚ, který byl v letech 2013‒2014 na postdocovém pobytu na University of Cambridge) ve spolupráci s Elenou Dzifčákovou z AsÚ a Jonathanem Cirtainem z NASA.

Na čem pracujeme: Hvězdný vítr v dvojhvězdě s kompaktní složkou

Vzájemná interakce mezi hvězdami v těsných dvojhvězdách je jedním z důležitých fyzikálních jevů, jež zásadně ovlivňují jejich vývoj. Hmotnější hvězda se vyvíjí rychleji, takže jako první přejde do stádia rudého obra, odvrhne vnější obálky a přemění se v kompaktní objekt – bílého trpaslíka, neutronovou hvězdu nebo černou díru, to v závislosti na počáteční hmotnosti. A zatímco tato hvězda svůj vývoj dokonala, z hvězdy druhé, pomaleji se vyvíjející, může přetékat látka na kompaktní složku. K tomu obvykle dochází, vyplní-li vývojově mladší hvězda svůj Rocheův lalok. Je-li však horká a uniká z ní hvězdný vítr, je tento strháván kompaktním průvodcem a hvězda ani nemusí vyplňovat Rocheův lalok. A právě taková konfigurace zajímala Jana Čechuru a Petra Hadravu z AsÚ.

Na čem pracujeme: Odhalovaná tajemství hvězdy se závojem

Není mnoho typů hvězd, jež jsou obestřeny takovým množstvím tajemství jako B[e] hvězdy, tedy hvězdy spektrálního typu B s emisní obálkou. Nejenže ještě ani zdaleka není vysvětlen původ této obálky, ale u mnohých z B[e] hvězd mají astronomové velké problémy i jen rozumně omezit hodnoty fundamentálních parametrů, mezi ty obtížně stanovitelné patří zejména vzdálenost a věk. Hvězda s označením MWC 137 se stala cílem jedné podrobné spektroskopické studie, na níž se podílely i astronomky ze Stelárního oddělení AsÚ.

Na čem pracujeme: Jak rotují kometární meteoroidy?

Každý den dopadnou na zem desítku tun materiálu z kosmu. Drtivá většina z těchto tělísek zůstává astronomy neodhalena, tělíska větší pak vyvolávají známé meteory – průletové jasnění, při němž se původní tělísko vypaří. Jasnějším meteorům se říká bolidy a jen ta nejjasnější a největší tělesa mají šanci proniknout vzdušným obalem a dostat se tak k přímému výzkumu z rukou vědců. Hlavním zdrojem pro prachová zrna (meteoroidy) jsou komety, z nichž se uvolňují při sublimaci povrchového ledu. Davida Čapka z AsÚ zajímalo, jakým způsobem větší prachová zrna, která by v zemské atmosféře vyvolala jasné bolidy, po opuštění komety rotují.

Na čem pracujeme: Urychlování elektronových svazků ve slunečních erupcích

Sluneční erupce jsou jedním z nejvýraznějších projevů sluneční aktivity. Jejich výzkumu je věnováno značné úsilí, neboť jevy v nich probíhající i s nimi spojené ovlivňují široký meziplanetární prostor a dopadají i na život člověka, především na technologická zařízení umístěná na Zemi i na oběžné dráze. Fyzikálně realistický popis jevů probíhajících při erupci je tedy prvním krokem pro plné pochopení těchto jevů. Michal Varady z AsÚ a jeho kolegové se zabývali jedním z nesouladů mezi předpověďmi současného modelu erupcí s pozorováními.

Na čem pracujeme: Ověřování zákrytového modelu proměnných aktivních galaktických jader

Aktivní galaktická jádra jsou předmětem výzkumu na mnoha vědeckých institucích v celém světě, je tedy potěšující, že vědci z AsÚ jsou schopni na tomto poli úspěšně konkurovat zahraničním týmům. Frédéric Marin a Michal Dovčiak se tentokrát podívali na možnosti odhalení zákrytů aktivního galaktického jádra obíhající mlhovinou s využitím polarimetrických pozorování v rentgenové oblasti spektra.

Na čem pracujeme: Analytický model Birkelandových proudů

Zemská magnetosféra je velkým rejdištěm elektricky nabitých částic, z nichž převážná část se sem dostává od Slunce prostřednictvím slunečního větru. Výstižný popis jejich pohybů má důležité aplikace pro pochopení dění v geomagnetických bouřích, jimiž jsou ovlivněny i lidské technologie. Marek Vandas z AsÚ publikoval práci, v níž představuje analytický model speciální konfigurace magnetických polí, jenž je použitelný pro popis Birkelandových proudů.

Na čem pracujeme: Vliv atmosféry a oceánů na polohu rotační osy Země

Střídání dne a noci na Zemi je způsobeno víceméně pravidelným otáčením planety kolem její osy. Poloha zemské rotační osy je v kosmickém prostoru na první pohled stálá, míří do směru, kde se nachází na hvězdné obloze Polárka – také proto se na Zemi střídají roční období. Avšak při bližším výzkumu je zřejmé, že tato stálost je více než iluzorní. Zemská rotační osa ve skutečnosti vykonává mnoho pohybů, které jsou cílem výzkumu Jan Vondráka z AsÚ a jeho kolegů. Jejich poslední práce ukazuje, že na okamžitou polohu zemské osy mají vliv, kromě pohybů a změn v atmosféře a oceánech, také tzv. geomagnetické záškuby.

Na čem pracujeme: Prostorové mapování galaktické centra pomocí rentgenové polarimetrie

Přestože astronomové mají k dispozici velmi detailní pozorování vnitřních částí naší Galaxie v mnoha spektrálních oborech, celková struktura blízkého okolí galaktického středu je doposud neznámá. Objekty ležící nepochybně v různých vzdálenostech se nám promítají na nebeskou sféru a jejich skutečná poloha v prostoru tedy zůstává pozorovatelům skryta. Frédéric Marin z AsÚ a jeho spolupracovníci navrhli a otestovali metodu, která umožňuje stanovit úplnou prostorovou pozici molekulárních oblaků v centrální části Galaxie.

Na čem pracujeme: Jasná Perseida s neobvykle vysokou počáteční výškou

Astronomové z Oddělení meziplanetární hmoty AsÚ se již tradičně zabývají studiem meteorů. Pro tyto účely provozují automatickou bolidovou síť se stanicemi pokrývajícími území České republiky. Jedenáct stanic z této sítě zaznamenalo 12. srpna 2012 velmi jasný meteor patřící do známého letního roje Perseid. Výzkum vedený Pavlem Spurným z AsÚ následně ukázal, jak moc je tento úlovek zajímavý.

Na čem pracujeme: Nejpřesněji určené parametry binární planetky

Studium asteroidů je jedním ze dvou hlavních proudů činnosti Oddělení meziplanetární hmoty AsÚ. Cílem výzkumu je mimo jiné zjistit o planetkách co možná nejvíce informací a to co možná nejpřesněji. To umožňuje zabývat se nejen samotnými tělesy, ale například sledovat i vývoj jejich drah, což je důležitým pozorovacím údajem pro studium různých negravitačních procesů, které ovlivňují pohyb těchto těles Sluneční soustavou. P. Scheirich vedl rozsáhlý mezinárodní tým, který si kladl za cíl co nejpřesněji popsat složky dvojplanetky 1996 FG3 a jejich vzájemný orbitální pohyb.

Na čem pracujeme: Detailní modely gravitačního pole Země

Gravitační síla je základní silou řídící pohyb těles ve vesmíru. Jednoduchý popis známý ze střední školy jako Newtonův zákon všeobecné gravitace však pro přesný popis například oběžných drah umělých družic Země nestačí. Země není z jejich pohledu hmotným bodem, proto je zapotřebí co nejpřesněji znát charakter gravitačního pole Země. To nelze přesně měřit, avšak lze využít přesné znalosti drah umělých družic na nízké oběžné dráze a tvar gravitačního pole Země vypočítat. Přesně tím ze zabývá tým vedený Alešem Bezděkem z AsÚ.

Na čem pracujeme: Osiřelé penumbry jako testovací materiál pro teorii slunečních skvrn

Sluneční skvrny jsou nejvýznamějšími projevy sluneční aktivity, tedy neustálých proměn povrchového mangetického pole Slunce. Po právu jsou tedy cílem dalších a dalších odborných studií, neboť jsou i přes staletí trvající výzkum stále zahaleny několika tajemstvími. Otázky jejich vzniku nebo hloubkové struktury tak zůstávají nezodpovězeny. Jan Jurčák ze Slunečního oddělení AsÚ se věnoval studiu struktur, které svým vzhledem připomínají penumbru vyvinutých slunečních skvrn, ovšem s žádnou skvrnou nejsou přímo propojeny. Takové struktury si vysloužily označení osiřelá penumbra.

Na čem pracujeme: Vliv rotačního směšování a metalicity na ztrátu hmoty hvězdným větrem

Vývoj každé hvězdy je podle současných představ dán prakticky ihned po jejím vzniku, a silně závisí především na její hmotnosti. Vývojové modely rigorózně popisují jednotlivá stádia hvězd, od protohvězd přes pobyt na hlavní posloupnosti až k expanzi mezi rudé obry a závěrečná stádia. Ukazuje se, že v popisu přesnými rovnicemi je velká neznámá, která má vliv především na způsob, jakým ta která hvězda svůj život ukončí. Tou neznámou je ztráta hmoty hvězdným větrem. Jiří Kubát ze Stelárního oddělení AsÚ se podílel na studii, jež si vzala za cíl popsat vliv změn chemického složení vyvolaného rotačním směšováním na ztrátu hmoty horkých hvězd hvězdným větrem.

Na čem pracujeme: Be hvězda v těsné dvojhvězdě s horkým podtrpaslíkem

Be hvězdy, hvězdy spektrálního typu B obklopené plynným diskem, jsou setrvalým zájmem skupiny horkých hvězd stelárního oddělení AsÚ. I když se tyto objekty studují téměř 150 let, není dosud zcela vysvětlen původ cirkumstelárního disku. Jednou z možností je, že disk vzniká v důsledku vývoje těsných dvojhvězd. Vývojové modely těsných dvojhvězd ukazují, že více než polovina Be hvězd je v těsných dvojhvězdách, z nichž jednu složku tvoří Be hvězda a druhou složkou je horký podtrpaslík, malý ale horký objekt. Zatím však bylo podobných systémů nalezeno jen několik. Jejich charakteristickým rysem je periodicky proměnná emise v čáře neutrálního helia. Tato emise je důsledkem ozařování disku Be hvězdy energetickým zářením horkého podtrpaslíka. Tým P. Koubského se začal hledáním „chybějícího“ typu Be hvězd systematicky zabývat. Během dvouletého systematického úsilí se podařilo nalézt tři Be dvojhvězdy tohoto typu. Jednou z nich je objekt HD 161306, který pozorovali Perkovým dalekohledem v Ondřejově a  dalekohledem Dominion Astrophysical Observatory v Kanadě. Počet známých Be hvězd s horkým podtrpaslíkem se sice v období několika let zdvojnásobil, ale rozpor mezi teoretickými modely vývoje těsných dvojhvězd se tím zdaleka nevyřešil.

Na čem pracujeme: Bílá erupce pozorovaná spektrografem IRIS

Vznik tzv. bílých slunečních erupcí, tedy takových, které se projevují zjasněním v široké oblasti spektra, není stále ještě uspokojivě vysvětlen. Není zřejmé, jak souvisí výskyt bílé erupce s jinými vlastnostmi (např. intenzitou rentgenové emise) erupcí, a dokonce není uspokojivě ani vysvětleno, v jaké oblasti sluneční atmosféry vlastně vzniká ona širokopásmová emise. Petr Heinzel a Lucia Kleint využili výjimečných pozorování z kosmického spektrografu IRIS (Interface Region Imaging Spectrograph) a publikovali zevrubnou analýzu zvýšení úrovně Balmerovského kontinua v blízké ultrafialové oblasti spektra.

Na čem pracujeme: Chladný plyn v mezigalaktickém prostoru vytržen z galaxie ESO 137-001

V hustém prostředí galaktických kup dochází k přeměně galaxií s bohatou tvorbou hvězd (označují se jako „modré“ kvůli převaze vysokoenergetického záření od mladých hvězd) na galaxie chudé na plyn a tedy s jen velmi omezenou hvězdnou tvorbou (takové naopak bývají označovány jako „červené“ kvůli převaze starých hvězd). Astrofyzikové nemají zcela jasno, jakým způsobem k tomuto přerodu dochází, roli však pravděpodobně hraje gravitačního působení dalších galaxií v kupě a také působení okolního horkého plynu, který kupu vyplňuje. P. Jáchym z AsÚ se svými kolegy z Francie, USA a Austrálie podrobně studoval galaxii ESO 137-001, která takovou transformací právě prochází, a došel k několika zajímavým závěrům, které tyto procesy více objasňují.

Na čem pracujeme: Protony slunečního větru ve vzdálenosti jedné astronomické jednotky od Slunce

Slunce nejenže řídí pohyb naší planety prostřednictvím své gravitace, ale zaplavuje meziplanetární prostor neustálým proudem nabitých částic. Tento jev nazýváme slunečním větrem a jeho výzkumem ze zabývají i pracovníci AsÚ. P. Hellinger a P. Trávníček se ve své práci nedávno publikované v Astrophysical Journal Letters zabývali statistickými vlastnostmi částic slunečního větru ve vzdálenosti 1 AU od Slunce (t. j. na úrovní oběžné dráhy Země) a porovnávali je s teoretickými modely.

Na čem pracujeme: Komplikovaná rotace planetky Apophis ovlivňuje její let Sluneční soustavou

Málokterý zájemce o astronomii doposud neslyšel o planetce Apophis. Těleso s rozměrem asi 300 metrů na blízkozemní dráze bylo objeveno v roce 2004 a už o půl roku později na Turínské škále (Torino scale) rizika srážky se Zemí získalo čtvrtý stupeň (což je nejvyšší kdy dosažený), neboť podle předběžné dráhy byla pravděpodobnost srážky se Zemí v roce 2029 odhadnuta až na 1:37. Po upřesnění dráhy byla sice srážka v roce 2029 vyloučena, ale i tak proletí planetka 13. dubna 2029 velmi těsně kolem Země. Jak se bude jeho dráha vyvíjet dále je otázkou, neboť na ni mají vliv nejrůznější slabé efekty. Petr Pravec z AsÚ koordinoval rozsáhlý mezinárodní tým, který studoval rotaci tohoto asteroidu analýzou fotometrických pozorování získaných pozemními dalekohledy v mezinárodní kampani. Tým získal robustní údaje o typu a rychlosti rotace tohoto tělesa, což bude využitelné pro přesnější předpovědi budoucího vývoje dráhy planetky ve Sluneční soustavě.

Na čem pracujeme: Střižné proudění ve sluneční atmosféře jako generátor elektrického pole

Urychlování částic je jevem pozorovaným u mnoha astrofyzikálních objektů. Kupříkladu ve slunečních erupcích dojde po přepojení magnetického pole k urychlení částic ve svazcích na rychlosti blízké rychlosti světla. Tyto procesy jsou obvykle spojovány s existencí silných elektrických proudů a elektrických polí. Tyto veličiny nejsou přímo měřitelné, avšak jejich charakter lze odvodit z jiných měřitelných fyzikálních veličin, které jsou spjaty komplikovanou soustavou rovnic. Tato soustava se obvykle řeší s pomocí počítače (tedy numericky), pro studium detailů chování částic však mají větší cenu řešení analytická, tedy s pomocí „tužky a papíru“. S takovým přišel Dieter Nickeler z AsÚ a s jeho pomocí popsal možný mechanismus dodatečného urychlování částic ve slunečních erupcích.

Na čem pracujeme: Hvězda v prachové obálce v okolí černé veledíry

V roce 2002 byl na snímcích okolí centra naší Galaxie objeven prachový oblak, který dostal označení G2. O deset let později se ukázalo, že oblak míří po vysoce eliptické dráze k samotnému centru Galaxie, kde sídlí černá veledíra o hmotnosti asi 4 milionů sluncí. Fyzikální podstata tohoto oblaku však doposud není známa. M. Zajaček, diplomant V. Karase z AsÚ, se věnoval mimo jiné i simulacím průletu hvězd zahalených v oblaku prachu kolem černých veleděr. Zřejmou motivací byla předpověď chování oblaku G2 po jeho průletu.

Na čem pracujeme: Druhotná tvorba hvězd ve vznikajících galaxiích a hmotných hvězdokupách

Je známo, že ke zrodu hvězd dochází v chladných místech obřích molekulárních oblaků. Hmotnosti hvězd jsou však mnohonásobně nižší než jsou hmotnosti jednotlivých oblaků, proces fragmentace oblaků vede ke vzniku hvězdokup. Menší, rychle se rozpadající skupiny zahrnující desítky až stovky hvězd, se nazývají OB asociace. Větší otevřené hvězdokupy zahrnující tisíce až desítky tisíc hvězd žijí déle. Kulové hvězdokupy, kterých známe v Mléčné dráze zhruba 150, jsou složeny ze stovek tisíců až miliónu hvězd. Tyto hvězdné soustavy patří k nejstarším objektům, jejichž stáří je srovnatelné se stářím samotného vesmíru. Podobně velké soustavy vznikají během srážek galaxií, což je známo např. z pozorování srážky dvojice spirálních galaxií nazvané Tykadla. Okolnosti zrodu hmotných hvězdokup jsou však zahaleny tajemstvím a jsou předmětem dohadů a polem soutěže několika alternativních teorií.

Na čem pracujeme: SPLAT: mocný nástroj pro zobrazení a jednoduchou analýzu spekter

P. Škoda z AsÚ se podílí na vývoji programového balíku SPLAT-VO (SPLAT=SPectraL Analysis Tool), multiplatformního nástroje určeného k zobrazování a zpracování spekter. V průběhu let byl tento nástroj doplněn o protokoly umožňující získávat data z celosvětového archívu Virtuální observatoře (proto extenze -VO v názvu programu). SPLAT-VO je volně dostupným nástrojem pro profesionální zacházení s elektronickými spektry umožňující práci na zajímavých projektech i astronomům, kteří nedisponují vlastními dalekohledy.

Na čem pracujeme: Proudění plazmatu kolem slunečních skvrn

Svrchní obálka slunečního tělesa je kvůli probíhající konvekci neuvěřitelně dynamická až chaotická. Přesto zde nalezneme určitý velkorozměrový systém proudících útvarů, granule a supergranule. Silná magnetická pole, zejména taková, která vytvářejí sluneční skvrny, tuto dynamiku značným způsobem ovlivňuje. Okolo vyvinutých slunečních skvrn s penumbrou se pak ustavuje zvláštní systém proudění plazmatu, tzv. moat. M. Švanda a M. Sobotka z AsÚ s T. Bártou, studentem MFF UK, studovali statistické porovnání vlastností proudění v moatech unipolárních skvrn a v supergranulích.

Na čem pracujeme: Zašpinění bílí trpaslíci s magnetickým polem

Sledováním osudů jiných hvězd se učíme i o hvězdě naší, o Slunci. Adéla Kawka a Stéphane Vennes z AsÚ se systematicky věnují studiu bílých trpaslíků, kteří nám ukazují, jak bude naše Slunce vypadat v daleké budoucnosti. Ve své poslední publikované práci ukazují, že vysoké procento chladných bílých trpaslíků se zašpiněnými atmosférami vykazuje přítomnost magnetického pole. To naznačuje souvislost mezi hustými planetárními systémy hvězd na hlavní posloupnosti a jejich magnetickými poli.

Na čem pracujeme: Předpověď slupky v galaxii NGC3923 -- cesta k ověření alternativní teorie gravitace?

Dnes je nejuznávanější teorií popisující pohyb kosmických těles obecná teorie relativity, jejímž speciálním případem je klasická newtonovská dynamika tak, jak se ji učí i studenti středních škol. Klasická dynamika však nesprávně vysvětluje např. rotační křivky galaxií, tedy závislost průměrné rychlosti rotace galaxie na vzdálenosti od jejího středu. Nesoulad je nejčastěji vysvětlován přítomností skryté látky (temné hmoty). Nesoulad mezi pozorováním a předpovědí lze alternativně vysvětlit i tím, že popis newtonovskou mechanikou není správný, vznikla modifikovaná newtonovská dynamika (MOND). Michal Bílek a jeho kolegové z AsÚ vysvětlili na základě aplikace MOND strukturu slupkové galaxie NGC3923 a navíc učinili předpověď, na jejímž základě lze hypotetickou platnost MOND přímo otestovat.

Na čem pracujeme: Cesta k seismologii slunečních protuberancí

Helioseismologie je po půlstoletí rozvoje považována za standardní metodu slunečního výzkumu. Studiem šíření akustických vln se dozvídáme o stavu slunečního nitra, o podpovrchových magnetických polích nebo detaily proudění horkého plazmatu. Ve strukturách spojených se sluneční aktivitou se však šíří nejen akustické vlny, ale také množství vln souvisejících s přítomností magnetického pole, zejména vlny magnetozvukové. Jejich projevy byly v protuberancích – oblacích plazmatu drženými nad slunečním povrchem silným magnetickým polem – pozorovány v nedávné minulosti. Petr Heinzel a Maciej Zapiór z AsÚ společně s kolegy z Baleárské university na Malorce publikovali práci, dláždící cestu k diagnostice vlastností magnetického pole v protuberancích z vlastností magnetoakustických vln.

Na čem pracujeme: Objev prvních B[e] nadobrů v Galaxii v Andromedě

Michaela Kraus se svými spolupracovníky objevila první nadobry třídy B[e] v blízké galaxii v Andromedě, mezi astronomy známé jako M31. Objev se podařil na základě spektroskopických pozorování přístrojem GNIRS (Gemini Near-Infrared Spectrograph) připojeným k osmimetrovému dalekohledu Gemini Sever.